WO2012101730A1 - 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器 - Google Patents

非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器 Download PDF

Info

Publication number
WO2012101730A1
WO2012101730A1 PCT/JP2011/007347 JP2011007347W WO2012101730A1 WO 2012101730 A1 WO2012101730 A1 WO 2012101730A1 JP 2011007347 W JP2011007347 W JP 2011007347W WO 2012101730 A1 WO2012101730 A1 WO 2012101730A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging module
contact charging
coil
magnet
primary
Prior art date
Application number
PCT/JP2011/007347
Other languages
English (en)
French (fr)
Inventor
健一郎 田畑
徳次 西野
晃男 日高
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011013617A external-priority patent/JP4835794B1/ja
Priority claimed from JP2011131947A external-priority patent/JP4900523B1/ja
Priority claimed from JP2011131946A external-priority patent/JP4983992B1/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11857270.0A priority Critical patent/EP2620961A4/en
Priority to CN2011900008111U priority patent/CN203366973U/zh
Publication of WO2012101730A1 publication Critical patent/WO2012101730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/10Ballasts, e.g. for discharge lamps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction

Definitions

  • the present invention relates to a non-contact charging module having a planar coil portion made of a spiral conductor and a magnetic sheet, and a receiving-side and transmitting-side non-contact charging device using the same.
  • the main device such as the portable terminal device and the charger are required to be thin and small.
  • a planar coil portion as a transmitting-side non-contact charging module or a receiving-side non-contact charging module and a magnetic sheet as in (Patent Document 1).
  • the position of the primary side contactless charging module (transmitting side contactless charging module) and the position of the secondary side contactless charging module (receiving side contactless charging module) need to be accurately aligned. is there. This is to efficiently perform electromagnetic induction for power transmission.
  • a method of using a magnet as one of methods for accurately aligning the primary side non-contact charging module (transmission side non-contact charging module) and the secondary side non-contact charging module (receiving side non-contact charging module).
  • the other non-contact charging module is aligned by a magnet provided in one non-contact charging module. This is because the magnet is mounted on at least one of the primary side non-contact charging module or the secondary side non-contact charging module, and the mutual magnets or one magnet and the other magnetic sheet are attracted to perform alignment. Is the method.
  • a convex part is formed on the charging surface of a charger equipped with a primary side non-contact charging module
  • a concave part is formed in an electronic device equipped with a secondary side non-contact charging module
  • the convex part is fitted into the concave part.
  • This is a method of performing physical (shape) forced alignment.
  • the primary side non-contact charging module detects the position of the coil of the secondary side non-contact charging module so that the coil of the primary side non-contact charging module is automatically It is a method of moving to a position.
  • it is a method in which the portable device can be charged anywhere on the charging surface of the charger by providing the charger with a large number of coils.
  • the L value of the coil provided in each non-contact charging module varies greatly depending on whether or not a magnet is used for positioning the primary-side non-contact charging module and the secondary-side non-contact charging module. To do.
  • the electromagnetic induction for power transmission uses the L value of the coil provided in each non-contact charging module to determine its resonance frequency.
  • the present invention does not use the case where the magnet provided in the other non-contact charging module is used when the primary non-contact charging module and the secondary non-contact charging module are aligned.
  • a non-contact charging module that suppresses a change in the L value of a coil provided in the non-contact charging module and can be used in both cases of using and not using a magnet is provided.
  • it aims at providing the receiving side and transmission side non-contact charge apparatus using this.
  • the present invention has a case where a magnet provided in the counterpart non-contact charging module is used and a case where the magnet is not used in positioning with the counterpart non-contact charging module.
  • the contact charging module comprising: a planar coil portion around which a conductive wire is wound; and a magnetic sheet placed on the coil surface of the planar coil portion so as to face the coil surface of the planar coil portion, The magnetic sheet is provided with a hole inside the position corresponding to the hollow portion of the planar coil portion.
  • the other non-contact charging module (primary-side non-contact charging module or secondary-side non-contact charging module) is used. Regardless of whether the provided magnet is used or not, the L value of the coil provided in the non-contact charging module is not changed, so that either the magnet is used or not used. Even in this case, a contactless charging module that can perform good alignment and power transmission can be obtained.
  • the block diagram which shows the non-contact electric power transmission apparatus in embodiment of this invention The figure which shows the structure of the non-contact charger in embodiment of this invention
  • the figure which shows the non-contact charge module utilized for the primary side in embodiment of this invention Detailed view showing a non-contact charging module used on the primary side in the embodiment of the present invention
  • the figure which shows the structure of the portable terminal device in embodiment of this invention The figure which shows the non-contact charge module utilized for the secondary side in embodiment of this invention Detailed view showing a non-contact charging module used on the secondary side in the embodiment of the present invention
  • the conceptual diagram of the magnetic sheet of the non-contact charge module in embodiment of this invention The figure which shows the relationship between the L value of the coil of a non-contact charging module, and the thickness of center part in the case where it is not provided with the case where a magnet is provided for position alignment in the other non-contact charging module of this Embodiment
  • the module comprises: a planar coil portion around which a conducting wire is wound; and a magnetic sheet on which the coil surface of the planar coil portion is placed and is provided to face the coil surface of the planar coil portion.
  • the sheet is provided with a hole inside the position corresponding to the hollow portion of the planar coil portion.
  • the hole is a through hole.
  • the depth of the hole is 40 to 60% of the thickness of the magnetic sheet.
  • the conducting wire of the planar coil portion is wound in a circular shape. Therefore, magnetic flux can be generated uniformly and stable electric power transmission can be performed.
  • the shape of the upper surface of the hole portion is the same as the shape of the hollow portion of the planar coil portion.
  • the invention according to claim 7 is that the hole is formed larger than the magnet. Thereby, the influence of a magnet can be suppressed with sufficient balance.
  • the center of the hole portion coincides with the center of the center portion of the planar coil portion.
  • the conductive wire of the planar coil portion is wound in a rectangular shape. Thereby, efficient electric power transmission can be performed.
  • FIG. 1 is a block diagram showing a non-contact power transmission device according to an embodiment of the present invention.
  • the non-contact power transmission device is composed of a primary-side non-contact charging module 1 (transmitting-side non-contact charging module) and a secondary-side non-contact charging module 2 (receiving-side non-contact charging module). Utilizing this, power is transmitted from the primary side non-contact charging module 1 to the secondary side non-contact charging module 2.
  • This non-contact power transmission device is used for power transmission of about 5 W or less.
  • the frequency of power transmission is about 110 to 205 kHz.
  • the primary side non-contact charging module 1 is mounted on, for example, a charger
  • the secondary side non-contact charging module 2 is mounted on, for example, a mobile phone, a digital camera, a PC, or the like.
  • the primary side non-contact charging module 1 includes a primary side coil 11a, a magnetic sheet 3, a resonance capacitor (not shown), and a power input unit 5.
  • the power input unit 5 is connected to a commercial power supply 300 as an external power supply, receives power supply of about 100 to 240 V, converts it into a predetermined current (DC 12 V, 1 A), and supplies it to the primary coil 11 a.
  • the primary coil 11a generates a magnetic field according to its shape, number of turns, and supplied current.
  • the resonance capacitor is connected to the primary side coil 11a and determines the resonance frequency of the magnetic field generated from the primary side coil 11a according to the relationship with the primary side coil 11a. The electromagnetic induction action from the primary side non-contact charging module 1 to the secondary side non-contact charging module 2 is performed by this resonance frequency.
  • the secondary side non-contact charging module 2 includes a secondary side coil 11b, a magnetic sheet 4, a resonance capacitor (not shown), a rectifier circuit 6, and a power output unit 7.
  • the secondary side coil 11b receives the magnetic field generated from the primary side coil 11a, converts the magnetic field into a predetermined current by electromagnetic induction, and passes the rectifier circuit 6 and the power output unit 7 to the secondary side non-side. Output to the outside of the contact charging module 2.
  • the rectifier circuit 6 rectifies a predetermined current that is an alternating current and converts it into a predetermined current that is a direct current (DC 5 V, 1.5 A).
  • the power output unit 7 is an external output unit of the secondary side non-contact charging module 2, and power is supplied to the electronic device 200 connected to the secondary side non-contact charging module 2 through the power output unit 7. Do.
  • FIG. 2 is a diagram showing a configuration of the non-contact charger according to the embodiment of the present invention.
  • the non-contact charger shown in FIG. 2 is shown so that the inside can be understood.
  • the non-contact charger 400 that transmits power using electromagnetic induction has the primary-side non-contact charging module 1 inside a case that constitutes its exterior.
  • the non-contact charger 400 has a plug 401 that plugs into an outlet 301 of a commercial power supply 300 installed indoors or outdoors. By inserting the plug 401 into the outlet 301, the non-contact charger 400 can be supplied with power from the commercial power source 300.
  • the non-contact charger 400 is installed on the desk 501, and the primary-side non-contact charging module 1 is disposed in the vicinity of the surface 402 opposite to the desk surface side of the non-contact charger 400. And the main plane of the primary side coil 11a in the primary side non-contact charge module 1 is arrange
  • the non-contact charger 400 may be installed on a wall surface. In this case, the non-contact charger 400 is disposed in the vicinity of the surface opposite to the wall surface side.
  • the primary side non-contact charging module 1 may have a magnet 30 a used for alignment with the secondary side non-contact charging module 2. In this case, it arrange
  • FIG. 3 is a diagram showing the primary side non-contact charging module in the embodiment of the present invention, and shows a case where the primary side coil is a circular coil.
  • a circular coil wound in a circle is described, but a rectangular coil wound in a substantially rectangular shape may be used.
  • the primary side non-contact charge module demonstrated from now on, it applies to a secondary side non-contact charge module fundamentally. The difference of the secondary side non-contact charging module with respect to the primary side non-contact charging module will be described in detail later.
  • the primary side non-contact charging module 1 includes a primary side coil 11a in which a conductive wire is wound in a spiral shape, and a magnetic sheet 3 provided so as to face the surface of the primary side coil 11a.
  • the primary coil 11a includes a coil in which a conductor is wound in a radial direction so as to draw a vortex on the surface, and terminals 22a and 23a as current supply portions provided at both ends of the coil. Is provided. That is, the terminals 22a and 23a serving as current supply units supply current from the commercial power supply 300, which is an external power supply, to the primary coil 11a.
  • a coil is obtained by winding a conductive wire in parallel on a plane, and a surface formed by the coil is called a coil surface.
  • the thickness direction is the direction in which the primary coil 11a and the magnetic sheet 3 are stacked.
