請求項1に記載の発明は、送信側非接触充電モジュールから電磁誘導によって電力を受信する受信側非接触充電モジュールであって、送信側非接触充電モジュールとの位置合わせに際し、前記送信側非接触充電モジュールの送信側平面コイル部の中空部に備えられたマグネットを利用して位置合わせを行う場合と、マグネットを利用しないで位置合わせを行う場合と、がある受信側非接触充電モジュールにおいて、導線が略矩形状に巻回された受信側平面コイル部と、前記受信側平面コイル部のコイル面を載置し、前記受信側平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、前記磁性シートには、前記受信側平面コイル部の略矩形状である中空部に対応する位置内部に穴部を設けたことを特徴とする受信側非接触充電モジュールである。これにより、1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに送信側非接触充電モジュールに備えられたマグネットを使用する場合、または使用しない場合のいずれの場合であっても、受信側非接触充電モジュールに設けられたコイルのL値を変化させないので、マグネットを使用する場合とマグネットを使用しない場合のいずれの場合にも使用できる受信側非接触充電モジュール及びこれを用いた受信側非接触充電機器とすることができる。更に、平面コイルが略矩形に形成させることによって、送信側非接触充電モジュールに備えられたマグネットを使用する場合と、使用しない場合とで、受信側非接触充電モジュールに設けられたコイルのL値の変化をより小さくできるため、マグネットを使用する場合とマグネットを使用しない場合のいずれの場合にもより効率的に使用できる受信側非接触充電モジュール及びこれを用いた受信側非接触充電機器とすることができる。
請求項2に記載の発明は、穴部は、貫通孔であることを特徴とする。これにより、位置合わせに利用するマグネットの影響を最小限に抑えることができる。
請求項3に記載の発明は、穴部の深さは、前記磁性シートの厚みの40〜60%であることを特徴とする。これにより、マグネットを位置合わせに利用する場合と利用しない場合でのコイルのL値を近い値とすると同時に、マグネットの位置合わせの効果も十分に得ることができる。
請求項4に記載の発明は、穴部の上面の形状は、前記受信側平面コイル部の中空部の形状と同一であることを特徴とする。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
請求項5に記載の発明は、穴部のすべての端部は、受信側平面コイル部の中空部の端部より等距離であることを特徴とする。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
請求項6に記載の発明は、前記穴部が、前記マグネットよりも大きく形成されていることを特徴とする。これにより、マグネットの影響をバランスよく抑えることができる。
請求項7に記載の発明は、前記穴部の中心が、前記平面コイル部の中心部の中心と一致することを特徴とする。これにより、マグネットと磁性シートの中心部がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
請求項8に記載の発明は、受信側非接触充電モジュールへ電磁誘導によって電力を送電する送信側非接触充電モジュールであって、受信側非接触充電モジュールとの位置合わせに際し、前記受信側非接触充電モジュールの受信側平面コイル部の中空部に備えられたマグネットを利用して位置合わせを行う場合と、マグネットを利用しないで位置合わせを行う場合と、がある送信側非接触充電モジュールにおいて、導線が略矩形状に巻回された送信側平面コイル部と、前記送信側平面コイル部のコイル面を載置し、前記送信側平面コイル部のコイル面に対向するように設けられた磁性シートと、を備え、前記磁性シートには、前記送信側平面コイル部の略矩形状である中空部に対応する位置内部に穴部を設けたことを特徴とする送信側非接触充電モジュールである。また、請求項9に記載の発明は、請求項1に記載の受信側非接触充電モジュールを備えたことを特徴とする携帯端末である。また、請求項10に記載の発明は、請求項8に記載の送信側非接触充電モジュールを備えたことを特徴とする非接触充電器である。これにより、送信側非接触充電モジュールと受信側非接触充電モジュールの位置合わせにマグネットを利用する場合、または利用しない場合のいずれの場合であっても、非接触充電モジュールに設けられたコイルのL値を変化させないので、マグネットを利用する場合とマグネットを利用しない場合のいずれの場合でも送信側非接触充電モジュール、携帯端末、非接触充電器を使用できる。
(実施の形態)
以下、本発明の実施の形態について図面をもちいて説明する。
図1は、本発明の実施の形態における非接触電力伝送機器を示すブロック図である。
非接触電力伝送機器は、1次側非接触充電モジュール41(送信側非接触充電モジュール)と、2次側非接触充電モジュール42(受信側非接触充電モジュール)とから構成され、電磁誘導作用を利用して1次側非接触充電モジュール41から2次側非接触充電モジュール42に電力伝送が行われる。この非接触電力伝送機器は、約5W以下の電力伝送に使用される。また、電力伝送の周波数は約110〜205kHzである。1次側非接触充電モジュール41は例えば充電器に搭載され、2次側非接触充電モジュール42は例えば携帯電話、デジタルカメラ、PC等に搭載される。
1次側非接触充電モジュール41は、1次側コイル21a、磁性シート51、共振コンデンサ(図示せず)、電力入力部71を備えて構成される。電力入力部71は、外部電源としての商用電源300に接続されて100〜240V程度の電力供給を受け、所定電流1(直流12V、1A)に変換して1次側コイル21aに供給する。1次側コイル21aは、その形状、巻数及び供給を受けた電流に応じた磁界を発生させる。共振コンデンサは、1次側コイル21aに接続され、1次側コイル21aとの関係により1次側コイル21aから発生させる磁界の共振周波数を決定する。1次側非接触充電モジュール41から2次側非接触充電モジュール42に対する電磁誘導作用は、この共振周波数により行われる。
一方、2次側非接触充電モジュール42は、2次側コイル21b、磁性シート52、共振コンデンサ(図示せず)、整流回路72、電力出力部82から構成される。2次側コイル21bは、1次側コイル21aから発生した磁界を受けて、その磁界を電磁誘導作用により所定電流2に変換して、整流回路72、電力出力部82を介して、2次側非接触充電モジュール42の外部に出力する。整流回路72は、交流電流である所定電流2を整流して直流電流である所定電流3(直流5V、1.5A)に変換する。また、電力出力部82は2次側非接触充電モジュール42の外部出力部であり、この電力出力部82を介して、2次側非接触充電モジュール42に接続される電子機器200に電力供給を行う。
次に、1次側非接触充電モジュール41を非接触充電器に搭載する場合について説明する。
図2は、本発明の実施の形態における非接触充電器の構成を示す図である。なお、図2に示す非接触充電器は、その内部が分かるように示したものである。
電磁誘導作用を利用して電力を送信する非接触充電器400は、その外装を構成するケースの内部に1次側非接触充電モジュール41を有する。
非接触充電器400は、屋内もしくは屋外に設置された商用電源300のコンセント301に差し込むプラグ401を有する。このプラグ401をコンセント301に差し込むことによって、非接触充電器400は商用電源300から電力供給を受けることができる。
