US20130293191A1 - Non-contact charging module and non-contact charging instrument - Google Patents

Non-contact charging module and non-contact charging instrument Download PDF

Info

Publication number
US20130293191A1
US20130293191A1 US13/979,244 US201113979244A US2013293191A1 US 20130293191 A1 US20130293191 A1 US 20130293191A1 US 201113979244 A US201113979244 A US 201113979244A US 2013293191 A1 US2013293191 A1 US 2013293191A1
Authority
US
United States
Prior art keywords
coil
contact charging
charging module
magnet
magnetic sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/979,244
Inventor
Akio Hidaka
Kenichiro Tabata
Tokuji Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sovereign Peak Ventures LLC
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011013619A external-priority patent/JP4835796B1/en
Priority claimed from JP2011135946A external-priority patent/JP4900525B1/en
Application filed by Panasonic Corp filed Critical Panasonic Corp
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIDAKA, AKIO, NISHINO, TOKUJI, TABATA, KENICHIRO
Publication of US20130293191A1 publication Critical patent/US20130293191A1/en
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Assigned to SOVEREIGN PEAK VENTURES, LLC reassignment SOVEREIGN PEAK VENTURES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: PANASONIC CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a non-contact charging module and a non-contact charger including a magnetic sheet, and a plane coil section including a wound conducting wire.
  • Such a system includes a power transmission coil on the charger side, and a power reception coil on the main apparatus side. Electromagnetic induction is generated between the coils, whereby electric power is transmitted from the charger side to the main apparatus side.
  • a portable terminal apparatus or the like as the main apparatus.
  • the main apparatus such as the portable terminal apparatus and the charger are preferably reduced in thickness and size.
  • a configuration that includes plane coil sections as a power transmission coil and a power reception coil, and magnetic sheets may be considered, as disclosed in Patent Literature (hereinafter, abbreviated as PTL) 1 and PTL 2.
  • a magnet is sometimes utilized to align a primary-side non-contact charging module and a secondary-side non-contact charging module.
  • a non-contact charging module including a plane coil section formed of one conducting wire and an entirely planar magnetic sheet as disclosed in PTL 1 and PTL 2 is provided with a magnet for aligning the primary-side non-contact charging module and the secondary-side non-contact charging module
  • the non-contact charging module may be affected by the magnet.
  • the magnetic sheet reduces adverse effects on the coil such as an eddy-current loss caused by metal placed under the coil, and also improves an L value of the coil.
  • the magnetic permeability of the magnetic sheet is reduced by the magnet, and the action of the magnetic sheet declines. As a result, the magnetic sheet can no longer reduce adverse effects on the coil such as an eddy-current loss caused by metal and can no longer improve the L value of the coil either.
  • an object of the present invention is to provide a non-contact charging module and a non-contact charger each preventing an adverse effect from the magnet and improving power transmission efficiency even when using a magnet for alignment.
  • a further object of the present invention is to provide a non-contact charging module and a non-contact charger achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • a non-contact charging module includes: a plane coil section including a wound conducting wire; and a magnetic sheet on which a coil surface of the plane coil section is placed, and which is provided so as to face the coil surface of the plane coil section, in which the magnetic sheet includes a first layer and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer, the first layer and the second layer being stacked in the magnetic sheet.
  • a non-contact charging module and a non-contact charger each preventing an adverse effect from a magnet and improving power transmission efficiency even when using a magnet for alignment. Further, it is possible to provide a non-contact charging module and a non-contact charger each achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • FIG. 1 is an assembly diagram of a non-contact charging module in an embodiment of the present invention
  • FIGS. 2A to 2D are conceptual diagrams of the non-contact charging module in the embodiment of the present invention.
  • FIGS. 3A to 3D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention.
  • FIGS. 4A and 4B are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention.
  • FIG. 5 illustrates L values of a coil in accordance with the presence/absence of a magnet and the presence/absence of stacking in the embodiment of the present invention
  • FIGS. 6A to 6D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention.
  • FIG. 7 illustrates the relationship between the L value of the coil and the thickness of a center portion when a magnet is utilized for alignment and when a magnet is not utilized for alignment in the non-contact charging module of the present embodiment
  • FIGS. 8A to 8D are sectional views of a coil and a magnet of the non-contact charging module in the embodiment of the present invention.
  • FIG. 9 illustrates the relationship between the inner diameter of the coil and the L value of the coil
  • FIG. 10 illustrates the relationship between the thickness of the magnetic sheet and an L value of a plane coil section in the embodiment of the present invention
  • FIG. 11 illustrates the relationship between the thickness of the magnetic sheet and an L-value decrease rate when using a magnet for alignment and when not using a magnet for alignment in the embodiment of the present invention
  • FIG. 12 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section when the coil is of a circular shape and when the coil is of a rectangular shape in the embodiment of the present invention
  • FIG. 13 illustrates the relationship between the inner diameter of the coil and the L-value decrease rate when the coil is of a circular shape and when the coil is of a rectangular shape in the embodiment of the present invention.
  • FIGS. 14A and 14B are top views of the non-contact charging module when the plane coil section is formed by winding a coil in a rectangular shape and when the plane coil section is formed by winding a coil in a circular shape in the embodiment of the present invention.
  • the invention as recited in claim 1 includes: a plane coil section including a wound conducting wire; and a magnetic sheet on which a coil surface of the plane coil section is placed, and which is provided so as to face the coil surface of the plane coil section, in which the magnetic sheet includes a first layer and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer, the first layer and the second layer being stacked in the magnetic sheet.
  • the invention as recited in claim 3 is the non-contact charging module according to claim 1 , in which the first layer is formed by a first ferrite sheet, and the second layer is formed by a second ferrite sheet.
  • the first layer is formed by a first ferrite sheet
  • the second layer is formed by a second ferrite sheet.
  • a thickness of the second ferrite sheet is approximately three times a thickness of the first ferrite sheet in a stacking direction of the magnetic sheet.
  • a thickness of the magnetic sheet is approximately 600 ⁇ m. Therefore, the L value of the coil can be improved and a reduction in the thickness can be achieved.
  • the first layer is made from an amorphous magnetic sheet. Therefore, the first layer can be further reduced in thickness.
  • the invention as recited in claim 7 is the non-contact charging module according to claim 1 , in which the second layer is an Mn—Zn ferrite sheet having a magnetic permeability equal to or higher than 250 and a saturation magnetic flux density equal to or higher than 350 mT. Therefore, it is difficult for the non-contact charging module to be adversely effected by a magnet, and the non-contact charging module can be reduced in thickness.
  • the second layer faces the plane coil section. Therefore, a current loss can be suppressed and an alternating-current resistance can be reduced.
  • the invention as recited in claim 9 is a non-contact charger including a plane coil section included in the non-contact charging module according to claim 1 , in which the plane coil section is used as at least one of a power transmission coil and a power reception coil. Therefore, a non-contact charger can be provided that, even when using a magnet for alignment, prevents an adverse effect from the magnet and improves the power transmission efficiency. Further, a non-contact charger can be provided in which thinness of the entire module is achieved with improved power transmission efficiency.
  • FIG. 1 is an assembly diagram of a non-contact charging module in the embodiment of the present invention.
  • FIGS. 2A to 2D are conceptual diagrams of the non-contact charging module in the embodiment of the present invention.
  • FIG. 2A is a top view of the non-contact charging module
  • FIG. 2B is a sectional view of the same viewed from an A direction in FIG. 2A
  • FIGS. 2C and 2D are sectional views of the non-contact charging module viewed from a B direction in FIG. 2A .
  • FIGS. 3A to 3D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention.
  • FIG. 3A is a top view of the magnetic sheet
  • FIG. 3A is a top view of the magnetic sheet
  • FIG. 3A is a top view of the magnetic sheet
  • FIG. 3B is a sectional view of the magnetic sheet viewed from an A direction in FIG. 3A
  • FIGS. 3C and 3D are sectional views of the magnetic sheet viewed from a B direction in FIG. 3A
  • FIGS. 4A and 4B are conceptual diagrams of the magnetic sheet of the non-contact charging module according to the embodiment of the present invention.
  • FIG. 4A is a top view
  • FIG. 4B is a sectional view as seen from direction A in FIG. 4A .
  • Non-contact charging module 1 includes plane coil section 2 including a spirally wound conducting wire and magnetic sheet 3 provided so as to face the surface of coil 21 of plane coil section 2 .
  • plane coil section 2 includes coil 21 including a conducting wire wound toward the radial direction so as to draw a swirl on a surface and terminals 22 and provided at both ends of coil 21 .
  • Coil 21 includes a conducting wire wound in parallel on a plane.
  • a surface formed by coil 21 is referred to as coil surface.
  • a thickness direction is the direction in which plane coil section 2 and magnetic sheet 3 are stacked.
  • coil 21 is wound outward from a bore having a diameter of 20 mm.
  • the outer diameter of coil 21 is 30 mm. That is, coil 21 is wound in a doughnut shape.
  • Coil 21 may be wound in a circular shape or may be wound in a polygonal shape such as a square or a rectangle. Coil 21 may also be any other shape. In the case of the polygonal shape, a corner portion of coil 21 may be rounded.
  • Winding the conducting wires to leave a space in between decreases the floating capacity between the conducting wire of an upper stage and the conducting wire of a lower stage, thereby making it possible to minimize the alternating-current resistance of coil 21 .
  • the thickness of coil 21 can be minimized by winding the conducting wires densely.
  • the conducting wire has a circular shape in cross-section, but an conducting wire having a square shape in cross-section may be employed.
  • an conducting wire having a square shape in cross-section when used, a gap is formed between adjacent conducting wires. Therefore, stray capacitance between the conducting wires decreases, which in turn makes it possible to reduce the alternating-current resistance of coil 21 .
  • the alternating-current resistance of coil 21 is lower and transmission efficiency can be increased when coil 21 is wound in one stage rather than being wound in two stages in the thickness direction. This is because, when the conducting wire is wound in two stages, stray capacitance is generated between the conducting wire in the upper stage and the conducting wire in the lower stage. Therefore, it is preferable to wind coil 21 in one stage in as many portions as possible rather than being entirely wound in two stages. Winding coil 21 in one stage makes it possible to reduce the thickness of non-contact charging module 1 . It should be noted that, the low alternating-current resistance of coil 21 in this case prevents a loss in coil 21 . Improving an L value makes it possible to improve power transmission efficiency of non-contact charging module 1 , which is dependent on the L value. However, the coil may be stacked in a plurality of stages, and a large L value can be secured while decreasing the size thereof.
  • inner diameter x on the inner side of coil 21 shown in FIGS. 2A to 2D is 10 mm to 20 mm.
  • the outer diameter of coil 21 is about 30 mm. The smaller the inner diameter x, the larger the number of turns of coil 21 can be formed in non-contact charging module 1 of the same size, which in turn makes it possible to improve the L value.
  • Terminals 22 and 23 may be arranged close to each other as shown in FIG. 2A , or may be arranged apart from each other. However, when terminals 22 and 23 are arranged apart from each other, non-contact charging module 1 is more easily mounted.
  • Magnetic sheet 3 is provided to improve power transmission efficiency of non-contact charging using an electromagnetic induction action.
  • magnetic sheet 3 includes flat portion 31 , center portion 32 , which is the center of magnetic sheet 3 and equivalent to the inner diameter (hollow portion) of coil 21 , and linear recessed portion 33 .
  • center portion 32 does not always need to be formed in a protruding shape, and may have the same thickness (flat) as flat portion 31 , may be thinner (recessed portion) than the flat portion, or may be a through-hole.
  • Linear recessed portion 33 may be slit 34 . Linear recessed portion 33 or slit 34 is not always necessary. However, as shown in FIGS.
  • linear recessed portion 33 or slit 34 when linear recessed portion 33 or slit 34 is provided, the conducting wire from a winding end of coil 21 to terminal 23 can be housed in linear recessed portion 33 or slit 34 . Therefore, a reduction in size in the thickness direction is made possible.
  • linear recessed portion 33 or slit 34 is formed so as to be substantially perpendicular to the end of magnetic sheet 3 , and when coil 21 is circular, linear recessed portion 33 or slit 34 is formed so as to overlap with a tangential line of the outer circumference of center portion 32 . Linear recessed portion 33 or slit 34 formed in this manner makes it possible to form terminals 22 and 23 without bending the conducting wire.
  • the length of linear recessed portion 33 or slit 34 is about 15 mm to 20 mm.
  • the length of linear recessed portion 33 or slit 34 depends on the inner diameter of coil 21 .
  • Linear recessed portion 33 or slit 34 may be formed in a portion where the end of magnetic sheet 3 and the outer circumference of center portion 32 are closest to each other. Consequently, it is possible to minimize the area where linear recessed portion 33 or slit 34 is formed and to improve the transmission efficiency of non-contact charging module 1 .
  • the length of linear recessed portion 33 or slit 34 is about 5 mm to 10 mm.
  • linear recessed portion 33 or slit 34 is connected to center portion 32 .
  • Linear recessed portion 33 or slit 34 may be placed in a different way.
  • linear recessed portion 33 or slit 34 may be provided in the overlapping portion.
  • linear recessed portion 33 since no through-hole or slit is provided in magnetic sheet 3 , it is possible to prevent a magnetic flux from leaking and improve the power transmission efficiency of non-contact charging module 1 .
  • slit 34 it is easy to form magnetic sheet 3 .
  • the cross-sectional shape of linear recessed portion 33 is not limited to a square shape as shown in FIGS. 4A and 4B and may be an arc shape or rounded shape.
  • magnetic sheet 3 a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet, or the like can be used as magnetic sheet 3 .
  • the ferrite sheet can reduce the alternating-current resistance of coil 21 compared with an amorphous metal magnetic sheet.
  • high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b are stacked in magnetic sheet 3 . Even when high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b are not stacked, it is advisable to use high-saturation magnetic flux density material 3 a having saturation magnetic flux density equal to or higher than 350 mT and thickness of at least 300 ⁇ m.
  • any one of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b can be placed on the side nearer to plane coil section 2 , as shown in FIGS. 3C and 3D and the like, it is better to place high-saturation magnetic flux density material 3 a nearer to plane coil section 2 .
  • This configuration can lower the alternating-current resistance of plane coil section 2 . As a result, the power transmission efficiency of non-contact charging module 1 can be improved.
  • magnetic sheet 3 has a size of approximately 33 mm ⁇ 33 mm. Thickness d 1 of a protruding portion of center portion 32 shown in FIG. 2C is 0.2 mm.
  • reference sign d 2 denotes the thickness of magnetic sheet 3
  • the respective thicknesses of magnetic sheet 3 , high-saturation magnetic flux density material 3 a, and high-magnetic permeability material 3 b are set such that thickness d 2 of magnetic sheet 3 is 0.6 mm, thickness d 3 of high-magnetic permeability material 3 b is 0.15 mm, and thickness d 4 of high-saturation magnetic flux density material 3 a is 0.45 mm.