  • the magnetic sheet 3 includes a flat portion 31a on which the primary coil 11a is placed, a central portion 32a in the central portion of the flat portion 31a and corresponding to a hollow region of the primary coil 11a, and a primary side. And a linear recess 33a into which a part of the lead wire of the coil 11a is inserted.
  • the central portion 32a is formed with a recess or a through hole with respect to the flat portion 31a.
  • the primary side coil 11a is wound outward from the inner diameter of 20 mm in diameter, and the outer diameter is 30 mm. That is, the primary coil 11a is wound in a donut shape.
  • the primary side coil 11a may be wound in a circular shape or may be wound in a polygonal shape.
  • the conducting wires are wound so as to leave a space between each other, the stray capacitance between the upper conducting wire and the lower conducting wire is reduced, and the AC resistance of the primary coil 11a can be kept small. Moreover, the thickness of the primary side coil 11a can be suppressed by winding so that space may be packed.
  • the primary side non-contact charging module 1 may have a magnet 30 a used for alignment with the secondary side non-contact charging module 2.
  • the magnet 30a is circular, the diameter is 15.5 mm or less, and the like.
  • the magnet 30a has a coin shape and must be arranged so that the center thereof coincides with the winding center axis of the primary coil 11a. This is to reduce the influence of the magnet 30a on the primary coil 11a.
  • examples of the alignment method include the following methods.
  • a method for performing physical (formal) forced alignment such as forming a convex portion on the charging surface of the charger and fitting a concave portion on the electronic device on the secondary side, at least one of the primary side and the secondary side
  • a method of automatically moving the coil to the position of the coil on the secondary side and a method of allowing the portable device to be charged anywhere on the charging surface of the charger by providing the charger with a large number of coils.
  • the magnet is positioned without the primary side (charging side) non-contact charging module that includes the magnet and uses it for positioning.
  • the primary side (charging side) non-contact charging module that is not used together, charging can be performed regardless of the type of the primary side (charging side) non-contact charging module, and convenience is improved.
  • the other non-contact charging module is provided for alignment with the other non-contact charging module.
  • the first method of arranging the magnet 30a is to arrange the magnet 30a on the upper surface of the central portion 32a of the magnetic sheet 3.
  • a second method of arranging the magnet 30a there is a method of arranging the magnet 30a instead of the central portion 32a of the magnetic sheet 3. In the second method, since the magnet 30a is disposed in the hollow region of the coil, the primary side non-contact charging module 1 can be reduced in size.
  • the magnet 30a shown in FIG. 3 is unnecessary.
  • the magnet is provided in the hollow portion of the coil incorporated in at least one of the primary side non-contact charging module and the secondary side non-contact charging module.
  • the magnet is circular, and in this case, the diameter of the magnet is smaller than the inner width of the coil.
  • the magnet has a diameter of about 15.5 mm (about 10 mm to 20 mm) and a thickness of about 1.5 to 2 mm.
  • a neodymium magnet is used, and the strength may be about 75 mT to 150 mT.
  • the distance between the coil of the primary side non-contact charging module and the coil of the secondary side non-contact charging module is about 2 to 5 mm, sufficient alignment can be achieved with such a magnet. .
  • the magnetic flux When a magnetic flux is generated between the primary side coil and the secondary side coil for power transmission, if there is a magnet between and around the magnetic flux, the magnetic flux extends to avoid the magnet. Alternatively, the magnetic flux penetrating through the magnet becomes eddy current or heat generation in the magnet, resulting in loss. Furthermore, when the magnet is disposed in the vicinity of the magnetic sheet, the magnetic permeability of the magnetic sheet in the vicinity of the magnet is lowered. Therefore, the magnet 30a provided in the primary side non-contact charging module 1 reduces the L value of both the primary side coil 11a and the secondary side coil 11b. As a result, the transmission efficiency between the non-contact charging modules decreases.
  • FIG. 4 is a detailed view showing the primary-side non-contact charging module in the embodiment of the present invention.
  • FIG. 4A is a top view of the primary side non-contact charging module
  • FIG. 4B is a cross-sectional view taken along line AA of the primary side non-contact charging module in FIG. 4A.
  • FIG. 4C is a cross-sectional view taken along the line BB of the primary side non-contact charging module in FIG.
  • FIG. 4D is a BB cross-sectional view of the primary side non-contact charging module in FIG. 4A when a slit is provided.
  • 4A and 4B show a case where the magnet 30a is not provided. In addition, when provided, the magnet 30a shown with the dotted line is provided.
  • the primary side coil 11a extends from the winding start portion located in the central region of the primary side coil 11a to the terminal 23a. Is two steps in the thickness direction, and the remaining region is one step. At this time, the upper conductor and the lower conductor are wound so as to leave a space between each other, thereby reducing the stray capacitance between the upper conductor and the lower conductor, and the alternating current of the primary coil 11a. Resistance can be kept small.
  • the number of turns of the primary coil 11a can be increased to increase the current flowing through the primary coil 11a.
  • the conducting wire located in the upper stage and the conducting wire located in the lower stage are wound so as to close each other, thereby flowing the primary side coil 11a while suppressing the thickness of the primary side coil 11a. The current can be increased.
  • the primary coil 11a is formed using a conducting wire having a circular cross section, but the conducting wire may be a conducting wire having a square cross section.
  • the conducting wire may be a conducting wire having a circular cross-sectional shape, a gap is formed between adjacent conducting wires, so that the stray capacitance between the conducting wires is reduced, and the AC resistance of the primary coil 11a can be kept small.
  • the primary side coil 11a is wound in one stage rather than being wound in two stages in the thickness direction, and the AC resistance of the primary side coil 11a is lowered, and the transmission efficiency can be increased. This is because when a conducting wire is wound in two stages, stray capacitance is generated between the upper conducting wire and the lower conducting wire. Therefore, it is better to wind as many portions as possible in one stage rather than winding the entire primary coil 11a in two stages. Moreover, it can reduce in thickness as the primary side non-contact charge module 1 by winding in 1 step
  • the planar coil portion is composed of two conductors, the two conductors are electrically connected by solder or the like at the terminals 22a and 23a, so that the two conductors are one thick conductor.
  • the two conducting wires may be wound in parallel with the coil surface, or may be wound in parallel with the coil surface. That is, in the case of being parallel to the coil surface, the two conducting wires are planar and are wound around the same center, and one conducting wire is sandwiched between the other conducting wires in the radial direction.
  • thickness can be restrained by electrically joining two conducting wires in terminal 22a and 23a part, and making it function like one conducting wire. That is, for example, the cross-sectional area of a conducting wire having a diameter of 0.25 mm can be obtained by preparing two conducting wires having a diameter of 0.18 mm.
  • the thickness of one turn of the coil is 0.25 mm and the radial width of the coil is 0.25 mm, but two conductors having a diameter of 0.18 mm. If it exists, the thickness of 1 turn of a coil will be 0.18 mm, and the width of radial direction will be 0.36 mm.
  • the thickness direction is a stacking direction of the planar coil portion and the magnetic sheet 3. Further, only a part of the coil on the center side overlaps in two steps in the thickness direction, and the remaining outer part may have one step.
  • the thickness of the primary-side non-contact charging module 1 is increased, but the current flowing through the planar coil portion can be increased by effectively increasing the cross-sectional area of the conducting wire, which is sufficient The number of turns can be easily secured.
  • the primary side coil 11a is constituted by a conducting wire of about 0.18 to 0.35 mm, and among these, the primary side coil 11a of the primary side non-contact charging module 1 has a value of 0.00. A conductor of 25 to 0.35 mm is preferred.
  • the alternating current resistance of the primary side coil 11a is low, the loss in the primary side coil 11a is prevented, and the power transmission efficiency of the primary side non-contact charging module 1 depending on the L value is improved by improving the L value. Can be improved.
  • the primary coil 11a is formed in an annular shape (circular shape).
  • the shape of the primary coil 11a is not limited to an annular shape (circular shape), and may be an elliptical shape, a rectangular shape, or a polygonal shape.
  • the shape of the primary coil 11a is preferably annular (circular). This is because when the shape of the primary side coil 11a is annular (circular), power can be transmitted and received in a wider range, and therefore the primary side coil 11a and the secondary side non-contact of the primary side non-contact charging module 1 are possible. Positioning of the secondary coil 11b of the contact charging module 2 is facilitated. That is, in order to enable transmission / reception of power in a wider range, the secondary-side non-contact charging module 2 is less susceptible to the angle with respect to the primary-side non-contact charging module 1.
  • terminals 22a and 23a may be close to each other or may be arranged apart from each other, it is easier to mount the primary side non-contact charging module 1 if they are arranged apart.
  • the magnetic sheet 3 is provided in order to improve the power transmission efficiency of non-contact charging using electromagnetic induction action, and includes a flat portion 31a and a center corresponding to the inner diameter of the primary coil 11a. A portion 32a and a linear recess 33a are provided.
  • the magnet 30a for positioning the primary side non-contact charging module 1 and the secondary side non-contact charging module 2 is provided, the magnet 30a may be disposed above the central portion 32a, or the magnet 30a may be disposed at the central portion. You may arrange
  • the recessed part or the through-hole is provided in the part corresponding to the hollow part of the primary side coil 11a of the magnetic sheet 3.
  • the linear recessed part 33a may be replaced with the slit 34a of FIG.4 (d).
  • the magnetic sheet 3 a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet, or the like can be used.
  • the magnetic sheet 3 may have a single-layer configuration, a configuration in which a plurality of the same materials are stacked in the thickness direction, or a plurality of different magnetic sheets may be stacked in the thickness direction. It is preferable that at least the magnetic permeability is 250 or more and the saturation magnetic flux density is 350 mT or more.
  • An amorphous metal can also be used as the magnetic sheet 3.
  • a ferrite sheet is used as the magnetic sheet 3
  • the primary coil 11a can be made thin.
  • the shape of the magnetic sheet 3 may be a circle, a rectangle, a polygon, a rectangle having a large curve at each corner, or a polygon.
  • the secondary side coil 11b in the secondary side non-contact charging module 2 receives the magnetic field generated by the primary side non-contact charging module 1 and performs power transmission.
  • a magnetic field may be generated so as to avoid the magnets, or the magnetic field trying to pass through the magnets may be lost.
  • the magnetic permeability of the part near the magnet in the magnetic sheet 3 is reduced. That is, the magnetic field is weakened by the magnet. Therefore, in order to minimize the magnetic field weakened by the magnet, measures such as separating the primary coil 11a and the secondary coil 11b from the magnet and providing the magnetic sheet 3 that is not easily affected by the magnet are provided. It is necessary to take.
  • FIG. 5 is a diagram showing the configuration of the mobile terminal device in the embodiment of the present invention, and is a perspective view when the mobile terminal device is disassembled.
  • the portable terminal device 520 includes a liquid crystal panel 521, operation buttons 522, a substrate 523, a battery pack 524, and the like.
  • a mobile terminal device 520 that receives power using electromagnetic induction is a mobile terminal device that includes a casing 525 that forms the exterior thereof and a secondary-side non-contact charging module 2 inside the casing 526.