非接触充電器400は机上501に設置され、1次側非接触充電モジュール41は非接触充電器400の机面側とは反対側の面402の近傍に配置される。そして、1次側非接触充電モジュール41における1次側コイル21aの主平面を、非接触充電器400の机面側とは反対側の面402に平行に配置する。このようにすることで、2次側非接触充電モジュール42を搭載した電子機器の電力受信作業エリアを確保することができる。なお、非接触充電器400は壁面に設置されてもよく、この場合、非接触充電器400は壁面側とは反対側の面の近傍に配置される。
また、1次側非接触充電モジュール41は、2次側非接触充電モジュール42との位置合わせに用いるマグネット30aを有する場合がある。この場合、1次側コイル21aの中央領域に位置する中空部に配置される。
次に、1次側非接触充電モジュール41について説明する。
図3は、本発明の実施の形態における1次側非接触充電モジュールを示す図であり、1次側コイルが円形コイルの場合を示す。なお、図3においては円形に巻回された円形コイルにて説明しているが、略矩形状に巻回された矩形コイルであってもよい。なお、これから説明する1次側非接触充電モジュールの詳細については、基本的に2次側非接触充電モジュールに適応される。1次側非接触充電モジュールに対する2次側非接触充電モジュールの相違点は、詳しく後述する。
1次側非接触充電モジュール41は、導線が渦巻き状に巻回された1次側コイル21aと、1次側コイル21aの面に対向するように設けられた磁性シート51とを備える。
図3に示すとおり、1次側コイル21aは、面上で渦を描くように径方向に向けて導電体を巻いたコイル21aと、コイル21aの両端に設けられた電流供給部としての端子22a、23aを備える。すなわち、電流供給部としての端子22a、23aは、外部電源である商用電源300からの電流を1次側コイル21aに供給する。コイル21aは導線を平面上で平行に巻きまわしたものであり、コイルによって形成された面をコイル面と呼ぶ。なお、厚み方向とは、1次側コイル21aと磁性シート51との積層方向である。
また、磁性シート51は、1次側コイル21aを載置する平坦部31aと、平坦部31aの中心部にあってコイル21aの中空領域内に相当する中心部32aと、コイル21aの引き出し線の一部が挿入される直線凹部33aとから構成されている。中心部32aは、平坦部32aに対して凸部形状、平坦形状、凹部形状、貫通孔である形状となり、いずれであってもよい。凸部形状であれば、コイル21aの磁束を強めることができる。平坦であれば、製造しやすくコイル21aを載置しやすい上、後述する位置合わせのマグネットの影響とコイル21aのL値のバランスをとることができる。凹部形状、貫通孔に関しては、詳しく後述する。
本実施の形態における1次側非接触充電モジュール41では、コイル21aは直径が20mmの内径から外に向かって巻回され、外径が30mmとなっている。すなわち、コイル21aはドーナツ形状に巻回されている。なお、コイル21aは円形に巻回されてもよいし、多角形に巻回されてもよい。
また、導線はお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、コイル21aの交流抵抗を小さく抑えることができる。また、空間を詰めるように巻回されることによって、コイル21aの厚みを抑えることができる。
また、1次側非接触充電モジュール41は、2次側非接触充電モジュール42との位置合わせに用いるマグネット30aを有する場合がある。これは、規格(WPC)によって、円形であること、直径が15.5mm以下であること等が定められている。マグネット30aはコイン形状をしており、その中心が1次側コイル21aの巻回中心軸と一致するように配置されなければならない。これは、1次側コイル21aに対するマグネット30aの影響を軽減させるためである。
すなわち、位置合わせの方法としては、例えば以下の方法が挙げられる。例えば充電器の充電面に凸部、2次側の電子機器に凹部を形成しはめ込むといった、物理的(形状的)に強制的な位置合わせを行う方法。また、少なくとも1次側及び2次側の一方にマグネットを搭載することで、お互いのマグネットもしくは一方のマグネットと他方の磁性シートとが引き付けあって位置合わせを行う方法。1次側が2次側のコイルの位置を検出することで、1次側のコイルを自動的に2次側のコイルの位置まで移動させる方法。充電器に多数のコイルを備えることで、携帯機器が充電器の充電面のどこにおいても充電可能とする方法等。
このように、1次側(充電側)非接触充電モジュール及び2次側(被充電側)非接触充電モジュールのコイルの位置合わせには様々な方法が挙げられるが、マグネットを使用する方法とマグネットを使用しない方法とに分けられる。そして、1次側(充電側)非接触充電モジュールであれば、マグネットを使用する2次側(被充電側)非接触充電モジュール及びマグネットを使用しない2次側(被充電側)非接触充電モジュールの双方に適応できるようにすることで2次側(被充電側)非接触充電モジュールのタイプに関係せず充電ができ利便性が向上する。同様に、2次側(被充電側)非接触充電モジュールであれば、マグネットを使用する1次側(充電側)非接触充電モジュール及びマグネットを使用しない1次側(充電側)非接触充電モジュールの双方に適応できるようにすることで1次側(充電側)非接触充電モジュールのタイプに関係せず充電ができ利便性が向上する。すなわち、電力伝送を行う相手である他方の非接触充電モジュールと電磁誘導によって電力伝送を行う非接触充電モジュールにおいて、他方の非接触充電モジュールとの位置合わせに際し、他方の非接触充電モジュールに備えられたマグネットを利用して位置合わせを行う第1の手段、及びマグネットを利用しないで位置合わせを行う第2の手段、双方の手段により他方の非接触充電モジュールと位置合わせ可能であって、電力伝送が可能となるように構成することが必要である。
1次側非接触充電モジュール41がマグネット30aを有する場合、マグネット30aを配置する1番目の方法として、マグネット30aを磁性シート51の中心部32aの上面に配置する方法がある。また、マグネット30aを配置する2番目の方法として、マグネット30aを磁性シート51の中心部32aの代わりに配置する方法がある。2番目の方法では、マグネット30aがコイル21aの中空領域に配置されるため、1次側非接触充電モジュール41を小型化できる。
なお、1次側非接触充電モジュール41と2次側非接触充電モジュール42の位置合わせにマグネットを利用しない場合は、図3に示すマグネット30aは必要ない。
ここで、マグネットが非接触充電モジュールの電力伝送効率に与える影響について説明する。一般的に、マグネットは1次側非接触充電モジュール及び2次側非接触充電モジュールの少なくとも一方において、内蔵されるコイルの貫通孔の中に設けられる。これにより、マグネットとマグネットまたはマグネットと磁性シート51をなるべく近接させることができると同時に、1次側及び2次側のコイルを近接させることができる。マグネットは円形であり、この場合、マグネットの直径はコイル21aの内幅よりも小さくなる。本実施の形態においてはマグネットの直径は約15.5mm(約10mm〜20mm)であり、厚みは約1.5〜2mmである。また、ネオジウム磁石を使用しており、強さは約75mTから150mT程度でよい。本実施の形態においては、1次側非接触充電モジュールのコイルと2次側非接触充電モジュールのコイルとの間隔が2〜5mm程度であるので、この程度のマグネットで十分位置合わせが可能となる。
