EP2746206A2 - Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule - Google Patents

Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule Download PDF

Info

Publication number
EP2746206A2
EP2746206A2 EP13005377.0A EP13005377A EP2746206A2 EP 2746206 A2 EP2746206 A2 EP 2746206A2 EP 13005377 A EP13005377 A EP 13005377A EP 2746206 A2 EP2746206 A2 EP 2746206A2
Authority
EP
European Patent Office
Prior art keywords
drive drum
time
acceleration
cross
wound bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13005377.0A
Other languages
English (en)
French (fr)
Other versions
EP2746206B1 (de
EP2746206A3 (de
Inventor
Torsten Forche
Ralf Hoffmann
Manfred Mund
Hans-Günter Wedershoven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saurer Spinning Solutions GmbH and Co KG
Original Assignee
Saurer Germany GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saurer Germany GmbH and Co KG filed Critical Saurer Germany GmbH and Co KG
Publication of EP2746206A2 publication Critical patent/EP2746206A2/de
Publication of EP2746206A3 publication Critical patent/EP2746206A3/de
Application granted granted Critical
Publication of EP2746206B1 publication Critical patent/EP2746206B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/46Package drive drums
    • B65H54/48Grooved drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a method of disordering the winding of a package, which is driven by a provided with a Kehrgewinderille for thread guide drive motor by a motor, wherein in repetitive Schmstörzyklen the drive drum is accelerated and decelerated and by accelerating and decelerating the drive drum a changing slip between the drive drum and cross-wound bobbin is generated.
  • the invention further relates to a device for winding a cross-wound bobbin and for carrying out the method.
  • the apparatus comprises a drive drum having a reciprocating groove for driving a cheese and thread guide, a motor for driving the drive drum, and control means configured to energize the motor so as to repetitively accelerate the drive drum to generate a slip causing disc disturbance and is delayed.
  • the DE 195 19 542 A1 discloses a method and apparatus for preventing image windings when winding a cross-wound bobbin, which is driven by a drive drum provided with a thread guide groove for the thread guide.
  • a drive drum is also referred to as grooved drum.
  • the drive drum can be driven by an electric motor.
  • the motor exerts a moment on the drive drum and thus causes the desired acceleration.
  • For the motor to exert the required torque it is supplied with a current.
  • the motor When the engine is switched off, only the friction torque due to friction acts on the drive drum. This friction torque delays the drive drum when the engine is switched off.
  • the motor can also exert an additional braking torque in the deceleration phases.
  • the speed of the drive drum is varied between predetermined limits.
  • the engine exerts specified acceleration and braking torques.
  • the actual slip can vary greatly, as it depends not only on the engine torque, but also on the respective winding parameters.
  • Such winding parameters which influence the slip are, for example, the contact pressure, the thread tension, the waxing and the cheese diameter.
  • peripheral speed of the drive drum In order to determine the actual slip, it is necessary to know the peripheral speeds of the drive drum and cross-wound bobbin.
  • the peripheral speed of the drive drum can be easily determined from the speed of the drive drum and the known diameter of the drive drum. In the cheese, the diameter changes during the winding process, so that a determination of the peripheral speed of the measured speed is not readily possible.
  • the WO 2008/107170 A1 in particular, relates to the accurate measurement of coiling and yarn speed and suitable devices.
  • the winding speed corresponds approximately to the peripheral speed of the cross-wound bobbin.
  • the slip should be determined from the winding speed and the drum speed. To determine the slip, so additional sensors are required. It will be explained that it is thus possible to monitor the slippage between the grooved drum and the cross-wound bobbin in a targeted manner by means of a picture disturbing method. If the slip deviates from a certain target value or exceeds or falls below a certain threshold value, a warning signal can be output and / or advantageously the image disturbance can be automatically corrected by a control unit.
  • a diameter which is falsified by the slip can be calculated. From the deviation of both determined for the acceleration phase diameter, the slip can be calculated. The actual values of the slip are compared with nominal values and, in the case of deviations, one or more operating parameters of the winding device are changed as a manipulated variable for adjusting the actual values to the nominal values.
  • the duration of the acceleration phases so that on the one hand sufficient and on the other hand no too high slip occurs. This not only improves the quality of a coil due to an effective image disturbance, but also optimizes the energy consumption of the winding device.
  • Means for detecting the rotational speeds of the drive drum and cross-wound bobbin are generally required to determine the cross-coil diameter anyway.
  • the solution of DE 196 25 510 A1 does not require additional sensors.
  • the calculation of the slip, in particular the extrapolation of the actual cheese diameter during the acceleration phases, however, requires a certain amount of computation and thus proves processor performance.
  • the invention is based on the idea that the knowledge of an absolute value of the slip to set or regulate an optimum for the image disturbance slip is not required. It is sufficient to determine a size that is a measure of the slip and is independent of other influences.
  • the time measurement for detecting the time or the time period according to the present invention can be easily implemented with modern control technology.
  • the speed of the drive drum is usually specified.
  • the drive drum then moves between predetermined speed limits, that is between a lower and an upper limit. Therefore, it is already known when the maximum speed of the drive drum is reached.
  • the drive is turned off or the drive drum is with an opposite moment, so a braking torque, applied. At this time the time measurement begins.
  • the speed of the drive drum decreases immediately.
  • the cheese of the drive drum can not follow immediately, which initially has even a higher peripheral speed than the cross-wound bobbin.
  • the speed of the cheese initially continues to increase until it reaches a maximum. Only then does the speed of the cross-wound bobbin decrease following the speed of the drive drum.
  • the maximum of the speed of the cheese can be easily determined by comparing a current speed value with a previously determined speed value. If the current value is less than or equal to the previous value, the maximum is reached and the time measurement can be stopped.