  • a substrate 523 provided with a control unit is provided on the back surface of the substrate 523.
  • the battery pack 524 is connected to the substrate 523 and supplies power to the substrate 523.
  • the secondary-side non-contact charging module 2 is provided on the back surface of the battery pack 524, that is, on the housing 526 side.
  • the secondary side non-contact charging module 2 receives power supply from the primary side non-contact charging module 1 by electromagnetic induction action, and charges the battery pack 524 using the power.
  • the secondary side non-contact charging module 2 includes a secondary side coil 11b, a magnetic sheet 4, and the like.
  • the secondary coil 11b and the magnetic sheet 4 are disposed between the housing 526 and the substrate 523 in this order from the housing 526 side, so that the substrate 523 and the battery pack 524 are disposed.
  • the power supply can be received with less influence.
  • the magnetic sheet 4 appears to be disposed closer to the housing 526 than the secondary coil 11 b, but is schematically illustrated for the sake of clarity. As described above, the secondary coil 11b and the magnetic sheet 4 are arranged in this order from the housing 526 side.
  • FIG. 6 is a diagram showing the secondary side non-contact charging module in the embodiment of the present invention, and shows a case where the secondary side coil is a circular coil.
  • FIG. 7 is a detailed view showing the secondary side non-contact charging module in the embodiment of the present invention.
  • 7A is a top view of the secondary side non-contact charging module
  • FIG. 7B is a cross-sectional view of the secondary side non-contact charging module taken along the line CC in FIG. 7A.
  • FIG. 7 (c) is a DD cross-sectional view of the secondary non-contact charging module in FIG. 7 (a) when a linear recess is provided.
  • FIG. 7D is a DD cross-sectional view of the secondary-side non-contact charging module in FIG. 7A when a slit is provided.
  • 7A and 7B show a case where the magnet 30b is not provided. In addition, when provided, the magnet 30b shown with the dotted line is provided.
  • FIGS. 6 to 7 illustrating the secondary side non-contact charging module 2 correspond to FIGS. 3 to 4 illustrating the primary side non-contact charging module 1, respectively.
  • the configuration of the secondary side non-contact charging module 2 is substantially the same as that of the primary side non-contact charging module 1.
  • the secondary side non-contact charging module 2 is different from the primary side non-contact charging module 1 in the size and material of the magnetic sheet 4.
  • the magnetic sheet 4 used for the secondary side non-contact charging module 2 has a size that fits within about 40 ⁇ 40 mm, and has a thickness of about 2 mm or less.
  • the magnetic sheet 4 has a substantially square shape of about 33 mm ⁇ 33 mm. It is desirable that the magnetic sheet 4 be formed to be approximately the same or larger than the outer peripheral end of the secondary coil 11b. Moreover, the shape of the magnetic sheet 4 may be a circle, a rectangle, a polygon, a rectangle having a large curve at four corners, or a polygon.
  • the secondary-side non-contact charging module 2 is used in a mobile terminal as a power supply receiving side, there is no room in the space occupied by the secondary-side non-contact charging module 2 in the mobile terminal. Moreover, since the electric current which flows into the secondary side coil 11b of the secondary side non-contact charge module 2 is small, the insulation of the magnetic sheet 4 is not so required.
  • the secondary side coil 11b is constituted by a conductive wire of about 0.18 to 0.35 mm, and among them, the secondary side coil 11b of the secondary side non-contact charging module 2 has a value of 0.0. A conducting wire of about 18 to 0.30 mm is suitable.
  • the mounted electronic device When the mounted electronic device is a mobile phone, it is often arranged between a case constituting the exterior of the mobile phone and a battery pack located inside the case.
  • a battery pack is an aluminum casing, it adversely affects power transmission. This is because an eddy current is generated in aluminum in a direction in which the magnetic flux generated by the coil is weakened, so that the magnetic flux of the coil is weakened. Therefore, it is necessary to provide the magnetic sheet 4 between the aluminum which is the exterior of the battery pack and the secondary coil 11b disposed on the exterior to reduce the influence on the aluminum.
  • FIG. 8 is a conceptual diagram of the magnetic sheet of the non-contact charging module according to the embodiment of the present invention.
  • the magnetic sheet 4 provided in the secondary-side non-contact charging module 2 is used.
  • FIG. 8A is a top view of the magnetic sheet of the contactless charging module according to the embodiment of the present invention
  • FIG. 8B is a top view in which the position of the linear concave portion of the magnetic sheet in FIG. 8A is changed. It is.
  • the hole part which makes a recessed part shape or a through-hole in the center part 32b is provided.
  • 8C is a cross-sectional view taken along line EE in FIG. 8A
  • FIG. 8D is a cross-sectional view taken along line FF in FIG.
  • FIG. 8A when the central portion is a recess
  • FIG. FIG. 9 is a cross-sectional view taken along the line FF in FIG. 8A when the central portion is a through hole.
  • the central portion 32b is a concave shape or a through hole.
  • the effect of the magnet 30a provided in the primary-side non-contact charging module 1 can be reduced by providing a hole such that the central portion 32b has a concave shape or a through hole. The reason will be described below.
  • the magnetic sheet 4 of the secondary side non-contact charge module 2 which performs electric power transmission with the primary side non-contact charge module 1 provided with the magnet 30a as an example is demonstrated.
  • the description of the magnetic sheet 4 of the secondary side non-contact charging module 2 described below is based on the magnetic property of the primary side non-contact charging module 1 that performs power transmission with the secondary side non-contact charging module 2 including the magnet 30b.
  • the non-contact power transmission device may or may not use a magnet for positioning the primary-side non-contact charging module 1 and the secondary-side non-contact charging module 2. And since the magnet will interfere with the magnetic flux between the primary side and secondary side non-contact charging modules, when there is a magnet, the primary side coil 11a of the primary side non-contact charging module 1 and The L value of the secondary side coil 11b of the secondary side non-contact charging module 2 is greatly reduced.
  • the primary side coil 11a uses the resonance capacitor in the primary side non-contact charging module 1 to form an LC resonance circuit.
  • the resonance frequency with the resonance capacitor also changes significantly. Since this resonance frequency is used for power transmission between the primary side non-contact charging module 1 and the secondary side non-contact charging module 2, if the resonance frequency changes greatly depending on the presence or absence of the magnet 30a, power transmission cannot be performed correctly. End up.
  • the L value of the secondary coil 11b when the magnet 30a is used for alignment and when not used must be close to each other.
  • Figure 9 is a diagram showing the relationship between the thickness of the L value and the center of the coil of the contactless charging module when not provided with the case where the alignment comprises a magnet in the other non-contact charging module of the present embodiment.
  • the degree of hollowing out indicates that 0% is a flat view without the central portion 32b having a concave shape, and 100% indicates that the central portion 32b is a through hole.
  • the magnetic field of the secondary coil 11b decreases and the L value decreases as the central portion 32b of the magnetic sheet 4 becomes thinner.
  • the thinner the central portion 32b of the magnetic sheet 4 the greater the distance in the stacking direction between the magnetic sheet 4 and the magnet 30a, so the influence of the magnet 30a is reduced.
  • the magnetic field of the secondary coil 11b increases and the L value increases.
  • the center part 32b is formed in the through hole, the L value is closest. That is, by using the central portion 32b as a through hole, the influence of the magnet 30a used for alignment can be minimized.
  • the alignment accuracy is improved when the central portion 32b has a certain thickness.
  • the alignment accuracy can be stabilized by setting the degree of hollowing to 60% or less.
  • the degree of hollowing is set to 40 to 60%
  • the L value of the secondary coil 11b when the magnet 30a is used for positioning and when not used is set to a close value, and at the same time the positioning of the magnet 30a is adjusted.
  • the effect of can be sufficiently obtained. That is, the magnet 30a and the central portion 32b of the magnetic sheet 4 are attracted so that the centers of each other can be aligned.
  • the through hole may be filled with a magnetic material to a half depth.
  • the hole (recessed part or through-hole) provided in the center part 32b does not necessarily have the same shape and the same size as the center part 32a. Even if the shape of the central portion 32b, that is, the hollow portion of the coil is substantially rectangular or substantially circular, the hole portion may have various shapes regardless of the shape. That is, the shape is rectangular or circular. Moreover, it is preferable that a hole part is smaller than the center part 32b, and it is good to ensure the area of 30% or more of the area of the center part 32b at least.
  • the magnetic sheets 3 and 4 may be formed by laminating a high saturation magnetic flux density material and a high magnetic permeability material, for example, the central portion of the high saturation magnetic flux density material is formed flat and penetrates through the central portion of the high magnetic permeability material.
  • the central portion 32a may be formed in a concave shape as the magnetic sheets 3 and 4 by being formed in a hole.
  • the high saturation magnetic flux density material refers to a magnetic sheet having a high saturation magnetic flux density and a low magnetic permeability as compared with a high magnetic permeability material, and particularly preferably a ferrite sheet.
  • the diameter of the recess or the through hole is preferably smaller than the inner diameter of the secondary coil 11b.
  • the diameter of the recess or the through hole substantially the same as the inner diameter of the secondary coil 11b (0 to 2 mm smaller than the inner diameter of the coil), the magnetic field in the inner circumference of the secondary coil 11b can be increased. .
  • the outer side of the step can be used for alignment, It can be used to make the L value of the primary side coil 11a close when the magnet 30a is used for alignment and when it is not used.
  • a recessed part or a through-hole it is good for a recessed part or a through-hole to be larger than the size of the magnet 30a. That is, it is preferable that the hole is larger than the diameter of the magnet 30a and smaller than the hollow portion of the secondary coil 11b.
  • the magnet 30a and the center portion 32b of the magnetic sheet 4 attract each other in a balanced manner, and the positions of the centers of each other Matching can be done with high accuracy.
  • the magnet 30a and the central portion 32b of the magnetic sheet 4 attract each other in a balanced manner.
  • the center can be accurately aligned.
  • the recess or the through hole is formed larger than the magnet 30a, the influence of the magnet 30a can be suppressed in a well-balanced manner.
  • the primary-side non-contact charging module 1 can perform alignment and efficient power transmission regardless of whether the secondary-side non-contact charging module 2 includes the magnet 30b or not. be able to.
  • FIG. 10 is a top view of the non-contact charging module in which the coil 11b is wound in a rectangular shape and a circular shape.
  • FIG. 10 (a) shows the coil 11b in a rectangular shape
  • FIG. 10 (b) shows the coil 11b in a circular shape. Shows the case. Rectangular and circular in a case where turning the coil 11b wound, the hollow portion of the coil 11b has a recess or through-hole, an effect is obtained as described above by these holes.
  • the secondary side non-contact module was demonstrated in FIG. 10, even if it is a primary side non-contact charge module, it has the same effect.
  • the non-contact charging module of the present invention either the case where the magnet of the counterpart non-contact charging module is used or the case where the magnet is not used for the alignment of the primary side non-contact charging module and the secondary side non-contact charging module.
  • the change of the L value of the coil provided in the non-contact charging module is suppressed, it can be used with or without a magnet, and can be used with a mobile phone, portable audio, or portable computer. It is useful as a receiving side charging device when charging a portable device such as a portable terminal, a digital camera, a video camera or the like.