  • linear recessed portion 33 it is advisable to make the diameter of linear recessed portion 33 approximately the same as the diameter of the conducting wire constituting coil 21 to ensure that linear recessed portion 33 is formed only with the minimum depth. The reason behind this is that the portion of magnetic sheet 3 corresponding to linear recessed portion 33 becomes thinner as linear recessed portion 33 increases in depth, which in turn reduces the transmission efficiency of non-contact charging module 1 , unfavorably.
  • non-contact charging module 1 utilizes a magnet for aligning a primary-side non-contact charging module (transmission-side non-contact charging module) and a secondary-side non-contact charging module (reception-side non-contact charging module), and where non-contact charging module 1 utilizes no magnet for such aligning.
  • non-contact charging module 1 is required to operate stably.
  • a magnet is normally mounted on the primary-side non-contact charging module, and alignment is made possible mainly by the attraction exerted by the magnet on magnetic sheet 3 of the secondary-side non-contact charging module.
  • the L value of coil 21 of non-contact charging module 1 varies significantly between a case where the magnet is used for alignment and a case where a magnet is not used. This is because the presence of a magnet prevents the magnetic flux flowing between the primary-side and secondary-side non-contact charging modules. Accordingly, when a magnet is present, the L value of coil 21 of non-contact charging module 1 significantly decreases.
  • Magnetic sheet 3 includes high-saturation magnetic flux density material 3 a to reduce the effects of the magnet. A magnetic flux is not liable to become saturated in high-saturation magnetic flux density material 3 a even when the magnetic field is strong. Thus, high-saturation magnetic flux density material 3 a is not easily affected by a magnet, and thus the L value of coil 21 in a case where a magnet is used can be improved.
  • high-saturation magnetic flux density material 3 a generally cannot obtain a high magnetic permeability
  • the L value of coil 21 decreases compared to high-magnetic permeability material 3 b when no magnet for alignment is used. Therefore, high-magnetic permeability material 3 b is stacked on high-saturation magnetic flux density material 3 a to constitute magnetic sheet 3 . That is, since high-magnetic permeability material 3 b can strengthen the magnetic field, high-magnetic permeability material 3 b can improve the L value of coil 21 . Thus, even when there is no magnet, the L value of coil 21 can be improved by high-magnetic permeability material 3 b.
  • High-saturation magnetic flux density material 3 a is, for example, a ferrite sheet having a magnetic permeability equal to or higher than 250 and a saturation magnetic flux density that is generally equal to or less than approximately 340 mT to 450 mT.
  • the thickness of high-saturation magnetic flux density material 3 a is between 400 ⁇ m and 500 ⁇ m, and is approximately 450 ⁇ m in the present embodiment.
  • a Mn—Zn material is suitable, and a material that achieves a high magnetic permeability even when the sheet is thin is preferable. As described above, if the magnetic sheet described hereunder is used, an adequate effect can be obtained even if high-magnetic permeability material 3 b is not stacked thereon.
  • High-magnetic permeability material 3 b is a ferrite sheet having a magnetic permeability equal to or higher than 3000 and a saturation magnetic flux density of approximately 300 mT (250 mT to 320 mT).
  • the thickness of high-magnetic permeability material 3 b is between 100 ⁇ m and 200 ⁇ m, and is approximately 150 ⁇ m in the present embodiment. If the thickness is between around 100 ⁇ m and 200 ⁇ m, the L value of coil 21 can be improved.
  • a Mn—Zn material is suitable, and a material is preferable which does not cause the L value of coil 21 to significantly change, as magnetic sheet 3 even when a magnet is present close to the non-contact charging module.
  • the above-described effect can be efficiently obtained by setting the saturation magnetic flux density of high-magnetic permeability material 3 b to be lower than that of high-saturation magnetic flux density material 3 a, and setting the magnetic permeability thereof to be higher than that of high-saturation magnetic flux density material 3 a.
  • ferrite sintered body
  • high-magnetic permeability material 3 b allows a non-contact charging module to have a well-balanced combination of a high saturation magnetic flux density and a high magnetic permeability even when the thickness of the non-contact charging module is reduced.
  • Making the thickness of high-saturation magnetic flux density material 3 a approximately three times the thickness of high-magnetic permeability material 3 b in the stacking direction of magnetic sheet 3 in the manner described above can improve the L value of coil 21 and achieve a reduction in thickness. That is, it is desirable to stack the aforementioned materials according to the thickness ratio described above in order to obtain the effects of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b with a limited thinness. In addition, since the thickness of magnetic sheet 3 is approximately 600 ⁇ m, the L value of coil 21 can be improved and a further reduction in thickness can be achieved.
  • the thickness of high-saturation magnetic flux density material 3 a may be equal to or higher than 500 ⁇ m and the thickness of high-magnetic permeability material 3 b may be equal to or higher than 200 ⁇ m. Meanwhile, making the thickness of high-saturation magnetic flux density material 3 a approximately 450 ⁇ m and the thickness of high-magnetic permeability material 3 b approximately 150 ⁇ m makes it possible to obtain the effects of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b while achieving a reduction in thickness.
  • high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b may be stacked using an adhesive sheet after baking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b, or may be baked and stacked after stacking the respective molding bodies of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b.
  • High-magnetic permeability material 3 b need not be stacked over the entire surface of high-saturation magnetic flux density material 3 a. That is, high-magnetic permeability material 3 b may be formed only at a portion facing coil 21 , or may be formed at a portion corresponding to the inside of an inner circumferential circle of coil 21 .
  • high-magnetic permeability material 3 b may be an amorphous magnetic sheet.
  • the thickness of high-magnetic permeability material 3 b can be made between 80 ⁇ m to 100 ⁇ m, and high-magnetic permeability material 3 b can be reduced in thickness compared to a case where ceramics are used.
  • use of an amorphous magnetic sheet causes an eddy-current loss and also causes the alternating-current resistance of coil 21 to rise.
  • use of a ceramic magnetic sheet can avoid a rise in the alternating-current resistance and increase the charging efficiency.
  • FIG. 5 illustrates L values of a coil in accordance with the presence/absence of a magnet and the presence/absence of stacking in the embodiment of the present invention.
  • magnetic sheet 3 having a thickness of 600 ⁇ m formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is compared with magnetic sheet 3 having a thickness of 600 ⁇ m formed by only high-saturation magnetic flux density material 3 a.
  • magnet 30 is used for alignment, there is no change in the L value between the two magnetic sheets.
  • the L value of magnetic sheet 3 formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is larger.
  • the L value between 15 and 35 ⁇ H is required for non-contact charging module 1 in general. That is, if the L value is equal to or higher than 35 ⁇ H, the magnetic field becomes too strong, which leads to an increase in alternating-current resistance and the amount of heat generated in coil 21 . If the L value is equal to or less than 15 ⁇ H, the magnetic field becomes so weak that power transmission becomes impossible. However, the L value decreases to a large degree when magnet 30 is used for alignment, so that an L value between 8 and 35 ⁇ H is required in this case.
  • FIGS. 6A to 6D are conceptual diagrams of the magnetic sheet of the non-contact charging module in the embodiment of the present invention, in which center portion 32 is formed in the shape of a recessed portion or as a through-hole. Forming center portion 32 in a protruding shape as in FIGS. 2A to 2D can improve the magnetic flux density of coil 21 and also enhance the transmission efficiency of non-contact charging module 1 .
  • center portion 32 in the shape of a recessed portion or providing a hole portion to serve as a through-hole therein can reduce the effects of a magnet. The reason is described below.
  • non-contact charging module 1 there are cases where a magnet is utilized to align a primary-side non-contact charging module and a secondary-side non-contact charging module, and cases where a magnet is not utilized for such alignment. Further, since the presence of a magnet prevents the magnetic flux flowing between the primary-side and secondary-side non-contact charging modules, the L value of coil 21 of non-contact charging module 1 significantly decreases when there is a magnet in the non-contact charging module on the counterpart side. Further, coil 21 forms an LC resonance circuit using a not-shown capacitor in non-contact charging module 1 .
  • the resonance frequency with the capacitor will also vary significantly. Since the resonance frequency is used for power transmission between the primary-side non-contact charging module and the secondary-side non-contact charging module, it will not be possible to perform correct power transmission if the resonance frequency varies significantly depending on the presence or absence of a magnet.
  • FIG. 7 illustrates the relationship between the L value of the coil and the thickness of the center portion in a case where a magnet is utilized for alignment and a case where a magnet is not utilized for alignment in the non-contact charging module of the present embodiment.
  • 0% indicates that center portion 32 is not configured in a recessed shape and is flat
  • 100% indicates that center portion 32 is configured as a through-hole.
  • FIG. 7 when a magnet is not utilized, as center portion 32 of magnetic sheet 3 is reduced in thickness, the magnetic field of coil 21 becomes smaller and the L value of coil 21 decreases.
  • the distance in the stacking direction between magnetic sheet 3 and the magnet increases.
  • center portion 32 is formed as a through-hole. That is, forming center portion 32 as a through-hole can minimize the effects of a magnet that is utilized for alignment.
  • the alignment precision decreases if the degree of hollowing is equal to or higher than 60%. Accordingly, by making the degree of hollowing equal to a value between 40 and 60%, the L values of coil 21 of a case where a magnet is utilized for alignment and of a case where a magnet is not utilized for alignment can be made values close to each other, and at the same time, an alignment effect of the magnet can also be sufficiently obtained. That is, the magnet and center portion 32 of magnetic sheet 3 can attract each other, and the respective centers thereof can be aligned with each other.
  • the degree of hollowing is set to approximately 50%, and both effects can be obtained most efficiently.
  • the through-hole may be filled with a magnetic material to a level that is half of the depth of the through-hole.
  • magnetic sheet 3 may be formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b, for example, a configuration may be adopted in which center portion 32 of one of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is formed in a flat shape and a through-hole is formed in center portion 32 of the other one to thereby form center portion 32 of magnetic sheet 3 in a recessed shape. Further, it is advisable to make the diameter of the recessed portion or the through-hole smaller than the inner diameter of the coil.
  • the magnetic field inside the inner circumferential circle of the coil can be increased by making the diameter (size) of the recessed portion or the through-hole substantially the same (0 to 2 mm smaller than the inner diameter of the coil) as the inner diameter (size of hollow portion) of the coil.
  • the outer side of the stepped shape can be utilized for alignment, and the inner side can be utilized to set the L values of coil 21 in a case where a magnet is utilized for alignment and a case where a magnet is not utilized to be values close to each other. It is favorable to make the size of the recessed portion or the through-hole greater than the size of magnet.
  • the magnet and center portion 32 of magnetic sheet 3 can attract each other in a well-balanced manner and the centers thereof can be precisely aligned.
  • the magnet and center portion 32 of magnetic sheet 3 can attract each other in a well-balanced manner and the centers thereof can be aligned with even better precision.
  • FIGS. 8A to 8D are sectional views of a coil and a magnet of the non-contact charging module according to the embodiment of the present invention.
  • FIG. 8A illustrates a case where a magnet is used for alignment when the inner width of a coil is small.
  • FIG. 8B illustrates a case where a magnet is used for alignment when the inner width of a coil is large.
  • FIG. 8C illustrates a case where a magnet is not used for alignment when the inner width of a coil is small.
  • FIG. 8D illustrates a case where a magnet is not used for alignment when the inner width of a coil is large. Note that FIGS.
  • FIG. 9 illustrates the relationship between the inner diameter of a coil and the L value of a coil.
  • Primary-side coil 21 a and secondary-side coil 21 b face each other. Among the respective areas of coils 21 a and 21 b, a magnetic field is generated at inside portions 211 and 212 , and power transmission is performed. Inside portions 211 and inside portions 212 face each other, respectively. Inside portions 211 and 212 are also portions that are close to magnet 30 , and are liable to be adversely affected by magnet 30 . That is, if a magnet is present between the primary-side coil and the secondary-side coil or at the periphery thereof while a magnetic flux is being generated between the primary-side coil and the secondary-side coil for power transmission, the magnetic flux extends so as to avoid the magnet.
  • magnetic flux that penetrates the center of the magnet forms an eddy current or generates heat inside the magnet and is lost.
  • the magnetic permeability of a portion of the magnetic sheet, which is close to the magnet decreases.
  • magnet 30 included in primary-side non-contact charging module 41 exerts an adverse effect by weakening the magnetic flux of, in particular, inside portions 211 and 212 of primary-side coil 21 a and secondary-side coil 21 b.
  • transmission efficiency between the non-contact charging modules declines. Accordingly, in the case illustrated in FIG. 8A , the area of inside portions 211 and 212 that is liable to be adversely affected by magnet 30 increases.
  • the L value increases since the number of turns of secondary-side coil 21 b is large. Consequently, since there is a significant decrease in the numerical value from the L value in FIG. 8C to the L value in FIG. 8A , in the case of the coil that has a small inner width, there is a very large increase in the L-value decrease rate between the case where magnet 30 is included for alignment in the non-contact charging module on the counterpart side and the case where magnet 30 is not included. Further, when the inner width of secondary-side coil 21 b is smaller than the diameter of magnet as shown in FIG. 8A , secondary-side coil 21 b directly receives an adverse effect of magnet 30 in an amount that corresponds to the area thereof facing magnet 30 . Accordingly, the inner width of secondary-side coil 21 b may preferably be larger than the diameter of magnet 30 .
  • the outer diameter of magnet 30 and the inner width of coil 21 are approximately the same (outer diameter of magnet 30 is about 0 to 2 mm smaller than the inner width of coil 21 ), because magnet 30 can be enlarged to the maximum, the precision of aligning the primary-side non-contact charging module and the secondary-side non-contact charging module can be improved. Further, since the inner diameter of coil 21 can be minimized, the number of turns of coil 21 can be increased to improve the L value.
  • outer diameter of magnet 30 is smaller than the inner diameter of coil 21 (outer diameter of magnet 30 is about 2 to 8 mm smaller than the inner width of coil 21 ), even if there are variations in the alignment precision, it is possible to ensure that magnet 30 is not present between portions at which inside portions 211 and 212 face each other. At this time, by setting the outer diameter of magnet 30 to a size that is equivalent to 70 to 95% of the size of the inner width of coil 21 , it is possible to adequately cope with variations in the alignment precision, and the alignment precision between primary-side non-contact charging module 41 and secondary-side non-contact charging module 42 can be improved. Furthermore, the number of turns of coil 21 can also be secured.
  • primary-side non-contact charging module 41 primary-side coil 21 a forms an LC resonance circuit through the use of a resonant capacitor. At this time, if the L value varies significantly between a case where a magnet is utilized for alignment and a case where a magnet is not utilized, a resonance frequency with the resonant capacitor will also vary significantly.