  • the time of the speed reversal of the cross-wound bobbin strongly depends on the slip.
  • the greater the slip the greater the time from the beginning of the delay of the drive drum to the speed reversal of the cheese.
  • this period of time also depends strongly on other factors, in particular on the cheese diameter. It takes longer to decelerate a large cheese than a small one.
  • a second time period dependent on the spooling parameters is determined. This belongs to a functional section of the same Schmstörzyklus' and is thus performed with the same Spulparametern, in particular the same diameter. By putting both time periods into relation, these factors are compensated and the quotient depends essentially only on the slip.
  • the second period of time can likewise be easily determined since functional sections are generally initiated and terminated as a function of specific states or measured values by means of control interventions.
  • the times at which time recording has to be started and ended are known as already known.
  • a ratio is thus determined in a simple manner, which is a measure of the slip largely free of other parameters.
  • This ratio or quotient can then be compared with a reference value and thus the parameters of the next acceleration phase can be determined.
  • the reference value is independent of the winding parameters.
  • the reference value depends only from the desired image disturbance or the desired energy savings.
  • the reference value or the reference values can therefore be determined empirically with little effort. This is a one-time process because the reference values, as explained above, do not depend on the spooling parameters.
  • a motor for driving the drive drum for decelerating is applied with a braking current only for the first period of time. That is, the braking current is turned on to initiate the braking process and turned off again at the maximum of the speed of the cheese.
  • the drive drum and the cheese then run only braked by the friction moments. Prolonged application of a braking current might be counterproductive.
  • the speed of the cross-wound bobbin reverses, the peripheral speeds of the cheese and the drive drum have substantially approximated. If the drive drum continues to be actively braked, the drive drum may run away again. This unnecessarily generates friction and costs energy.
  • the engine is subjected to a predetermined current or drive torque for acceleration, and the acceleration time of the drive drum is used as the second time duration.
  • This corresponds to the length of time required by the drive drum to accelerate from a lower limit speed to an upper limit speed. Since not only the drive drum itself, but also the overlying cross-wound bobbin has to be accelerated, the acceleration time of the drive drum depends on the bobbin diameter while the acceleration current is unchanged. Both the first time period and the second time duration increase in accordance with the cheese diameter. By dividing the diameter influence can be compensated.
  • a slip-free flow time following the first time duration is used as the second time duration.
  • the flow time increases according to the diameter of the cheese.
  • the diameter compensation works analogously.
  • the sum of the acceleration time of the drive drum and the slip-free flow time subsequent to the first time duration can be used as the second time duration.
  • the duration of the entire image disturbance cycle may also be used as the second time duration.
  • the adjustment of the acceleration phase can be done by adjusting the value of the acceleration of the drive drum. This is done by adjusting the drive torque. When the drive torque or the motor current changes, the acceleration time remains dependent on the winding parameters. According to an alternative, the duration of the acceleration of the drive drum is adjusted. This can be done, for example, by adjusting the speed limits between which the drive drum is accelerated. In this case, therefore, no concrete acceleration time will be specified, but the duration of the acceleration will be adjusted indirectly. The acceleration time thus remains dependent on winding parameters. Of course, the duration and the value of the acceleration can also be adjusted by changing the speed specification. In this case, the acceleration time, as explained above, no longer depends on the Spulparametern.
  • the acceleration of the drive drum is adjusted when the quotient is greater than a first reference value and the acceleration of the drive drum is adjusted in the opposite direction when the quotient is smaller than a second reference value. In this way, a hysteresis is created and the quotient is kept in the band between the two reference values.
  • the control means of the device according to the invention are adapted to a first time period between the maximum of the rotational speed of the drive drum and the subsequent maximum of the speed of the cheese, which corresponds to a first functional portion within the Schmstörzyklus', and a second dependent on the Spulparametern time duration, the time duration another function section within an image disturbance cycle or the sum of the durations of functional sections corresponds to form a quotient of the first time duration and the second time duration and to adapt the acceleration phase of the drive drum as a function of a comparison of the quotient with at least one reference value.
  • the Fig. 1 shows a device 1 for winding a cross-wound bobbin 2. It is a part of a job of a cheese-producing textile machine. Textile machines producing such cross-wound bobbins are, for example, winding machines which wind a thread from a delivery bobbin onto the cross-wound bobbin 2, or rotor spinning machines, where a spun thread is wound directly onto a cheese.
  • the winding device comprises a creel 4 for holding the cross-wound bobbin 2.
  • the cross-wound bobbin 2 rests on a drive drum 3 with a Kehrgewinderille 9.
  • the drive drum 3 takes the cheese 2 via frictional engagement.
  • the Kehrgewinderille 9 ensures that the thread is deposited in cross-shaped thread layers on the peripheral surface.
  • the drive drum 3 is driven by the motor 7. Both are coupled directly via the shaft 13 and therefore rotate at the same speed.
  • the winding device 1 also has a controller 8.
  • the controller 8 supplies the motor 7 with electricity.
  • the current causes a defined engine torque, which is transmitted to the drive drum 3.
  • the controller 8 also evaluates the signals from the sensors 5 and 6.
  • the sensor 5 measures the speed of the cheese 2 and the sensor 6 measures the speed of the drive drum 3.
  • the sensor 6 is mounted on the motor 7, which has the same speed as the drive drum 3. Alternatively, the speed also directly to the drive drum are measured. It is also possible to determine the speed of the drive drum 3 sensorless from the electrical variables of the motor 7.