Abstract

 相手側非接触充電モジュールとの位置合わせに際し、相手側非接触充電モジュールに備えられたマグネットを利用する場合とマグネットを利用しない場合とがある非接触充電モジュールにおいて、非接触充電モジュールに設けられたコイルのL値を変化させないで使用できる非接触充電モジュール。この非接触充電モジュールは、導線が巻回された平面コイル部と、平面コイル部のコイル面を載置し、平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、磁性シートには、平面コイル部の中空部に対応する位置内部に穴部を設けたことを特徴とする。

Description

非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器
 本発明は、渦巻状の導線からなる平面コイル部と磁性シートとを有する非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器に関する。
 近年、本体機器を充電器で非接触充電することのできるものが多く利用されている。これは、充電器側に送信側非接触充電モジュール、本体機器側に受信側非接触充電モジュールを配し、両モジュール間に電磁誘導を生じさせることにより充電器側から本体機器側に電力を伝送するものである。そして、上記本体機器として携帯端末機器等を適用することも提案されている。
 この携帯端末機器等の本体機器や充電器は、薄型化や小型化が要望されるものである。この要望に応えるため、(特許文献1)のように、送信側非接触充電モジュールや受信側非接触充電モジュールとしての平面コイル部と、磁性シートとを備えることが考えられる。
特開2006-42519号公報
 この種の非接触充電モジュールは、1次側非接触充電モジュール(送信側非接触充電モジュール)の位置と2次側非接触充電モジュール(受信側非接触充電モジュール)の位置を正確に合わせる必要がある。これは、電力伝送のための電磁誘導を効率的に行うためである。
 1次側非接触充電モジュール(送信側非接触充電モジュール)と2次側非接触充電モジュール(受信側非接触充電モジュール)を正確に位置合わせする方法の1つとして、マグネットを利用する方法がある。これは、一方の非接触充電モジュールに備えられたマグネットにより他方の非接触充電モジュールが位置合わせされるものである。これは、1次側非接触充電モジュールもしくは2次側非接触充電モジュールの少なくとも一方にマグネットを搭載することで、お互いのマグネットもしくは一方のマグネットと他方の磁性シートとが引き付けあって位置合わせを行う方法である。
 また、1次側非接触充電モジュールと2次側非接触充電モジュールを正確に位置合わせする他の方法として、マグネットを利用しないで位置合わせをする方法がある。
 例えば、1次側非接触充電モジュールを搭載した充電器の充電面に凸部を形成し、2次側非接触充電モジュールを搭載した電子機器に凹部を形成し、凸部を凹部にはめ込むといった、物理的(形状的)に強制的な位置合わせを行う方法である。また、1次側非接触充電モジュールが2次側非接触充電モジュールのコイルの位置を検出することで、1次側非接触充電モジュールのコイルを自動的に2次側非接触充電モジュールのコイルの位置まで移動させる方法である。また充電器に多数のコイルを備えることで、携帯機器が充電器の充電面のどこにおいても充電可能とする方法である。
 しかしながら、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせにマグネットを使用する場合と使用しない場合とでは、それぞれの非接触充電モジュールに設けられたコイルのL値が大きく変化する。電力伝送のための電磁誘導は、それぞれの非接触充電モジュールに設けられたコイルのL値を利用して、その共振周波数が決定される。
 そのため、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせにマグネットを使用する場合と使用しない場合とでは、非接触充電モジュールを共用しにくいという問題があった。
 そこで、本発明は、上記の問題に鑑み、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに際し、他方の非接触充電モジュールに備えられたマグネットを使用する場合と使用しない場合のいずれの場合であっても、非接触充電モジュールに設けられたコイルのL値の変化を抑え、マグネットを使用する場合と使用しない場合のいずれの場合でも使用できる非接触充電モジュールを提供することを目的とする。また、これを用いた受信側及び送信側非接触充電機器を提供することを目的とする。
 上記課題を解決するために本発明は、相手側非接触充電モジュールとの位置合わせに際し、相手側非接触充電モジュールに備えられたマグネットを利用する場合と、マグネットを利用しない場合と、がある非接触充電モジュールにおいて、導線が巻回された平面コイル部と、前記平面コイル部のコイル面を載置し、前記平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、前記磁性シートには、前記平面コイル部の中空部に対応する位置内部に穴部を設けたものである。
 本発明によれば、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに際し、他方の非接触充電モジュール(1次側非接触充電モジュールあるいは2次側非接触充電モジュール)に備えられたマグネットを使用する場合と使用しない場合のいずれの場合であっても、非接触充電モジュールに設けられたコイルのL値を変化させないので、マグネットを使用する場合と使用しない場合のいずれの場合にも良好な位置合わせおよび電力伝送を行うことができる非接触充電モジュールを得ることができる。
本発明の実施の形態における非接触電力伝送機器を示すブロック図 本発明の実施の形態における非接触充電器の構成を示す図 本発明の実施の形態における1次側に利用された非接触充電モジュールを示す図 本発明の実施の形態における1次側に利用された非接触充電モジュールを示す詳細図 本発明の実施の形態における携帯端末機器の構成を示す図 本発明の実施の形態における2次側に利用された非接触充電モジュールを示す図 本発明の実施の形態における2次側に利用された非接触充電モジュールを示す詳細図 本発明の実施の形態における非接触充電モジュールの磁性シートの概念図 本実施の形態の他方の非接触充電モジュールにおいて位置合わせにマグネットを備える場合と備えない場合における非接触充電モジュールのコイルのL値と中心部の厚みの関係を示す図 本発明によるコイルを矩形及び円形に巻回した非接触充電モジュールの上面図
 請求項1に記載の発明は、相手側非接触充電モジュールとの位置合わせに際し、相手側非接触充電モジュールに備えられたマグネットを利用する場合と、マグネットを利用しない場合と、がある非接触充電モジュールにおいて、導線が巻回された平面コイル部と、前記平面コイル部のコイル面を載置し、前記平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、前記磁性シートには、前記平面コイル部の中空部に対応する位置内部に穴部を設けたものである。これにより、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに際し、相手側非接触充電モジュールに備えられたマグネットを使用する場合と使用しない場合のいずれの場合であっても、非接触充電モジュールに設けられたコイルのL値を変化させないので、マグネットを使用する場合と使用しない場合のいずれの場合にも効率的に使用できる非接触充電モジュールを得ることができる。
 請求項2記載の発明は、前記穴部が、貫通孔であるものである。これにより、位置合わせに利用するマグネットの影響を最小限に抑えることができる。
 請求項3記載の発明は、前記穴部の深さが、前記磁性シートの厚みの40~60%であるものである。これにより、マグネットを位置合わせに利用する場合と利用しない場合でのコイルのL値を近い値とすると同時に、マグネットの位置合わせの効果も十分に得ることができる。
 請求項4記載の発明は、前記平面コイル部の導線は円形に巻回されているものである。これにより、磁束を均等に発生させることができ、安定した電力伝送を行うことができる。
 請求項5記載の発明は、前記穴部の上面の形状は、前記平面コイル部の中空部の形状と同一とした。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
 請求項6記載の発明は、前記穴部のすべての端部は、前記平面コイル部の中空部の端部より等距離であるとする。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
 請求項7記載の発明は、前記穴部が、前記マグネットよりも大きく形成されていることとする。これにより、マグネットの影響をバランスよく抑えることができる。
 請求項8記載の発明は、前記穴部の中心が、前記平面コイル部の中心部の中心と一致することとした。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
 請求項9記載の発明は、前記平面コイル部の導線は矩形に巻回されているものである。これにより、効率のよい電力伝送を行うことができる。
 (実施の形態)
 以下、本発明の実施の形態について図面をもちいて説明する。
 図1は、本発明の実施の形態における非接触電力伝送機器を示すブロック図である。
 非接触電力伝送機器は、1次側非接触充電モジュール1(送信側非接触充電モジュール)と、2次側非接触充電モジュール2(受信側非接触充電モジュール)とから構成され、電磁誘導作用を利用して1次側非接触充電モジュール1から2次側非接触充電モジュール2に電力伝送が行われる。この非接触電力伝送機器は、約5W以下の電力伝送に使用される。また、電力伝送の周波数は約110~205kHzである。1次側非接触充電モジュール1は例えば充電器に搭載され、2次側非接触充電モジュール2は例えば携帯電話、デジタルカメラ、PC等に搭載される。
 1次側非接触充電モジュール1は、1次側コイル11a、磁性シート3、共振コンデンサ(図示せず)、電力入力部5を備える。電力入力部5は、外部電源としての商用電源300に接続されて100~240V程度の電力供給を受け、所定電流(直流12V、1A)に変換して1次側コイル11aに供給する。1次側コイル11aは、その形状、巻数及び供給を受けた電流に応じた磁界を発生させる。共振コンデンサは、1次側コイル11aに接続され、1次側コイル11aとの関係により1次側コイル11aから発生させる磁界の共振周波数を決定する。1次側非接触充電モジュール1から2次側非接触充電モジュール2に対する電磁誘導作用は、この共振周波数により行われる。
 一方、2次側非接触充電モジュール2は、2次側コイル11b、磁性シート4、共振コンデンサ(図示せず)、整流回路6、電力出力部7から構成される。2次側コイル11bは、1次側コイル11aから発生した磁界を受けて、その磁界を電磁誘導作用により所定電流に変換して、整流回路6、電力出力部7を介して、2次側非接触充電モジュール2の外部に出力する。整流回路6は、交流電流である所定電流を整流して直流電流である所定電流(直流5V、1.5A)に変換する。また、電力出力部7は2次側非接触充電モジュール2の外部出力部であり、この電力出力部7を介して、2次側非接触充電モジュール2に接続される電子機器200に電力供給を行う。
 次に、1次側非接触充電モジュール1を非接触充電器に搭載する場合について説明する。
 図2は、本発明の実施の形態における非接触充電器の構成を示す図である。なお、図2に示す非接触充電器は、その内部が分かるように示したものである。
 電磁誘導作用を利用して電力を送信する非接触充電器400は、その外装を構成するケースの内部に1次側非接触充電モジュール1を有する。
 非接触充電器400は、屋内もしくは屋外に設置された商用電源300のコンセント301に差し込むプラグ401を有する。このプラグ401をコンセント301に差し込むことによって、非接触充電器400は商用電源300から電力供給を受けることができる。
 非接触充電器400は机上501に設置され、1次側非接触充電モジュール1は非接触充電器400の机面側とは反対側の面402の近傍に配置される。そして、1次側非接触充電モジュール1における1次側コイル11aの主平面を、非接触充電器400の机面側とは反対側の面402に平行に配置する。このようにすることで、2次側非接触充電モジュール2を搭載した電子機器の電力受信作業エリアを確保することができる。なお、非接触充電器400は壁面に設置されてもよく、この場合、非接触充電器400は壁面側とは反対側の面の近傍に配置される。
 また、1次側非接触充電モジュール1は、2次側非接触充電モジュール2との位置合わせに用いるマグネット30aを有する場合がある。この場合、1次側コイル11aの中央領域に位置する中空部に配置される。
 次に、1次側非接触充電モジュール1について説明する。
 図3は、本発明の実施の形態における1次側非接触充電モジュールを示す図であり、1次側コイルが円形コイルの場合を示す。なお、図3においては円形に巻回された円形コイルにて説明しているが、略矩形状に巻回された矩形コイルであってもよい。なお、これから説明する1次側非接触充電モジュールの詳細については、基本的に2次側非接触充電モジュールに適応される。1次側非接触充電モジュールに対する2次側非接触充電モジュールの相違点は、詳しく後述する。
 1次側非接触充電モジュール1は、導線が渦巻き状に巻回された1次側コイル11aと、1次側コイル11aの面に対向するように設けられた磁性シート3とを備える。
 図3に示すとおり、1次側コイル11aは、面上で渦を描くように径方向に向けて導電体を巻いたコイルと、コイルの両端に設けられた電流供給部としての端子22a、23aを備える。すなわち、電流供給部としての端子22a、23aは、外部電源である商用電源300からの電流を1次側コイル11aに供給する。コイルは導線を平面上で平行に巻きまわしたものであり、コイルによって形成された面をコイル面と呼ぶ。なお、厚み方向とは、1次側コイル11aと磁性シート3との積層方向である。