  • the resonance frequency is used for power transmission between primary-side non-contact charging module 41 and secondary-side non-contact charging module 42 , although it will not be possible to perform power transmission correctly if the resonance frequency varies significantly depending on the presence or absence of a magnet, the power transmission is made highly efficient by adopting the above-described configuration.
  • the effects of magnet 30 on coil 21 decreases as the number of turns of coil 21 is decreased to increase the inner diameter of coil 21 . That is, the L value of coil 21 of a case where magnet 30 is utilized to align the primary-side non-contact charging module and the secondary-side non-contact charging module, and the L value of coil 21 of a case where magnet 30 is not utilized for alignment become values close to each other. Accordingly, the value of the resonance frequency when using magnet 30 and the value of the resonance frequency when not using magnet 30 are extremely close to each other. Note that, in this case, the outer diameters of the coils are standardized at 30 mm.
  • the diameter of magnet 30 is defined as 15.5 mm and the strength thereof is around 100 mT.
  • the inner diameter of coil 21 is 20 mm and the outer diameter is 30 mm.
  • the outer diameter of center portion 32 as a recessed shape or a through-hole is assumed to be 18 mm. That is, a distance between the inner diameter end of coil 21 of plane coil section 2 and the outer end of magnet 30 is approximately 4.5 mm. As shown in FIG. 9 , by making the aforementioned distance equal to approximately 4.5 mm, the L values of coil 21 when using magnet 30 and when not using magnet 30 can be brought close to each other while maintaining the L values at a level equal to or higher than 15 ⁇ H.
  • the L values when utilizing magnet 30 and when not utilizing magnet 30 can be brought close to each other while maintaining the L values at a level equal to or higher than 15 ⁇ H.
  • a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet or the like can be used as high-saturation magnetic flux density material 3 a.
  • the ferrite sheet (sintered body) can reduce the alternating-current resistance of coil 21 compared with an amorphous metal magnetic sheet.
  • high-saturation magnetic flux density material 3 a is, in particular, a Mn—Zn ferrite sheet, and the magnetic permeability is equal to or higher than 250 and the saturation magnetic flux density is equal to or higher than 350 mT.
  • the magnetic permeability is between 1500 and 2000, and the saturation magnetic flux density is approximately 400 mT.
  • magnetic sheet 3 includes a high-saturation magnetic flux density material (the saturation magnetic flux density is equal to or higher than 350 mT). The high-saturation magnetic flux density material is unlikely to be adversely affected by a magnet because it is difficult for the magnetic flux to saturate even when the magnetic field becomes strong.
  • the L value of coil 21 of a case where a magnet is used can be improved. Accordingly, magnetic sheet 3 can be reduced in thickness. However, if the magnetic permeability of magnetic sheet 3 is too low, the L value of coil 21 decreases by an extremely large amount. Consequently, in some cases, the efficiency of non-contact charging module 1 is lowered. Therefore, it is preferable for the magnetic permeability to be at least 250, and more preferably to be 1500 or more.
  • a further reduction in thickness is enabled by using a Mn—Zn ferrite sheet. That is, the frequency of electromagnetic induction is defined by the standard (WPC) as a frequency between 100 kHz to 200 kHz (for example, 120 kHz).
  • WPC the standard
  • a Mn—Zn ferrite sheet is highly efficient in this low frequency band. Note that, a Ni—Zn ferrite sheet is highly efficient in a high frequency band.
  • slits are formed in magnetic sheet 3 in accordance with the technology described in Japanese Patent No. 4400509, to thereby form magnetic member pieces that are spread all over in a sheet shape. Therefore, the magnetic flux of coil 21 is liable to leak from the slits (gaps) between the magnetic member pieces, and thus the L value is liable to decrease and the transmission efficiency is liable to fall.
  • magnetic sheet 3 is unlikely to be adversely affected by a magnet used for alignment, and a reduction in the thickness thereof is possible. That is, it is possible to provide a magnetic sheet that can cope with the adverse effects caused by slits formed to provide flexibility. Further, it is possible to provide a non-contact charging module achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • FIG. 10 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section in the embodiment of the present invention (in a case where a magnet for alignment is used).
  • FIG. 11 illustrates the relationship between the thickness of the magnetic sheet and the L-value decrease rate when using a magnet for alignment and when not using a magnet for alignment in the embodiment of the present invention. That is, the term “L-value decrease rate” refers to the rate of decrease in an L value that is measured when a coil is disposed close to a magnet under certain conditions relative to an L value that is measured when a magnet is not present close to the coil under the same conditions. Accordingly, the smaller the L-value decrease rate is, the less the L value of the coil is affected by the presence or absence of a magnet. Further, in FIG. 10 and FIG. 11 , a coil that is wound in a circular shape is used. In addition, the main component of magnetic sheet 3 is a Mn—Zn ferrite sheet.
  • a material having an alternating-current saturation magnetic flux density equal to 400 mT has a magnetic permeability of around 1800.
  • a material having an alternating-current saturation magnetic flux density equal to 350 mT has a magnetic permeability of around 250.
  • a material having an alternating-current saturation magnetic flux density equal to 285 mT has a magnetic permeability of around 2200.
  • the L value of coil 21 will be equal to or higher than 8 ⁇ H, and the L-value decrease rate can also be reduced to a half or less even when a magnet for alignment is adjacent thereto. That is, when a magnet for alignment is adjacent to coil 21 , the L value of coil 21 decreases, and charging by electromagnetic induction becomes difficult unless the L value is at least 8 ⁇ H at that time. As the L value increases, the power transmission efficiency between the transmission-side and reception-side non-contact charging modules improves.
  • the L-value decrease rate is equal to or higher than 50%, there is a twofold or more difference in the L values of coil 21 between a case where a magnet for alignment is used and a magnet for alignment is not used.
  • the L value of coil 21 determines the frequency of transmission and reception in power transmission between a transmission-side non-contact charging module and a reception-side non-contact charging module, and the frequency will vary considerably if there is a twofold or more difference in the L values of coil 21 .
  • the non-contact charging module can efficiently perform power transmission in both of a case where a magnet for alignment is used and a case where a magnet for alignment is not used, it is necessary to limit the L-value decrease rate to a value equal to or less than 50% to set a frequency when using a magnet for alignment and a frequency when not using a magnet for alignment to be close to each other.
  • the L value of coil 21 is equal to or higher than 10 ⁇ H.
  • the saturation density is 350 mT and 400 mT
  • the L-value decrease rate is approximately 30% or less. Accordingly, it is preferable that the thickness of magnetic sheet 3 be equal to or greater than 600 ⁇ m as long as the value of thickness is acceptable with respect to the size of the non-contact charging module.
  • the thickness of a material having the alternating-current saturation magnetic flux density equal to 400 mT and the magnetic permeability equal to 1800 is made equal to or higher than 600 ⁇ m, the L value exceeds 12 ⁇ H and the L-value decrease rate is equal to or less than 20%. Thus, extremely efficient power transmission can be performed.
  • FIG. 12 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section in a case where the coil is a circular shape and a case where the coil is a rectangular shape in the embodiment of the present invention (when a magnet for alignment is used).
  • FIG. 13 illustrates the relationship between the inner diameter of the coil and the L-value decrease rate in a case where the coil is a circular shape and a case where the coil is a rectangular shape in the embodiment of the present invention.
  • FIGS. 14A and 14B are top views of the non-contact charging module in a case where the plane coil section is wound in a rectangular shape and a case where the plane coil section is wound in a circular shape in the embodiment of the present invention.
  • FIG. 14A illustrates the case where the plane coil section is wound in a rectangular shape
  • FIG. 14B illustrates the case where the plane coil section is wound in a circular shape.
  • the term “L value” refers to an inductance value of plane coil section 2 , and the larger the L value is, the higher the power transmission efficiency of the non-contact charging module is.
  • the L value of coil 21 needs to be approximately 8 ⁇ H in order to achieve the power transmission performance of the non-contact charging module.
  • the effect of increasing the magnetic field intensity of the magnetic sheet decreases due to the effects of the alignment magnet.
  • the ferrite thickness of magnetic sheet 3 needs to be 500 ⁇ m. Meanwhile, the L value of rectangular plane coil section 2 having the same ferrite thickness is 12 ⁇ H (arrow A).
  • the L value of the rectangular plane coil section is larger than the L value of the circular plane coil section. Accordingly, a magnetic field generated at the rectangular plane coil section is large and the power transmission efficiency of the non-contact charging module increases.
  • the ferrite thickness of magnetic sheet 3 in the case of the rectangular plane coil section can be made thinner than the ferrite thickness of magnetic sheet 3 in the case of the circular plane coil section. That is, in order to obtain the target L value, the ferrite thickness of magnetic sheet 3 of the rectangular plane coil section can be set to 300 ⁇ m (see arrow B), and thus the ferrite thickness can be reduced. Accordingly, the thickness of non-contact charging module 1 can be reduced, which makes it easier to reduce the size of non-contact charging module 1 .
  • the effects of a magnetic field of an alignment magnet can be avoided by forming a planar coil to be used in the non-contact charging module in a rectangular shape, and a reduction in the size of the non-contact charging module can be achieved by improving the power transmission efficiency of the non-contact charging module.
  • coil 21 is not limited to be wound in a rectangular shape, and in some cases, coil 21 is wound in a square shape having R at the corners or a polygonal shape. That is, it is sufficient that coil 21 is of a shape in which the entire coil is disposed on magnetic sheet 3 and which provides many inner edge portions of coil 21 that are apart from the outer edge of the alignment magnet.
  • a rectangular shape makes it possible to obtain the above-described effects, and it is also easy to form a rectangular coil.
  • the reason behind this is that the effects of alignment magnet 30 decrease in this case because of the increase in the region that allows for extra space between alignment magnet 30 and the inner side of plane coil section 2 .
  • the L-value decrease rates of respective plane coil sections 2 are also the same.
  • the rectangular plane coil section allows a gap to be formed between the inner circumference of plane coil section 2 and the outer circumference of the alignment magnet and thus allows the effects of the alignment magnet to be reduced in comparison to a circular plane coil section.
  • the distance from the magnet is constant at any part of the coil inner diameter, and a magnetic field generated at the circular plane coil section is small. That is, the L value of the circular plane coil section that affects the mutual inductance of electromagnetic induction is small, and the power transmission efficiency of the non-contact charging module is low.
  • the distance between the inner circumference of the coil and the magnet varies depending on part of the inner circumference, and some part has a longer or shorter distance, and a magnetic field generated at the rectangular plane coil section increases at a portion that is apart from the magnet. That is, the L value of the rectangular plane coil section that affects mutual inductance of electromagnetic induction is larger than the L value of the circular plane coil section. Therefore, the power transmission efficiency of the non-contact charging module improves significantly compared to the circular plane coil section.
  • coil 21 when coil 21 is an approximately rectangular shape, setting the thickness of magnetic sheet 3 equal to or higher than 400 ⁇ m makes it possible to obtain almost the same effect as that obtained when the thickness of magnetic sheet 3 is 600 ⁇ m with coil 21 of a circular shape. That is, very effective power transmission can be realized by winding coil 21 in a rectangular shape and configuring magnetic sheet 3 to have a magnetic permeability equal to or higher than 360, a saturation magnetic flux density equal to or higher than 1800 mT, and a thickness equal to or higher than 400 ⁇ m.
  • another magnetic material may also be stacked in magnetic sheet 3 .
  • a configuration may be adopted in which two layers of high-saturation magnetic flux density material 3 a are provided and high-magnetic permeability material 3 b is interposed between high-saturation magnetic flux density materials 3 a, or in which two layers of high-magnetic permeability material 3 b are provided and high-saturation magnetic flux density material 3 a is interposed between high-magnetic permeability materials 3 b. That is, it is favorable if magnetic sheet 3 includes at least one layer of high-saturation magnetic flux density material 3 a and at least one layer of high-magnetic permeability material 3 b. As the thickness of magnetic sheet 3 increases, the power transmission efficiency improves as non-contact charging module 1 .
  • thick portions may be formed in regions of flat portion 31 where no coil 21 is disposed, the regions corresponding to the four corners of magnetic sheet 3 . That is, nothing is placed on the regions corresponding to the four corners of magnetic sheet 3 and located on outer side of the outer circumference of coil 21 on flat portion 31 . Accordingly, increasing the thickness of magnetic sheet 3 by forming thick portions in those regions can improve the power transmission efficiency of non-contact charging module 1 . Although the thicker the thick portions are the better, the thickness of the thick portions is set to be almost equal to the thickness of the conducting wire for the purpose of a reduction in the thickness of the module.
  • coil 21 is not limited to be wound in an annular shape and may be wound in a square shape or a polygonal shape. Furthermore, the effect of this application can also be obtained by performing winding in such a way that the inner side is wound in a plurality of stages one on top of another and the outer side is wound in the number of stages smaller than the number of stages for the inner side, for example, a three-stage structure for the inner side and a two-stage structure for the outer side.
  • a non-contact transmitting apparatus includes a charger including a power transmission coil and a magnetic sheet and a main apparatus including a power reception coil and a magnetic sheet.
  • the main apparatus is an electronic apparatus such as a cellular phone.
  • a circuit on the charger side includes a rectifying and smoothing circuit section, a voltage conversion circuit section, an oscillation circuit section, a display circuit section, a control circuit section, and the power transmission coil.
  • a circuit on the main apparatus side includes the power reception coil, a rectifying circuit section, a control circuit section, and a load L mainly formed of a secondary battery.
  • Power transmission from the charger to the main apparatus is performed using electromagnetic induction action between the power transmission coil of the charger, which is the primary side and the power reception coil of the main apparatus, which is the secondary side.
  • the non-contact charger in this embodiment includes non-contact charging module 1 explained above. Therefore, it is possible to reduce the size and the thickness of the non-contact charger in a state in which the sectional area of the plane coil section is sufficiently secured with improved power transmission efficiency.
  • the non-contact charging module of the present invention it is possible to reduce the size and thickness of the non-contact charging module in a state in which the sectional area of the plane coil section is sufficiently secured with improved power transmission efficiency. Therefore, the non-contact charging module is useful, in particular, as a non-contact charging module for portable electronic apparatuses, and is useful as a non-contact charging module for various electronic apparatuses including portable terminals such as a cellular phone, a portable audio device, and a potable computer, and portable apparatuses such as a digital camera and a video camera.
  • portable terminals such as a cellular phone, a portable audio device, and a potable computer
  • portable apparatuses such as a digital camera and a video camera.