電力伝送のために1次側コイルと2次側コイルとの間に磁束が発生している際、その間や周辺にマグネットが存在すると磁束はマグネットを避けるように伸びる。もしくは、マグネットの中を貫く磁束はマグネットの中で渦電流や発熱となり、損失となる。更に、マグネットが磁性シートの近傍に配置されることによって、マグネット近傍の磁性シートの透磁率が低下してしまう。従って、1次側非接触充電モジュール41に備えられたマグネット30aは、1次側コイル21a及び2次側コイル21b双方のL値を低下させてしまう。その結果、非接触充電モジュール間の伝送効率が低下してしまう。
図4は、本発明の実施の形態における1次側非接触充電モジュールを示す詳細図である。図4(a)は1次側非接触充電モジュールの上面図、図4(b)は図4(a)における1次側非接触充電モジュールのA−A断面図である。図4(c)は、直線凹部を設けた場合の図4(a)における1次側非接触充電モジュールのB−B断面図である。図4(d)は、スリットを設けた場合の図4(a)における1次側非接触充電モジュールのB−B断面図である。なお、図4(a),図4(b)は、マグネット30aを備えない場合を示している。なお、備える場合には、点線で示したマグネット30aを備える。
コイル21aは、1次側非接触充電モジュール41が装着される非接触充電器400の薄型化を達成するため、コイル21aの中心領域に位置する巻始め部分から端子23aまでを厚さ方向に2段とし、残りの領域を1段とした。このとき、上段の導線と下段の導線どうしがお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、コイル21aの交流抵抗を小さく抑えることができる。
また、導線を積層してコイル21aを1次側非接触充電モジュール41の厚み方向に伸ばす場合、コイル21aの巻き数を増やして1次側コイル21aに流す電流を増加できる。導線を積層する際、上段に位置する導線と下段に位置する導線がお互いの空間を詰めるように巻回されることにより、コイル21aの厚みを抑えつつ、1次側コイル21aに流す電流を増加できる。
なお、本実施の形態では、断面形状が円形状の導線を使用してコイル21aを形成しているが、使用する導線は断面形状が方形形状の導線でもよい。断面形状が円形状の導線を使用する場合、隣り合う導線どうしの間に隙間が生じるため、導線間の浮遊容量が小さくなり、コイル21aの交流抵抗を小さく抑えることができる。
また、コイル21aは厚さ方向に2段で巻回するよりも1段で巻回した方がコイル21aの交流抵抗が低くなり、伝送効率を高くすることができる。これは、2段で導線を巻回すると、上段の導線と下段の導線との間に浮遊容量が発生するためである。従って、コイル21aは全体を2段で巻回するよりも、なるべく多くの部分を1段によって巻回した方がよい。また、1段で巻回することによって、1次側非接触充電モジュール41として薄型化することができる。なお、2本の導線で平面コイル部2を構成する場合は、端子22a、23a部分において2本の導線が半田等によって電気的に接続されているので、2本の導線が1本の太い導線のようにしてもよい。2本の導線は、コイル面に対して平行に並んで巻回されてもよいし、コイル面に対して垂直に並んで巻回されてもよい。すなわち、コイル面に平行の場合は、2本の導線は平面状で同一の中心を軸に巻きまわされており、半径方向において一方の導線が他方の導線に挟まれるようになる。このように2本の導線を端子22a、23a部分で電気的に接合して1本の導線のように機能させることによって、同じ断面積であっても厚みを抑えることができる。すなわち、例えば、直径が0.25mmの導線の断面積を、直径が0.18mmの導線を2本準備することによって得ることができる。従って、直径が0.25mmの導線1本であると、コイル21の1ターンの厚みは0.25mm、コイル21の半径方向の幅は0.25mmであるが、直径が0.18mmの導線2本であると、コイル21の1ターンの厚みは0.18mm、半径方向の幅は0.36mmとなる。なお、厚み方向とは、平面コイル部2と磁性シート51との積層方向である。また、コイル21は中心側の一部分のみ、厚さ方向に2段に重なっており、残りの外側の部分は1段としてもよい。また、コイル面に垂直の場合は、非接触充電モジュール1の厚みが増加するが、導線の断面積が事実上増加することで平面コイル部2を流れる電流を増加させることができ、十分な巻き数も容易に確保することができる。なお、本実施の形態では、約0.18〜0.35mmの導線により1次側コイル21aを構成しており、その中でも1次側非接触充電モジュール41の1次側コイル21aには0.25〜0.35mmの導線が好適である。
なお、コイル21aの交流抵抗が低いことでコイル21aにおける損失を防ぎ、L値を向上させることによって、L値に依存する1次側非接触充電モジュール41の電力伝送効率を向上させることができる。
また、本実施の形態では、コイル21aは環状(円形状)に形成されている。コイル21aの形状は環状(円形状)に限定されず、楕円形状、矩形状、多角形状でもよい。1次側非接触充電モジュール41と2次側非接触充電モジュール42の位置合わせを考慮すれば、コイル21aの形状は環状(円形状)が好ましい。これは、コイル21aの形状が環状(円形状)の場合、電力の送受信がより広範囲で可能となるため、1次側非接触充電モジュール41のコイル21aと2次側非接触充電モジュール42のコイル21bの位置合わせが容易になる。すなわち、電力の送受信をより広範囲で可能とするため、2次側非接触充電モジュール42は1次側非接触充電モジュール41に対する角度の影響を受けにくくなる。
なお、端子22a、23aはお互いに近接してもよく、離れて配置されてもよいが、離れて配置された方が1次側非接触充電モジュール41を実装しやすい。
磁性シート51は、電磁誘導作用を利用した非接触充電の電力伝送効率を向上させるために設けたものであって、平坦部31aと、中心であってコイル21の内径に相当する中心部32aと、直線凹部33aとを備える。また、1次側非接触充電モジュール41と2次側非接触充電モジュール42の位置合わせのマグネット30aを設ける場合、マグネット30aを中心部32aの上方に配置してもよいし、マグネット30aを中心部32aの代わりに配置してもよい。
また、磁性シート51として、Ni−Zn系のフェライトシート、Mn−Zn系のフェライトシート、Mg−Zn系のフェライトシート等を使うことができる。磁性シート51は、単層構成としてもよいし、同一材料を厚み方向に複数枚積層した構成でもよいし、異なる磁性シートを厚み方向に複数枚積層してもよい。少なくとも、透磁率が250以上、飽和磁束密度が350mT以上のものであると好ましい。
また、アモルファス金属も磁性シート51として用いることができる。磁性シート51としてフェライトシートを使用する場合はコイル21aの交流抵抗を低下させる点で有利となり、磁性シートとしてアモルファス金属を使用する場合はコイル21aを薄型化することができる。
1次側非接触充電モジュール41に用いる磁性シート51は、約50×50mm以内の大きさに収まる程度のサイズであり、厚みは約3mm以下である。本実施の形態において磁性シート51は略正方形の約33mm×33mmである。磁性シート51がコイル21aの外周端よりも同程度または大きく形成されることが望ましい。また、磁性シート51の形状は、円形、矩形、多角形、四隅に大きな曲線を備える矩形及び多角形でもよい。
直線凹部33aまたはスリット34aは、コイルの巻始め部分(コイルの最内側部分)から端子までの導線を収納する。これにより、コイルの巻始め部分から端子までの導線がコイル21aの厚み方向に重なることを防ぎ、1次側非接触充電モジュール41の厚みを抑えることができる。また、直線凹部33aまたはスリット34aの大きさをコイルの巻始め部分から端子までの導線を収納する最小限の大きさにすることで、漏れ磁束の発生を抑えることができる。また、直線凹部33aの断面形状は、矩形状に限定されず、円弧状や、丸みを帯びてもよい。