 また、磁性シート3は、1次側コイル11aを載置する平坦部31aと、平坦部31aの中心部にあって1次側コイル11aの中空領域内に相当する中心部32aと、1次側コイル11aの引き出し線の一部が挿入される直線凹部33aと、から構成されている。中心部32aは、平坦部31aに対して凹部あるいは貫通孔が形成されている。
 本実施の形態における1次側非接触充電モジュール1では、1次側コイル11aは直径が20mmの内径から外に向かって巻回され、外径が30mmとなっている。すなわち、1次側コイル11aはドーナツ形状に巻回されている。なお、1次側コイル11aは円形に巻回されてもよいし、多角形に巻回されてもよい。
 また、導線はお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、1次側コイル11aの交流抵抗を小さく抑えることができる。また、空間を詰めるように巻回されることによって、1次側コイル11aの厚みを抑えることができる。
 また、1次側非接触充電モジュール1は、2次側非接触充電モジュール2との位置合わせに用いるマグネット30aを有する場合がある。これは、規格(WPC)によって、マグネット30aは円形であること、直径が15.5mm以下であること等が定められている。マグネット30aはコイン形状をしており、その中心が1次側コイル11aの巻回中心軸と一致するように配置されなければならない。これは、1次側コイル11aに対するマグネット30aの影響を軽減させるためである。
 すなわち、位置合わせの方法としては、例えば以下の方法が挙げられる。例えば充電器の充電面に凸部、2次側の電子機器に凹部を形成しはめ込むといった、物理的(形状的)に強制的な位置合わせを行う方法、少なくとも1次側及び2次側の一方にマグネットを搭載することで、お互いのマグネットもしくは一方のマグネットと他方の磁性シートとが引き付けあって位置合わせを行う方法、1次側が2次側のコイルの位置を検出することで、1次側のコイルを自動的に2次側のコイルの位置まで移動させる方法、充電器に多数のコイルを備えることで、携帯機器が充電器の充電面のどこにおいても充電可能とする方法等である。
 このように、1次側(充電側)非接触充電モジュール及び2次側(被充電側)非接触充電モジュールのコイルの位置合わせには様々な方法が挙げられるが、マグネットを使用する方法とマグネットを使用しない方法とに分けられる。そして、1次側(充電側)非接触充電モジュールであれば、マグネットを備えた2次側(被充電側)非接触充電モジュール及びマグネットを備えていない2次側(被充電側)非接触充電モジュールの双方に適応できるようにすることで2次側(被充電側)非接触充電モジュールのタイプに関係せず充電ができ利便性が向上する。同様に、2次側(被充電側)非接触充電モジュールであれば、マグネットを備えてこれを位置あわせに使用する1次側(充電側)非接触充電モジュール及びマグネットを備えずにマグネットを位置あわせに使用しない1次側(充電側)非接触充電モジュールの双方に適応できるようにすることで1次側(充電側)非接触充電モジュールのタイプに関係せず充電ができ利便性が向上する。すなわち、電力伝送を行う相手である他方の非接触充電モジュールと電磁誘導によって電力伝送を行う非接触充電モジュールにおいて、他方の非接触充電モジュールとの位置合わせに際し、他方の非接触充電モジュールに備えられたマグネットを利用して位置合わせを行う場合、及びマグネットを利用しないで位置合わせを行う場合とがある非接触充電モジュールにおいて、電力伝送が良好に行えるように構成することが必要である。
 1次側非接触充電モジュール1がマグネット30aを有する場合、マグネット30aを配置する1番目の方法として、マグネット30aを磁性シート3の中心部32aの上面に配置する方法がある。また、マグネット30aを配置する2番目の方法として、マグネット30aを磁性シート3の中心部32aの代わりに配置する方法がある。2番目の方法では、マグネット30aがコイルの中空領域に配置されるため、1次側非接触充電モジュール1を小型化できる。
 なお、1次側非接触充電モジュール1と2次側非接触充電モジュール2の位置合わせにマグネットを利用しない場合は、図3に示すマグネット30aは必要ない。
 ここで、マグネットが非接触充電モジュールの電力伝送効率に与える影響について説明する。一般的に、マグネットは1次側非接触充電モジュール及び2次側非接触充電モジュールの少なくとも一方において、内蔵されるコイルの中空部の中に設けられる。これにより、マグネットとマグネット、または、マグネットと磁性シートをなるべく近接させることができると同時に、1次側及び2次側のコイルを近接させることができる。マグネットは円形であり、この場合、マグネットの直径はコイルの内幅よりも小さくなる。本実施の形態においてはマグネットの直径は約15.5mm(約10mm~20mm)であり、厚みは約1.5~2mmである。また、ネオジウム磁石を使用しており、強さは約75mTから150mT程度でよい。本実施の形態においては、1次側非接触充電モジュールのコイルと2次側非接触充電モジュールのコイルとの間隔が2~5mm程度であるので、この程度のマグネットで十分位置合わせが可能となる。
 電力伝送のために1次側コイルと2次側コイルとの間に磁束が発生している際、その間や周辺にマグネットが存在すると磁束はマグネットを避けるように伸びる。もしくは、マグネットの中を貫く磁束はマグネットの中で渦電流や発熱となり、損失となる。更に、マグネットが磁性シートの近傍に配置されることによって、マグネット近傍の磁性シートの透磁率が低下してしまう。従って、1次側非接触充電モジュール1に備えられたマグネット30aは、1次側コイル11a及び2次側コイル11b双方のL値を低下させてしまう。その結果、非接触充電モジュール間の伝送効率が低下してしまう。
 図4は、本発明の実施の形態における1次側非接触充電モジュールを示す詳細図である。図4(a)は1次側非接触充電モジュールの上面図、図4(b)は図4(a)における1次側非接触充電モジュールのA-A断面図である。図4(c)は、直線凹部を設けた場合の図4(a)における1次側非接触充電モジュールのB-B断面図である。図4(d)は、スリットを設けた場合の図4(a)における1次側非接触充電モジュールのB-B断面図である。なお、図4(a),図4(b)は、マグネット30aを備えない場合を示している。なお、備える場合には、点線で示したマグネット30aを備える。
 1次側コイル11aは、1次側非接触充電モジュール1が装着される非接触充電器400の薄型化を達成するため、1次側コイル11aの中心領域に位置する巻始め部分から端子23aまでを厚さ方向に2段とし、残りの領域を1段とした。このとき、上段の導線と下段の導線どうしがお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、1次側コイル11aの交流抵抗を小さく抑えることができる。
 また、導線を積層して1次側コイル11aを1次側非接触充電モジュール1の厚み方向に伸ばす場合、1次側コイル11aの巻き数を増やして1次側コイル11aに流す電流を増加できる。導線を積層する際、上段に位置する導線と下段に位置する導線がお互いの空間を詰めるように巻回されることにより、1次側コイル11aの厚みを抑えつつ、1次側コイル11aに流す電流を増加できる。
 なお、本実施の形態では、断面形状が円形状の導線を使用して1次側コイル11aを形成しているが、使用する導線は断面形状が方形形状の導線でもよい。断面形状が円形状の導線を使用する場合、隣り合う導線どうしの間に隙間が生じるため、導線間の浮遊容量が小さくなり、1次側コイル11aの交流抵抗を小さく抑えることができる。
 また、1次側コイル11aは厚さ方向に2段で巻回するよりも1段で巻回した方が1次側コイル11aの交流抵抗が低くなり、伝送効率を高くすることができる。これは、2段で導線を巻回すると、上段の導線と下段の導線との間に浮遊容量が発生するためである。従って、1次側コイル11aは全体を2段で巻回するよりも、なるべく多くの部分を1段によって巻回した方がよい。また、1段で巻回することによって、1次側非接触充電モジュール1として薄型化することができる。なお、2本の導線で平面コイル部を構成する場合は、端子22a、23a部分において2本の導線が半田等によって電気的に接続されているので、2本の導線が1本の太い導線のようにしてもよい。2本の導線は、コイル面に対して平行に並んで巻回されてもよいし、コイル面に対して垂直に並んで巻回されてもよい。すなわち、コイル面に平行の場合は、2本の導線は平面状で同一の中心を軸に巻きまわされており、半径方向において一方の導線が他方の導線に挟まれるようになる。このように2本の導線を端子22a、23a部分で電気的に接合して1本の導線のように機能させることによって、同じ断面積であっても厚みを抑えることができる。すなわち、例えば、直径が0.25mmの導線の断面積を、直径が0.18mmの導線を2本準備することによって得ることができる。従って、直径が0.25mmの導線1本であると、コイルの1ターンの厚みは0.25mm、コイルの半径方向の幅は0.25mmであるが、直径が0.18mmの導線2本であると、コイルの1ターンの厚みは0.18mm、半径方向の幅は0.36mmとなる。なお、厚み方向とは、平面コイル部と磁性シート3との積層方向である。また、コイルは中心側の一部分のみ、厚さ方向に2段に重なっており、残りの外側の部分は1段としてもよい。また、コイル面に垂直の場合は、1次側非接触充電モジュール1の厚みが増加するが、導線の断面積が事実上増加することで平面コイル部を流れる電流を増加させることができ、十分な巻き数も容易に確保することができる。なお、本実施の形態では、約0.18~0.35mmの導線により1次側コイル11aを構成しており、その中でも1次側非接触充電モジュール1の1次側コイル11aには0.25~0.35mmの導線が好適である。
 なお、1次側コイル11aの交流抵抗が低いことで1次側コイル11aにおける損失を防ぎ、L値を向上させることによって、L値に依存する1次側非接触充電モジュール1の電力伝送効率を向上させることができる。
 また、本実施の形態では、1次側コイル11aは環状(円形状)に形成されている。1次側コイル11aの形状は環状(円形状)に限定されず、楕円形状、矩形状、多角形状でもよい。1次側非接触充電モジュール1と2次側非接触充電モジュール2の位置合わせを考慮すれば、1次側コイル11aの形状は環状(円形状)が好ましい。これは、1次側コイル11aの形状が環状(円形状)の場合、電力の送受信がより広範囲で可能となるため、1次側非接触充電モジュール1の1次側コイル11aと2次側非接触充電モジュール2の2次側コイル11bの位置合わせが容易になる。すなわち、電力の送受信をより広範囲で可能とするため、2次側非接触充電モジュール2は1次側非接触充電モジュール1に対する角度の影響を受けにくくなる。
 なお、端子22a、23aはお互いに近接してもよく、離れて配置されてもよいが、離れて配置された方が1次側非接触充電モジュール1を実装しやすい。
 磁性シート3は、電磁誘導作用を利用した非接触充電の電力伝送効率を向上させるために設けたものであって、平坦部31aと、中心であって1次側コイル11aの内径に相当する中心部32aと、直線凹部33aとを備える。また、1次側非接触充電モジュール1と2次側非接触充電モジュール2の位置合わせのマグネット30aを設ける場合、マグネット30aを中心部32aの上方に配置してもよいし、マグネット30aを中心部32aの代わりに配置してもよい。また、磁性シート3の1次側コイル11aの中空部に対応する部分に凹部または貫通孔が備えられている。なお、直線凹部33aは、図4(d)のスリット34aに置き換えられても良い。
 また、磁性シート3として、Ni-Zn系のフェライトシート、Mn-Zn系のフェライトシート、Mg-Zn系のフェライトシート等を使うことができる。磁性シート3は、単層構成としてもよいし、同一材料を厚み方向に複数枚積層した構成でもよいし、異なる磁性シートを厚み方向に複数枚積層してもよい。少なくとも、透磁率が250以上、飽和磁束密度が350mT以上のものであると好ましい。
 また、アモルファス金属も磁性シート3として用いることができる。磁性シート3としてフェライトシートを使用する場合は1次側コイル11aの交流抵抗を低下させる点で有利となり、磁性シートとしてアモルファス金属を使用する場合は1次側コイル11aを薄型化することができる。また、磁性シート3の形状は、円形、矩形、多角形、四隅に大きな曲線を備える矩形及び多角形でもよい。
 次に、マグネットが1次側非接触充電モジュール1及び後述する2次側非接触充電モジュール2に対して与える影響について説明する。1次側非接触充電モジュール1によって発生した磁界を2次側非接触充電モジュール2内の2次側コイル11bが受信して電力伝送を行う。ここで、1次側コイル11a及び2次側コイル11bの周辺にマグネットを配置すると、磁界がマグネットを避けるように発生するか、マグネットを通過しようとする磁界はなくなってしまうこともある。また、磁性シート3のうちマグネットに近い部分の透磁率が低下してしまう。すなわち、マグネットによって、磁界が弱められるのである。従って、マグネットによって弱められる磁界を最小限にするためには、1次側コイル11a及び2次側コイル11bとマグネットの距離を離す、マグネットの影響を受けにくい磁性シート3を備える、等の対策を講じる必要がある。
 次に、2次側非接触充電モジュール2を携帯端末機器に搭載する場合について、説明する。
 図5は、本発明の実施の形態における携帯端末機器の構成を示す図であり、携帯端末機器を分解した場合の斜視図である。
 携帯端末機器520は、液晶パネル521、操作ボタン522、基板523、電池パック524等で構成されている。電磁誘導作用を利用して電力を受信する携帯端末機器520は、その外装を形成する筐体525と筐体526の内部に2次側非接触充電モジュール2を有する携帯端末機器である。
 液晶パネル521、操作ボタン522が設けられた筐体525の裏面には、操作ボタン522から入力された情報を受信するともに必要な情報を液晶パネル521に表示して携帯端末機器520全体を制御する制御部を備える基板523が設けられている。また、基板523の裏面には電池パック524が設けられている。電池パック524は、基板523と接続されて基板523に電力供給を行う。