Abstract

Provided is a non-contact charging module wherein adverse effects from magnets have been prevented even where magnets are used for positioning, power transmission efficiency has been improved, and the entire module has been made thin due to a state of improved power transmission efficiency. The non-contact charging module comprises a planar coil portion (2) of spirally wound conductive wiring, and a magnetic sheet (3) that is provided so as to oppose a surface of a coil (21) on the planar coil portion (2), and is characterized in that the magnetic sheet is layered with a first layer, and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer.

Description

    TECHNICAL FIELD
  • The present invention relates to a non-contact charging module and a non-contact charger including a magnetic sheet, and a plane coil section including a wound conducting wire.
  • BACKGROUND ART
  • In recent years, use of a system which enables charging of a main apparatus by a charger in a non-contact manner has become widespread. Such a system includes a power transmission coil on the charger side, and a power reception coil on the main apparatus side. Electromagnetic induction is generated between the coils, whereby electric power is transmitted from the charger side to the main apparatus side. In addition, it has been proposed to apply a portable terminal apparatus or the like as the main apparatus.
  • The main apparatus such as the portable terminal apparatus and the charger are preferably reduced in thickness and size. In order to meet such a demand, a configuration that includes plane coil sections as a power transmission coil and a power reception coil, and magnetic sheets may be considered, as disclosed in Patent Literature (hereinafter, abbreviated as PTL) 1 and PTL 2.
  • CITATION LIST Patent Literature
    • PTL 1
    • Japanese Patent Application Laid-Open No. 2006-42519
    • PTL 2
    • Japanese Patent Application Laid-Open No. 2010-284059
    SUMMARY OF INVENTION Technical Problem
  • When using such kinds of non-contact charging modules, a magnet is sometimes utilized to align a primary-side non-contact charging module and a secondary-side non-contact charging module. However, when a non-contact charging module including a plane coil section formed of one conducting wire and an entirely planar magnetic sheet as disclosed in PTL 1 and PTL 2 is provided with a magnet for aligning the primary-side non-contact charging module and the secondary-side non-contact charging module, the non-contact charging module may be affected by the magnet. Stated differently, the magnetic sheet reduces adverse effects on the coil such as an eddy-current loss caused by metal placed under the coil, and also improves an L value of the coil. However, the magnetic permeability of the magnetic sheet is reduced by the magnet, and the action of the magnetic sheet declines. As a result, the magnetic sheet can no longer reduce adverse effects on the coil such as an eddy-current loss caused by metal and can no longer improve the L value of the coil either.
  • Therefore, in consideration of the above-mentioned problems, an object of the present invention is to provide a non-contact charging module and a non-contact charger each preventing an adverse effect from the magnet and improving power transmission efficiency even when using a magnet for alignment. A further object of the present invention is to provide a non-contact charging module and a non-contact charger achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • Solution to Problem
  • In order to solve the above-mentioned problems, a non-contact charging module according to one aspect of the present invention includes: a plane coil section including a wound conducting wire; and a magnetic sheet on which a coil surface of the plane coil section is placed, and which is provided so as to face the coil surface of the plane coil section, in which the magnetic sheet includes a first layer and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer, the first layer and the second layer being stacked in the magnetic sheet.
  • Advantageous Effects of Invention
  • According to the present invention, it is possible to provide a non-contact charging module and a non-contact charger each preventing an adverse effect from a magnet and improving power transmission efficiency even when using a magnet for alignment. Further, it is possible to provide a non-contact charging module and a non-contact charger each achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an assembly diagram of a non-contact charging module in an embodiment of the present invention;
  • FIGS. 2A to 2D are conceptual diagrams of the non-contact charging module in the embodiment of the present invention;
  • FIGS. 3A to 3D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention;
  • FIGS. 4A and 4B are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention;
  • FIG. 5 illustrates L values of a coil in accordance with the presence/absence of a magnet and the presence/absence of stacking in the embodiment of the present invention;
  • FIGS. 6A to 6D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention;
  • FIG. 7 illustrates the relationship between the L value of the coil and the thickness of a center portion when a magnet is utilized for alignment and when a magnet is not utilized for alignment in the non-contact charging module of the present embodiment;
  • FIGS. 8A to 8D are sectional views of a coil and a magnet of the non-contact charging module in the embodiment of the present invention;
  • FIG. 9 illustrates the relationship between the inner diameter of the coil and the L value of the coil;
  • FIG. 10 illustrates the relationship between the thickness of the magnetic sheet and an L value of a plane coil section in the embodiment of the present invention;
  • FIG. 11 illustrates the relationship between the thickness of the magnetic sheet and an L-value decrease rate when using a magnet for alignment and when not using a magnet for alignment in the embodiment of the present invention;
  • FIG. 12 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section when the coil is of a circular shape and when the coil is of a rectangular shape in the embodiment of the present invention;
  • FIG. 13 illustrates the relationship between the inner diameter of the coil and the L-value decrease rate when the coil is of a circular shape and when the coil is of a rectangular shape in the embodiment of the present invention; and
  • FIGS. 14A and 14B are top views of the non-contact charging module when the plane coil section is formed by winding a coil in a rectangular shape and when the plane coil section is formed by winding a coil in a circular shape in the embodiment of the present invention.
  • DESCRIPTION OF EMBODIMENTS
  • The invention as recited in claim 1 includes: a plane coil section including a wound conducting wire; and a magnetic sheet on which a coil surface of the plane coil section is placed, and which is provided so as to face the coil surface of the plane coil section, in which the magnetic sheet includes a first layer and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer, the first layer and the second layer being stacked in the magnetic sheet. Thus, it is possible to provide a non-contact charging module and a non-contact charger each preventing an adverse effect from the magnet and improving power transmission efficiency even when using a magnet for alignment. Further, it is possible to provide a non-contact charging module and a non-contact charger each achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • According to the invention as recited in claim 2, when aligning with a counterpart-side non-contact charging module, there are situations where a magnet provided in the counterpart-side non-contact charging module is utilized and there are situations where a magnet is not utilized. Therefore, a non-contact charging module that corresponds to two alignment methods can be obtained.
  • The invention as recited in claim 3 is the non-contact charging module according to claim 1, in which the first layer is formed by a first ferrite sheet, and the second layer is formed by a second ferrite sheet. Thus, even though the thickness is reduced, it is possible to obtain a high saturation magnetic flux density and a high magnetic permeability with favorable balance with respect to a non-contact charging module.
  • According to the invention as recited in claim 4, a thickness of the second ferrite sheet is approximately three times a thickness of the first ferrite sheet in a stacking direction of the magnetic sheet. Thus, the L value of the coil can be improved and a reduction in the thickness can be achieved.
  • According to the invention as recited in claim 5, a thickness of the magnetic sheet is approximately 600 μm. Therefore, the L value of the coil can be improved and a reduction in the thickness can be achieved.
  • According to the invention as recited in claim 6, the first layer is made from an amorphous magnetic sheet. Therefore, the first layer can be further reduced in thickness.
  • The invention as recited in claim 7 is the non-contact charging module according to claim 1, in which the second layer is an Mn—Zn ferrite sheet having a magnetic permeability equal to or higher than 250 and a saturation magnetic flux density equal to or higher than 350 mT. Therefore, it is difficult for the non-contact charging module to be adversely effected by a magnet, and the non-contact charging module can be reduced in thickness.
  • According to the invention as recited in claim 8, the second layer faces the plane coil section. Therefore, a current loss can be suppressed and an alternating-current resistance can be reduced.
  • The invention as recited in claim 9 is a non-contact charger including a plane coil section included in the non-contact charging module according to claim 1, in which the plane coil section is used as at least one of a power transmission coil and a power reception coil. Therefore, a non-contact charger can be provided that, even when using a magnet for alignment, prevents an adverse effect from the magnet and improves the power transmission efficiency. Further, a non-contact charger can be provided in which thinness of the entire module is achieved with improved power transmission efficiency.
  • EMBODIMENT
  • An embodiment of the present invention is explained below with reference to the accompanying drawings. FIG. 1 is an assembly diagram of a non-contact charging module in the embodiment of the present invention. FIGS. 2A to 2D are conceptual diagrams of the non-contact charging module in the embodiment of the present invention. FIG. 2A is a top view of the non-contact charging module, FIG. 2B is a sectional view of the same viewed from an A direction in FIG. 2A, and FIGS. 2C and 2D are sectional views of the non-contact charging module viewed from a B direction in FIG. 2A. FIGS. 3A to 3D are conceptual diagrams of a magnetic sheet of the non-contact charging module in the embodiment of the present invention. FIG. 3A is a top view of the magnetic sheet, FIG. 3B is a sectional view of the magnetic sheet viewed from an A direction in FIG. 3A, and FIGS. 3C and 3D are sectional views of the magnetic sheet viewed from a B direction in FIG. 3A. FIGS. 4A and 4B are conceptual diagrams of the magnetic sheet of the non-contact charging module according to the embodiment of the present invention. FIG. 4A is a top view, and FIG. 4B is a sectional view as seen from direction A in FIG. 4A.
  • Non-contact charging module 1 according to the present invention includes plane coil section 2 including a spirally wound conducting wire and magnetic sheet 3 provided so as to face the surface of coil 21 of plane coil section 2.
  • As shown in FIGS. 1 and 2, plane coil section 2 includes coil 21 including a conducting wire wound toward the radial direction so as to draw a swirl on a surface and terminals 22 and provided at both ends of coil 21. Coil 21 includes a conducting wire wound in parallel on a plane. A surface formed by coil 21 is referred to as coil surface. A thickness direction is the direction in which plane coil section 2 and magnetic sheet 3 are stacked. In this embodiment, coil 21 is wound outward from a bore having a diameter of 20 mm. The outer diameter of coil 21 is 30 mm. That is, coil 21 is wound in a doughnut shape. Coil 21 may be wound in a circular shape or may be wound in a polygonal shape such as a square or a rectangle. Coil 21 may also be any other shape. In the case of the polygonal shape, a corner portion of coil 21 may be rounded.
  • Winding the conducting wires to leave a space in between decreases the floating capacity between the conducting wire of an upper stage and the conducting wire of a lower stage, thereby making it possible to minimize the alternating-current resistance of coil 21. In addition, the thickness of coil 21 can be minimized by winding the conducting wires densely.
  • As shown in FIGS. 2A to 2D, in this embodiment, the conducting wire has a circular shape in cross-section, but an conducting wire having a square shape in cross-section may be employed. However, compared with the conducting wire having a square shape in cross-section, when the conducting wire having a circular shape in cross-section is used, a gap is formed between adjacent conducting wires. Therefore, stray capacitance between the conducting wires decreases, which in turn makes it possible to reduce the alternating-current resistance of coil 21.
  • In addition, the alternating-current resistance of coil 21 is lower and transmission efficiency can be increased when coil 21 is wound in one stage rather than being wound in two stages in the thickness direction. This is because, when the conducting wire is wound in two stages, stray capacitance is generated between the conducting wire in the upper stage and the conducting wire in the lower stage. Therefore, it is preferable to wind coil 21 in one stage in as many portions as possible rather than being entirely wound in two stages. Winding coil 21 in one stage makes it possible to reduce the thickness of non-contact charging module 1. It should be noted that, the low alternating-current resistance of coil 21 in this case prevents a loss in coil 21. Improving an L value makes it possible to improve power transmission efficiency of non-contact charging module 1, which is dependent on the L value. However, the coil may be stacked in a plurality of stages, and a large L value can be secured while decreasing the size thereof.
  • In this embodiment, inner diameter x on the inner side of coil 21 shown in FIGS. 2A to 2D is 10 mm to 20 mm. The outer diameter of coil 21 is about 30 mm. The smaller the inner diameter x, the larger the number of turns of coil 21 can be formed in non-contact charging module 1 of the same size, which in turn makes it possible to improve the L value.
  • Terminals 22 and 23 may be arranged close to each other as shown in FIG. 2A, or may be arranged apart from each other. However, when terminals 22 and 23 are arranged apart from each other, non-contact charging module 1 is more easily mounted.
  • Magnetic sheet 3 is provided to improve power transmission efficiency of non-contact charging using an electromagnetic induction action. As shown in FIGS. 2A to 2D, magnetic sheet 3 includes flat portion 31, center portion 32, which is the center of magnetic sheet 3 and equivalent to the inner diameter (hollow portion) of coil 21, and linear recessed portion 33. As shown in FIGS. 2A to 2D, center portion 32 does not always need to be formed in a protruding shape, and may have the same thickness (flat) as flat portion 31, may be thinner (recessed portion) than the flat portion, or may be a through-hole. Linear recessed portion 33 may be slit 34. Linear recessed portion 33 or slit 34 is not always necessary. However, as shown in FIGS. 2C and 2D, when linear recessed portion 33 or slit 34 is provided, the conducting wire from a winding end of coil 21 to terminal 23 can be housed in linear recessed portion 33 or slit 34. Therefore, a reduction in size in the thickness direction is made possible. Specifically, linear recessed portion 33 or slit 34 is formed so as to be substantially perpendicular to the end of magnetic sheet 3, and when coil 21 is circular, linear recessed portion 33 or slit 34 is formed so as to overlap with a tangential line of the outer circumference of center portion 32. Linear recessed portion 33 or slit 34 formed in this manner makes it possible to form terminals 22 and 23 without bending the conducting wire. Note that, in this case, the length of linear recessed portion 33 or slit 34 is about 15 mm to 20 mm. Meanwhile, the length of linear recessed portion 33 or slit 34 depends on the inner diameter of coil 21. Linear recessed portion 33 or slit 34 may be formed in a portion where the end of magnetic sheet 3 and the outer circumference of center portion 32 are closest to each other. Consequently, it is possible to minimize the area where linear recessed portion 33 or slit 34 is formed and to improve the transmission efficiency of non-contact charging module 1. Note that, in this case, the length of linear recessed portion 33 or slit 34 is about 5 mm to 10 mm. In both of the placements, the inner side end of linear recessed portion 33 or slit 34 is connected to center portion 32. Linear recessed portion 33 or slit 34 may be placed in a different way. Stated differently, it is preferable to place coil 21 in a one-stage structure. In this case, it is possible to form all turns in the radial direction of coil 21 in the one-stage structure or to form a part of the turns in the one-stage structure while forming the other parts in a two-stage structure. Therefore, one of terminals 22 and 23 can be drawn out from the outer circumference of coil 21. However, the other has to be drawn out from the inner side. Therefore, a wound portion of coil 21 and a portion from a winding start point (winding end point) of coil 21 to terminal 22 or 23 always overlap in the thickness direction. Accordingly, linear recessed portion 33 or slit 34 may be provided in the overlapping portion. In the case of linear recessed portion 33, since no through-hole or slit is provided in magnetic sheet 3, it is possible to prevent a magnetic flux from leaking and improve the power transmission efficiency of non-contact charging module 1. On the other hand, in the case of slit 34, it is easy to form magnetic sheet 3. In the case of linear recessed portion 33, the cross-sectional shape of linear recessed portion 33 is not limited to a square shape as shown in FIGS. 4A and 4B and may be an arc shape or rounded shape.
  • In this embodiment, as magnetic sheet 3, a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet, or the like can be used. The ferrite sheet can reduce the alternating-current resistance of coil 21 compared with an amorphous metal magnetic sheet.
  • As shown in FIGS. 3A to 3D, at least high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b are stacked in magnetic sheet 3. Even when high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b are not stacked, it is advisable to use high-saturation magnetic flux density material 3 a having saturation magnetic flux density equal to or higher than 350 mT and thickness of at least 300 μm.
  • Although any one of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b can be placed on the side nearer to plane coil section 2, as shown in FIGS. 3C and 3D and the like, it is better to place high-saturation magnetic flux density material 3 a nearer to plane coil section 2. This configuration can lower the alternating-current resistance of plane coil section 2. As a result, the power transmission efficiency of non-contact charging module 1 can be improved.
  • In the present embodiment, magnetic sheet 3 has a size of approximately 33 mm×33 mm. Thickness d1 of a protruding portion of center portion 32 shown in FIG. 2C is 0.2 mm. In FIG. 3C, reference sign d2 denotes the thickness of magnetic sheet 3, and the respective thicknesses of magnetic sheet 3, high-saturation magnetic flux density material 3 a, and high-magnetic permeability material 3 b are set such that thickness d2 of magnetic sheet 3 is 0.6 mm, thickness d3 of high-magnetic permeability material 3 b is 0.15 mm, and thickness d4 of high-saturation magnetic flux density material 3 a is 0.45 mm. Note that it is advisable to make the diameter of linear recessed portion 33 approximately the same as the diameter of the conducting wire constituting coil 21 to ensure that linear recessed portion 33 is formed only with the minimum depth. The reason behind this is that the portion of magnetic sheet 3 corresponding to linear recessed portion 33 becomes thinner as linear recessed portion 33 increases in depth, which in turn reduces the transmission efficiency of non-contact charging module 1, unfavorably.
  • Next, the reason why magnetic sheet 3 is formed in a multi-layered structure will be explained.
  • In general, there are cases where non-contact charging module 1 utilizes a magnet for aligning a primary-side non-contact charging module (transmission-side non-contact charging module) and a secondary-side non-contact charging module (reception-side non-contact charging module), and where non-contact charging module 1 utilizes no magnet for such aligning. In both cases, non-contact charging module 1 is required to operate stably. Note that a magnet is normally mounted on the primary-side non-contact charging module, and alignment is made possible mainly by the attraction exerted by the magnet on magnetic sheet 3 of the secondary-side non-contact charging module.
  • At this time, due to the effects of the magnet, the L value of coil 21 of non-contact charging module 1 varies significantly between a case where the magnet is used for alignment and a case where a magnet is not used. This is because the presence of a magnet prevents the magnetic flux flowing between the primary-side and secondary-side non-contact charging modules. Accordingly, when a magnet is present, the L value of coil 21 of non-contact charging module 1 significantly decreases. Magnetic sheet 3 includes high-saturation magnetic flux density material 3 a to reduce the effects of the magnet. A magnetic flux is not liable to become saturated in high-saturation magnetic flux density material 3 a even when the magnetic field is strong. Thus, high-saturation magnetic flux density material 3 a is not easily affected by a magnet, and thus the L value of coil 21 in a case where a magnet is used can be improved.