直線凹部33aまたはスリット34aはその一端が交わる磁性シート51の端部とほぼ垂直であり、中心部32aの外形(円形コイルでいえば接線上、矩形コイルでいえば辺上)と重なるように形成される。このように直線凹部33aまたはスリット34aを形成することによって、導線の巻始めを折り曲げることなく端子22a、23aを形成することができる。直線凹部33aまたはスリット34aの長さはコイル21の内径に依存し、本実施の形態の場合、約15mm〜20mmとしている。
また、直線凹部33aまたはスリット34aは、磁性シート51の端部と中心部32aの外周が最も近づく部分に形成してもよい。これによって、直線凹部33aまたはスリット34aの形成面積を最低限に抑えることができ、非接触電力伝送機器の伝送効率を向上させることができる。なお、この場合、直線凹部33aまたはスリット34aの長さは約5mm〜10mmである。どちらの配置であっても、直線凹部33aまたはスリット34aの内側端部は中心部32aに接続している。
また、直線凹部33aまたはスリット34aは、他の配置にしてもよい。すなわち、コイル21aはなるべく1段構造であることが望ましく、その場合、コイル21aの半径方向のすべてのターンを1段構造とするか、1部を1段構造として他の部分を2段構造とすることが考えられる。従って、端子22a、23aのうち1方はコイル21a外周から引き出すことができるが、他方は内側から引き出さなくてはならない。コイル21aが巻回されている部分と、コイル21aの巻き終わりから端子22aまたは23aまでの部分とが、必ず厚さ方向において重なる場合、その重なる部分に直線凹部33aまたはスリット34aを設ければよい。
直線凹部33aを用いる場合であれば、磁性シート51に貫通孔やスリットを設けないので磁束が漏れることを防ぎ、1次側非接触充電モジュール41の電力伝送効率を向上させることができる。対して、スリット34aの場合は、磁性シート51の形成が容易となる。直線凹部33aである場合、断面形状が方形状となるような直線凹部33aに限定されず、円弧状や、丸みを帯びてもよい。
次に、マグネットが1次側非接触充電モジュール41及び後述する2次側非接触充電モジュール42に対して与える影響について説明する。1次側非接触充電モジュール41によって発生した磁界を2次側非接触充電モジュール42内の2次側コイル21bが受信して電力伝送を行う。ここで、1次側コイル21a及び2次側コイル21bの周辺にマグネットを配置すると、磁界がマグネットを避けるように発生するか、マグネットを通過しようとする磁界はなくなってしまうこともある。また、磁性シート51のうちマグネットに近い部分の透磁率が低下してしまう。すなわち、マグネットによって、磁界が弱められるのである。従って、マグネットによって弱められる磁界を最小限にするためには、1次側コイル21a及び2次側コイル21bとマグネットの距離を離す、マグネットの影響を受けにくい磁性シート51を備える、等の対策を講じる必要がある。
ここで、1次側非接触充電モジュール41は、電力供給の送信側として固定端末に用いられるため、1次側非接触充電モジュール41の固定端末内における占有スペースに余裕がある。また、1次側非接触充電モジュール41の1次側コイル21aに流れる電流は大きいため、磁性シート51の絶縁性が重要となる。これは、磁性シート51が導電性であると、1次側コイル21aを流れる大きな電流が磁性シート51を介してその他の部品に伝わる可能性があるからである。
以上の点を考慮して、1次側非接触充電モジュール41に搭載する磁性シート51は、その厚みが400μm以上(好ましくは600μm〜1mm)で、磁気特性として透磁率250以上、磁束飽和密度350mT以上を有するNi−Zn系のフェライトシート(絶縁性)が好ましい。ただし、十分な絶縁処理を行うことで、Ni−Zn系のフェライトシートの代わりにMn−Zn系のフェライトシート(導電性)を使用することもできる。
また、1次側非接触充電モジュール41は、マグネット30aを位置合わせとして使用する場合と使用しない場合とで1次側非接触充電モジュール41のコイル21aのL値が大幅に変化する。すなわち、1次側非接触充電モジュール41にマグネット30aまたは2次側非接触充電モジュール42に同様のマグネットが存在することで1次側、2次側非接触充電モジュール間の磁束を妨げてしまい、マグネットがある場合では1次側非接触充電モジュール41のコイル21aのL値が大幅に減少する。このマグネット30aによる影響を抑えるために、磁性シート51は高飽和磁束密度材(飽和磁束密度が350mT以上)であることが好ましい。高飽和磁束密度材は磁場が強くなっても磁束が飽和しにくいため、マグネット30aの影響を受けにくく、マグネット30aが使用されている際のコイル21のL値を向上させることができる。従って、磁性シート51を薄型化させることができる。
しかしながら、磁性シート51の透磁率が低くなりすぎるとコイル21aのL値が非常に低下してしまう。その結果、1次側非接触充電モジュール41の効率を低下させてしまうことがある。従って、磁性シート51の透磁率は少なくとも250以上、好ましくは1500以上が好ましい。また、L値は磁性シート51の厚みにも依存するが、フェライトシート3の厚み400μm以上であればよい。なお、フェライトシートは、アモルファス金属の磁性シートに比較してコイル21の交流抵抗を低下させることができるが、アモルファス金属であってもよい。このような磁性シート51とすることで、1次側非接触充電モジュール41及び2次側非接触充電モジュール42の少なくとも一方がマグネットを備えていたとしても、1次側非接触充電モジュール41はマグネットの影響を低下させることができる。
また、フェライトシートがMn−Zn系であることによって、更なる薄型化が可能となる。すなわち、規格(WPC)によって、電磁誘導の周波数は100kHz〜200kHz程度(例えば120kHz)と決まっている。このような低周波数帯において、Mn−Zn系のフェライトシートは高効率となる。なお、Ni−Zn系のフェライトシートは高周波において高効率である。
次に、2次側非接触充電モジュール42を携帯端末機器に搭載する場合について、説明する。
図5は、本発明の実施の形態における携帯端末機器の構成を示す図であり、携帯端末機器を分解した場合の斜視図である。
携帯端末機器520は、液晶パネル521、操作ボタン522、基板523、電池パック524等で構成されている。電磁誘導作用を利用して電力を受信する携帯端末機器520は、その外装を形成する筐体525と筐体526の内部に2次側非接触充電モジュール42を有する携帯端末機器である。
液晶パネル521、操作ボタン522が設けられた筐体525の裏面には、操作ボタン522から入力された情報を受信するともに必要な情報を液晶パネル521に表示して携帯端末機器520全体を制御する制御部を備える基板523が設けられている。また、基板523の裏面には電池パック524が設けられている。電池パック524は、基板523と接続されて基板523に電力供給を行う。
更に、電池パック524の裏面、すなわち筐体526側には2次側非接触充電モジュール42が設けられている。2次側非接触充電モジュール42は、電磁誘導作用により1次側非接触充電モジュール41から電力供給を受け、その電力を利用して電池パック524を充電する。
2次側非接触充電モジュール42は、2次側コイル21b、磁性シート52等から構成される。電力供給を受ける方向を筐体526側とする場合、筐体526側から順に2次側コイル21b、磁性シート52を配置すると、基板523と電池パック524の影響を軽減して電力供給を受けることができる。
また、2次側非接触充電モジュール42は、1次側非接触充電モジュール41との位置合わせに用いるマグネット30bを有する場合がある。この場合、2次側コイル21bの中央領域に位置する中空部に配置される。これは、規格(WPC)によって、円形であること、直径が15.5mm以下であること等が定められている。マグネット30aはコイン形状をしており、その中心が1次側コイル21aの巻回中心軸と一致するように配置されなければならない。これは、1次側コイル21aに対するマグネット30aの影響を軽減させるためである。2次側非接触充電モジュール42に備えられたマグネット30bは、1次側コイル21a及び2次側コイル21b双方のL値を低下させてしまう。
2次側非接触充電モジュール42がマグネット30bを有する場合、マグネット30bを配置する1番目の方法として、マグネット30bを磁性シート52の中心部32bの上面に配置する方法がある。また、マグネット30bを配置する2番目の方法として、マグネット30bを磁性シート52の中心部32bの代わりに配置する方法がある。2番目の方法では、マグネット30bがコイル21bの中空領域に配置されるため、2次側非接触充電モジュール42を小型化できる。
なお、1次側非接触充電モジュール41と2次側非接触充電モジュール42の位置合わせにマグネットを利用しない場合は、マグネット30bは必要ない。
次に、2次側非接触充電モジュール42について説明する。
図6は、本発明の実施の形態における2次側非接触充電モジュールを示す図であり、2次側コイルが円形コイルの場合を示す。
図7は、本発明の実施の形態における2次側非接触充電モジュールを示す詳細図である。図7(a)は2次側非接触充電モジュールの上面図、図7(b)は図7(a)における2次側非接触充電モジュールのC−C断面図である。図7(c)は、直線凹部を設けた場合の図7(a)における2次側非接触充電モジュールのD−D断面図である。図7(d)は、スリットを設けた場合の図7(a)における2次側非接触充電モジュールのD−D断面図である。なお、図7(a),図7(b)は、マグネット30bを備えない場合を示している。なお、備える場合には、点線で示したマグネット30bを備える。
2次側非接触充電モジュール42を説明する図6〜図7は、1次側非接触充電モジュール41を説明する図3〜図4にそれぞれ対応する。2次側非接触充電モジュール42の構成は、1次側非接触充電モジュール41と略同一である。
2次側非接触充電モジュール42が1次側非接触充電モジュール41と異なる点として、磁性シート52の大きさと材料が挙げられる。2次側非接触充電モジュール42に用いる磁性シート52は、約40×40mm以内の大きさに収まる程度のサイズであり、厚みは約2mm以下である。
1次側非接触充電モジュール41に用いる磁性シート51と、2次側非接触充電モジュール42に用いる磁性シート52のサイズは異なる。これは、2次側非接触充電モジュール42が一般的にポータブル電子機器に搭載されるためであり、小型化が要求されるからである。本実施の形態において磁性シート52は略正方形の約33mm×33mmである。磁性シート52がコイル21bの外周端よりも同程度または大きく形成されることが望ましい。また、磁性シート51の形状は、円形、矩形、多角形、四隅に大きな曲線を備える矩形及び多角形でもよい。
また、2次側非接触充電モジュール42は、電力供給の受信側として携帯端末に用いられるため、2次側非接触充電モジュール42の携帯端末内における占有スペースに余裕がない。また、2次側非接触充電モジュール42の2次側コイル21bに流れる電流は小さいため、磁性シート52の絶縁性はあまり要求されない。なお、本実施の形態では、約0.18〜0.35mmの導線により2次側コイル21bを構成しており、その中でも2次側非接触充電モジュール42の2次側コイル21bには0.18〜0.30mm程度の導線が好適である。
搭載される電子機器が携帯電話の場合、携帯電話の外装を構成するケースとその内部に位置する電池パックとの間に配置されることが多い。一般的に、電池パックはアルミニウムの筐体であるため、電力伝送に悪影響を与える。これは、コイルが発生させる磁束を弱める方向にアルミニウムに渦電流が発生するため、コイルの磁束が弱められることに起因する。そのため、電池パックの外装であるアルミニウムとその外装の上に配置される2次側コイル21bとの間に磁性シート52を設け、アルミニウムに対する影響を軽減する必要がある。
以上の点を考慮して、2次側非接触充電モジュール42に用いる磁性シート52は、透磁率、飽和磁束密度の高いものが使用され、2次側コイル21bのL値をなるべく大きくすることが重要である。基本的には磁性シート51と同様に透磁率250以上、飽和磁束密度350mT以上を備えるものであればよい。本実施の形態においては、Mn−Zn系のフェライトの焼結体であって、透磁率1500以上、飽和磁束密度400以上、厚みは約400μm以上であることが好ましい。ただし、Ni−Zn系フェライトでもよく、透磁率250以上、飽和磁束密度350以上あれば、1次側非接触充電モジュール41と電力伝送が可能である。また、2次側コイル21bも1次側コイル21aと同様で略円形や略矩形に巻回される。1次側非接触充電モジュール41内にマグネット30aを備えて位置合わせを行う場合と、マグネット30aを備えずに位置合わせを行う場合とがある。
次に、マグネット30aのサイズと1次側コイル21aの内径のサイズとの関係について説明する。ここでは、1次側非接触充電モジュール41にマグネット30aを配置した場合について説明するが、2次側非接触充電モジュール42にマグネット30bを配置した場合も同様の関係が成り立つ。その場合は、マグネット30bはマグネット30aに相当する。
図8は、マグネットを備える1次側非接触充電モジュール及び2次側非接触充電モジュールの関係を示す図である。図8(a)はコイルの内幅が小さいときに位置合わせのマグネットを用いた場合、図8(b)はコイルの内幅が大きいときに位置合わせのマグネットを用いた場合、図8(c)はコイルの内幅が小さいときに位置合わせのマグネットを用いない場合、図8(d)はコイルの内幅が大きいときに位置合わせのマグネットを用いない場合である。なお、図8では、マグネット30aを備える1次側非接触充電モジュール41と電力伝送を行う2次側非接触充電モジュール42の2次側コイル部21bについて説明する。しかしながら、下記で説明する2次側非接触充電モジュール42の関係の2次側コイル部21bについての説明は、マグネット30bを備える2次側非接触充電モジュール42と電力伝送を行う1次側非接触充電モジュール42の2次側コイル2aについても適用される。すなわち、電力伝送の相手である他方の非接触充電モジュールがマグネットを備える場合と備えない場合との双方において、位置合わせ及び電力伝送が可能となる非接触充電モジュールの平面コイル部について説明する。図9は、コイルの内径とコイルのL値との関係を示す図である。
図中ではマグネット30aは1次側コイル21aの貫通孔内のみに収まっているが、2次側コイル21bの貫通孔内に収まっていても同様のことがいえる。
1次側コイル21aと2次側コイル21bは対向している。コイル21a、21bのうち、内側部分211、212においても磁界が発生し、電力伝送されるである。各内側部分211、212はそれぞれ対向している。また、内側部分211、212はマグネット30aに近い部分でもあり、マグネット30aからの悪影響を受けやすい。すなわち、電力伝送のために1次側コイルと2次側コイルとの間に磁束が発生している際、その間や周辺にマグネットが存在すると磁束はマグネットを避けるように伸びる。もしくは、マグネットの中を貫く磁束はマグネットの中で渦電流や発熱となり、損失となる。更に、マグネットが磁性シートの近傍に配置されることによって、マグネット近傍の磁性シートの透磁率が低下してしまう。従って、1次側非接触充電モジュール41に備えられたマグネット30aは、1次側コイル2a及び2次側コイル21bの特に内側部分211、212の磁束を弱めてしまい悪影響を及ぼす。その結果、非接触充電モジュール間の伝送効率が低下してしまう。従って、図8(a)の場合、マグネット30aの悪影響を受けやすい内側部分211、212が大きくなってしまう。それに対して、マグネットを用いない図8(c)は2次側コイル21bの巻き数が多いためL値は大きくなる。その結果、(c)におけるL値から図8(a)におけるL値へは大幅に数値が減少するため、内幅が小さいコイルでは、マグネット30aが位置合わせのために備えられる場合と備えられる場合とで、L値減少率が非常に大きくなってしまう。また、図8(a)のように2次側コイル21bの内幅がマグネット30aの直径よりも小さいと、マグネット30aと対向する面積だけ2次側コイル21bはダイレクトにマグネット30aの悪影響を受けてしまう。従って、2次側コイル21bの内幅はマグネット30aの直径よりも大きい方がよい。
対して、図8(b)のようにコイルの内幅が大きいと、マグネット30aの悪影響を受けやすい内側部分211、212が非常に小さくなる。また、マグネットを用いない図8(d)は2次側コイル21bの巻き数が少なくなるためL値は図8(c)に比べて小さくなる。その結果、図8(d)におけるL値から図8(b)におけるL値へは数値の減少が小さいため、内幅が大きいコイルではL値減少率を小さく抑えることができる。また、2次側コイル21bの内幅が大きいほど、マグネット30aからコイル21の中空部の端部が離れるため、マグネット30aの影響を抑えることができる。しかしながら、非接触充電モジュールは充電器もしくは電子機器等に搭載されるため、ある一定以上の大きさに形成することができない。従って、コイル21a、21bの内幅を大きくしてマグネット30aからの悪影響を小さくしようとすると、巻き数が減ってしまいマグネット有り無しに関係せずL値そのものが減少してしまう。マグネット30aが円形の場合、以下のようになる。すなわち、マグネット30aの外径とコイル21の内幅とがほぼ同一(マグネット30aの外径がコイル21の内幅よりも0〜2mm程度小さい)である場合、マグネット30aを最大限に大きくすることができるので、1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせの精度が向上できる。また、コイル21の内径を最小にすることができるので、コイル21の巻き数が増大してL値を向上させることができる。また、マグネット30aの外径がコイル21の内径よりも小さい(マグネット30aの外径がコイル21の内幅よりも2〜8mm程度小さい)場合、位置合わせの精度にばらつきがあっても内側部分211、212が対向する部分の間にはマグネット30aが存在しないようにすることができる。このとき、マグネット30aの外径がコイル21の内幅の70%〜95%であることによって、位置合わせの精度にばらつきにも十分対応でき、更に1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせの精度が向上できる。また、コイル21の巻き数も確保することができる。これは、平面コイル部2に平行な面において、マグネット30aの面積は、平面コイル部2の中心の貫通孔の面積の70%〜95%であることを意味する。このように構成することによって、電力伝送の相手である他方の非接触充電モジュールに位置合わせのためのマグネットを備える場合であっても備えない場合であっても、マグネットの有無による非接触充電モジュール内の平面コイルのL値の変動が小さくなり、位置合わせや電力伝送をすることができる。すなわち、1次側非接触充電モジュール41にマグネット30aを備えた場合であっても備えない場合であっても、2次側非接触充電モジュールはどちらの場合も、1次側非接触充電モジュール41との位置合わせ及び電力伝送を効率よくすることができる。また、2次側非接触充電モジュール42にマグネット30bを備えた場合であっても備えない場合であっても、1次側非接触充電モジュールはどちらの場合も、2次側非接触充電モジュール42との位置合わせ及び電力伝送を効率よくすることができる。そして、1次側コイル21aは1次側非接触充電モジュール41において、共振コンデンサをもちいてLC共振回路をつくる。このとき、マグネットを位置合わせに利用する場合と利用しない場合とでL値が大幅に変化すると、共振コンデンサとの共振周波数も大幅に変化してしまう。この共振周波数は、1次側非接触充電モジュール41と2次側非接触充電モジュール42との電力伝送に用いられるため、マグネットの有無によって共振周波数が大幅に変化すると正しく電力伝送ができなくなってしまうが、上記の構成とすることで、電力伝送が高効率化する。
更に、図9に示すように、マグネット30aのサイズ及び2次側コイル21bの外径を一定にした場合、2次側コイル21bの巻き数を減らして2次側コイル21bの内径を大きくしていくと、マグネット30aの2次側コイル21bに対する影響が小さくなる。すなわち、マグネット30aを1次側非接触充電モジュール41と2次側非接触充電モジュール42との位置合わせに利用する場合と利用しない場合における2次側コイル21bのL値が近い値となる。従って、マグネット30aを使用するときと使用しないときとの共振周波数が非常に近い値となる。なお、このとき、コイルの外径は30mmに統一している。また、1次側コイル21aの中空部端部とマグネット30aの外側端部との距離は、0mmより大きく、6mmよりも小さくすることで、L値を15μH以上としつつ、マグネット30aを利用する場合と利用しない場合でのL値を近づけることができる。図9の結果は、2次側非接触充電モジュール42にマグネット30bを備えた場合の1次側非接触充電モジュール41の1次側コイル21aのL値としても、同様のことがいえる。
図10は、本発明の実施の形態における非接触充電モジュールと電力伝送を行う他方の非接触充電モジュールに備えられたマグネットの位置関係を示す模式図であり、1次側非接触充電モジュールに1次側非接触充電モジュールと2次側非接触充電モジュールの位置合わせに利用するマグネットを有するものである。なお、図10(a)は2次側コイルが矩形コイルの場合を示し、図10(b)は2次側コイルが円形コイルの場合を示す。
このとき、マグネットと非接触充電モジュールとの関係は、1次側非接触充電モジュール41と2次側非接触充電モジュール42に設けられたマグネット30bとの関係と、2次側非接触充電モジュール42と1次側非接触充電モジュール41に設けられたマグネット30aとの関係との、双方の関係において当てはまる。従って、2次側非接触充電モジュール42と1次側非接触充電モジュール41に設けられたマグネット30aとの関係を例として説明するが、1次側非接触充電モジュール41と2次側非接触充電モジュール42に設けられたマグネット30bとの関係にも適用される。すなわち、電力伝送の相手である他方の非接触充電モジュールに備えられたマグネットの影響を抑え、他方の非接触充電モジュールにマグネットが備えられる場合であっても、備えられない場合であっても、位置合わせ及び電力伝送が可能である非接触充電モジュールについて説明する。
図10(a)に示す2次側コイル2c及び図10(b)に2次側コイル21bは、その中心が位置合わせのマグネット30aの中心と合うように位置合わせされる。また、1次側非接触充電モジュールがマグネット30aを設けない場合であっても、2次側非接触充電モジュール42がマグネットを備えることもある。
位置合わせのマグネット30aは直径mの円形状であり、磁性シート52は正方形である。なお、磁性シート52は正方形以外の多角形や矩形状、角に曲線(コーナー)であってもよいが、1次側非接触充電モジュール41の性能を確保しながら小型化するには正方形のほうが好ましい。
位置合わせのマグネット30aは、非接触充電モジュール41、42を使用するに当たって規格提案されているもので、非接触充電モジュール41、42間の電力伝送を確実にし、送受信コイルの中心合わせを行なうために使用される。
同じ巻線数の矩形の2次側コイル2cまたは円形の2次側コイル21bを同じ大きさの磁性シート52上に設置した場合、両者とも同一の面積の磁性シート52内に納まる。すなわち、図10(a)及び(b)に示す通り、同じ巻線数の矩形の2次側コイル2cまたは円形の2次側コイル21bを1辺の長さの磁性シート52上に設置した場合、矩形の2次側コイル2cの対向する内辺間の最短距離y1と円形の2次側コイル21bの内径y2を同じ長さにすることができる。
一方、矩形の2次側コイル2c内側の対角線長xは円形の2次側コイル21bの内径y2と同じ長さである矩形の2次側コイル21bの対向する内辺間の最短距離y1より長いxとなる。すなわち、矩形の2次側コイル2cでは、円形の2次側コイル21bに比べて位置合わせのマグネット30aと2次側コイル2cとの間隔を大きく取れる領域が多くなる。すなわち、x>y1、y1=y2の関係である。
そして、1次側非接触充電モジュール41または2次側非接触充電モジュール42に備えるマグネットの影響を抑えるためには、矩形のコイルはx>=m、好ましくはy1>=mとなる必要がある。
2次側コイル21bまたは2cと、位置合わせのマグネット30aとの間隔が大きくなると、位置合わせマグネット30aの影響が小さくなるため、2次側コイル21bまたは2cのL値減少率を小さくできる。2次側コイルが矩形の場合、2次側コイル2cの内側の対角線寸法xが円形の2次側コイル21bの内径寸法y2と同じ値のとき、2次側コイル2cのL値減少率が2次側コイル21bと略同じ値になる。
そのため、非接触充電器400の1次側非接触充電モジュール41を収納するスペースが方形状であり、しかもそのスペースが限られている場合には、磁性シート52を方形状として2次側コイル20cを矩形状に形成することが好ましい。これにより、円形コイルと比較して、矩形の2次側コイル2cをマグネット30aから遠ざけることができ、矩形の2次側コイル2cはマグネット30aからの影響を受けにくい。また、矩形の2次側コイル2cは、磁束がコーナー部に集中するが、そのコーナー部とマグネット30aとの距離を大きく確保できるため、マグネット30aの影響を軽減できる。
すなわち、2次側コイル21bが円形に巻回される場合は、2次側コイル21b全体がほぼ同じ磁界の強さを示す。しかし、2次側コイル21bが略矩形に巻回される場合は、その角部(コーナー)において磁界が集中する。従って、2次側コイル2cの内側の対角線寸法xが位置合わせマグネット30aの外径よりも外側に位置すること(x>=m)で、マグネット30aの影響を抑えて電力送信することができる。また、2次側コイル21bの対向する内辺間の最短距離y1が位置合わせマグネット30aの外径よりも外側に位置すること(y1>=m)で、2次側コイル2c全体が位置合わせマグネット30aの外径よりも外側に位置し、更に2次側コイル21bの角部(コーナー)がマグネット30aから一定距離を開けて位置することとなる。従って、よりマグネット30aが2次側コイル21bに与える影響を低減させることができる。
なお、本実施の形態では、前述した関係を満足するように矩形の2次側コイル2cの対角線寸法(x)をおよそ23mmにし、位置合わせのマグネット30aの径(m)を15.5mmφに設定した。位置合わせのマグネット30aは一般的に、15.5mmを最大の直径とし、それよりも小さく構成される。小型化と、位置合わせの精度を鑑みた場合に、マグネット30aの直径が約10mm〜15.5mmであり、厚みは約1.5〜2mmとなることでバランスよく位置合わせをすることができるからである。また、ネオジウム磁石を使用しており、強さは約75mTから150mT程度でよい。本実施の形態においては、1次側非接触充電モジュールのコイルと2次側非接触充電モジュールのコイルとの間隔が2〜5mm程度であるので、この程度のマグネットで十分位置合わせが可能となる。従って、2次側コイル2cが円形状に巻回されていれば、中空部の直径を15.5mm以上、矩形に巻回していれば中空部の対角線を15.5mm以上、好ましくは中空部の辺幅を15.5mm以上とすることで、基本的に、相手側に備えられたマグネット30aの大きさに関わらずマグネット30aの影響を低減することができる。
上述したように、矩形コイルの方が円形コイルよりもマグネットの影響を受けにくいが、2次側コイル21b及び後述する2次側コイル21bの両方が矩形コイルであると、充電時の位置合わせの際にお互いのコーナーどうしの位置合わせをしなくてはならなくなる。従って、位置合わせの際の角度合わせが難しいため、一方が円形コイル、他方が矩形コイルであるとよい。すなわち、角度調整も必要なく、更に矩形コイルがマグネットの影響を抑えることができるためである。なお、1次側非接触充電モジュール41及び2次側非接触充電モジュール42のいずれが矩形コイルを備え、いずれが円形コイルを備えても構わないが、円形コイルは電力伝送の相手となるコイルの形状によらず効率的な電力伝送が可能であるため、1次側非接触充電モジュール41に円形コイルを備えるとよい。
なお、円形コイルに比較して、矩形コイルとは、中空部四隅の角のR(四隅の曲線の半径)が中空部の辺幅(図10(a)のy1)の30%以下のものをいう。すなわち、図10(a)において、略矩形の中空部は四隅が曲線状となっている。直角であるよりも、多少でも曲線であることで、四隅における導線の強度を向上させることができる。しかしながら、Rが大きくなりすぎると円形コイルとほとんど変化なく、矩形コイルならではの効果を得ることができなくなる。検討の結果、中空部の辺幅y1が例えば20mmであった場合、各四隅の曲線の半径Rが6mm以下であれば、マグネットの影響をより効果的に抑えることができることがわかった。また、前述したように四隅の強度まで考慮すると、各四隅の曲線の半径Rが略矩形の中空部の辺幅の5〜30%であることによって、前述したもっとも矩形コイルの効果を得ることができる。
次に、磁性シート51、52の中心部の厚みについて説明する。
図11は、本発明の実施の形態における非接触充電モジュールの磁性シートの概念図であり、例として2次側非接触充電モジュール42に備えられる磁性シート52とする。図11(a)は本発明の実施の形態における非接触充電モジュールの磁性シートの上面図であり、図11(b)は図11(a)の磁性シートの直線凹部の位置を変更した上面図である。図11(c)は図11(a)のE−E断面図、図11(d)は中心部を凹部とした場合の図11(a)のF−F断面図、図11(e)は中心部を貫通孔とした場合の図11(a)のF−F断面図である。中心部32bが凹部形状または貫通孔となっている。例えば、中心部32bは凸形状であることで2次側コイル21bの磁束密度を向上させ、2次側非接触充電モジュール42の伝送効率を向上させる。
しかしながら、中心部32bを凹部形状または貫通孔とするような穴部を設けることで、1次側非接触充電モジュール41に備えられるマグネット30aの影響を小さくすることができる。以下にその理由を説明する。
なお、図11では、例として、マグネット30aを備える1次側非接触充電モジュール41と電力伝送を行う2次側非接触充電モジュール42の磁性シート52について説明する。しかしながら、下記で説明する2次側非接触充電モジュール42の磁性シート52についての説明は、マグネット30bを備える2次側非接触充電モジュール42と電力伝送を行う1次側非接触充電モジュール41の磁性シート51についても適用される。すなわち、電力伝送の相手である他方の非接触充電モジュールがマグネットを備える場合と備えない場合との双方において、位置合わせ及び電力伝送が可能となる非接触充電モジュールの磁性シートの中心部について説明する。
前述したように、非接触電力伝送機器は、1次側非接触充電モジュール41と2次側非接触充電モジュール42との位置合わせにマグネットが利用される場合と、そうでない場合とがある。そして、マグネットが存在することで1次側、2次側非接触充電モジュール間の磁束を妨げてしてしまうため、マグネットがある場合に1次側非接触充電モジュール41の1次側コイル21a及び2次側非接触充電モジュール42の2次側コイル21bのL値が大幅に減少する。
また、1次側コイル21aは1次側非接触充電モジュール41において、共振コンデンサをもちいてLC共振回路をつくる。このとき、マグネット30aを位置合わせに利用する場合と利用しない場合とでL値が大幅に変化すると、共振コンデンサとの共振周波数も大幅に変化してしまう。この共振周波数は、1次側非接触充電モジュール41と2次側非接触充電モジュール42との電力伝送に用いられるため、マグネット30aの有無によって共振周波数が大幅に変化すると正しく電力伝送ができなくなってしまう。
従って、マグネット30aを位置合わせに利用する場合と利用しない場合との共振周波数を近い値とするために、マグネット30aを位置合わせに利用する場合と利用しない場合での2次側コイル21bのL値を近い値とすることが必要である。
次に、1次側非接触充電モジュールにマグネット30aを備える場合と備えない場合とにおいて、磁性シート52の中心部の厚みと2次側コイル21bのL値との関係について説明する。
図12は、本実施の形態の他方の非接触充電モジュールにおいて位置合わせにマグネットを備える場合と備えない場合における非接触充電モジュールのコイルのL値と中心部の厚みの関係を示す図である。なお、くり抜きの度合いとは、0%は中心部32bを凹型形状とせずに平坦図であることを示し、100%とは中心部32bを貫通孔としていることを示す。
マグネット30aを利用しない場合では、磁性シート52の中心部32bを薄くするほど、2次側コイル21bの磁界が小さくなってL値が減少する。これに対して、マグネット30aを利用する場合では、磁性シート52の中心部32bを薄くするほど、磁性シート52とマグネット30aとの積層方向の距離が大きくなるため、マグネット30aの影響が小さくなり、2次側コイル21bの磁界が大きくなってL値が上昇する。そして、中心部32bを貫通孔に形成した場合が最もL値が近づく。すなわち、中心部32bを貫通孔とすることによって、位置合わせに利用するマグネット30aの影響を最小限に抑えることができる。
また、マグネット30aは磁性シート52と引き合うことによって位置合わせを行うため、中心部32bにある程度の厚みがあるほうが位置合わせの精度が向上する。特に、くり抜きの度合いを60%以下とすることで、位置合わせの精度を安定させることができる。
従って、くり抜きの度合いを40〜60%とすることによって、マグネット30aを位置合わせに利用する場合と利用しない場合での2次側コイル21bのL値を近い値とすると同時に、マグネット30aの位置合わせの効果も十分に得ることができる。すなわち、マグネット30aと磁性シート52の中心部32bが引き合い、お互いの中心どうしを位置合せできる。
なお、本実施の形態では約50%としており、最も効果的に双方の効果を得ることができる。また、半分程度厚みを残すことを、貫通孔を形成した後に貫通孔内に磁性体を半分の深さまで充填してもよい。また、中心部32bに設ける穴部(凹部または貫通孔)は、必ずしも中心部32aと同じ形状、及び同じサイズである必要はない。中心部32bすなわちコイルの中空部の形状が略矩形や略円形形状であっても、それに依存せず穴部は様々な形状でよい。すなわち、矩形形状や円形形状である。また、穴部は中心部32bよりも小さいことが好ましく、少なくとも中心部32bの面積の30%以上の面積を確保するとよい。
また、磁性シート51、52は高飽和磁束密度材と高透磁率材を積層してもいいので、例えば高飽和磁束密度材の中心部を平坦に形成し、高透磁率材の中心部に貫通孔に形成して、磁性シート51、52として中心部32aを凹型形状に形成してもよい。なお、高飽和磁束密度材とは、高透磁率材に比べて飽和磁束密度が高く透磁率が低い磁性シートをいい、特にフェライトシートであるとよい。
また、凹部、または貫通孔の直径は、2次側コイル21bの内径よりも小さくするとよい。凹部または貫通孔の直径を2次側コイル21bの内径と略同一(コイルの内径よりも0〜2mm小さい)とすることで、2次側コイル21bの内周円内の磁界を高めることができる。
また、凹部または貫通孔の直径をコイルの内径よりも小さくして(コイルの内径よりも2〜8mm小さい)階段状にすることで、階段状の外側は位置合わせのために利用でき、内側はマグネット30aを位置合わせに利用する場合と利用しない場合での1次側コイル21aのL値を近い値とするために利用できる。また、凹部または貫通孔は、マグネット30aのサイズよりも大きくするとよい。すなわち、マグネット30aの径よりも大きく、2次側コイル21bの中空部よりも小さい穴部とするとよい。
更に、凹部または貫通孔の上面の形状は、2次側コイル21bの中空部の形状と同一であることにより、マグネット30aと磁性シート52の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
凹部または貫通孔のすべての端部は、2次側コイル21bの内径から等距離であることにより、マグネット30aと磁性シート52の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが更に精度よくできる。
また、更に、凹部または貫通孔の上面の形状の中心は、2次側コイル21bの中空部の中心と一致であることにより、マグネット30aと磁性シート52の中心部32bがバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。また、凹部または貫通孔が、マグネット30aよりも大きく形成されることで、マグネット30aの影響をバランスよく抑えることができる。
上記のように中心部を穴部とする構成は1次側非接触充電もジュールの磁性シート51にも適応され、効果は、1次側非接触充電モジュール41の磁性シート51の中心部32aに穴部を備えても得られる。すなわち、2次側非接触充電モジュール42がマグネット30bを備えている場合と備えていない場合とのどちらであっても位置合わせ及び効率的な電力伝送ができる1次側非接触充電モジュール41とすることができる。
また、磁性シート51、52の四隅であって、平坦部31a、31b上のコイル21a、21bが配置されていない領域に肉厚部を形成してもよい。すなわち、磁性シート51、52の四隅であって平坦部31a、31b上のコイル21a、21bの外周よりも外側は、磁性シート51、52の上に何も載せられていない。従って、そこに肉厚部を形成することによって磁性シート51、52の厚みを増加させ、非接触電力伝送機器の電力伝送効率を向上させることができる。肉厚部の厚みは厚ければ厚いほうがよいが、薄型化のため、導線の厚みとほぼ同一とする。