 更に、電池パック524の裏面、すなわち筐体526側には2次側非接触充電モジュール2が設けられている。2次側非接触充電モジュール2は、電磁誘導作用により1次側非接触充電モジュール1から電力供給を受け、その電力を利用して電池パック524を充電する。
 2次側非接触充電モジュール2は、2次側コイル11b、磁性シート4等から構成される。電力供給を受ける方向を筐体526側とする場合、筐体526と基板523との間で、筐体526側から順に2次側コイル11b、磁性シート4を配置すると、基板523と電池パック524の影響を軽減して電力供給を受けることができる。なお、図5においては、磁性シート4が2次側コイル11bよりも筐体526側に配置されているように見えるが、わかりやすくするために模式的に示したものであって、実際は、上述したとおり、筐体526側から2次側コイル11b、磁性シート4の順で配置される。
 次に、2次側非接触充電モジュール2について説明する。
 図6は、本発明の実施の形態における2次側非接触充電モジュールを示す図であり、2次側コイルが円形コイルの場合を示す。
 図7は、本発明の実施の形態における2次側非接触充電モジュールを示す詳細図である。図7(a)は2次側非接触充電モジュールの上面図、図7(b)は図7(a)における2次側非接触充電モジュールのC-C断面図である。図7(c)は、直線凹部を設けた場合の図7(a)における2次側非接触充電モジュールのD-D断面図である。図7(d)は、スリットを設けた場合の図7(a)における2次側非接触充電モジュールのD-D断面図である。なお、図7(a),図7(b)は、マグネット30bを備えない場合を示している。なお、備える場合には、点線で示したマグネット30bを備える。
 2次側非接触充電モジュール2を説明する図6~図7は、1次側非接触充電モジュール1を説明する図3~図4にそれぞれ対応する。2次側非接触充電モジュール2の構成は、1次側非接触充電モジュール1と略同一である。
 2次側非接触充電モジュール2が1次側非接触充電モジュール1と異なる点として、磁性シート4の大きさと材料が挙げられる。2次側非接触充電モジュール2に用いる磁性シート4は、約40×40mm以内の大きさに収まる程度のサイズであり、厚みは約2mm以下である。
 1次側非接触充電モジュール1に用いる磁性シート3と、2次側非接触充電モジュール2に用いる磁性シート4のサイズは異なる。これは、2次側非接触充電モジュール2が一般的にポータブル電子機器に搭載されるためであり、小型化が要求されるからである。本実施の形態において磁性シート4は略正方形の約33mm×33mmである。磁性シート4が2次側コイル11bの外周端よりも同程度または大きく形成されることが望ましい。また、磁性シート4の形状は、円形、矩形、多角形、四隅に大きな曲線を備える矩形及び多角形でもよい。
 また、2次側非接触充電モジュール2は、電力供給の受信側として携帯端末に用いられるため、2次側非接触充電モジュール2の携帯端末内における占有スペースに余裕がない。また、2次側非接触充電モジュール2の2次側コイル11bに流れる電流は小さいため、磁性シート4の絶縁性はあまり要求されない。なお、本実施の形態では、約0.18~0.35mmの導線により2次側コイル11bを構成しており、その中でも2次側非接触充電モジュール2の2次側コイル11bには0.18~0.30mm程度の導線が好適である。
 搭載される電子機器が携帯電話の場合、携帯電話の外装を構成するケースとその内部に位置する電池パックとの間に配置されることが多い。一般的に、電池パックはアルミニウムの筐体であるため、電力伝送に悪影響を与える。これは、コイルが発生させる磁束を弱める方向にアルミニウムに渦電流が発生するため、コイルの磁束が弱められることに起因する。そのため、電池パックの外装であるアルミニウムとその外装の上に配置される2次側コイル11bとの間に磁性シート4を設け、アルミニウムに対する影響を軽減する必要がある。
 次に、磁性シート3、4の中心部の厚みについて説明する。
 図8は、本発明の実施の形態における非接触充電モジュールの磁性シートの概念図であり、例として2次側非接触充電モジュール2に備えられる磁性シート4とする。図8(a)は本発明の実施の形態における非接触充電モジュールの磁性シートの上面図であり、図8(b)は図8(a)の磁性シートの直線凹部の位置を変更した上面図である。これらにおいて、中心部32bに凹部形状または貫通孔とするような穴部を設けている。図8(c)は図8(a)のE-E断面図、図8(d)は中心部を凹部とした場合の図8(a)のF-F断面図、図8(e)は中心部を貫通孔とした場合の図8(a)のF-F断面図である。中心部32bが凹部形状または貫通孔となっている。
 中心部32bを凹部形状または貫通孔とするような穴部を設けることで、1次側非接触充電モジュール1に備えられるマグネット30aの影響を小さくすることができる。以下にその理由を説明する。
 なお、例として、マグネット30aを備える1次側非接触充電モジュール1と電力伝送を行う2次側非接触充電モジュール2の磁性シート4について説明する。しかしながら、下記で説明する2次側非接触充電モジュール2の磁性シート4についての説明は、マグネット30bを備える2次側非接触充電モジュール2と電力伝送を行う1次側非接触充電モジュール1の磁性シート3についても適用される。すなわち、電力伝送の相手である他方の非接触充電モジュールがマグネットを備える場合と備えない場合との双方において、位置合わせ及び電力伝送が可能となる非接触充電モジュールの磁性シートの中心部について説明する。
 前述したように、非接触電力伝送機器は、1次側非接触充電モジュール1と2次側非接触充電モジュール2との位置合わせにマグネットが利用される場合と、そうでない場合とがある。そして、マグネットが存在することで1次側、2次側非接触充電モジュール間の磁束を妨げてしてしまうため、マグネットがある場合に1次側非接触充電モジュール1の1次側コイル11a及び2次側非接触充電モジュール2の2次側コイル11bのL値が大幅に減少する。
 また、1次側コイル11aは1次側非接触充電モジュール1において、共振コンデンサをもちいてLC共振回路をつくる。このとき、マグネット30aを位置合わせに利用する場合と利用しない場合とでL値が大幅に変化すると、共振コンデンサとの共振周波数も大幅に変化してしまう。この共振周波数は、1次側非接触充電モジュール1と2次側非接触充電モジュール2との電力伝送に用いられるため、マグネット30aの有無によって共振周波数が大幅に変化すると正しく電力伝送ができなくなってしまう。
 従って、マグネット30aを位置合わせに利用する場合と利用しない場合との共振周波数を近い値とするために、マグネット30aを位置合わせに利用する場合と利用しない場合での2次側コイル11bのL値を近い値とすることが必要である。
 次に、1次側非接触充電モジュール1にマグネット30aを備える場合と備えない場合とにおいて、磁性シート4の中心部の厚みと2次側コイル11bのL値との関係について説明する。
 図9は、本実施の形態の他方の非接触充電モジュールにおいて位置合わせにマグネットを備える場合と備えない場合における非接触充電モジュールのコイルのL値と中心部の厚みの関係を示す図である。なお、くり抜きの度合いとは、0%は中心部32bを凹型形状とせずに平坦図であることを示し、100%とは中心部32bを貫通孔としていることを示す。
 マグネット30aを利用しない場合では、磁性シート4の中心部32bを薄くするほど、2次側コイル11bの磁界が小さくなってL値が減少する。これに対して、マグネット30aを利用する場合では、磁性シート4の中心部32bを薄くするほど、磁性シート4とマグネット30aとの積層方向の距離が大きくなるため、マグネット30aの影響が小さくなり、2次側コイル11bの磁界が大きくなってL値が上昇する。そして、中心部32bを貫通孔に形成した場合が最もL値が近づく。すなわち、中心部32bを貫通孔とすることによって、位置合わせに利用するマグネット30aの影響を最小限に抑えることができる。
 また、マグネット30aは磁性シート4と引き合うことによって位置合わせを行うため、中心部32bにある程度の厚みがあるほうが位置合わせの精度が向上する。特に、くり抜きの度合いを60%以下とすることで、位置合わせの精度を安定させることができる。
 従って、くり抜きの度合いを40~60%とすることによって、マグネット30aを位置合わせに利用する場合と利用しない場合での2次側コイル11bのL値を近い値とすると同時に、マグネット30aの位置合わせの効果も十分に得ることができる。すなわち、マグネット30aと磁性シート4の中心部32bが引き合い、お互いの中心どうしを位置合せできる。
 なお、本実施の形態では約50%としており、最も効果的に双方の効果を得ることができる。また、半分程度厚みを残すことを、貫通孔を形成した後に貫通孔内に磁性体を半分の深さまで充填してもよい。また、中心部32bに設ける穴部(凹部または貫通孔)は、必ずしも中心部32aと同じ形状、及び同じサイズである必要はない。中心部32bすなわちコイルの中空部の形状が略矩形や略円形形状であっても、それに依存せず穴部は様々な形状でよい。すなわち、矩形形状や円形形状である。また、穴部は中心部32bよりも小さいことが好ましく、少なくとも中心部32bの面積の30%以上の面積を確保するとよい。
 また、磁性シート3、4は高飽和磁束密度材と高透磁率材を積層してもいいので、例えば高飽和磁束密度材の中心部を平坦に形成し、高透磁率材の中心部に貫通孔に形成して、磁性シート3、4として中心部32aを凹型形状に形成してもよい。なお、高飽和磁束密度材とは、高透磁率材に比べて飽和磁束密度が高く透磁率が低い磁性シートをいい、特にフェライトシートであるとよい。
 また、凹部、または貫通孔の直径は、2次側コイル11bの内径よりも小さくするとよい。凹部または貫通孔の直径を2次側コイル11bの内径と略同一(コイルの内径よりも0~2mm小さい)とすることで、2次側コイル11bの内周円内の磁界を高めることができる。
 また、凹部または貫通孔の直径をコイルの内径よりも小さくして(コイルの内径よりも2~8mm小さい)階段状にすることで、階段状の外側は位置合わせのために利用でき、内側はマグネット30aを位置合わせに利用する場合と利用しない場合での1次側コイル11aのL値を近い値とするために利用できる。また、凹部または貫通孔は、マグネット30aのサイズよりも大きくするとよい。すなわち、マグネット30aの径よりも大きく、2次側コイル11bの中空部よりも小さい穴部とするとよい。
 更に、凹部または貫通孔の上面の形状は、2次側コイル11bの中空部の形状と同一であることにより、マグネット30aと磁性シート4の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
 凹部または貫通孔のすべての端部は、2次側コイル11bの内径から等距離であることにより、マグネット30aと磁性シート4の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが更に精度よくできる。
 また、更に、凹部または貫通孔の上面の形状の中心は、2次側コイル11bの中空部の中心と一致であることにより、マグネット30aと磁性シート4の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。また、凹部または貫通孔が、マグネット30aよりも大きく形成されることで、マグネット30aの影響をバランスよく抑えることができる。
 上記のように中心部を穴部とする構成は1次側非接触充電モジュールの磁性シート3にも適応され、効果は、1次側非接触充電モジュール1の磁性シート3の中心部32aに穴部を備えても得られる。すなわち、2次側非接触充電モジュール2がマグネット30bを備えている場合と備えていない場合とのどちらであっても位置合わせ及び効率的な電力伝送ができる1次側非接触充電モジュール1とすることができる。
 また、磁性シート3、4の四隅であって、平坦部31a、31b上のコイル11a、11bが配置されていない領域に肉厚部を形成してもよい。すなわち、磁性シート3、4の四隅であって平坦部31a、31b上のコイル11a、11bの外周よりも外側は、磁性シート3、4の上に何も載せられていない。従って、そこに肉厚部を形成することによって磁性シート3、4の厚みを増加させ、非接触電力伝送機器の電力伝送効率を向上させることができる。肉厚部の厚みは厚ければ厚いほうがよいが、薄型化のため、導線の厚みとほぼ同一とする。
 図10は、コイル11bを矩形及び円形に巻回した非接触充電モジュールの上面図であり、図10(a)はコイル11bを矩形に、図10(b)はコイル11bを円形にそれぞれ巻回した場合を示す。矩形及び円形にコイル11bを巻回した場合であって、コイル11bの中空部には凹部あるいは貫通孔が形成されており、これらの穴部によって上述した効果を得られる。なお、図10では2次側非接触モジュールについて説明したが、1次側非接触充電モジュールであっても同様の効果を有する。
 本発明の非接触充電モジュールによれば、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに相手側非接触充電モジュールのマグネットを使用する場合と使用しない場合のいずれの場合であっても、非接触充電モジュールに設けられたコイルのL値の変化を抑えるので、マグネットを使用する場合と使用しない場合のいずれの場合でも使用でき、携帯電話、ポータブルオーディオ、携帯用のコンピュータ等の携帯端末、デジタルカメラ、ビデオカメラ等の携帯機器を充電する際の受信側充電機器として有用である。
 1 1次側非接触充電モジュール
 2 2次側非接触充電モジュール
 3 磁性シート(1次側)
 4 磁性シート(2次側)
 11a  1次側コイル
 11b  2次側コイル
 22a、23a  端子(1次側)
 22b、23b  端子(2次側)
 30a  マグネット(1次側)
 30b  マグネット(2次側)
 31a  平坦部(1次側)
 31b  平坦部(2次側)
 32a  中心部(1次側)
 32b  中心部(2次側)
 33a  直線凹部(1次側)
 33b  直線凹部(2次側)
 34a  スリット(1次側)
 34b  スリット(2次側)