  • the Fig. 2 represents the time course of the peripheral speeds of drive drum 3 and cross-wound bobbin 2.
  • the peripheral speeds are identical in the slip-free phases. When a slip occurs, the deviation of the peripheral speeds is only slight.
  • the speeds of drive drum 3 and cross-wound bobbin 2 may differ significantly depending on the diameter of the drive drum 3 and the cheese 2.
  • the speed of the drive drum 3 is always proportional to its peripheral speed.
  • the speed of the cross-wound bobbin decreases with increasing diameter. However, the location of the extreme values, which are important in the present invention, is the same irrespective of whether the peripheral speed or the rotational speed is evaluated. This applies equally to the drive drum 3 and the cross-wound bobbin 2.
  • the image disturbance according to the invention is based on the representation of the peripheral velocities in Fig. 2 explained.
  • the described evaluations are carried out by the controller 8 and the motor 7 is acted upon by the controller 8 with the corresponding current.
  • the curve 10 represents the peripheral speed of the drive drum 3.
  • the drive drum is accelerated by a suitable engine torque.
  • the acceleration starts at time t 0 .
  • the increase in speed is linear. That is, in the acceleration phase, the engine torque is constant. But it is also possible to use a different curve. It is only important that the drive drum is accelerated.
  • the curve 11, which represents the peripheral speed of the cheese 2 follows the curve 10 only delayed.
  • the distance 12 between the curves 10 and 11 is the slip. If at time t 1, the drive drum 3 has reached a predetermined speed or a predetermined peripheral speed v 2 , the motor current is changed and the drive drum is acted upon by the motor 7 with a braking torque. Then the motor 7 is turned off. The existing friction moments ensure that the drum speed continues to decrease. In principle, it is also possible to let the drive drum 3 from the outset without additional braking current. When the rotational speed or the circumferential speed of the drive drum 3 reaches a predetermined value v 1 at time t 3 , the drive drum is accelerated again and the process is repeated.
  • the drum speed has reached the upper limit and the drive drum is decelerated or decelerated.
  • the cheese 2 can not follow the delay immediately.
  • the speed of the cheese 2 initially continues to increase. Only at the time t 2 , the speed of the cheese 2 reaches its maximum.
  • the braking current of the motor 7 is switched off at the same time t 2 . This achieves an optimal deceleration phase.
  • a quotient is formed. This quotient can be calculated by dividing the time period ⁇ t by the Duration of another functional section are formed. As such time periods, the acceleration time t 1 - t 0 , the flow time t 3 - t 2 or the Schmstörzykluszeit t 3 - t 0 come into question. It is also possible to use sums of said time periods. Thus, the time period ⁇ t can be divided by the sum of acceleration time and flow time (t 1 -t 0 ) + (t 3 -t 2 ).
  • a quotient of the type described above is used to optimally adjust the slip.
  • the quotient is compared with one or more reference values and, depending on the comparison, the acceleration phase of the drive drum is adjusted.
  • the value of the acceleration can be changed by changing the drive torque of the motor 7, that is, the motor current. Thereby, the slope of the curve 10 is changed.
  • the duration of the acceleration can be influenced by the difference ⁇ v between the speeds v 2 and v 1 .
  • the peripheral speeds of drive drum 3 and cross-wound bobbin 2 are equal. That is, at a certain time, no more slip occurs. At this time, the current diameter can be determined in a known manner from the rotational speeds of the drive drum and cross-wound bobbin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bildstörung beim Wickeln einer Kreuzspule (2), die durch eine mit einer Kehrgewinderille (9) für die Fadenführung versehene Antriebstrommel (3) angetrieben wird, wobei durch wiederkehrendes Beschleunigen und Verzögern der Antriebstrommel (3) ein Schlupf (12) zwischen Antriebstrommel (3) und Kreuzspule (2) erzeugt wird. Erfindungsgemäß wird eine erste Zeitdauer (”t) zwischen dem Maximum der Drehzahl der Antriebstrommel (3) und dem darauffolgenden Maximum der Drehzahl der Kreuzspule (2) und eine zweite Zeitdauer, die der Zeitdauer eines anderen Funktionsabschnittes innerhalb eines Bildstörzyklus' oder der Summe der Zeitdauern von Funktionsabschnitten entspricht, erfasst. Es wird ein Quotient aus der ersten Zeitdauer und der zweiten Zeitdauer gebildet und die Beschleunigungsphase der Antriebstrommel (3) in Abhängigkeit von einem Vergleich des Quotienten mit mindestens einem Referenzwert angepasst. Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des Verfahrens.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Bildstörung beim Wickeln einer Kreuzspule, die durch eine mit einer Kehrgewinderille für die Fadenführung versehene Antriebstrommel von einem Motor angetrieben wird, wobei in wiederkehrenden Bildstörzyklen die Antriebstrommel beschleunigt und verzögert wird und durch das Beschleunigen und Verzögern der Antriebstrommel ein sich ändernder Schlupf zwischen Antriebstrommel und Kreuzspule erzeugt wird. Die Erfindung betrifft ferner eine Vorrichtung zum Wickeln einer Kreuzspule und zur Durchführung des Verfahrens. Die Vorrichtung umfasst eine Antriebstrommel mit einer Kehrgewinderille zum Antreiben einer Kreuzspule und zur Fadenführung, einen Motor zum Antreiben der Antriebstrommel und Steuermittel, die dazu ausgebildet sind, den Motor derart mit Strom zu beaufschlagen, dass die Antriebstrommel zur Erzeugung eines eine Bildstörung bewirkenden Schlupfes wiederkehrend beschleunigt und verzögert wird.
  • Die DE 195 19 542 A1 offenbart ein Verfahren und eine Vorrichtung zur Vermeidung von Bildwicklungen beim Wickeln einer Kreuzspule, die durch eine mit einer Kehrgewinderille für die Fadenführung versehenen Antriebstrommel angetrieben wird. Eine solche Antriebstrommel wird auch als Nutentrommel bezeichnet.
  • Mittels einer Nutentrommel werden Kreuzspulen mit konstantem Kreuzungswinkel gefertigt. Konstruktionsbedingt ist das Verhältnis der Umfangsgeschwindigkeit der Kreuzspule zur Changierfrequenz des Fadens konstant. Das Windungsverhältnis, das heißt die Drehzahl der Kreuzspule im Verhältnis zur Changierfrequenz des Fadens, nimmt dabei mit zunehmendem Durchmesser ab. Bei bestimmten Windungsverhältnissen treten sogenannte Bildwicklungen auf. Dabei wird der Faden während einer größeren Anzahl von Umdrehungen stets in einem schmalen Bereich auf dem Umfang der Kreuzspule abgelegt, wodurch das Ablaufverhalten einer Kreuzspule negativ beeinflusst wird.