  • However, since high-saturation magnetic flux density material 3 a generally cannot obtain a high magnetic permeability, the L value of coil 21 decreases compared to high-magnetic permeability material 3 b when no magnet for alignment is used. Therefore, high-magnetic permeability material 3 b is stacked on high-saturation magnetic flux density material 3 a to constitute magnetic sheet 3. That is, since high-magnetic permeability material 3 b can strengthen the magnetic field, high-magnetic permeability material 3 b can improve the L value of coil 21. Thus, even when there is no magnet, the L value of coil 21 can be improved by high-magnetic permeability material 3 b.
  • High-saturation magnetic flux density material 3 a is, for example, a ferrite sheet having a magnetic permeability equal to or higher than 250 and a saturation magnetic flux density that is generally equal to or less than approximately 340 mT to 450 mT. The thickness of high-saturation magnetic flux density material 3 a is between 400 μm and 500 μm, and is approximately 450 μm in the present embodiment. According to the present embodiment, for example, a Mn—Zn material is suitable, and a material that achieves a high magnetic permeability even when the sheet is thin is preferable. As described above, if the magnetic sheet described hereunder is used, an adequate effect can be obtained even if high-magnetic permeability material 3 b is not stacked thereon.
  • High-magnetic permeability material 3 b is a ferrite sheet having a magnetic permeability equal to or higher than 3000 and a saturation magnetic flux density of approximately 300 mT (250 mT to 320 mT). The thickness of high-magnetic permeability material 3 b is between 100 μm and 200 μm, and is approximately 150 μm in the present embodiment. If the thickness is between around 100 μm and 200 μm, the L value of coil 21 can be improved. According to the present embodiment, for example, a Mn—Zn material is suitable, and a material is preferable which does not cause the L value of coil 21 to significantly change, as magnetic sheet 3 even when a magnet is present close to the non-contact charging module. The above-described effect can be efficiently obtained by setting the saturation magnetic flux density of high-magnetic permeability material 3 b to be lower than that of high-saturation magnetic flux density material 3 a, and setting the magnetic permeability thereof to be higher than that of high-saturation magnetic flux density material 3 a. Thus, regardless of the thickness of magnetic sheet 3, it is favorable to make the relationship between the thicknesses of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b such that the ratio of the thickness of high-saturation magnetic flux density material 3 a to the thickness of high-magnetic permeability material 3 b is around 3:1. It is thereby possible to achieve a balance between a case where a magnet is provided and a case where no magnet is provided, while achieving a reduction in thickness, and obtain an efficient non-contact charging module.
  • Thus, using ferrite (sintered body) to make high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b allows a non-contact charging module to have a well-balanced combination of a high saturation magnetic flux density and a high magnetic permeability even when the thickness of the non-contact charging module is reduced.
  • Making the thickness of high-saturation magnetic flux density material 3 a approximately three times the thickness of high-magnetic permeability material 3 b in the stacking direction of magnetic sheet 3 in the manner described above can improve the L value of coil 21 and achieve a reduction in thickness. That is, it is desirable to stack the aforementioned materials according to the thickness ratio described above in order to obtain the effects of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b with a limited thinness. In addition, since the thickness of magnetic sheet 3 is approximately 600 μm, the L value of coil 21 can be improved and a further reduction in thickness can be achieved.
  • Note that if a reduction in the thickness and size of non-contact charging module 1 is not taken into consideration, the thickness of high-saturation magnetic flux density material 3 a may be equal to or higher than 500 μm and the thickness of high-magnetic permeability material 3 b may be equal to or higher than 200 μm. Meanwhile, making the thickness of high-saturation magnetic flux density material 3 a approximately 450 μm and the thickness of high-magnetic permeability material 3 b approximately 150 μm makes it possible to obtain the effects of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b while achieving a reduction in thickness.
  • Note that, in magnetic sheet 3, high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b may be stacked using an adhesive sheet after baking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b, or may be baked and stacked after stacking the respective molding bodies of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b.
  • High-magnetic permeability material 3 b need not be stacked over the entire surface of high-saturation magnetic flux density material 3 a. That is, high-magnetic permeability material 3 b may be formed only at a portion facing coil 21, or may be formed at a portion corresponding to the inside of an inner circumferential circle of coil 21.
  • In addition, high-magnetic permeability material 3 b may be an amorphous magnetic sheet. In this case, the thickness of high-magnetic permeability material 3 b can be made between 80 μm to 100 μm, and high-magnetic permeability material 3 b can be reduced in thickness compared to a case where ceramics are used. However, use of an amorphous magnetic sheet causes an eddy-current loss and also causes the alternating-current resistance of coil 21 to rise. In contrast, use of a ceramic magnetic sheet can avoid a rise in the alternating-current resistance and increase the charging efficiency.
  • FIG. 5 illustrates L values of a coil in accordance with the presence/absence of a magnet and the presence/absence of stacking in the embodiment of the present invention. Note that, in FIG. 5, magnetic sheet 3 having a thickness of 600 μm formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is compared with magnetic sheet 3 having a thickness of 600 μm formed by only high-saturation magnetic flux density material 3 a. As shown in FIG. 5, when magnet 30 is used for alignment, there is no change in the L value between the two magnetic sheets. However, when magnet 30 is not used for alignment, the L value of magnetic sheet 3 formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is larger. Note that, the L value between 15 and 35 μH is required for non-contact charging module 1 in general. That is, if the L value is equal to or higher than 35 μH, the magnetic field becomes too strong, which leads to an increase in alternating-current resistance and the amount of heat generated in coil 21. If the L value is equal to or less than 15 μH, the magnetic field becomes so weak that power transmission becomes impossible. However, the L value decreases to a large degree when magnet 30 is used for alignment, so that an L value between 8 and 35 μH is required in this case.
  • Next, the thickness of the center portion of magnetic sheet 3 will be described. FIGS. 6A to 6D are conceptual diagrams of the magnetic sheet of the non-contact charging module in the embodiment of the present invention, in which center portion 32 is formed in the shape of a recessed portion or as a through-hole. Forming center portion 32 in a protruding shape as in FIGS. 2A to 2D can improve the magnetic flux density of coil 21 and also enhance the transmission efficiency of non-contact charging module 1.
  • However, forming center portion 32 in the shape of a recessed portion or providing a hole portion to serve as a through-hole therein can reduce the effects of a magnet. The reason is described below.
  • As described above, with respect to non-contact charging module 1, there are cases where a magnet is utilized to align a primary-side non-contact charging module and a secondary-side non-contact charging module, and cases where a magnet is not utilized for such alignment. Further, since the presence of a magnet prevents the magnetic flux flowing between the primary-side and secondary-side non-contact charging modules, the L value of coil 21 of non-contact charging module 1 significantly decreases when there is a magnet in the non-contact charging module on the counterpart side. Further, coil 21 forms an LC resonance circuit using a not-shown capacitor in non-contact charging module 1. At this time, if the L value varies significantly between a case where a magnet is used for alignment and a case where a magnet is not used for alignment, the resonance frequency with the capacitor will also vary significantly. Since the resonance frequency is used for power transmission between the primary-side non-contact charging module and the secondary-side non-contact charging module, it will not be possible to perform correct power transmission if the resonance frequency varies significantly depending on the presence or absence of a magnet.
  • Therefore, in order to set the resonance frequency of a case where a magnet is used for alignment to have a value close to a value of the resonance frequency of a case where a magnet is not used for alignment, it is necessary to set the L value of coil 21 of a case where a magnet is used for alignment to be similar to the L value of a case where a magnet is not used for alignment.
  • FIG. 7 illustrates the relationship between the L value of the coil and the thickness of the center portion in a case where a magnet is utilized for alignment and a case where a magnet is not utilized for alignment in the non-contact charging module of the present embodiment. Note that, as to the degree of hollowing, 0% indicates that center portion 32 is not configured in a recessed shape and is flat, while 100% indicates that center portion 32 is configured as a through-hole. As shown in FIG. 7, when a magnet is not utilized, as center portion 32 of magnetic sheet 3 is reduced in thickness, the magnetic field of coil 21 becomes smaller and the L value of coil 21 decreases. In contrast, when a magnet is utilized, as center portion 32 of magnetic sheet 3 is reduced in thickness, the distance in the stacking direction between magnetic sheet 3 and the magnet increases. Thus, the effects of the magnet become smaller, and the magnetic field of coil 21 increases, and the L value of coil 21 rises in this case. The L values are closest to each other when center portion 32 is formed as a through-hole. That is, forming center portion 32 as a through-hole can minimize the effects of a magnet that is utilized for alignment.
  • Further, since alignment is performed through the magnet and magnetic sheet 3 attracting each other, alignment precision is improved when there is a certain degree of thickness at the center portion. In particular, the alignment precision decreases if the degree of hollowing is equal to or higher than 60%. Accordingly, by making the degree of hollowing equal to a value between 40 and 60%, the L values of coil 21 of a case where a magnet is utilized for alignment and of a case where a magnet is not utilized for alignment can be made values close to each other, and at the same time, an alignment effect of the magnet can also be sufficiently obtained. That is, the magnet and center portion 32 of magnetic sheet 3 can attract each other, and the respective centers thereof can be aligned with each other. Note that, in the present embodiment, the degree of hollowing is set to approximately 50%, and both effects can be obtained most efficiently. Further, in order to leave about half of the entire thickness, after the through-hole is formed, the through-hole may be filled with a magnetic material to a level that is half of the depth of the through-hole.
  • Further, since magnetic sheet 3 may be formed by stacking high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b, for example, a configuration may be adopted in which center portion 32 of one of high-saturation magnetic flux density material 3 a and high-magnetic permeability material 3 b is formed in a flat shape and a through-hole is formed in center portion 32 of the other one to thereby form center portion 32 of magnetic sheet 3 in a recessed shape. Further, it is advisable to make the diameter of the recessed portion or the through-hole smaller than the inner diameter of the coil. The magnetic field inside the inner circumferential circle of the coil can be increased by making the diameter (size) of the recessed portion or the through-hole substantially the same (0 to 2 mm smaller than the inner diameter of the coil) as the inner diameter (size of hollow portion) of the coil.
  • Furthermore, by making the diameter (size) of the recessed portion or the through-hole smaller than the inner diameter (size of hollow portion) of the coil (2 to 8 mm smaller than the inner diameter of the coil) to form a stepped shape, the outer side of the stepped shape can be utilized for alignment, and the inner side can be utilized to set the L values of coil 21 in a case where a magnet is utilized for alignment and a case where a magnet is not utilized to be values close to each other. It is favorable to make the size of the recessed portion or the through-hole greater than the size of magnet.
  • By making the shape of the top surface of the recessed portion or the through-hole identical to the shape of the inner circle (hollow portion) of coil 21, the magnet and center portion 32 of magnetic sheet 3 can attract each other in a well-balanced manner and the centers thereof can be precisely aligned.
  • Further, because the entire edge of the recessed portion or through-hole is equidistant from the inner diameter (hollow portion) of coil 21, the magnet and center portion 32 of magnetic sheet 3 can attract each other in a well-balanced manner and the centers thereof can be aligned with even better precision.
  • Next, the relationship between the size of the magnet and the size of the inner diameter of coil 21 will be described. FIGS. 8A to 8D are sectional views of a coil and a magnet of the non-contact charging module according to the embodiment of the present invention. FIG. 8A illustrates a case where a magnet is used for alignment when the inner width of a coil is small. FIG. 8B illustrates a case where a magnet is used for alignment when the inner width of a coil is large. FIG. 8C illustrates a case where a magnet is not used for alignment when the inner width of a coil is small. FIG. 8D illustrates a case where a magnet is not used for alignment when the inner width of a coil is large. Note that FIGS. 8A to 8D are used to describe secondary-side coil 21 b of secondary-side non-contact charging module 42 that carries out power transmission with primary-side non-contact charging module 41 equipped with magnet 30. However, the description regarding secondary-side coil 21 b related to secondary-side non-contact charging module 42 to be described hereunder also applies to primary-side coil 21 a of primary-side non-contact charging module 41 that performs power transmission with secondary-side non-contact charging module 42 that is equipped with magnet 30. That is, a plane coil section of a non-contact charging module is described that enables alignment and power transmission in both of a case where the other non-contact charging module that is the counterpart for power transmission is equipped with a magnet and a case where the other non-contact charging module is not equipped with a magnet. FIG. 9 illustrates the relationship between the inner diameter of a coil and the L value of a coil.
  • Primary-side coil 21 a and secondary-side coil 21 b face each other. Among the respective areas of coils 21 a and 21 b, a magnetic field is generated at inside portions 211 and 212, and power transmission is performed. Inside portions 211 and inside portions 212 face each other, respectively. Inside portions 211 and 212 are also portions that are close to magnet 30, and are liable to be adversely affected by magnet 30. That is, if a magnet is present between the primary-side coil and the secondary-side coil or at the periphery thereof while a magnetic flux is being generated between the primary-side coil and the secondary-side coil for power transmission, the magnetic flux extends so as to avoid the magnet. Alternatively, magnetic flux that penetrates the center of the magnet forms an eddy current or generates heat inside the magnet and is lost. In addition, when a magnet is disposed in the vicinity of a magnetic sheet, the magnetic permeability of a portion of the magnetic sheet, which is close to the magnet decreases. Accordingly, magnet 30 included in primary-side non-contact charging module 41 exerts an adverse effect by weakening the magnetic flux of, in particular, inside portions 211 and 212 of primary-side coil 21 a and secondary-side coil 21 b. As a result, transmission efficiency between the non-contact charging modules declines. Accordingly, in the case illustrated in FIG. 8A, the area of inside portions 211 and 212 that is liable to be adversely affected by magnet 30 increases. In contrast, in the case illustrated in FIG. 8C in which a magnet is not used, the L value increases since the number of turns of secondary-side coil 21 b is large. Consequently, since there is a significant decrease in the numerical value from the L value in FIG. 8C to the L value in FIG. 8A, in the case of the coil that has a small inner width, there is a very large increase in the L-value decrease rate between the case where magnet 30 is included for alignment in the non-contact charging module on the counterpart side and the case where magnet 30 is not included. Further, when the inner width of secondary-side coil 21 b is smaller than the diameter of magnet as shown in FIG. 8A, secondary-side coil 21 b directly receives an adverse effect of magnet 30 in an amount that corresponds to the area thereof facing magnet 30. Accordingly, the inner width of secondary-side coil 21 b may preferably be larger than the diameter of magnet 30.
  • In contrast, when the inner width of the coil is large as shown in FIG. 8B, the area of inside portions 211 and 212 that is liable to be adversely affected by magnet 30 is extremely small. Further, in the case illustrated in FIG. 8D in which a magnet is not used, since the number of turns of secondary-side coil 21 b deceases, the L value decreases compared to FIG. 8C. Consequently, the decrease in the numerical value from the L value in FIG. 8D to the L value in FIG. 8B is small, so that the L-value decrease rate can be limited to a small amount in a coil that has a large inner width. In addition, as the inner width of secondary-side coil 21 b becomes larger, the amount by which the edge of the hollow portion of coil 21 is separated from magnet 30 increases, and hence the effects of magnet 30 can be reduced. However, since the non-contact charging module is mounted in a charger or an electronic apparatus or the like, the non-contact charging module cannot be formed to be larger than a certain size. Therefore, an attempt to increase the inner width of coils 21 a and 21 b in order to reduce the adverse effects from magnet 30 reduces the number of turns and the L value itself irrespective of the presence or absence of a magnet. The following description relates to a case where magnet 30 is circular. That is, when the outer diameter of magnet 30 and the inner width of coil 21 are approximately the same (outer diameter of magnet 30 is about 0 to 2 mm smaller than the inner width of coil 21), because magnet 30 can be enlarged to the maximum, the precision of aligning the primary-side non-contact charging module and the secondary-side non-contact charging module can be improved. Further, since the inner diameter of coil 21 can be minimized, the number of turns of coil 21 can be increased to improve the L value. Furthermore, when the outer diameter of magnet 30 is smaller than the inner diameter of coil 21 (outer diameter of magnet 30 is about 2 to 8 mm smaller than the inner width of coil 21), even if there are variations in the alignment precision, it is possible to ensure that magnet 30 is not present between portions at which inside portions 211 and 212 face each other. At this time, by setting the outer diameter of magnet 30 to a size that is equivalent to 70 to 95% of the size of the inner width of coil 21, it is possible to adequately cope with variations in the alignment precision, and the alignment precision between primary-side non-contact charging module 41 and secondary-side non-contact charging module 42 can be improved. Furthermore, the number of turns of coil 21 can also be secured. This means that, at a face parallel to plane coil section 2, the area of magnet 30 is equivalent to 70 to 95% of the area of a through-hole at the center of plane coil section 2. In primary-side non-contact charging module 41, primary-side coil 21 a forms an LC resonance circuit through the use of a resonant capacitor. At this time, if the L value varies significantly between a case where a magnet is utilized for alignment and a case where a magnet is not utilized, a resonance frequency with the resonant capacitor will also vary significantly. Since the resonance frequency is used for power transmission between primary-side non-contact charging module 41 and secondary-side non-contact charging module 42, although it will not be possible to perform power transmission correctly if the resonance frequency varies significantly depending on the presence or absence of a magnet, the power transmission is made highly efficient by adopting the above-described configuration.
  • In addition, as shown in FIG. 9, when the size of magnet 30 and the outer diameter of coil 21 are made constant, the effects of magnet 30 on coil 21 decreases as the number of turns of coil 21 is decreased to increase the inner diameter of coil 21. That is, the L value of coil 21 of a case where magnet 30 is utilized to align the primary-side non-contact charging module and the secondary-side non-contact charging module, and the L value of coil 21 of a case where magnet 30 is not utilized for alignment become values close to each other. Accordingly, the value of the resonance frequency when using magnet 30 and the value of the resonance frequency when not using magnet 30 are extremely close to each other. Note that, in this case, the outer diameters of the coils are standardized at 30 mm.
  • In the WPC standard, the diameter of magnet 30 is defined as 15.5 mm and the strength thereof is around 100 mT. In the present embodiment, it is assumed that the inner diameter of coil 21 is 20 mm and the outer diameter is 30 mm. Further, the outer diameter of center portion 32 as a recessed shape or a through-hole is assumed to be 18 mm. That is, a distance between the inner diameter end of coil 21 of plane coil section 2 and the outer end of magnet 30 is approximately 4.5 mm. As shown in FIG. 9, by making the aforementioned distance equal to approximately 4.5 mm, the L values of coil 21 when using magnet 30 and when not using magnet 30 can be brought close to each other while maintaining the L values at a level equal to or higher than 15 μH. Further, by making the distance between the inner diameter end of coil 21 of plane coil section 2 and the outer end of magnet 30 greater than 0 mm but less than 6 mm, the L values when utilizing magnet 30 and when not utilizing magnet 30 can be brought close to each other while maintaining the L values at a level equal to or higher than 15 μH.
  • In the present embodiment, a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet or the like can be used as high-saturation magnetic flux density material 3 a. The ferrite sheet (sintered body) can reduce the alternating-current resistance of coil 21 compared with an amorphous metal magnetic sheet. Preferably, high-saturation magnetic flux density material 3 a is, in particular, a Mn—Zn ferrite sheet, and the magnetic permeability is equal to or higher than 250 and the saturation magnetic flux density is equal to or higher than 350 mT. In the present embodiment, the magnetic permeability is between 1500 and 2000, and the saturation magnetic flux density is approximately 400 mT. Using this kind of Mn—Zn ferrite sheet (sintered body) to form magnetic sheet 3 makes it difficult for magnetic sheet 3 to be adversely affected by a magnet and makes it possible to reduce the thickness of magnetic sheet 3. That is, the L value of coil 21 of non-contact charging module 1 varies significantly between a case where a magnet is used for alignment and a case where a magnet is not used for alignment. To reduce the effects of the magnet, magnetic sheet 3 includes a high-saturation magnetic flux density material (the saturation magnetic flux density is equal to or higher than 350 mT). The high-saturation magnetic flux density material is unlikely to be adversely affected by a magnet because it is difficult for the magnetic flux to saturate even when the magnetic field becomes strong. Thus, the L value of coil 21 of a case where a magnet is used can be improved. Accordingly, magnetic sheet 3 can be reduced in thickness. However, if the magnetic permeability of magnetic sheet 3 is too low, the L value of coil 21 decreases by an extremely large amount. Consequently, in some cases, the efficiency of non-contact charging module 1 is lowered. Therefore, it is preferable for the magnetic permeability to be at least 250, and more preferably to be 1500 or more.
  • A further reduction in thickness is enabled by using a Mn—Zn ferrite sheet. That is, the frequency of electromagnetic induction is defined by the standard (WPC) as a frequency between 100 kHz to 200 kHz (for example, 120 kHz). A Mn—Zn ferrite sheet is highly efficient in this low frequency band. Note that, a Ni—Zn ferrite sheet is highly efficient in a high frequency band.
  • To provide magnetic sheet 3 of the present embodiment with flexibility, slits are formed in magnetic sheet 3 in accordance with the technology described in Japanese Patent No. 4400509, to thereby form magnetic member pieces that are spread all over in a sheet shape. Therefore, the magnetic flux of coil 21 is liable to leak from the slits (gaps) between the magnetic member pieces, and thus the L value is liable to decrease and the transmission efficiency is liable to fall. However, by determining the saturation magnetic flux density and the magnetic permeability of magnetic sheet 3 in the manner described above, even in the case of magnetic sheet 3 in which slits are formed for flexibility, magnetic sheet 3 is unlikely to be adversely affected by a magnet used for alignment, and a reduction in the thickness thereof is possible. That is, it is possible to provide a magnetic sheet that can cope with the adverse effects caused by slits formed to provide flexibility. Further, it is possible to provide a non-contact charging module achieving a reduction in the thickness of the entire module with improved power transmission efficiency.
  • FIG. 10 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section in the embodiment of the present invention (in a case where a magnet for alignment is used). FIG. 11 illustrates the relationship between the thickness of the magnetic sheet and the L-value decrease rate when using a magnet for alignment and when not using a magnet for alignment in the embodiment of the present invention. That is, the term “L-value decrease rate” refers to the rate of decrease in an L value that is measured when a coil is disposed close to a magnet under certain conditions relative to an L value that is measured when a magnet is not present close to the coil under the same conditions. Accordingly, the smaller the L-value decrease rate is, the less the L value of the coil is affected by the presence or absence of a magnet. Further, in FIG. 10 and FIG. 11, a coil that is wound in a circular shape is used. In addition, the main component of magnetic sheet 3 is a Mn—Zn ferrite sheet.
  • Further, a material having an alternating-current saturation magnetic flux density equal to 400 mT has a magnetic permeability of around 1800. A material having an alternating-current saturation magnetic flux density equal to 350 mT has a magnetic permeability of around 250. A material having an alternating-current saturation magnetic flux density equal to 285 mT has a magnetic permeability of around 2200.
  • As is apparent from FIG. 10 and FIG. 11, if the thickness of the magnetic sheet is 400 μm or more, the alternating-current saturation magnetic flux density is 350 mT or more, and the magnetic permeability is 250 or more, the L value of coil 21 will be equal to or higher than 8 μH, and the L-value decrease rate can also be reduced to a half or less even when a magnet for alignment is adjacent thereto. That is, when a magnet for alignment is adjacent to coil 21, the L value of coil 21 decreases, and charging by electromagnetic induction becomes difficult unless the L value is at least 8 μH at that time. As the L value increases, the power transmission efficiency between the transmission-side and reception-side non-contact charging modules improves. When the L-value decrease rate is equal to or higher than 50%, there is a twofold or more difference in the L values of coil 21 between a case where a magnet for alignment is used and a magnet for alignment is not used. The L value of coil 21 determines the frequency of transmission and reception in power transmission between a transmission-side non-contact charging module and a reception-side non-contact charging module, and the frequency will vary considerably if there is a twofold or more difference in the L values of coil 21. To ensure the non-contact charging module can efficiently perform power transmission in both of a case where a magnet for alignment is used and a case where a magnet for alignment is not used, it is necessary to limit the L-value decrease rate to a value equal to or less than 50% to set a frequency when using a magnet for alignment and a frequency when not using a magnet for alignment to be close to each other.
  • When the thickness of magnetic sheet 3 is made equal to or greater than 600 μm, the L value of coil 21 is equal to or higher than 10 μH. Further, when the saturation density is 350 mT and 400 mT, the L-value decrease rate is approximately 30% or less. Accordingly, it is preferable that the thickness of magnetic sheet 3 be equal to or greater than 600 μm as long as the value of thickness is acceptable with respect to the size of the non-contact charging module. In particular, when the thickness of a material having the alternating-current saturation magnetic flux density equal to 400 mT and the magnetic permeability equal to 1800 is made equal to or higher than 600 μm, the L value exceeds 12 μH and the L-value decrease rate is equal to or less than 20%. Thus, extremely efficient power transmission can be performed.
  • Next, the relationship between the thickness of magnetic sheet 3 and the L value of plane coil section 2 will be described with respect to a case where coil 21 is wound in a circular shape and a case where coil 21 is wound in a rectangular shape.
  • FIG. 12 illustrates the relationship between the thickness of the magnetic sheet and the L value of the plane coil section in a case where the coil is a circular shape and a case where the coil is a rectangular shape in the embodiment of the present invention (when a magnet for alignment is used). FIG. 13 illustrates the relationship between the inner diameter of the coil and the L-value decrease rate in a case where the coil is a circular shape and a case where the coil is a rectangular shape in the embodiment of the present invention. FIGS. 14A and 14B are top views of the non-contact charging module in a case where the plane coil section is wound in a rectangular shape and a case where the plane coil section is wound in a circular shape in the embodiment of the present invention. FIG. 14A illustrates the case where the plane coil section is wound in a rectangular shape, and FIG. 14B illustrates the case where the plane coil section is wound in a circular shape.
  • In FIG. 12, the term “L value” refers to an inductance value of plane coil section 2, and the larger the L value is, the higher the power transmission efficiency of the non-contact charging module is.
  • The L value of coil 21 needs to be approximately 8 μH in order to achieve the power transmission performance of the non-contact charging module. However, when an alignment magnet is present, the effect of increasing the magnetic field intensity of the magnetic sheet decreases due to the effects of the alignment magnet.
  • According to FIG. 12, when an alignment magnet is present, in order for the circular plane coil section to generate an L value of 6 to 8 μH, the ferrite thickness of magnetic sheet 3 needs to be 500 μm. Meanwhile, the L value of rectangular plane coil section 2 having the same ferrite thickness is 12 μH (arrow A).
  • Under the same conditions with respect to the ferrite thickness and area of magnetic sheet 3, the L value of the rectangular plane coil section is larger than the L value of the circular plane coil section. Accordingly, a magnetic field generated at the rectangular plane coil section is large and the power transmission efficiency of the non-contact charging module increases.
  • In an attempt to configure the rectangular plane coil section and the circular plane coil section to generate the same L value, the ferrite thickness of magnetic sheet 3 in the case of the rectangular plane coil section can be made thinner than the ferrite thickness of magnetic sheet 3 in the case of the circular plane coil section. That is, in order to obtain the target L value, the ferrite thickness of magnetic sheet 3 of the rectangular plane coil section can be set to 300 μm (see arrow B), and thus the ferrite thickness can be reduced. Accordingly, the thickness of non-contact charging module 1 can be reduced, which makes it easier to reduce the size of non-contact charging module 1.
  • Thus, the effects of a magnetic field of an alignment magnet can be avoided by forming a planar coil to be used in the non-contact charging module in a rectangular shape, and a reduction in the size of the non-contact charging module can be achieved by improving the power transmission efficiency of the non-contact charging module.
  • Note that, coil 21 is not limited to be wound in a rectangular shape, and in some cases, coil 21 is wound in a square shape having R at the corners or a polygonal shape. That is, it is sufficient that coil 21 is of a shape in which the entire coil is disposed on magnetic sheet 3 and which provides many inner edge portions of coil 21 that are apart from the outer edge of the alignment magnet. Among such optional shapes, a rectangular shape makes it possible to obtain the above-described effects, and it is also easy to form a rectangular coil.
  • As shown in FIG. 13, the larger the inner dimension of the coil is, the smaller the L-value decrease rate of plane coil section 2 will be. The reason behind this is that the effects of alignment magnet 30 decrease in this case because of the increase in the region that allows for extra space between alignment magnet 30 and the inner side of plane coil section 2. On the other hand, when diagonal line dimension x of the inner side of rectangular plane coil section 2 and inner diameter dimension y2 of circular plane coil section 2 are the same value as shown in FIGS. 14A and 14B, the L-value decrease rates of respective plane coil sections 2 are also the same.
  • That is, when diagonal line dimension x of the inner side of the rectangular plane coil section and inner diameter dimension y2 of circular plane coil section 2 are larger than diameter m of alignment magnet 30 (x, y2>m), a gap can be formed between the inner circumference of the plane coil section and the outer circumference of the alignment magnet. However, in this case, the planar area of the planar coil of the rectangular plane coil section is small compared to that of the circular plane coil section. Therefore, the diagonal dimension of the inner side of the rectangular plane coil section can be increased so as to correspond with the size of magnetic sheet 3. Accordingly, when plane coil section 2 is installed in magnetic sheet 3, the rectangular plane coil section allows a gap to be formed between the inner circumference of plane coil section 2 and the outer circumference of the alignment magnet and thus allows the effects of the alignment magnet to be reduced in comparison to a circular plane coil section.
  • Further, when dimension y1 of one side of the hollow portion of the rectangular plane coil section is made the same as inner diameter dimension y2 of circular plane coil section 2, diagonal line dimension x of the inner side of the rectangular plane coil section is greater than y1 and y2 (x>y1=y2). That is, when it is assumed that the number of turns of each plane coil section 2 is the same, the L value of the rectangular plane coil section is larger than the L value of the circular plane coil section although the sizes of non-contact charging modules 1 each including magnetic sheet 3 are identical. As a result, a non-contact charging module having favorable power transmission efficiency can be provided.
  • In short, in the above-described circular plane coil section, the distance from the magnet is constant at any part of the coil inner diameter, and a magnetic field generated at the circular plane coil section is small. That is, the L value of the circular plane coil section that affects the mutual inductance of electromagnetic induction is small, and the power transmission efficiency of the non-contact charging module is low. In contrast, in the above-described rectangular plane coil section, the distance between the inner circumference of the coil and the magnet varies depending on part of the inner circumference, and some part has a longer or shorter distance, and a magnetic field generated at the rectangular plane coil section increases at a portion that is apart from the magnet. That is, the L value of the rectangular plane coil section that affects mutual inductance of electromagnetic induction is larger than the L value of the circular plane coil section. Therefore, the power transmission efficiency of the non-contact charging module improves significantly compared to the circular plane coil section.
  • As described above, when coil 21 is an approximately rectangular shape, setting the thickness of magnetic sheet 3 equal to or higher than 400 μm makes it possible to obtain almost the same effect as that obtained when the thickness of magnetic sheet 3 is 600 μm with coil 21 of a circular shape. That is, very effective power transmission can be realized by winding coil 21 in a rectangular shape and configuring magnetic sheet 3 to have a magnetic permeability equal to or higher than 360, a saturation magnetic flux density equal to or higher than 1800 mT, and a thickness equal to or higher than 400 μm.
  • Note that, another magnetic material may also be stacked in magnetic sheet 3. For example, a configuration may be adopted in which two layers of high-saturation magnetic flux density material 3 a are provided and high-magnetic permeability material 3 b is interposed between high-saturation magnetic flux density materials 3 a, or in which two layers of high-magnetic permeability material 3 b are provided and high-saturation magnetic flux density material 3 a is interposed between high-magnetic permeability materials 3 b. That is, it is favorable if magnetic sheet 3 includes at least one layer of high-saturation magnetic flux density material 3 a and at least one layer of high-magnetic permeability material 3 b. As the thickness of magnetic sheet 3 increases, the power transmission efficiency improves as non-contact charging module 1.
  • Moreover, thick portions may be formed in regions of flat portion 31 where no coil 21 is disposed, the regions corresponding to the four corners of magnetic sheet 3. That is, nothing is placed on the regions corresponding to the four corners of magnetic sheet 3 and located on outer side of the outer circumference of coil 21 on flat portion 31. Accordingly, increasing the thickness of magnetic sheet 3 by forming thick portions in those regions can improve the power transmission efficiency of non-contact charging module 1. Although the thicker the thick portions are the better, the thickness of the thick portions is set to be almost equal to the thickness of the conducting wire for the purpose of a reduction in the thickness of the module.
  • Moreover, coil 21 is not limited to be wound in an annular shape and may be wound in a square shape or a polygonal shape. Furthermore, the effect of this application can also be obtained by performing winding in such a way that the inner side is wound in a plurality of stages one on top of another and the outer side is wound in the number of stages smaller than the number of stages for the inner side, for example, a three-stage structure for the inner side and a two-stage structure for the outer side.
  • Next, a non-contact charger including non-contact charging module 1 according to the present invention is explained. A non-contact transmitting apparatus includes a charger including a power transmission coil and a magnetic sheet and a main apparatus including a power reception coil and a magnetic sheet. The main apparatus is an electronic apparatus such as a cellular phone. A circuit on the charger side includes a rectifying and smoothing circuit section, a voltage conversion circuit section, an oscillation circuit section, a display circuit section, a control circuit section, and the power transmission coil. A circuit on the main apparatus side includes the power reception coil, a rectifying circuit section, a control circuit section, and a load L mainly formed of a secondary battery.
  • Power transmission from the charger to the main apparatus is performed using electromagnetic induction action between the power transmission coil of the charger, which is the primary side and the power reception coil of the main apparatus, which is the secondary side.
  • The non-contact charger in this embodiment includes non-contact charging module 1 explained above. Therefore, it is possible to reduce the size and the thickness of the non-contact charger in a state in which the sectional area of the plane coil section is sufficiently secured with improved power transmission efficiency.
  • The disclosures of the specifications, the drawings, and the abstracts included in Japanese Patent Application No. 2011-013619 filed on Jan. 26, 2011, Japanese Patent Application No. 2011-051217 filed on Mar. 9, 2011, and Japanese Patent Application No. 2011-135946 filed on Jun. 20, 2011 are incorporated herein by reference in their entirety.
  • INDUSTRIAL APPLICABILITY
  • According to the non-contact charging module of the present invention, it is possible to reduce the size and thickness of the non-contact charging module in a state in which the sectional area of the plane coil section is sufficiently secured with improved power transmission efficiency. Therefore, the non-contact charging module is useful, in particular, as a non-contact charging module for portable electronic apparatuses, and is useful as a non-contact charging module for various electronic apparatuses including portable terminals such as a cellular phone, a portable audio device, and a potable computer, and portable apparatuses such as a digital camera and a video camera.
  • REFERENCE SIGNS LIST
    • 1 Non-contact charging module
    • 2 Plane coil section
    • 21 Coil
    • 211, 212 Inside portion
    • 21 b Secondary-side coil (plane coil section)
    • 22, 23 Terminals
    • 3 Magnetic sheet
    • 3 a High-saturation magnetic flux density material (second layer)
    • 3 b High-magnetic permeability material (first layer)
    • 30 Magnet
    • 31 Flat portion
    • 32 Center portion
    • 33 Linear recessed portion
    • 34 Slit
    • 41 Primary-side non-contact charging module (transmission-side non-contact charging module)
    • 42 Secondary-side non-contact charging module (reception-side non-contact charging module)

Claims (14)

1-9. (canceled)
10. A non-contact charging module comprising:
a plane coil including a wound conducting wire; and
a magnetic sheet on which a coil surface of the plane coil is placed, and which is provided so as to face the coil surface of the plane coil, wherein p1 the magnetic sheet includes a first layer and a second layer that has a lower magnetic permeability and a higher saturation magnetic flux density than the first layer, the first layer and the second layer being stacked in the magnetic sheet.
11. The non-contact charging module according to claim 10, wherein, for alignment with a counterpart-side non-contact charging module, there are situations where a magnet provided in the counterpart-side non-contact charging module is utilized and there are situations where a magnet is not utilized.
12. The non-contact charging module according to claim 10, wherein the first layer is formed by a first ferrite sheet, and the second layer is formed by a second ferrite sheet.
13. The non-contact charging module according to claim 12, wherein a thickness of the second ferrite sheet is approximately three times a thickness of the first ferrite sheet in a stacking direction of the magnetic sheet.
14. The non-contact charging module according to claim 13, wherein a thickness of the magnetic sheet is approximately 600 μm.
15. The non-contact charging module according to claim 10, wherein the first layer includes an amorphous material.
16. The non-contact charging module according to claim 10, wherein the second layer is a Mn—Zn ferrite sheet having a magnetic permeability that is equal to or higher than 250 and a saturation magnetic flux density that is equal to or higher than 350 mT.
17. The non-contact charging module according to claim 10, wherein the second layer faces the plane coil.
18. The non-contact charging module according to claim 10, wherein an inner width of the inner coil is larger than 15.5 mm.
19. The non-contact charging module according to claim 10, wherein the magnetic sheet includes a slit which the conducting wire is housed.
20. The non-contact charging module according to claim 10, wherein the plane coil is wound in a rectangular shape.
21. A non-contact charger comprising a plane coil included in the non-contact charging module according to claim 10, wherein the plane coil is used as at least one of a power transmission coil and a power reception coil.
22. A communication device comprising a plane coil included in the non-contact charging module according to claim 10, wherein the plane coil is used as a power reception coil.
US13/979,244 2011-01-26 2011-12-28 Non-contact charging module and non-contact charging instrument Abandoned US20130293191A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011013619A JP4835796B1 (en) 2011-01-26 2011-01-26 Receiving side non-contact charging module and receiving side non-contact charging device
JP2011-013619 2011-01-26
JP2011-051217 2011-03-09
JP2011051217 2011-03-09
JP2011-135946 2011-06-20
JP2011135946A JP4900525B1 (en) 2011-03-09 2011-06-20 Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
PCT/JP2011/007345 WO2012101729A1 (en) 2011-01-26 2011-12-28 Non-contact charging module and non-contact charging instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007345 A-371-Of-International WO2012101729A1 (en) 2011-01-26 2011-12-28 Non-contact charging module and non-contact charging instrument

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/900,370 Continuation US10218222B2 (en) 2011-01-26 2018-02-20 Non-contact charging module having a wireless charging coil and a magnetic sheet

Publications (1)

Publication Number Publication Date
US20130293191A1 true US20130293191A1 (en) 2013-11-07

Family

ID=46580342

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/979,244 Abandoned US20130293191A1 (en) 2011-01-26 2011-12-28 Non-contact charging module and non-contact charging instrument
US15/900,370 Expired - Fee Related US10218222B2 (en) 2011-01-26 2018-02-20 Non-contact charging module having a wireless charging coil and a magnetic sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/900,370 Expired - Fee Related US10218222B2 (en) 2011-01-26 2018-02-20 Non-contact charging module having a wireless charging coil and a magnetic sheet

Country Status (2)

Country Link
US (2) US20130293191A1 (en)
WO (1) WO2012101729A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247010A1 (en) * 2011-09-27 2014-09-04 Nec Casio Mobile Communications, Ltd. Charger, Control Method and Terminal Apparatus
WO2015175096A1 (en) * 2014-05-14 2015-11-19 Qualcomm Incorporated System, method and apparatus for reducing the height of bipolar transmitters and/or receivers in electric vehicle charging
US9443648B2 (en) 2011-11-08 2016-09-13 Kabushiki Kaisha Toshiba Magnetic sheet for non-contact power receiving device, non-contact power receiving device, electronic apparatus, and non-contact charger
US9748038B2 (en) 2013-10-10 2017-08-29 Hosiden Corporation Contactless power supply mechanism and secondary coil for contactless power supply mechanism
US20180175670A1 (en) * 2011-01-26 2018-06-21 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
US10044225B2 (en) 2011-06-14 2018-08-07 Panasonic Corporation Electronic device including non-contact charging module
US10230272B2 (en) 2012-06-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US10574082B2 (en) 2012-02-17 2020-02-25 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US10855111B2 (en) 2018-12-07 2020-12-01 Ming Chung TSANG Wireless charging coil apparatus
US11170922B2 (en) * 2016-09-02 2021-11-09 Ihi Corporation Coil device and holder
US20230111931A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitter With Removable Magnetic Connector Panel
US20230115971A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitter With Removable Magnetic Connector Panel For Vehicular Use
US20230113818A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitters For Transmitting Power At Extended Separation Distances With Magnetic Connectors
US11637459B2 (en) 2020-12-23 2023-04-25 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing T-Core shielding
US11757311B2 (en) 2020-12-23 2023-09-12 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11784502B2 (en) 2014-03-04 2023-10-10 Scramoge Technology Limited Wireless charging and communication board and wireless charging and communication device
US11831179B2 (en) 2020-12-23 2023-11-28 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11837875B2 (en) 2020-12-23 2023-12-05 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing concave shielding

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000906A1 (en) * 2012-01-19 2013-07-25 Sew-Eurodrive Gmbh & Co. Kg Coil arrangement for a system for inductive energy transmission
CN105793934B (en) * 2013-10-02 2019-08-23 Lg伊诺特有限公司 Magnetic component and wireless power transmission apparatus comprising the magnetic component
DE102019212151A1 (en) * 2019-08-13 2021-02-18 Mahle International Gmbh Energy transmitter for contactless energy transmission and traction accumulator charging system
CN213905105U (en) * 2020-11-03 2021-08-06 瑞声精密制造科技(常州)有限公司 Wireless FPC coil structure that charges
CN117099376A (en) * 2021-02-04 2023-11-21 阿莫先恩电子电器有限公司 Wireless earphone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076922A1 (en) * 2002-05-13 2006-04-13 Cheng Lily K Contact-less power transfer
US20080164839A1 (en) * 2007-01-09 2008-07-10 Sony Ericsson Mobile Communications Japan, Inc. Noncontact charging device
US20080164844A1 (en) * 2007-01-09 2008-07-10 Sony Ericsson Mobile Communications Japan, Inc. Noncontact power-transmission coil, portable terminal and terminal charging device, planar coil magnetic layer formation device, and magnetic layer formation method
US8547058B2 (en) * 2011-01-26 2013-10-01 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
US8552684B2 (en) * 2011-01-26 2013-10-08 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170187U (en) 1980-05-19 1981-12-16
US5198647A (en) 1989-11-28 1993-03-30 Mitsubishi Denki Kabushiki Kaisha Plural-coil non-contact ic card having pot cores and shielding walls
JP3065404B2 (en) 1991-11-18 2000-07-17 シャープ株式会社 External magnetic field generator
JPH07231586A (en) 1993-09-08 1995-08-29 Tokin Corp Cordless power station
JPH07299150A (en) 1994-05-02 1995-11-14 Kaageo P-Shingu Res Lab:Kk Intracorporeal coil for percutaneous charging system for pace maker
US6233472B1 (en) 1995-06-06 2001-05-15 Patient Comfort, L.L.C. Electrode assembly and method for signaling a monitor
JP4280313B2 (en) 1997-10-16 2009-06-17 株式会社日立国際電気 IC card system
JPH11265814A (en) 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd Coil component and electronic equipment using the same
JP3253592B2 (en) 1998-10-27 2002-02-04 株式会社豊田自動織機 Transmission side coupler
US6803744B1 (en) 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
US6396241B1 (en) 2000-09-18 2002-05-28 General Motors Corporation Inductive charging system employing a fluid-cooled transformer coil and transmission cable
JP2002354713A (en) 2001-05-24 2002-12-06 Murata Mach Ltd Impedance converter circuit of noncontact power feeder system
JP2003068531A (en) 2001-06-14 2003-03-07 Koa Corp Inductor, and method of manufacturing the same
JP2003045731A (en) * 2001-07-30 2003-02-14 Nec Tokin Corp Non-contact power transmission apparatus
JP4093533B2 (en) 2002-02-28 2008-06-04 Fdk株式会社 Optical attenuator modulator
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
JP2004047701A (en) 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for noncontact charger
US7271596B2 (en) 2002-11-19 2007-09-18 University Of Utah Research Foundation Method and system for testing a signal path having an operational signal
GB0229141D0 (en) 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
JP4273314B2 (en) 2003-08-27 2009-06-03 三菱マテリアル株式会社 RFID tag and manufacturing method thereof
JP3834033B2 (en) 2003-12-24 2006-10-18 株式会社東芝 Wireless card
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
JP2005252612A (en) 2004-03-03 2005-09-15 Sony Corp System, module, and method for radio communication, and module holder
JP4665447B2 (en) 2004-07-15 2011-04-06 パナソニック株式会社 Trance
JP4852829B2 (en) 2004-07-28 2012-01-11 セイコーエプソン株式会社 Non-contact power transmission device
US7924235B2 (en) 2004-07-28 2011-04-12 Panasonic Corporation Antenna apparatus employing a ceramic member mounted on a flexible sheet
JP4400509B2 (en) 2005-05-16 2010-01-20 パナソニック株式会社 CERAMIC SHEET, ANTENNA DEVICE, RADIO COMMUNICATION MEDIUM PROCESSING DEVICE, AND CERAMIC SHEET MANUFACTURING METHOD
KR100678268B1 (en) 2004-10-20 2007-02-02 삼성전자주식회사 Optical image stabilizer for camera lens assembly
JP2006126901A (en) 2004-10-26 2006-05-18 Mitsubishi Materials Corp Tag and rfid system
KR100819604B1 (en) 2005-07-27 2008-04-03 엘에스전선 주식회사 Wireless Charger Decreased in Variation of Charging Efficiency
JP4965116B2 (en) 2005-12-07 2012-07-04 スミダコーポレーション株式会社 Flexible coil
JPWO2007080820A1 (en) 2006-01-12 2009-06-11 株式会社東芝 Power receiving device and electronic device and non-contact charging device using the same
JP2007214754A (en) 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Antenna device
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
KR100792308B1 (en) 2006-01-31 2008-01-07 엘에스전선 주식회사 A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell
US7408511B2 (en) 2006-01-31 2008-08-05 Accton Technology Corporation MIMO antenna configuration
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
US20070206116A1 (en) 2006-03-06 2007-09-06 Chou Hsieh C Camera module
US8193767B2 (en) 2006-03-24 2012-06-05 Kabushiki Kaisha Toshiba Power receiving device, and electronic apparatus and non-contact charger using the same
WO2007111019A1 (en) 2006-03-24 2007-10-04 Kabushiki Kaisha Toshiba Power receiving device, electronic apparatus using same and non-contact charger
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
TW200803123A (en) 2006-06-02 2008-01-01 Delta Electronics Inc Power converter and magnetic structure thereof
TW200803129A (en) 2006-06-23 2008-01-01 Delta Electronics Inc Power converter
JP2008027015A (en) 2006-07-19 2008-02-07 Dainippon Printing Co Ltd Noncontact ic card
US20080031606A1 (en) 2006-08-04 2008-02-07 Motorola, Inc. Flip grip hinge arrangement for electronic devices
US9022293B2 (en) 2006-08-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
US7981528B2 (en) 2006-09-05 2011-07-19 Panasonic Corporation Magnetic sheet with stripe-arranged magnetic grains, RFID magnetic sheet, magnetic shielding sheet and method of manufacturing the same
JP4356844B2 (en) 2006-10-05 2009-11-04 昭和飛行機工業株式会社 Non-contact power feeding device
US7683572B2 (en) 2006-11-10 2010-03-23 Sanyo Electric Co., Ltd. Battery charging cradle and mobile electronic device
JP2008135589A (en) 2006-11-29 2008-06-12 Asuka Electron Kk Coil for power transmission
US7595759B2 (en) 2007-01-04 2009-09-29 Apple Inc. Handheld electronic devices with isolated antennas
JP4947637B2 (en) 2007-01-09 2012-06-06 ソニーモバイルコミュニケーションズ株式会社 Non-contact power transmission coil, portable terminal and terminal charging device
JP2008205557A (en) 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Antenna device
JP4281837B2 (en) 2007-02-20 2009-06-17 セイコーエプソン株式会社 COIL UNIT, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP4859700B2 (en) 2007-02-20 2012-01-25 セイコーエプソン株式会社 Coil unit and electronic equipment
JP2008206297A (en) 2007-02-20 2008-09-04 Sony Ericsson Mobilecommunications Japan Inc Portable terminal
JP2008210861A (en) 2007-02-23 2008-09-11 Yonezawa Densen Kk Coil having magnetic shield sheet
FR2914800B1 (en) 2007-04-04 2010-09-17 Jacek Kowalski NFC MODULE, IN PARTICULAR FOR MOBILE TELEPHONE
JP2008294385A (en) 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd Contactless power transmitting device, and manufacturing method of its coil block for electric power receiving
JP5266665B2 (en) 2007-05-16 2013-08-21 セイコーエプソン株式会社 Electronic equipment, charger and charging system
JP5121307B2 (en) 2007-05-28 2013-01-16 ソニーモバイルコミュニケーションズ株式会社 Non-contact power transmission coil unit, portable terminal, power transmission device, and non-contact power transmission system
JP4896820B2 (en) 2007-05-29 2012-03-14 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Coil module device
JP5118394B2 (en) 2007-06-20 2013-01-16 パナソニック株式会社 Non-contact power transmission equipment
JP4743173B2 (en) * 2007-06-29 2011-08-10 セイコーエプソン株式会社 Power transmission control device, power transmission device, non-contact power transmission system, and electronic device
JP4420073B2 (en) 2007-07-11 2010-02-24 セイコーエプソン株式会社 Coil unit and electronic equipment
JP4605192B2 (en) 2007-07-20 2011-01-05 セイコーエプソン株式会社 Coil unit and electronic equipment
US20090050624A1 (en) 2007-08-20 2009-02-26 Wendy Rae Ventura Top-a-plate
JP5112439B2 (en) 2007-08-21 2013-01-09 株式会社東芝 Non-contact type power receiving device, electronic device using the same, and charging system
WO2009039419A1 (en) 2007-09-21 2009-03-26 Wireless Dynamics, Inc. Wireless smart card and integrated personal area network, near field communication and contactless payment system
WO2009050624A2 (en) 2007-10-15 2009-04-23 Nxp B.V. Method of controlling a power transfer system and power transfer system
US7962186B2 (en) 2007-10-24 2011-06-14 Nokia Corporation Method and apparatus for transferring electrical power in an electronic device
JP4192202B2 (en) 2007-12-21 2008-12-10 東芝テック株式会社 Compound antenna
WO2011091528A1 (en) 2010-01-27 2011-08-04 Cynetic Designs Ltd. Modular pocket with inductive power and data
US9126514B2 (en) 2007-12-21 2015-09-08 Cynetic Designs Ltd Vehicle seat inductive charger and data transmitter
JP5303929B2 (en) * 2007-12-25 2013-10-02 カシオ計算機株式会社 Non-contact power transmission device
JP5146876B2 (en) 2008-01-31 2013-02-20 日本電気株式会社 RFID antenna device, RFID tag, and portable electronic terminal with RFID tag function
JP2009200174A (en) 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
EP2258032A2 (en) 2008-02-22 2010-12-08 Access Business Group International LLC Magnetic positioning for inductive coupling
TWI488400B (en) 2008-03-13 2015-06-11 Access Business Group Int Llc Inductive power supply system with multiple coil primary and inductive power supply and method for the same
JP5398160B2 (en) 2008-03-31 2014-01-29 パナソニック株式会社 Electronic device, charger, and electronic device charging system
JP5247215B2 (en) 2008-04-04 2013-07-24 キヤノン株式会社 COMMUNICATION DEVICE AND ITS CONTROL METHOD
US20110050164A1 (en) 2008-05-07 2011-03-03 Afshin Partovi System and methods for inductive charging, and improvements and uses thereof
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
JP4572953B2 (en) 2008-05-14 2010-11-04 セイコーエプソン株式会社 Coil unit and electronic device using the same
JP4698702B2 (en) 2008-05-22 2011-06-08 三菱電機株式会社 Electronics
JP4752879B2 (en) 2008-07-04 2011-08-17 パナソニック電工株式会社 Planar coil
JP2010041906A (en) 2008-07-10 2010-02-18 Nec Tokin Corp Contactless power transmission apparatus, soft magnetic sheet, and module using the same
JP4645698B2 (en) 2008-08-19 2011-03-09 ソニー株式会社 Wireless communication device and power receiving device
JP4785904B2 (en) 2008-11-04 2011-10-05 三菱電機株式会社 Non-contact transmission device and induction heating cooker
JP2010129692A (en) 2008-11-26 2010-06-10 Sanken Electric Co Ltd Inductance part
JP4937989B2 (en) 2008-11-26 2012-05-23 京セラ株式会社 Portable electronic devices
JP2010128219A (en) 2008-11-28 2010-06-10 Fujifilm Corp Image capturing apparatus and method of controlling the same, and program
US8624546B2 (en) 2008-12-12 2014-01-07 Hanrim Postech Co., Ltd. Non-contact power reception apparatus and jig for fabricating core for non-contact power reception apparatus
US8188933B2 (en) 2008-12-17 2012-05-29 Panasonic Corporation Antenna unit and mobile terminal therewith
US8242741B2 (en) 2008-12-18 2012-08-14 Motorola Mobility Llc Systems, apparatus and devices for wireless charging of electronic devices
CN101771283B (en) 2008-12-29 2012-10-10 鸿富锦精密工业(深圳)有限公司 Charging system
JP5424459B2 (en) 2009-03-05 2014-02-26 パナソニック株式会社 Electronics
JP5282898B2 (en) 2009-03-13 2013-09-04 日本電気株式会社 Antenna device
JP2010226929A (en) 2009-03-25 2010-10-07 Fuji Xerox Co Ltd Power transmitting apparatus
JP5521665B2 (en) 2009-03-26 2014-06-18 セイコーエプソン株式会社 Coil unit, power transmission device and power reception device using the same
JP5417941B2 (en) 2009-03-31 2014-02-19 富士通株式会社 Power transmission equipment
JP5556044B2 (en) 2009-03-31 2014-07-23 富士通株式会社 Wireless power transmission system, wireless power receiving device, and wireless power transmitting device
JP5554937B2 (en) 2009-04-22 2014-07-23 パナソニック株式会社 Contactless power supply system
JP5240050B2 (en) 2009-04-27 2013-07-17 株式会社村田製作所 Coupling substrate, electromagnetic coupling module, and wireless IC device
EP2433347B1 (en) 2009-05-20 2013-10-23 Koninklijke Philips N.V. Electronic device having an inductive receiver coil with ultra-thin shielding layer and method
JP2010284059A (en) * 2009-06-08 2010-12-16 Nec Tokin Corp Noncontact power transmission apparatus
JP5372610B2 (en) * 2009-06-08 2013-12-18 Necトーキン株式会社 Non-contact power transmission device
CN102474009B (en) 2009-07-03 2015-01-07 株式会社村田制作所 Antenna and antenna module
JP4705988B2 (en) 2009-07-17 2011-06-22 明日香エレクトロン株式会社 Power transmission and data transmission method and apparatus for USB device
JP2009259273A (en) 2009-07-28 2009-11-05 Smart:Kk Field improvement system with resonator
US20120206307A1 (en) 2009-07-28 2012-08-16 Sony Chemical & Information Device Corporation Antenna device and communication device
IN2012DN01947A (en) 2009-08-07 2015-08-21 Auckland Uniservices Ltd
US9153855B2 (en) 2009-08-28 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Antenna, antenna unit, and communication device using them
JP4715954B2 (en) 2009-08-28 2011-07-06 パナソニック株式会社 Antenna device
JP2011072097A (en) 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Non-contact power transmission device
JP5484843B2 (en) 2009-09-24 2014-05-07 パナソニック株式会社 Contactless charging system
JP2011072116A (en) 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Noncontact charging system
JP5197549B2 (en) 2009-11-06 2013-05-15 三菱電機株式会社 Setting diagnostic system
JP2011103533A (en) 2009-11-10 2011-05-26 Tdk Corp Booster, rfid system, and wireless communication device
JP4669560B1 (en) 2009-12-11 2011-04-13 エンパイア テクノロジー ディベロップメント エルエルシー Contactless information management / charging system, mobile communication terminal and contactless information / power transmission unit
JP2011155520A (en) 2010-01-27 2011-08-11 Kyocera Corp Mobile electronic equipment
JP5477393B2 (en) 2010-02-05 2014-04-23 日立金属株式会社 Magnetic circuit for non-contact charging device, power supply device, power receiving device, and non-contact charging device
JP5018918B2 (en) 2010-03-17 2012-09-05 パナソニック株式会社 ANTENNA DEVICE AND PORTABLE TERMINAL DEVICE USING THE SAME
JP2011215865A (en) 2010-03-31 2011-10-27 Sony Corp Signal processing apparatus and signal processing method
JP2012010533A (en) 2010-06-28 2012-01-12 Murata Mfg Co Ltd Power transmission system, and power supply device and portable apparatus therefor
US9044616B2 (en) 2010-07-01 2015-06-02 Boston Scientific Neuromodulation Corporation Charging system for an implantable medical device employing magnetic and electric fields
CA2752716C (en) 2010-09-21 2019-04-30 Inside Secure Nfc card sensitive to foucault currents
JP5542599B2 (en) 2010-09-22 2014-07-09 太陽誘電株式会社 Common mode noise filter
JP5543883B2 (en) 2010-09-24 2014-07-09 太陽誘電株式会社 Common mode noise filter
JP2012070557A (en) 2010-09-24 2012-04-05 Panasonic Electric Works Co Ltd Non-contact type electric power transmission coil module and battery pack equipped with the same
US20120203620A1 (en) 2010-11-08 2012-08-09 Douglas Howard Dobyns Techniques For Wireless Communication Of Proximity Based Marketing
WO2012073305A1 (en) 2010-11-29 2012-06-07 富士通株式会社 Portable device and power supply system
US9178369B2 (en) 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
WO2012101729A1 (en) * 2011-01-26 2012-08-02 パナソニック株式会社 Non-contact charging module and non-contact charging instrument
JP4835794B1 (en) 2011-01-26 2011-12-14 パナソニック株式会社 Receiving side non-contact charging module and receiving side non-contact charging device
JP4835795B1 (en) 2011-01-26 2011-12-14 パナソニック株式会社 Receiving side non-contact charging module and receiving side non-contact charging device
JP4962634B1 (en) 2011-03-09 2012-06-27 パナソニック株式会社 Method for manufacturing contactless charging module
US8749195B2 (en) 2011-03-09 2014-06-10 Panasonic Corporation Contactless charging module, contactless charging device, and method of manufacturing contactless charging module
US20120309307A1 (en) 2011-06-03 2012-12-06 D Amico Nate Nfc method, arrangement and setup
JP3169797U (en) 2011-06-06 2011-08-18 Tdk株式会社 Coil unit
CN103748765B (en) 2011-06-14 2016-11-09 松下电器产业株式会社 Communicator
JP5549818B2 (en) 2011-06-15 2014-07-16 Tdk株式会社 Non-contact transmission device, and battery unit and battery lid unit including the same
US20130026981A1 (en) 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
CA2844062C (en) 2011-08-04 2017-03-28 Witricity Corporation Tunable wireless power architectures
KR101874641B1 (en) 2011-08-08 2018-07-05 삼성전자주식회사 Portable terminal with wireless charging coil and antenna element in same plane
JP5445545B2 (en) 2011-09-22 2014-03-19 パナソニック株式会社 Non-contact charging module, non-contact charger and electronic device
US9024576B2 (en) 2011-11-17 2015-05-05 Nokia Technologies Oy Inductive charging of a rechargeable battery
JP5013019B1 (en) 2011-12-07 2012-08-29 パナソニック株式会社 Non-contact charging module and portable terminal equipped with the same
WO2013084480A1 (en) 2011-12-07 2013-06-13 パナソニック株式会社 Non-contact charging module and portable terminal provided with same
TWI565248B (en) 2012-01-08 2017-01-01 通路實業集團國際公司 Interference mitigation for multiple inductive systems
US8909139B2 (en) 2012-01-27 2014-12-09 Blackberry Limited Mobile wireless communications system including selectively coupled pair of discontinuous NFC circuit segments and related methods
JP2013169122A (en) 2012-02-17 2013-08-29 Panasonic Corp Non-contact charge module and portable terminal having the same
KR101890676B1 (en) 2012-02-23 2018-08-22 엘지전자 주식회사 Mobile terminal terminal wireless charging module
KR101163574B1 (en) 2012-03-13 2012-07-06 주식회사 나노맥 Electromagnetic waves absorber for both radio frequency identification and wireless charging, wireless antenna for both radio frequency identification and wireless charging including the same, and manufacturing method thereof
KR101580518B1 (en) 2012-04-05 2015-12-28 엘지전자 주식회사 Antenna and mobile terminal therein
US8905317B1 (en) 2012-06-07 2014-12-09 Amazon Technologies, Inc. Co-located passive UHF RFID tag and NFC antenna in compact electronic devices
US9048959B2 (en) 2012-09-21 2015-06-02 Nokia Corporation Method and apparatus for a wireless optical link
US9153885B2 (en) 2012-09-26 2015-10-06 Rosemount Inc. Field device with improved terminations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076922A1 (en) * 2002-05-13 2006-04-13 Cheng Lily K Contact-less power transfer
US20080164839A1 (en) * 2007-01-09 2008-07-10 Sony Ericsson Mobile Communications Japan, Inc. Noncontact charging device
US20080164844A1 (en) * 2007-01-09 2008-07-10 Sony Ericsson Mobile Communications Japan, Inc. Noncontact power-transmission coil, portable terminal and terminal charging device, planar coil magnetic layer formation device, and magnetic layer formation method
US8547058B2 (en) * 2011-01-26 2013-10-01 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
US8552684B2 (en) * 2011-01-26 2013-10-08 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218222B2 (en) * 2011-01-26 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
US20180175670A1 (en) * 2011-01-26 2018-06-21 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging module having a wireless charging coil and a magnetic sheet
US10468913B2 (en) 2011-06-14 2019-11-05 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module
US10044225B2 (en) 2011-06-14 2018-08-07 Panasonic Corporation Electronic device including non-contact charging module
US20140247010A1 (en) * 2011-09-27 2014-09-04 Nec Casio Mobile Communications, Ltd. Charger, Control Method and Terminal Apparatus
US9325200B2 (en) * 2011-09-27 2016-04-26 Nec Corporation Charger, control method and terminal apparatus
US9443648B2 (en) 2011-11-08 2016-09-13 Kabushiki Kaisha Toshiba Magnetic sheet for non-contact power receiving device, non-contact power receiving device, electronic apparatus, and non-contact charger
US10574082B2 (en) 2012-02-17 2020-02-25 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US11070075B2 (en) 2012-02-17 2021-07-20 Sovereign Peak Ventures, Llc Electronic device including non-contact charging module and battery
US11616395B2 (en) 2012-06-28 2023-03-28 Sovereign Peak Ventures, Llc Mobile terminal and chargeable communication module
US10230272B2 (en) 2012-06-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US10291069B2 (en) 2012-06-28 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Mobile terminal and chargeable communication module
US10574090B2 (en) 2012-06-28 2020-02-25 Sovereign Peak Ventures, Llc Mobile terminal including wireless charging coil and magnetic sheet having inwardly receding portion
US9748038B2 (en) 2013-10-10 2017-08-29 Hosiden Corporation Contactless power supply mechanism and secondary coil for contactless power supply mechanism
US11784502B2 (en) 2014-03-04 2023-10-10 Scramoge Technology Limited Wireless charging and communication board and wireless charging and communication device
WO2015175096A1 (en) * 2014-05-14 2015-11-19 Qualcomm Incorporated System, method and apparatus for reducing the height of bipolar transmitters and/or receivers in electric vehicle charging
US10083792B2 (en) 2014-05-14 2018-09-25 Qualcomm Incorporated System, method and apparatus for reducing the height of bipolar transmitters and/or receivers in electric vehicle charging
US11170922B2 (en) * 2016-09-02 2021-11-09 Ihi Corporation Coil device and holder
US10855111B2 (en) 2018-12-07 2020-12-01 Ming Chung TSANG Wireless charging coil apparatus
US11637459B2 (en) 2020-12-23 2023-04-25 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing T-Core shielding
US11757311B2 (en) 2020-12-23 2023-09-12 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11831179B2 (en) 2020-12-23 2023-11-28 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11837875B2 (en) 2020-12-23 2023-12-05 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing concave shielding
US20230111931A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitter With Removable Magnetic Connector Panel
US20230115971A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitter With Removable Magnetic Connector Panel For Vehicular Use
US20230113818A1 (en) * 2021-10-12 2023-04-13 Nucurrent, Inc. Wireless Power Transmitters For Transmitting Power At Extended Separation Distances With Magnetic Connectors
US11637448B1 (en) * 2021-10-12 2023-04-25 Nucurrent, Inc. Wireless power transmitter with removable magnetic connector panel for vehicular use

Also Published As

Publication number Publication date
US20180175670A1 (en) 2018-06-21
WO2012101729A1 (en) 2012-08-02
US10218222B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
US10218222B2 (en) Non-contact charging module having a wireless charging coil and a magnetic sheet
JP5845405B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
US8552684B2 (en) Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
USRE47199E1 (en) Non-contact charging module, electronic apparatus, and non-contact charging apparatus
US8547058B2 (en) Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
JP5845406B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP4835796B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP4983999B1 (en) Non-contact charging module and non-contact charging device using the same
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
JP2012164728A (en) Coil component and power reception device and power supply device using the same
JP2013201296A (en) Transmission coil component and non-contact charger
JP5824631B2 (en) Non-contact charging module and charger and electronic device using the same
JP5845407B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIDAKA, AKIO;TABATA, KENICHIRO;NISHINO, TOKUJI;SIGNING DATES FROM 20130620 TO 20130621;REEL/FRAME:031095/0343

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:034194/0143

Effective date: 20141110

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: SOVEREIGN PEAK VENTURES, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.;REEL/FRAME:048830/0154

Effective date: 20190308

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED APPLICATION NUMBERS 13/384239, 13/498734, 14/116681 AND 14/301144 PREVIOUSLY RECORDED ON REEL 034194 FRAME 0143. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:056788/0362

Effective date: 20141110