Claims (11)

  1.  相手側非接触充電モジュールとの位置合わせに際し、相手側非接触充電モジュールに備えられたマグネットを利用する場合とマグネットを利用しない場合とがある非接触充電モジュールにおいて、
     導線が巻回された平面コイル部と、
     前記平面コイル部のコイル面を載置し、前記平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、
     前記磁性シートには、前記平面コイル部の中空部に対応する位置内部に穴部を設けた、
     非接触充電モジュール。
  2.  前記穴部は、貫通孔である請求項1に記載の非接触充電モジュール。
  3.  前記穴部の深さは、前記磁性シートの厚みの40~60%である請求項1に記載の非接触充電モジュール。
  4.  前記平面コイル部の導線は円形に巻回されている請求項1に記載の非接触充電モジュール。
  5.  前記穴部の上面の形状は、前記平面コイル部の中空部の形状と同一である請求項1から請求項4のいずれかひとつに記載の非接触充電モジュール。
  6.  前記穴部のすべての端部は、前記平面コイル部の中空部の端部より等距離である請求項5に記載の非接触充電モジュール。
  7.  前記穴部が、前記マグネットよりも大きく形成されている請求項1から請求項6のいずれかひとつに記載の非接触充電モジュール。
  8.  前記穴部の中心が、前記平面コイル部の中心部の中心と一致する請求項1から請求項7のいずれかひとつに記載の非接触充電モジュール。
  9.  前記平面コイル部の導線は矩形に巻回されている請求項1に記載の非接触充電モジュール。
  10.  請求項1から請求項9のいずれかひとつに記載の非接触充電モジュールを備えた受信側非接触充電機器。
  11.  請求項1から請求項9のいずれかひとつに記載の非接触充電モジュールを備えた送信側非接触充電機器。
PCT/JP2011/007347 2011-01-26 2011-12-28 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器 WO2012101730A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11857270.0A EP2620961A4 (en) 2011-01-26 2011-12-28 CONTACTLESS RECHARGEABLE MODULE AND TRANSMITTER AND RECEIVER-FREE CONTACTLESS CHARGER THEREOF
CN2011900008111U CN203366973U (zh) 2011-01-26 2011-12-28 非接触充电模块以及使用该非接触充电模块的接收侧非接触充电设备及发送侧非接触充电设备