  • Durch ein wiederkehrendes Beschleunigen und Verzögern der Antriebstrommel entsteht ein ständig wechselnder Schlupf zwischen Antriebstrommel und Kreuzspule. Der Schlupf ist dabei eine Abweichung zwischen den Umfangsgeschwindigkeiten der Antriebstrommel und der Kreuzspule. Durch den wechselnden Schlupf wird dem langsam und kontinuierlich abnehmenden Windungsverhältnis ein ständiger Wechsel überlagert. Das Entstehen von Bildwicklungen kann auf diese Weise weitestgehend verhindert werden.
  • Die Antriebstrommel kann durch einen elektrischen Motor angetrieben werden. Der Motor übt ein Moment auf die Antriebstrommel aus und bewirkt damit die gewünschte Beschleunigung. Damit der Motor das erforderliche Moment ausübt, wird er mit einem Strom beaufschlagt. Beim Ausschalten des Motors wirkt nur noch das durch Reibung bedingte Bremsmoment auf die Antriebstrommel. Durch dieses Reibmoment wird die Antriebstrommel beim Ausschalten des Motors verzögert. Durch geeignete Beaufschlagung des Motors mit Strom kann der Motor in den Verzögerungsphasen aber auch ein zusätzliches Bremsmoment ausüben.
  • Üblicherweise wird die Drehzahl der Antriebstrommel zwischen vorgegebenen Grenzen variiert. Der Motor übt vorgegebene Beschleunigungs- und Bremsmomente aus. Der tatsächliche Schlupf kann dabei jedoch stark variieren, da er nicht nur von den Motormomenten, sondern auch von den jeweiligen Spulparametern abhängt. Solche Spulparameter, die den Schlupf beeinflussen, sind zum Beispiel der Auflagedruck, die Fadenspannung, die Paraffinierung und der Kreuzspulendurchmesser.
  • Um den tatsächlichen Schlupf zu bestimmen, ist die Kenntnis der Umfangsgeschwindigkeiten von Antriebstrommel und Kreuzspule erforderlich. Die Umfangsgeschwindigkeit der Antriebstrommel lässt sich leicht aus der Drehzahl der Antriebstrommel und dem bekannten Durchmesser der Antriebstrommel bestimmen. Bei der Kreuzspule ändert sich der Durchmesser während des Wickelvorganges, so dass eine Ermittlung der Umfangsgeschwindigkeit aus der gemessenen Drehzahl nicht ohne weiteres möglich ist.
  • Die WO 2008/107170 A1 betrifft insbesondere die genaue Messung der Spulbeziehungsweise Fadengeschwindigkeit und dazu geeignete Vorrichtungen. Die Spulgeschwindigkeit entspricht angenähert der Umfangsgeschwindigkeit der Kreuzspule. Der Schlupf soll aus der Spulgeschwindigkeit und der Trommeldrehzahl ermittelt werden. Um den Schlupf zu bestimmen, sind also zusätzliche Sensoren erforderlich. Es wird erläutert, dass es so möglich ist, den durch ein Bildstörverfahren gezielt erzeugten Schlupf zwischen der Nutentrommel und der Kreuzspule zu überwachen. Wenn der Schlupf von einem bestimmten Zielwert abweicht oder einen bestimmten Grenzwert über- oder unterschreitet, kann ein Warnsignal ausgegeben und/oder vorteilhafterweise der Bildstörhub durch eine Steuereinheit automatisch korrigiert werden.
  • Bereits in der DE 196 25 510 A1 wurde ein Verfahren offenbart, das in Verbindung mit dem oben beschriebenen Bildstörverfahren die Ermittlung des Schlupfes nur aus den Drehzahlen von Antriebstrommel und Kreuzspule ermöglicht. Zum Ende der Verzögerungsphase, wenn die Antriebstrommel nicht oder nicht mehr angetrieben wird, rotieren Antriebstrommel und Kreuzspule annähernd schlupffrei. In dieser schlupffreien Auslaufphase wird aus den beiden Drehzahlen der tatsächliche Kreuzspulendurchmesser ermittelt. Wenn kein Schlupf vorhanden ist, stimmt das Verhältnis der Drehzahlen mit dem Verhältnis der Durchmesser von Antriebstrommel und Kreuzspule überein. Aus dem Verlauf des Kreuzspulendurchmessers über mehrere Auslaufphasen kann die Zunahme des Kreuzspulendurchmessers in den Beschleunigungsphasen vorausberechnet werden. Darüber hinaus kann analog zu den Auslaufphasen in der Beschleunigungsphase ein durch den Schlupf verfälschter Durchmesser berechnet werden. Aus der Abweichung beider für die Beschleunigungsphase ermittelten Durchmesser lässt sich der Schlupf berechnen. Die Istwerte des Schlupfes werden mit Sollwerten verglichen und bei Abweichungen werden ein oder mehrere Betriebsparameter der Spulvorrichtung als Stellgröße zum Einregeln der Istwerte auf die Sollwerte verändert. Damit ist es möglich, die Dauer der Beschleunigungsphasen so festzulegen, dass einerseits ein ausreichender und andererseits aber auch kein zu hoher Schlupf entsteht. Damit wird nicht nur die Qualität einer Spule aufgrund einer effektiven Bildstörung verbessert, sondern zusätzlich auch noch der Energieverbrauch der Spulvorrichtung optimiert.
  • Einrichtungen zum Erfassen der Drehzahlen von Antriebstrommel und Kreuzspule werden in der Regel zur Ermittlung des Kreuzspulendurchmessers ohnehin benötigt. Die Lösung der DE 196 25 510 A1 erfordert also keine zusätzlichen Sensoren. Die Berechnung des Schlupfes, insbesondere die Extrapolation des tatsächlichen Kreuzspulendurchmessers während der Beschleunigungsphasen, erfordert jedoch einen gewissen Rechenaufwand und belegt damit Prozessorleistung.
  • Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, die auf einfache Weise ein selbsttätiges Einstellen eines gewünschten Schlupfes unabhängig von den Spulparametern ermöglichen, der eine ausreichende Bildstörung ermöglicht und keine unnötige Energie verbraucht.
  • Zur Lösung der Aufgabe wird eine erste Zeitdauer zwischen dem Maximum der Drehzahl der Antriebstrommel und dem darauffolgenden Maximum der Drehzahl der Kreuzspule, die einem ersten Funktionsabschnitt innerhalb des Bildstörzyklus' entspricht, und eine zweite von den Spulparametern abhängige Zeitdauer, die der Zeitdauer eines anderen Funktionsabschnittes innerhalb eines Bildstörzyklus' oder der Summe der Zeitdauern von Funktionsabschnitten entspricht, erfasst. Aus der ersten Zeitdauer und der zweiten Zeitdauer wird ein Quotient gebildet und die Beschleunigungsphase der Antriebstrommel wird in Abhängigkeit von einem Vergleich des Quotienten mit mindestens einem Referenzwert angepasst.
  • Der Erfindung liegt die Idee zu Grunde, dass die Kenntnis eines Absolutwertes des Schlupfes zur Einstellung beziehungsweise Regelung eines für die Bildstörung optimalen Schlupfes gar nicht erforderlich ist. Es reicht aus, eine Größe zu bestimmen, die ein Maß für den Schlupf darstellt und unabhängig von sonstigen Einflüssen ist. Die Zeitmessung zur Erfassung der Zeit beziehungsweise des Zeitraumes gemäß der vorliegenden Erfindung lässt sich mit moderner Steuerungstechnik einfach umsetzen. Die Drehzahl der Antriebstrommel wird in der Regel vorgegeben. Die Antriebstrommel bewegt sich dann zwischen vorgegebenen Drehzahlgrenzen, das heißt zwischen einer unteren und einer oberen Grenze. Deshalb ist bereits bekannt, wann das Maximum der Drehzahl der Antriebstrommel erreicht ist. Wenn die Antriebstrommel eine vorgegebene Drehzahl erreicht hat, wird der Antrieb ausgeschaltet oder die Antriebstrommel wird mit einem entgegengesetzten Moment, also einem Bremsmoment, beaufschlagt. Zu diesem Zeitpunkt beginnt die Zeitmessung. Die Drehzahl der Antriebstrommel nimmt sofort ab. Aufgrund der Trägheit der Kreuzspule kann die Kreuzspule der Antriebstrommel nicht sofort folgen, die ja zunächst noch eine höhere Umfangsgeschwindigkeit als die Kreuzspule besitzt. Die Drehzahl der Kreuzspule steigt zunächst weiter an, bis sie ein Maximum erreicht hat. Erst dann nimmt die Drehzahl der Kreuzspule der Drehzahl der Antriebstrommel folgend ab. Das Maximum der Drehzahl der Kreuzspule lässt sich leicht durch einen Vergleich eines aktuellen Drehzahlwertes mit einem zuvor ermittelten Drehzahlwert bestimmen. Wenn der aktuelle Wert kleiner oder gleich dem vorigen Wert ist, ist das Maximum erreicht und die Zeitmessung kann gestoppt werden.
  • Der Zeitpunkt der Drehzahlumkehr der Kreuzspule hängt stark vom Schlupf ab. Je größer der Schlupf, desto größer ist die Zeitdauer vom Beginn der Verzögerung der Antriebstrommel bis zur Drehzahlumkehr der Kreuzspule. Diese Zeitdauer hängt allerdings auch stark von anderen Faktoren ab, insbesondere von dem Kreuzspulendurchmesser. Es dauert länger eine große Kreuzspule abzubremsen als eine kleine.
  • Um die Abhängigkeit von den anderen Parametern zu kompensieren, wird eine zweite von den Spulparametern abhängige Zeitdauer bestimmt. Diese gehört zu einem Funktionsabschnitt des gleichen Bildstörzyklus' und wird damit mit den gleichen Spulparametern, insbesondere dem gleichen Durchmesser, durchgeführt. Indem man beide Zeitdauern ins Verhältnis setzt, werden diese Einflussgrößen kompensiert und der Quotient hängt im Wesentlichen nur noch vom Schlupf ab. Die zweite Zeitdauer lässt sich ebenfalls leicht bestimmen, da Funktionsabschnitte in der Regel in Abhängigkeit bestimmter Zustände oder Messwerte durch Steuereingriffe eingeleitet und beendet werden. Die Zeitpunkte zu denen eine Zeiterfassung gestartet und beendet werden muss, sind als ohnehin bekannt.
  • Erfindungsgemäß wird damit auf einfache Weise ein Verhältnis bestimmt, das ein von sonstigen Parametern weitgehend freies Maß für den Schlupf darstellt. Dieses Verhältnis beziehungsweise dieser Quotient kann dann mit einem Referenzwert verglichen werden und so die Parameter der nächsten Beschleunigungsphase bestimmt werden. Der Referenzwert ist unabhängig von den Spulparametern. Der Referenzwert hängt nur von der gewünschten Bildstörung beziehungsweise der gewünschten Energieersparnis ab. Der Referenzwert beziehungsweise die Referenzwerte lassen sich also mit wenig Aufwand empirisch bestimmen. Das ist ein einmaliger Vorgang, da die Referenzwerte, wie oben bereits erläutert, nicht von den Spulparametern abhängen.
  • Vorzugsweise wird ein Motor zum Antreiben der Antriebstrommel zum Verzögern nur für die erste Zeitdauer mit einem Bremsstrom beaufschlagt. Das heißt, der Bremsstrom wird zur Einleitung des Bremsvorganges eingeschaltet und beim Maximum der Drehzahl der Kreuzspule wieder ausgeschaltet. Die Antriebstrommel und die Kreuzspule laufen dann nur gebremst durch die Reibmomente aus. Eine längere Beaufschlagung mit einem Bremsstrom wäre unter Umständen kontraproduktiv. Wenn sich die Drehzahl der Kreuzspule umkehrt, haben sich die Umfangsgeschwindigkeiten der Kreuzspule und der Antriebstrommel im Wesentlichen angenähert. Wenn die Antriebstrommel weiter aktiv gebremst wird, kann die Antriebstrommel wieder weglaufen. Das erzeugt unnötig Reibung und kostet Energie. Durch den beschriebenen Ablauf der Bremsstrombeaufschlagung wird also der Bremsvorgang optimiert und verbraucht weniger Energie.
  • Gemäß einer bevorzugten Ausführungsform wird der Motor zur Beschleunigung mit einem vorgegebenen Strom beziehungsweise Antriebsmoment beaufschlagt und als zweite Zeitdauer wird die Beschleunigungszeit der Antriebstrommel verwendet. Das entspricht der Zeitdauer, die die Antriebstrommel zur Beschleunigung von einer unteren Grenzdrehzahl auf eine obere Grenzdrehzahl benötigt. Da nicht nur die Antriebstrommel selber, sondern auch die aufliegende Kreuzspule beschleunigt werden muss, hängt die Beschleunigungszeit der Antriebstrommel bei unverändertem Beschleunigungsstrom von dem Kreuzspulendurchmesser ab. Sowohl die erste Zeitdauer als auch die zweite Zeitdauer steigt entsprechend dem Kreuzspulendurchmesser an. Durch eine Division lässt sich der Durchmessereinfluss kompensieren.
  • Es ist auch möglich, der Antriebstrommel durch eine entsprechende Regelung einen Drehzahlverlauf vorzugeben. In diesem Fall werden Spulparameter durch die Regelung kompensiert und die Beschleunigungszeit hängt nicht von den Spulparametern ab. In diesem Fall kann die Beschleunigungszeit nicht als zweite Zeitdauer verwendet werden. Für das erfindungsgemäße Verfahren muss für die zweite Zeitdauer ein anderer Funktionsabschnitt gewählt werden.
  • Gemäß einer alternativen Ausführungsform wird als zweite Zeitdauer eine an die erste Zeitdauer anschließende schlupffreie Auslaufzeit verwendet. Die Auslaufzeit erhöht sich entsprechend dem Kreuzspulendurchmesser. Die Durchmesserkompensation funktioniert analog.
  • Als weitere Alternative kann als zweite Zeitdauer die Summe der Beschleunigungszeit der Antriebstrommel und der an die erste Zeitdauer anschließende schlupffreie Auslaufzeit verwendet werden.
  • Die Zeitdauer des gesamten Bildstörungszyklus' kann ebenfalls als zweite Zeitdauer verwendet werden.
  • Die Anpassung der Beschleunigungsphase kann durch Anpassung des Wertes der Beschleunigung der Antriebstrommel erfolgen. Dies geschieht durch Anpassen des Antriebsmomentes. Bei einer Änderung des Antriebsmomentes beziehungsweise des Motorstromes bleibt die Beschleunigungszeit von den Spulparametern abhängig. Gemäß einer Alternative wird die Dauer der Beschleunigung der Antriebstrommel angepasst. Das kann zum Beispiel durch eine Anpassung der Drehzahlgrenzen erfolgen, zwischen denen die Antriebstrommel beschleunigt wird. In diesem Fall wird also keine konkrete Beschleunigungszeit vorgeben, sondern die Dauer der Beschleunigung wird so indirekt angepasst. Die Beschleunigungszeit bleibt damit von Spulparametern abhängig. Die Dauer und der Wert der Beschleunigung lassen sich natürlich auch durch eine Änderung der Drehzahlvorgabe anpassen. In diesem Fall ist die Beschleunigungszeit, wie oben erläutert, nicht mehr von den Spulparametern abhängig.
  • Es ist möglich, nur einen Referenzwert zu verwenden und bei Über- oder Unterschreiten des Referenzwertes den Wert oder die Dauer der Beschleunigung entsprechend nach oben oder unten anzupassen.
  • Gemäß einem alternativen Verfahren wird die Beschleunigung der Antriebstrommel angepasst, wenn der Quotient größer ist als ein erster Referenzwert und die Beschleunigung der Antriebstrommel wird in entgegengesetzter Richtung angepasst, wenn der Quotient kleiner ist als ein zweiter Referenzwert. Auf diese Weise entsteht eine Hysterese und der Quotient wird in dem Band zwischen den beiden Referenzwerten gehalten.
  • Zur Lösung der Aufgabe wird ferner eine Vorrichtung zur Durchführung des Verfahrens vorgeschlagen. Die Steuermittel der Vorrichtung sind erfindungsgemäß dazu ausgebildet, eine erste Zeitdauer zwischen dem Maximum der Drehzahl der Antriebstrommel und dem darauffolgenden Maximum der Drehzahl der Kreuzspule, die einem ersten Funktionsabschnitt innerhalb des Bildstörzyklus' entspricht, und eine zweite von den Spulparametern abhängige Zeitdauer, die der Zeitdauer eines anderen Funktionsabschnittes innerhalb eines Bildstörzyklus' oder der Summe der Zeitdauern von Funktionsabschnitten entspricht, zu erfassen, einen Quotient aus der ersten Zeitdauer und der zweiten Zeitdauer zu bilden und die Beschleunigungsphase der Antriebstrommel in Abhängigkeit von einem Vergleich des Quotienten mit mindestens einem Referenzwert anzupassen.
  • Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert.
  • Es zeigen:
  • Fig. 1
    eine Vorrichtung zum Wickeln einer Kreuzspule;
    Fig. 2
    ein zeitlicher Verlauf der Umfangsgeschwindigkeiten von Antriebstrommel und Kreuzspule.
  • Die Fig. 1 zeigt eine Vorrichtung 1 zum Wickeln einer Kreuzspule 2. Es handelt sich dabei um einen Teil einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine. Solche Kreuzspulen herstellenden Textilmaschinen sind zum Beispiel Spulmaschinen, die einen Faden von einer Ablaufspule auf die Kreuzspule 2 wickeln, oder Rotorspinnmaschinen, bei denen ein gesponnener Faden direkt auf eine Kreuzspule gewickelt wird.
  • Die Wickelvorrichtung umfasst einen Spulenrahmen 4 zum Haltern der Kreuzspule 2. Die Kreuzspule 2 liegt auf einer Antriebstrommel 3 mit einer Kehrgewinderille 9 auf. Die Antriebstrommel 3 nimmt die Kreuzspule 2 über Reibschluss mit. Die Kehrgewinderille 9 sorgt dafür, dass der Faden in kreuzförmigen Fadenlagen auf der Umfangsfläche abgelegt wird. Die Antriebstrommel 3 wird von dem Motor 7 angetrieben. Beide sind direkt über die Welle 13 gekoppelt und rotieren deshalb mit der gleichen Drehzahl. Die Wickelvorrichtung 1 verfügt ferner über eine Steuerung 8. Die Steuerung 8 beaufschlagt den Motor 7 mit Strom. Der Strom bewirkt ein definiertes Motormoment, das auf die Antriebstrommel 3 übertragen wird.
  • Die Steuerung 8 wertet außerdem die Signale der Sensoren 5 und 6 aus. Der Sensor 5 misst die Drehzahl der Kreuzspule 2 und der Sensor 6 misst die Drehzahl der Antriebstrommel 3. In dem dargestellten Ausführungsbeispiel ist der Sensor 6 am Motor 7 angebracht, der die gleiche Drehzahl aufweist wie die Antriebstrommel 3. Alternativ kann die Drehzahl auch direkt an der Antriebstrommel gemessen werden. Es ist auch möglich, die Drehzahl der Antriebstrommel 3 sensorlos aus den elektrischen Größen des Motors 7 zu bestimmen.
  • Die Fig. 2 stellt den zeitlichen Verlauf der Umfangsgeschwindigkeiten von Antriebstrommel 3 und Kreuzspule 2 dar. Die Umfangsgeschwindigkeiten sind in den schlupffreien Phasen identisch. Beim Auftreten eines Schlupfes ist die Abweichung der Umfangsgeschwindigkeiten nur gering. Die Drehzahlen von Antriebstrommel 3 und Kreuzspule 2 können dagegen in Abhängigkeit von dem Durchmesser der Antriebstrommel 3 und der Kreuzspule 2 deutlich voneinander abweichen. Die Drehzahl der Antriebstrommel 3 ist stets proportional zu ihrer Umfangsgeschwindigkeit. Die Drehzahl der Kreuzspule nimmt mit wachsendem Durchmesser ab. Die Lage der Extremwerte, auf die es bei der vorliegenden Erfindung ankommt, ist jedoch gleich unabhängig davon, ob die Umfangsgeschwindigkeit oder die Drehzahl ausgewertet wird. Das gilt gleichermaßen für die Antriebstrommel 3 und für die Kreuzspule 2.
  • Aus oben erläuterten Gründen wird die erfindungsgemäße Bildstörung anhand der Darstellung der Umfangsgeschwindigkeiten in Fig. 2 erläutert. Die beschriebenen Auswertungen werden von der Steuerung 8 ausgeführt und der Motor 7 wird von der Steuerung 8 mit dem entsprechenden Strom beaufschlagt. Der Kurvenverlauf 10 stellt die Umfangsgeschwindigkeit der Antriebstrommel 3 dar. Um einen Schlupf zwischen der Antriebstrommel 3 und der Kreuzspule 2 zu erzeugen, wird die Antriebstrommel durch ein geeignetes Motormoment beschleunigt. Die Beschleunigung startet zum Zeitpunkt t0. In Fig. 2 ist der Anstieg der Geschwindigkeit linear. Das heißt, in der Beschleunigungsphase ist das Motormoment konstant. Es ist aber genauso möglich, einen anderen Kurvenverlauf zu verwenden. Wichtig ist nur, dass die Antriebstrommel beschleunigt wird. Der Kurvenverlauf 11, der die Umfangsgeschwindigkeit der Kreuzspule 2 darstellt, folgt der Kurve 10 nur verzögert. Der Abstand 12 zwischen den Kurven 10 und 11 ist der Schlupf. Wenn zum Zeitpunkt t1 die Antriebstrommel 3 eine vorgegebene Drehzahl beziehungsweise eine vorgegebene Umfangsgeschwindigkeit v2 erreicht hat, wird der Motorstrom verändert und die Antriebstrommel durch den Motor 7 mit einem Bremsmoment beaufschlagt. Dann wird der Motor 7 ausgeschaltet. Die vorhandenen Reibmomente sorgen dafür, dass die Trommeldrehzahl weiter abnimmt. Im Prinzip ist es auch möglich, die Antriebstrommel 3 von vornherein ohne zusätzlichen Bremsstrom auslaufen zu lassen. Wenn die Drehzahl beziehungsweise die Umfangsgeschwindigkeit der Antriebstrommel 3 zum Zeitpunkt t3 einen vorgegebenen Wert v1 erreicht, wird die Antriebstrommel wieder beschleunigt und der Vorgang wiederholt sich.
  • Zum Zeitpunkt t1 hat die Trommeldrehzahl die obere Grenze erreicht und die Antriebstrommel wird abgebremst beziehungsweise verzögert. Die Kreuzspule 2 kann der Verzögerung jedoch nicht unmittelbar folgen. Die Drehzahl der Kreuzspule 2 steigt zunächst weiter an. Erst zum Zeitpunkt t2 erreicht die Drehzahl der Kreuzspule 2 ihr Maximum. In dem dargestellten Ausführungsbeispiel wird zum Zeitpunkt t2 gleichzeitig der Bremsstrom des Motors 7 abgeschaltet. So wird eine optimale Verzögerungsphase erreicht. Die Zeitdauer Δt mit Δt = t2 - t1 ist stark vom Schlupf abhängig, aber auch von anderen Parametern.
  • Um eine Größe zu erhalten, die ein eindeutiges Maß für den Schlupf darstellt, wird ein Quotient gebildet. Dieser Quotient kann durch Division der Zeitdauer Δt mit der Zeitdauer eines anderen Funktionsabschnittes gebildet werden. Als solche Zeitdauern kommen die Beschleunigungszeit t1 - t0, die Auslaufzeit t3- t2 oder die Bildstörzykluszeit t3- t0 in Frage. Es ist auch möglich, Summen der genannten Zeitdauern zu verwenden. So kann die Zeitdauer Δt durch die Summe aus Beschleunigungszeit und Auslaufzeit (t1-t0)+(t3-t2) geteilt werden.
  • Erfindungsgemäß wird ein Quotient der oben beschriebenen Art dazu verwendet, um den Schlupf optimal einzustellen. Dazu wird der Quotient mit einem oder mehreren Referenzwerten verglichen und in Abhängigkeit von dem Vergleich wird die Beschleunigungsphase der Antriebstrommel angepasst.
  • Es ist möglich, entweder den Wert oder die Dauer der Beschleunigung anzupassen. Der Wert der Beschleunigung kann verändert werden, indem das Antriebsmoment des Motors 7, das heißt der Motorstrom, verändert wird. Dadurch wird die Steigung der Kurve 10 geändert. Die Dauer der Beschleunigung kann durch die Differenz Δv zwischen den Geschwindigkeiten v2 und v1 beeinflusst werden.
  • Im weiteren Verlauf der Auslaufphase gleichen sich die Umfangsgeschwindigkeiten von Antriebstrommel 3 und Kreuzspule 2 an. Das heißt, ab einem bestimmten Zeitpunkt tritt kein Schlupf mehr auf. Zu diesem Zeitpunkt kann in bekannter Weise aus den Drehzahlen von Antriebstrommel und Kreuzspule der aktuelle Durchmesser bestimmt werden.

Claims (10)

  1. Verfahren zur Bildstörung beim Wickeln einer Kreuzspule (2), die durch eine mit einer Kehrgewinderille (9) für die Fadenführung versehene Antriebstrommel (3) von einem Motor (7) angetrieben wird, wobei in wiederkehrenden Bildstörzyklen die Antriebstrommel (3) beschleunigt und verzögert wird und durch das Beschleunigen und Verzögern der Antriebstrommel (3) ein wechselnder Schlupf (12) zwischen Antriebstrommel (3) und Kreuzspule (2) erzeugt wird,
    dadurch gekennzeichnet,
    dass eine erste Zeitdauer (Δt) zwischen dem Maximum der Drehzahl der Antriebstrommel (3) und dem darauffolgenden Maximum der Drehzahl der Kreuzspule (2), die einem ersten Funktionsabschnitt innerhalb des Bildstörzyklus' entspricht, und eine zweite von den Spulparametern abhängige Zeitdauer, die der Zeitdauer eines anderen Funktionsabschnittes innerhalb eines Bildstörzyklus' oder der Summe der Zeitdauern von Funktionsabschnitten entspricht, erfasst wird,
    dass ein Quotient aus der ersten Zeitdauer und der zweiten Zeitdauer gebildet wird und
    dass die Beschleunigungsphase der Antriebstrommel (3) in Abhängigkeit von einem Vergleich des Quotienten mit mindestens einem Referenzwert angepasst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Motor (7) zum Verzögern der Antriebstrommel (3) nur für die erste Zeitdauer mit einem Bremsstrom beaufschlagt wird,
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Motor zur Beschleunigung mit einem vorgegebenen Strom beaufschlagt wird und als zweite Zeitdauer die Beschleunigungszeit der Antriebstrommel (3) verwendet wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als zweite Zeitdauer eine an die erste Zeitdauer anschließende schlupffreie Auslaufzeit verwendet wird.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als zweite Zeitdauer die Summe der Beschleunigungszeit der Antriebstrommel und der an die erste Zeitdauer anschließende schlupffreie Auslaufzeit verwendet wird.
  6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als zweite Zeitdauer die Zeitdauer des gesamten Bildstörungszyklus' verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wert der Beschleunigung der Antriebstrommel (3) angepasst wird.
  8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Dauer der Beschleunigung der Antriebstrommel (3) angepasst wird.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Beschleunigung der Antriebstrommel (3) angepasst wird, wenn der Quotient größer ist als ein erster Referenzwert und dass die Beschleunigung der Antriebstrommel (3) in entgegengesetzter Richtung angepasst wird, wenn der Quotient kleiner ist als ein zweiter Referenzwert.
  10. Vorrichtung (1) zum Wickeln einer Kreuzspule (2) und zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 umfassend
    eine Antriebstrommel (3) mit einer Kehrgewinderille (9) zum Antreiben einer Kreuzspule (2) und zur Fadenführung,
    einen Motor (7) zum Antreiben der Antriebstrommel (3),
    Steuermittel (8), die dazu ausgebildet sind, den Motor (7) derart mit Strom zu beaufschlagen, dass die Antriebstrommel (3) zur Erzeugung eines eine Bildstörung bewirkenden Schlupfes (12) in wiederkehrenden Bildstörzyklen beschleunigt und verzögert wird,
    dadurch gekennzeichnet, dass
    die Steuermittel (8) weiter dazu ausgebildet sind, eine erste Zeitdauer (Δt) zwischen dem Maximum der Drehzahl der Antriebstrommel (3) und dem darauffolgenden Maximum der Drehzahl der Kreuzspule (2), die einem ersten Funktionsabschnitt innerhalb des Bildstörzyklus' entspricht, und eine zweite von den Spulparametern abhängige Zeitdauer, die der Zeitdauer eines anderen Funktionsabschnittes innerhalb eines Bildstörzyklus' oder der Summe der Zeitdauern von Funktionsabschnitten entspricht, zu erfassen, einen Quotient aus der ersten Zeitdauer und der zweiten Zeitdauer zu bilden und die Beschleunigungsphase der Antriebstrommel (3) in Abhängigkeit von einem Vergleich des Quotienten mit mindestens einem Referenzwert anzupassen.
EP13005377.0A 2012-12-19 2013-11-15 Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule Active EP2746206B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012024839.3A DE102012024839A1 (de) 2012-12-19 2012-12-19 Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule

Publications (3)

Publication Number Publication Date
EP2746206A2 true EP2746206A2 (de) 2014-06-25
EP2746206A3 EP2746206A3 (de) 2015-12-16
EP2746206B1 EP2746206B1 (de) 2017-01-04

Family

ID=49674112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13005377.0A Active EP2746206B1 (de) 2012-12-19 2013-11-15 Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule

Country Status (4)

Country Link
EP (1) EP2746206B1 (de)
JP (1) JP6218592B2 (de)
CN (1) CN103879836B (de)
DE (1) DE102012024839A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985251A1 (de) * 2014-08-12 2016-02-17 Saurer Germany GmbH & Co. KG Verfahren und vorrichtung zum vermeiden von bildwicklungen beim wickeln einer kreuzspule
DE102016115255A1 (de) 2016-08-17 2018-02-22 Saurer Germany Gmbh & Co. Kg Nutentrommel für eine Kreuzspulen herstellende Textilmaschine, Verfahren zur Herstellung der Nutentrommel und Textilmaschine
DE102020110579A1 (de) 2020-04-17 2021-10-21 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zum Wickeln von Kreuzspulen auf einer Spulmaschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013016644A1 (de) * 2013-10-05 2015-04-09 Saurer Germany Gmbh & Co. Kg Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
JP2016078995A (ja) * 2014-10-17 2016-05-16 村田機械株式会社 糸巻取装置及びパッケージ減速方法
CN106956974A (zh) * 2017-05-18 2017-07-18 响水县天盈纺织有限公司 一种色纺纱烘干收集装置
CN109748143B (zh) * 2018-10-24 2022-03-08 华东理工大学 一种电子往复式多级精密卷绕控制方法
CN109911700B (zh) * 2019-02-27 2021-06-04 上海电气集团股份有限公司 线束缠绕机驱动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519542A1 (de) 1994-06-29 1996-01-04 Schlafhorst & Co W Verfahren und Vorrichtung zur Vermeidung von Bildwicklungen
DE19625510A1 (de) 1996-06-26 1998-01-02 Schlafhorst & Co W Verfahren und Vorrichtung zum Herstellen einer Spule
WO2008107170A1 (de) 2007-03-07 2008-09-12 Vienco Gmbh Verfahren und anordnung zur überwachung und optimierung eines spulprozesses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627879C2 (de) * 1986-08-16 1995-09-28 Barmag Barmer Maschf Verfahren zum Aufwickeln von Fäden
DE3703869C2 (de) * 1987-02-07 1996-12-12 Schlafhorst & Co W Verfahren zum Überwachen und/oder Steuern des Spulvorgangs und Spulstelle zum Ausführen des Verfahrens
DE3916918A1 (de) * 1989-05-24 1990-11-29 Schlafhorst & Co W Verfahren und vorrichtung zum vermeiden von bildwicklungen beim wickeln einer kreuzspule
JPH07187500A (ja) * 1993-12-28 1995-07-25 Murata Mach Ltd ワインダのリボン崩し方法
IT1276739B1 (it) * 1994-06-29 1997-11-03 Schlafhorst & Co W Procedimento e dispositivo per evitare avvolgimenti irregolari
DE102008032654A1 (de) * 2008-07-10 2010-01-14 Oerlikon Textile Gmbh & Co. Kg Verfahren und Vorrichtung zur Bildstörung beim Aufwickeln eines Fadens
CN101830370B (zh) * 2010-03-10 2012-06-20 无锡市百川科技有限公司 一种高速弹力丝机的卷绕控制方法及其卷绕控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519542A1 (de) 1994-06-29 1996-01-04 Schlafhorst & Co W Verfahren und Vorrichtung zur Vermeidung von Bildwicklungen
DE19625510A1 (de) 1996-06-26 1998-01-02 Schlafhorst & Co W Verfahren und Vorrichtung zum Herstellen einer Spule
WO2008107170A1 (de) 2007-03-07 2008-09-12 Vienco Gmbh Verfahren und anordnung zur überwachung und optimierung eines spulprozesses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985251A1 (de) * 2014-08-12 2016-02-17 Saurer Germany GmbH & Co. KG Verfahren und vorrichtung zum vermeiden von bildwicklungen beim wickeln einer kreuzspule
CN105366428A (zh) * 2014-08-12 2016-03-02 索若德国两合股份有限公司 用于在卷绕交叉卷绕筒子时避免叠绕的方法和装置
DE102016115255A1 (de) 2016-08-17 2018-02-22 Saurer Germany Gmbh & Co. Kg Nutentrommel für eine Kreuzspulen herstellende Textilmaschine, Verfahren zur Herstellung der Nutentrommel und Textilmaschine
DE102020110579A1 (de) 2020-04-17 2021-10-21 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zum Wickeln von Kreuzspulen auf einer Spulmaschine

Also Published As

Publication number Publication date
JP2014122117A (ja) 2014-07-03
JP6218592B2 (ja) 2017-10-25
EP2746206B1 (de) 2017-01-04
EP2746206A3 (de) 2015-12-16
DE102012024839A1 (de) 2014-06-26
CN103879836A (zh) 2014-06-25
CN103879836B (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
EP2746206B1 (de) Verfahren zur Bildstörung und Vorrichtung zum Wickeln einer Kreuzspule
DE3703869C2 (de) Verfahren zum Überwachen und/oder Steuern des Spulvorgangs und Spulstelle zum Ausführen des Verfahrens
DE3812449C2 (de) Verfahren und Vorrichtung zum Regeln der Fadenspannung in einer Spulstelle eines Spulautomaten
EP1819857B1 (de) Fadenliefergerät mit rückholbetrieb
DE10021963A1 (de) Verfahren und Vorrichtung zum Aufwickeln eines kontinuierlich zulaufenden Fadens
DE4339217A1 (de) Verfahren zum Steuern einer Spulstelle einer Spulmaschine bei Auflaufspulenwechsel und Spulstelle zur Durchführung des Verfahrens
EP0399243B1 (de) Verfahren und Vorrichtung zum Vermeiden von Bildwicklungen beim Wickeln einer Kreuzspule
DE19519542B4 (de) Verfahren und Vorrichtung zur Vermeidung von Bildwicklungen
DE102012023557A1 (de) Verfahren zum Steuern der Beschleunigung einer Spulenantriebswalze
EP2982632B1 (de) Verfahren und vorrichtung zum bewickeln einer auflaufspule
DE102007062631A1 (de) Vorrichtung zur Überwachung einer unerwünschten Fadenwickelbildung in einer Textilmaschine
DE3521152C2 (de) Verfahren und Vorrichtung zum Vermeiden von Bildwicklungen beim Wickeln einer Kreuzspule
EP0968951B1 (de) Verfahren zum Betreiben einer Kreuzspulen herstellenden Textilmaschine
WO2007006475A1 (de) Vorrichtung zum aufspulen von garnen
EP2172409B1 (de) Verfahren zum Leeren einer pneumatischen Fadenspeichereinrichtung
WO2007045302A1 (de) Verfahren und vorrichtung zur regelung der spulendichte einer garnspule
EP2738123A2 (de) Verfahren zum Regeln der Beschleunigung einer Spulenantriebswalze
DE3324243A1 (de) Falschzwirnkraeuselmaschine und verfahren zur ueberbrueckung kurzzeitiger spannun gsausfaelle an textilmaschinen
EP0451176B1 (de) Fadenliefervorrichtung
DE19607905B4 (de) Verfahren und Vorrichtung zum Herstellen von Kreuzspulen in wilder Wicklung
EP1110896B1 (de) Verfahren zum Wickeln von Kreuzspulen
DE4239579A1 (de) Verfahren zum Wickeln von Kreuzspulen
EP1626024A1 (de) Changiervorrichtung an Spinnmaschine
EP2985251A1 (de) Verfahren und vorrichtung zum vermeiden von bildwicklungen beim wickeln einer kreuzspule
EP2857338B1 (de) Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 54/38 20060101AFI20151109BHEP

Ipc: B65H 54/48 20060101ALI20151109BHEP

R17P Request for examination filed (corrected)

Effective date: 20160616

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160901

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005949

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005949

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

26N No opposition filed

Effective date: 20171005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005949

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 859021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 11