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011013617A JP4835794B1 (ja) 2011-01-26 2011-01-26 受信側非接触充電モジュール及び受信側非接触充電機器
JP2011-013617 2011-01-26
JP2011-131947 2011-06-14
JP2011131947A JP4900523B1 (ja) 2011-06-14 2011-06-14 受信側非接触充電モジュール、これを用いた携帯端末、送信非接触充電モジュール及びこれを用いた非接触充電器
JP2011131948 2011-06-14
JP2011131946A JP4983992B1 (ja) 2011-06-14 2011-06-14 送信側非接触充電モジュール及びこれを用いた送信側非接触充電機器
JP2011-131948 2011-06-14
JP2011-131946 2011-06-14

Publications (1)

Publication Number Publication Date
WO2012101730A1 true WO2012101730A1 (ja) 2012-08-02

Family

ID=46543702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007347 WO2012101730A1 (ja) 2011-01-26 2011-12-28 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器

Country Status (5)

Country Link
US (2) US8547058B2 (ja)
EP (1) EP2620961A4 (ja)
KR (1) KR101198880B1 (ja)
CN (1) CN203366973U (ja)
WO (1) WO2012101730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793934A (zh) * 2013-10-02 2016-07-20 Lg伊诺特有限公司 磁性构件以及包含该磁性构件的无线电力传输设备

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012071088A1 (en) 2010-11-24 2012-05-31 University Of Florida Research Foundation Inc. Wireless power transfer via electrodynamic coupling
US20130293191A1 (en) * 2011-01-26 2013-11-07 Panasonic Corporation Non-contact charging module and non-contact charging instrument
JP5342073B2 (ja) 2011-06-14 2013-11-13 パナソニック株式会社 通信装置
JP4900528B1 (ja) * 2011-09-08 2012-03-21 パナソニック株式会社 非接触充電モジュール及びこれを用いた非接触充電機器
WO2013048261A1 (en) * 2011-09-29 2013-04-04 Powerbyproxi Limited Wirelessly rechargeable battery and components thereof
CN103918192A (zh) 2011-11-02 2014-07-09 松下电器产业株式会社 非接触无线通信线圈、传输线圈、以及便携式无线终端
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
JP2013169122A (ja) 2012-02-17 2013-08-29 Panasonic Corp 非接触充電モジュール及びそれを備えた携帯端末
JP6008237B2 (ja) 2012-06-28 2016-10-19 パナソニックIpマネジメント株式会社 携帯端末
JP6112383B2 (ja) 2012-06-28 2017-04-12 パナソニックIpマネジメント株式会社 携帯端末
KR101823542B1 (ko) 2012-10-04 2018-01-30 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
TWI482389B (zh) * 2013-03-01 2015-04-21 Luxx Lighting Technology Taiwan Ltd 以感應耦合方式傳送電能的電能傳送系統、及其發送裝置與接收裝置
KR101394507B1 (ko) * 2013-03-22 2014-05-13 엘지이노텍 주식회사 연자성 시트, 무선 전력 수신 장치 및 그의 무선 충전 방법
KR101453465B1 (ko) * 2013-03-27 2014-10-22 엘지이노텍 주식회사 연자성 시트, 무선 전력 수신 장치 및 그의 무선 충전 방법
KR20140130837A (ko) * 2013-05-02 2014-11-12 엘지이노텍 주식회사 무선전력 수신장치
KR101428408B1 (ko) 2013-08-12 2014-08-07 현대자동차주식회사 자기장 분포 제어 장치 및 이를 이용한 송신기
DE102013219540A1 (de) * 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
DE102013219542A1 (de) * 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
KR102166881B1 (ko) * 2014-04-03 2020-10-16 엘지이노텍 주식회사 무선 전력 송신 장치
KR102148847B1 (ko) * 2014-09-29 2020-08-27 엘지이노텍 주식회사 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
KR102237776B1 (ko) 2014-10-07 2021-04-09 삼성전자주식회사 무선 전력 송수신 장치
KR101865540B1 (ko) * 2015-05-26 2018-06-11 주식회사 아모센스 무선 충전 모듈 및 이를 포함하는 휴대용 보조배터리
KR101751121B1 (ko) 2015-07-16 2017-06-27 삼성전기주식회사 도전성 플레이트 및 이를 구비하는 휴대 단말기
JP6743432B2 (ja) * 2016-03-14 2020-08-19 株式会社Ihi コイル装置
CN108109822A (zh) * 2017-03-29 2018-06-01 北京品驰医疗设备有限公司 天线装置和用于无线充/供电的系统
CN110311479B (zh) * 2017-07-05 2021-08-24 北京品驰医疗设备有限公司 无线充/供电系统
US10566823B2 (en) * 2017-09-15 2020-02-18 Txs Industrial Design, Inc. Charging station with liquid control chamber
US10775750B2 (en) * 2017-09-15 2020-09-15 Txs Industrial Design, Inc. Charging station with liquid control chamber
CN107863793A (zh) * 2017-10-16 2018-03-30 深圳闪电猫电子科技有限公司 一种高效散热型桌面式超速无线充电器
KR101950373B1 (ko) * 2017-12-12 2019-02-20 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
CN112311040A (zh) * 2019-08-01 2021-02-02 深圳市睿能无线科技有限公司 一种多功能无线充电器
CN112216479B (zh) * 2020-08-21 2021-09-21 北京交通大学 一种减小由线圈引线产生的磁芯损耗的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208527A (ja) * 2001-01-12 2002-07-26 Toko Inc 漏れ磁束型電力変換トランス
JP2006042519A (ja) 2004-07-28 2006-02-09 Seiko Epson Corp 非接触電力伝送装置
JP2007317914A (ja) * 2006-05-26 2007-12-06 Asuka Electron Kk 空芯コイル及びこれを用いた電気回路ユニット
JP2008210862A (ja) * 2007-02-23 2008-09-11 Yonezawa Densen Kk 穴明き防磁シート付きコイルとその製造方法
WO2008156025A1 (ja) * 2007-06-20 2008-12-24 Panasonic Electric Works Co., Ltd. 非接触電力伝送装置及びそれの二次側の製造方法
JP2009159660A (ja) * 2007-12-25 2009-07-16 Casio Comput Co Ltd 非接触電力伝送装置
WO2009105615A2 (en) * 2008-02-22 2009-08-27 Access Business Group International Llc Magnetic positioning for inductive coupling

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253592B2 (ja) * 1998-10-27 2002-02-04 株式会社豊田自動織機 送電側カプラ
US6803744B1 (en) * 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
US6396241B1 (en) * 2000-09-18 2002-05-28 General Motors Corporation Inductive charging system employing a fluid-cooled transformer coil and transmission cable
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
GB2388716B (en) * 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
US7271569B2 (en) * 2004-09-21 2007-09-18 Motorola Inc. Contact less charger with alignment indicator
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7683572B2 (en) * 2006-11-10 2010-03-23 Sanyo Electric Co., Ltd. Battery charging cradle and mobile electronic device
JP2008210861A (ja) * 2007-02-23 2008-09-11 Yonezawa Densen Kk 防磁シート付きコイル
JP4743173B2 (ja) * 2007-06-29 2011-08-10 セイコーエプソン株式会社 送電制御装置、送電装置、無接点電力伝送システムおよび電子機器
JP2010041906A (ja) * 2008-07-10 2010-02-18 Nec Tokin Corp 非接触電力伝送装置、軟磁性体シート及びそれを用いたモジュール
JP5689587B2 (ja) * 2009-03-31 2015-03-25 富士通株式会社 電力伝送装置
JP2011013617A (ja) 2009-07-06 2011-01-20 Casio Computer Co Ltd 現像方法
JP4835794B1 (ja) 2011-01-26 2011-12-14 パナソニック株式会社 受信側非接触充電モジュール及び受信側非接触充電機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208527A (ja) * 2001-01-12 2002-07-26 Toko Inc 漏れ磁束型電力変換トランス
JP2006042519A (ja) 2004-07-28 2006-02-09 Seiko Epson Corp 非接触電力伝送装置
JP2007317914A (ja) * 2006-05-26 2007-12-06 Asuka Electron Kk 空芯コイル及びこれを用いた電気回路ユニット
JP2008210862A (ja) * 2007-02-23 2008-09-11 Yonezawa Densen Kk 穴明き防磁シート付きコイルとその製造方法
WO2008156025A1 (ja) * 2007-06-20 2008-12-24 Panasonic Electric Works Co., Ltd. 非接触電力伝送装置及びそれの二次側の製造方法
JP2009159660A (ja) * 2007-12-25 2009-07-16 Casio Comput Co Ltd 非接触電力伝送装置
WO2009105615A2 (en) * 2008-02-22 2009-08-27 Access Business Group International Llc Magnetic positioning for inductive coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620961A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793934A (zh) * 2013-10-02 2016-07-20 Lg伊诺特有限公司 磁性构件以及包含该磁性构件的无线电力传输设备
CN105793934B (zh) * 2013-10-02 2019-08-23 Lg伊诺特有限公司 磁性构件以及包含该磁性构件的无线电力传输设备

Also Published As

Publication number Publication date
US20140062393A1 (en) 2014-03-06
EP2620961A1 (en) 2013-07-31
US20120187904A1 (en) 2012-07-26
US8547058B2 (en) 2013-10-01
EP2620961A4 (en) 2013-07-31
US8928278B2 (en) 2015-01-06
KR101198880B1 (ko) 2012-11-07
CN203366973U (zh) 2013-12-25
KR20120086669A (ko) 2012-08-03

Similar Documents

Publication Publication Date Title
WO2012101730A1 (ja) 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器
WO2012101731A1 (ja) 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器
JP5942084B2 (ja) 非接触充電モジュール及びこれを用いた非接触充電機器と携帯機器
JP4835794B1 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP5845406B2 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP5870254B2 (ja) 非接触充電モジュール及びこれを用いた非接触充電器と携帯端末
JP4835796B1 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
KR101198881B1 (ko) 비접촉 충전 모듈 및 이를 이용한 수신측 및 송신측 비접촉 충전 기기
JP5938559B2 (ja) 非接触充電モジュール及びこれを用いた非接触充電機器
JP2013093989A (ja) 非接触充電モジュール及びこれを用いた非接触充電機器及び携帯端末
JP5358699B2 (ja) 携帯端末
JP4900523B1 (ja) 受信側非接触充電モジュール、これを用いた携帯端末、送信非接触充電モジュール及びこれを用いた非接触充電器
JP5845407B2 (ja) 受信側非接触充電モジュール及び受信側非接触充電機器
JP4983992B1 (ja) 送信側非接触充電モジュール及びこれを用いた送信側非接触充電機器
JP5457478B2 (ja) 携帯端末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000811.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011857270

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE