EP2739398B1 - Verfahren und vorrichtung zum herstellen von organischen faserstoffen oder granulaten - Google Patents
Verfahren und vorrichtung zum herstellen von organischen faserstoffen oder granulaten Download PDFInfo
- Publication number
- EP2739398B1 EP2739398B1 EP12743456.1A EP12743456A EP2739398B1 EP 2739398 B1 EP2739398 B1 EP 2739398B1 EP 12743456 A EP12743456 A EP 12743456A EP 2739398 B1 EP2739398 B1 EP 2739398B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- interior
- materials
- fibrous
- extraction pipe
- wood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 32
- 239000008187 granular material Substances 0.000 title claims description 30
- 239000002657 fibrous material Substances 0.000 title claims description 29
- 239000000463 material Substances 0.000 claims description 35
- 239000000835 fiber Substances 0.000 claims description 32
- 239000002023 wood Substances 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000011368 organic material Substances 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 239000003546 flue gas Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 239000002699 waste material Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000010903 husk Substances 0.000 claims description 2
- 239000010893 paper waste Substances 0.000 claims description 2
- 239000010902 straw Substances 0.000 claims description 2
- 238000003306 harvesting Methods 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 description 9
- 238000011049 filling Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 239000002028 Biomass Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920002522 Wood fibre Polymers 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000011122 softwood Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000007380 fibre production Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011155 wood-plastic composite Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001587 Wood-plastic composite Polymers 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C11/00—Other auxiliary devices or accessories specially adapted for grain mills
- B02C11/04—Feeding devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/14—Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/286—Feeding or discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/0012—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
- B02C19/005—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) the materials to be pulverised being disintegrated by collision of, or friction between, the material particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/286—Feeding or discharge
- B02C2013/28609—Discharge means
Definitions
- the present invention relates to a method and a device for producing organic fibrous materials and / or granules, in which a batch is comminuted in an interior of a device for comminuting materials by an impact load.
- the DE 199 15 154 A1 shows a process for the production of porous composite materials from renewable raw materials by combination and thermomechanical preparation and hydro-thermal treatment.
- wooden parts are shredded using a shredder and then fiberized in a twin-screw extruder system with the addition of a magnesium / calcium mixture and biogenic silica, whereby cell structures and lignin bonds in the wood are broken up using pressure, temperature and mechanical processing.
- WO 97/18071 A1 a method and an apparatus for processing components made of mixed plastics and other construction materials mixed with them, such as metal parts, glass, rubber, wood, fiber materials and the like Known, the components are crushed in an agglomerator by an impact and the plastic, metal, glass, rubber and wood parts and fibers are separated from each other or the plastics are processed into granules or as a mass in the plastic state.
- a method for producing organic fibrous materials or granules in which a batch comprising at least one fiber-containing organic material is introduced into an interior of a device for comminuting materials by an impact stress and comminuted in this interior by impact impact, whereby a organic fiber or an organic granulate is removed from the interior.
- the removal takes place by means of a suction pipe protruding into the interior, the suction pipe being pivotable perpendicular to a longitudinal axis of the interior and / or is displaceable and wherein the suction tube has at least one double-walled section with injection nozzles.
- Granules in the sense of the present invention are understood to mean a fraction with granular constituents with a size from the macroscopic to the nm range.
- an organic fibrous material and an organic granulate can also be produced in parallel by means of the method according to the invention.
- a device for producing organic fibrous materials or granules with an interior space for receiving a batch comprising at least one fiber-containing organic material is provided, the device being set up for crushing the batch received in the interior space by an impact load, and wherein the device furthermore has at least one removal device for removing the fibrous material or granulate from the interior.
- the removal device has at least one suction tube projecting into the interior, the suction tube being pivotable and / or displaceable perpendicularly to a longitudinal axis of the interior, and wherein the suction tube has at least one double-walled section with injection nozzles.
- the present invention makes cold mechanical processing more organic Fibers and granules made possible by means of a device called crushing reactor for crushing materials by an impact load in a non-cutting or non-cutting process.
- a device called crushing reactor for crushing materials by an impact load in a non-cutting or non-cutting process.
- thermal preheating process such as the pre-cooking of wood chips
- large electric drives or complex drying processes there is little need for water, thermal and electrical energy, and there is hardly any waste water.
- inexpensive raw and residual materials can be used.
- the method according to the invention and the device according to the invention are thus inexpensive and resource-saving.
- the mechanical tool wear in the device according to the invention is considerably less than, for example, in the case of a refiner.
- the invention is used, inter alia, in the wood-based materials industry, in the insulation material industry, in the building materials industry and in particular in the production of vapor diffusion-open and windproof DWD boards, that is to say statically stable or flexible insulation boards, in the production of thermoplastically processable composite materials, in the fiber processing industry, the wood dust processing industry, the food and feed industry as well as the specific raw material logistics.
- Process parameters and possible installations in the device or in its interior can be adapted or set accordingly to desired processes or to intermediate or end products.
- one or more removal devices such as sieves
- one or more removal devices can be provided at different positions or flaps.
- Separation systems such as screening plants or centrifugal separators such as cyclone separators or cyclones and wet separators can be arranged downstream of the extraction devices. In principle, any combinations of such elements are possible, and separators can be provided both in parallel and sequentially in any order.
- the batch may comprise only one type of fibrous organic material, but may also contain several types of such materials.
- the batch can consist of a mixture of different fiber-containing organic materials.
- An automatic control for the method or the device can be provided.
- One or more parameters such as the power consumption of the device, the geometry of the device, the dwell time of the batch in the device or the degree of filling of the interior of the device can be used for this purpose.
- the operating temperature of the device is therefore preferably less than approximately 50 ° C.
- granular dry ice can be provided for cooling, as is also used as a sand substitute for sandblasting processes. Dry ice is advantageous because, on the one hand, it increases the degree of filling of the device and, on the other hand, it further supports the comminution process, but does not further moisten the reaction material.
- the installation of cooling fins in the outer walls of the reaction chamber or the intake of cooling air can serve to regulate the temperature of the reaction space.
- the fibrous organic material is therefore preferably wood and / or a wood-like material and / or a first shredder, for example of shredding places and / or a residue from paper production and / or waste paper and / or straw and / or about grain husks and / or crop residues from agriculture.
- the material can be raw wood such as wood chips, chopped wood, residual wood from the paper industry, woody parts from hedges and shrub clippings, wood from short rotation plantations (SRC) or other wood-like and fiber-containing biomass.
- processing bark in particular softwood bark
- softwood bark is also conceivable as a waste product from sawmills.
- An admixture of hardwood to softwood with a proportion of approximately 10% to 15% has proven to be particularly advantageous, since this improves the quality of the fibers produced in such a way that longer fibers with a length of more than 2.5 mm can be obtained.
- fibers can be obtained for the production of compressed insulation boards made of wood materials, blow-in insulation materials made of wood and cellulose fibers. Fibers or granules can also be obtained for sprayable and extrudable biopolymers as well as so-called wood-plastic composites or WPC.
- the starting material contains a certain proportion of water, preferably between about 35-55% by weight. With a lower moisture content, primarily granules are produced.
- the ratio between the volume of the batch and the volume of the interior before the onset of impact is particularly preferably below 6% or 5% or between 3% and 6% or between 3% and 5%.
- This ratio or the degree of filling of the device can be measured, for example, by the load on a motor driving the device. If the degree of filling is above 6%, the speed of particles of the batch moving in the interior decreases, or the batch no longer frayed and is merely stirred and heated. If the motor is a two-pole motor, a speed of 2800 rpm or a speed of between 1800 rpm and 3000 rpm is preferably set for this.
- the decisive factor is the achievement of a certain peripheral speed of the rotor.
- the fibrous material or the granulate is at least partially removed by suction from the interior of the device and / or the fibrous material and / or the granulate is at least partially removed from the interior of the device during operation.
- the removal device has at least one suction tube protruding into the interior.
- the suction tube can be pushed into the interior with a variable depth of penetration and / or can be pivoted and / or displaced perpendicularly to a longitudinal axis of the interior and / or can be pivoted and / or displaced parallel to a longitudinal axis of the interior to move the fiber material or granules out at various points in the interior to be able to suck it off.
- the suction can depend on the type of turbulence generated and desired Fiber quality additionally or alternatively also take place above the actual impact space; if two or more suction devices are used, their suction ratio to one another can be designed to be adjustable.
- the removal of a sieve fraction can also be provided, which contains both considerable proportions of fiber material and coarse material. Such coarse materials can then be screened out using a sieve cascade.
- One or more steering or wing elements can be provided in the interior of the device according to the invention in order to direct air or material flows in the interior. If the extraction device has a suction pipe, this is preferably arranged on the lee side of the steering or wing element in order to prevent undesired penetration of material into the suction pipe and thereby to achieve the best possible suction results.
- the suction pipe has at least one double-walled section with injection nozzles.
- the suction pipe can be equipped with a cleaning device, in particular a preferably displaceable screw.
- the fibrous material and / or the granulate can be removed from the interior either continuously and / or discontinuously.
- the fibrous material can be continuously sucked out of the interior while the device is in operation, while coarse parts are removed from the interior through a flap or a sieve after certain time intervals.
- Part of the organic material can advantageously be removed from the interior and then reintroduced into it.
- coarse parts which have not yet been shredded to a predetermined size, can be inadvertently returned to the device in order to be further shredded there.
- a gas with an oxygen content of less than 13% or cold flue gas, in particular dedusted by means of a fine dust filter, can advantageously be introduced into the interior as the conveying or intake air.
- the fibrous materials or granules are dry and dust-forming and therefore explosive, since the addition of such a gas reduces the risk of explosion.
- the batch can be introduced into the interior using a mechanical or pneumatic dosing device. It can be conveyed over belts, conveyor rollers, spiked rollers, cups or screws and can be introduced in different denominations, material mixtures and degrees of moisture.
- a suitable choice of the dosing devices can be used, for example, to pre-shred or pre-condition the material.
- measuring points such as optical measuring devices can be provided at the end of a suction pipe of the removal device or in the interior of the device according to the invention, in order to measure the humidity and the temperature there.
- the fiber quality can be determined in situ while the method according to the invention is being carried out and, if necessary, used as an input variable for adjusting the intake pipe.
- FIG Figure 1 A highly simplified and schematic illustration of an exemplary device 1 is shown in FIG Figure 1 shown.
- a cylindrical interior 2 can be seen Impact reactor device 1, into which a suction pipe 3 of a removal device, not shown, protrudes.
- a suction pipe 3 of a removal device not shown, protrudes.
- the rotor 4 in the interior 2, which can be rotated by a drive motor 5 positioned outside the interior 2.
- the batch In order to crush a batch of a fiber-containing organic material, the batch is filled into the interior 2 of the impact reactor 1 by means of a metering device, not shown in the figure.
- the filling process is supported by the negative pressure which arises during the operation of the impact reactor 1.
- Gravity also has a supporting effect when filling from above. It can also be filled in parallel by means of, for example, a feed screw from the side or tangentially into the interior.
- the rotor 4 is set in rotation by means of the drive motor 5.
- the one in the Figure 1 clockwise rotating rotor 4 generates, at a corresponding speed of rotation in the interior 2, an air vortex rotating in the same direction as the rotor 4, which entrains and swirls the fibrous organic material filled into the interior 2.
- the size of the shredded material in the vortex decreases towards the center of the interior 2 or towards its longitudinal axis 6.
- the suction tube 3 which as in the double arrows in the Figure 1 indicated, can be pushed as far as possible into the interior 2 and can be pivoted or displaced perpendicularly and parallel to the longitudinal axis 6 of the interior 2, by placing an opening of the suction tube 3 in the interior 2 appropriately during the operation of the impact reactor 1, fibers or fibers resulting from the crushed organic material Granules of different sizes can be sucked out of the interior 2.
- the opening of the suction pipe 3 can be positioned on a side facing away from the air vortex prevailing in the interior 2. In other words, the opening is placed on the lee side with respect to the air vortex.
- the suction pipe 3 is equipped with the optionally reversible cleaning unit 31, which is designed as a screw in the present example and is not claimed, through which clogging of the suction tube by the extracted material can be avoided.
- a double-walled suction tube with injection nozzles is provided instead of the cleaning unit 31 designed as a screw.
- the device according to the invention is similar to the device according to Fig. 1 ,
- the above-mentioned double-walled suction pipe with injection nozzles can be used to clean the inside of the pipe by cyclically building up an overpressure in the double wall.
- a kind of air cushion can be generated in the area of the inner wall of the suction pipe 3 by a constant overpressure in the double wall, whereby moist fiber material is kept away from the wall and the same can be prevented from becoming stuck.
- the impact reactor 1 is shown as part of a larger plant 7 for producing fiber material from raw wood (A) obtained in different fractions.
- A raw wood
- the raw wood (A) mentioned is, for example, wood chips, first shredded material or wood-like residues of approximately 250 mm to 300 mm in length and an approximate diameter of up to approximately 100 mm, with around 10% to 15% of the raw wood (A ) consist of hardwood, which are cleaned, classified and homogenized in a separator 8 of the plant 7, such as a gravity classifier, a star or drum sieve or an impact reactor similar to the impact reactor 1. If an impact reactor is used as the separator 8, this can be equipped with sieves or flaps for material removal; otherwise it can be constructed essentially identically to the impact reactor 1.
- Good grain A1 obtained as oversize or undersize is first conveyed into a metering container 10 and from there via a metering device 11 into the impact reactor 1.
- Various other wood fractions or additives, such as binders, fire or pest inhibitors, can also be added to the impact reactor 1 as additional material (B) by means of the dosing device 12, as can gut grain 18, which, as will be explained in more detail below, by means of the dosing device 13 is returned to the impact reactor 1 to produce a suitable target grain.
- a target grain with a high proportion of isolated natural fibers with a length of is for the insulation production 0.5 mm to 3.5 mm and a diameter of 0.02 mm to 0.06 mm are necessary, or fiber bundles are required which consist of three to ten individual fibers of corresponding length.
- a batch of the impact reactor 1 consisting of the starting materials mentioned takes up between 3% and 6% of the interior 2 of the impact reactor 1.
- the products created as a result of the impact stress can be sucked out of the interior 2 continuously or discontinuously via the suction pipe 3. Since the depth of penetration of the suction tube 3 into the interior 2 is adjustable and since the suction tube 3 can be pivoted or displaced vertically and horizontally, the suction tube 3 can be adjusted such that only products with the desired fiber sizes or fiber qualities are extracted. The pipe dimensions and the design of the discharge opening are other important factors. In a cyclone 14 downstream of the plant 7, these extracted products are separated.
- products can also be withdrawn discontinuously from the impact reactor 1, collected in a container 15 and fed to a further use, for example a thermal one. It is also possible to return the products A2 via a feed line 16 back into the impact reactor 1.
- the products are conveyed into a further gravity separator 17, such as a zigzag sifter, where they are separated according to the desired target fractions (C).
- a screening plant can also be used. Oversize is withdrawn from the gravity separator 17 or the screening plant into a container 18 and conveyed back into the impact reactor 1 for further defibration by means of the dosing device 13.
- the gas stream 23 ′ which can originate from the same source as the gas stream 23, can be fed to the gravity separator 17.
- the target fractions (C) are separated again via a further cyclone 19.
- the resulting target grain can then be fed into a buffer store 20 and then to a dryer 21 via metering.
- the target grain (C1) is dried to a predetermined final moisture.
- heat is used, which is obtained in the above-mentioned biomass power plant by burning, for example, the grain fractions 9 and is fed to the dryer 21 by means of the gas stream 23 ′′.
- the target grain (C1) is finally available as a ready-to-use end product, for example in the form of a fiber quantity as the primary or secondary raw material in a bunker 22 of the plant 7.
- the end product can for example have fibers of 0.5 mm to 2.5 mm in length and a diameter of 20 ⁇ m to 60 ⁇ m.
- a gas 23 with a low oxygen content preferably a dry flue gas
- a gas 23 with a low oxygen content is passed into the impact reactor 1 with a suitable temperature as the conveying or intake air .
- the quality and quantity of the good grain is continuously measured at various points 24, 25, 26 of the system 7.
- An ultrasonic measuring method is particularly suitable for this.
- the dosers and thus the filling volume of the impact reactor 1 are regulated by forming a sum from the measuring points 24, 25, 26.
- the process control is intended to ensure a production process that is as continuous as possible with a corresponding good grain quality.
- the quality of the fibers produced in the impact reactor 1 depends on various factors, including the piece size, type of wood and the moisture content, as well as the bulk density of the starting materials, the degree of filling of the interior 2, the geometry and the volume of the interior 2 Formation of the rotor 4 and any baffle provided, angles and distances of the rotor 4 from the walls of the interior 2, the centrifugal acceleration of the materials, the feed and discharge elements of the impact reactor 1, the air circulation and flow through the interior 2, and the average distance of particles belong in the interior 2.
- the degree of filling of the impact reactor 1 is particularly suitable as a control variable. Filling levels in the range of 3-6% are advantageous.
- the suction pipe 3 is a pipe which is connected to a suction hose 35.
- the suction pipe 3 held by a holder 36 penetrates above the bottom 37 of the impact reactor 1, the wall thereof, which comprises a cover plate 38 facing away from the interior 2 and a sieve plate 39 facing the interior 2.
- deflector blades 40 are attached to the screen plate 39 adjacent to the suction tube 3 such that the opening of the suction tube 3 is on the lee side of the deflector blades 40 during operation of the impact reactor 1.
- the deflector blades 40 which are adjustable in height and angle, ensure that no material can inadvertently enter the suction tube 3.
- FIG. 3 Also recognizable in Figure 3 is a further suction pipe 3 ', which is arranged in a region 22 above that region of the interior in which the comminution takes place primarily. Basically, there is the possibility of equipping the impact reactor 1 with both tubes 3 and 3 'or with only one of the tubes mentioned.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Disintegrating Or Milling (AREA)
- Processing Of Solid Wastes (AREA)
- Preliminary Treatment Of Fibers (AREA)
Description
- Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Herstellen von organischen Faserstoffen und/oder Granulaten, bei denen eine Charge in einem Innenraum einer Vorrichtung zum Zerkleinern von Materialien durch eine Prallbeanspruchung zerkleinert wird.
- Die
DE 199 15 154 A1 zeigt ein Verfahren zur Herstellung von porösen Verbundwerkstoffen aus nachwachsenden Rohstoffen durch Kombination und thermomechanischer Aufbereitung und hydro-thermaler Behandlung. Bei diesem Verfahren werden Holzteile mittels eines Schredders zerkleinert und anschließend unter Zugabe eines Magnesium/Calcium-Gemisches und biogener Kieselsäure in einer Doppelschnecken-Extruder-Anlage zerfasert, wobei Zellstrukturen und Ligninbindungen im Holz mit Hilfe von Druck, Temperatur und mechanischer Bearbeitung aufgebrochen werden. - Aus der
DE 102 42 770 A1 ist ferner ein Verfahren zur Herstellung von Holzfaser-Dämmplatten bekannt, bei dem Hackschnitzel im Trockenverfahren in einem Refiner gemahlen werden. - Des Weiteren sind aus der
WO 97/18071 A1 - Weiterhin ist aus der US-Patentanmeldung
US 3 268 179 A eine Pulverisiermühle insbesondere für Soja oder Mais gemäß dem Oberbegriff des Vorrichtungsanspruchs 11 bekannt, in welcher ebenfalls organische Stoffe durch Prallbeanspruchung zerkleinert werden. - Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zum Herstellen von organischen Faserstoffen oder Granulaten zu schaffen, die kostengünstig und ressourcensparend sind.
- Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Anspruchs 1 und durch die Vorrichtung mit den Merkmalen des Anspruchs 11 gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
- Gemäß der vorliegenden Erfindung wird ein Verfahren zum Herstellen von organischen Faserstoffen oder Granulaten vorgeschlagen, bei dem eine wenigstens ein faserhaltiges organisches Material aufweisende Charge in einen Innenraum einer Vorrichtung zum Zerkleinern von Materialien durch eine Prallbeanspruchung eingebracht und in diesem Innenraum mittels Prallbeanspruchung zerkleinert wird, wobei ein organischer Faserstoff oder ein organisches Granulat aus dem Innenraum entnommen wird. Dabei erfolgt die Entnahme mittels eines in den Innenraum ragenden Absaugrohres, wobei das Absaugrohr senkrecht zu einer Längsachse des Innenraumes veschwenkbar und/oder verschiebbar ist und wobei das Absaugrohr wenigstens einen doppelwandigen Abschnitt mit Injektionsdüsen aufweist.
- Unter einem Granulat im Sinne der vorliegenden Erfindung wird eine Fraktion mit körnigen Bestandteilen mit einer Größe aus dem makroskopischen bis in den nm-Bereich verstanden.
- Insbesondere können mittels des erfindungsgemäßen Verfahrens ein organischer Faserstoff und ein organisches Granulat auch parallel erzeugt werden.
- Ferner wird gemäß der vorliegenden Erfindung eine Vorrichtung zum Herstellen von organischen Faserstoffen oder Granulaten mit einem Innenraum zum Aufnehmen einer wenigstens ein faserhaltiges organisches Material aufweisenden Charge geschaffen, wobei die Vorrichtung zum Zerkleinern der im Innenraum aufgenommenen Charge durch eine Prallbeanspruchung eingerichtet ist, und wobei die Vorrichtung ferner wenigstes eine Entnahmeeinrichtung zum Entnehmen des Faserstoffes oder Granulats aus dem Innenraum aufweist. Dabei weist die Entnahmeeinrichtung wenigstens ein in den Innenraum ragendes Absaugrohr auf, wobei das Absaugrohr senkrecht zu einer Längsachse des Innenraumes verschwenkbar und/oder verschiebbar ist und wobei das Absaugrohr wenigstens einen doppelwandigen Abschnitt mit Injektionsdüsen aufweist.
- Im Unterschied zu bekannten energieintensiven Verfahren zur Fasergewinnung in der Dämmstoff- und Papierindustrie, die Nassverfahren und Trockenverfahren mit Zerfaserungen in Refiner genannten Mahlvorrichtungen einsetzen, und bei denen Faserplatten gepresst und getrocknet werden, wird mit der vorliegenden Erfindung eine kaltmechanische Aufbereitung organischer Faserstoffe und Granulate mittels einer Prallreaktor genannten Vorrichtung zum Zerkleinern von Materialien durch eine Prallbeanspruchung in einem nichtschneidenden bzw. nichtspanenden Verfahren ermöglicht. Es ist weder ein energieintensives thermisches Vorwärmverfahren wie das Vorkochen von Hackschnitzeln noch der Einsatz von großen Elektroantrieben oder aufwändigen Trocknungsverfahren notwendig. Folglich besteht nur ein geringer Bedarf an Wasser, thermischer und elektrischer Energie, und es fällt auch kaum Abwasser an. Zudem können kostengünstige Roh- und Restmaterialien eingesetzt werden. Insgesamt sind das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung somit kostengünstig und ressourcensparend. Zudem ist bei der erfindungsgemäßen Vorrichtung der mechanische Werkzeugverschleiß wesentlich geringer als zum Beispiel bei einem Refiner.
- Die Erfindung findet unter anderem Anwendung in der Holzwerkstoffindustrie, in der Dämmstoffindustrie, in der Baustoffindustrie und insbesondere bei der Herstellung von dampfdiffusionsoffenen und winddichten DWD-Platten, also statisch stabilen oder flexiblen Dämmplatten, bei der Herstellung von thermoplastisch verarbeitbaren Verbundwerkstoffen, in der faserverarbeitenden Industrie, der Holzstaub verarbeitenden Industrie, der Lebens- und Futtermittelindustrie sowie der spezifischen Rohstofflogistik. Prozessparameter und eventuelle Einbauten in der Vorrichtung bzw. in deren Innenraum können an gewünschte Verfahren oder an Zwischen- oder Endprodukten entsprechend angepasst oder eingestellt werden.
- Bei der Vorrichtung, die insbesondere als Prallreaktor ausgebildet sein kann, können an verschiedenen Positionen eine oder mehrere Entnahmeeinrichtungen vorgesehen sein, wie Siebe oder Klappen. Abscheidesysteme wie Siebanlagen oder Fliehkraftabscheider wie Zyklonabscheider oder Zyklone und Nassabscheider können den Entnahmeeinrichtungen nachgeordnet sein. Grundsätzlich sind beliebige Kombinationen derartiger Elemente möglich, wobei Abscheider sowohl parallel als auch sequentiell in beliebigen Reihenfolgen vorgesehen sein können.
- Die Charge kann nur eine Art eines faserhaltigen organischen Materials umfassen, sie kann aber auch mehrere Arten derartiger Materialien enthalten. Beispielsweise kann die Charge aus einem Gemenge verschiedener faserhaltiger organischer Materialien bestehen.
- Es kann eine automatische Steuerung für das Verfahren bzw. die Vorrichtung vorgesehen werden. Zu diesem Zweck können ein oder mehrere Parameter wie die Leistungsaufnahme der Vorrichtung, die Geometrie der Vorrichtung, die Verweilzeit der Charge in der Vorrichtung oder der Füllungsgrad des Innenraumes der Vorrichtung verwendet werden.
- Um ein frühzeitiges Trocknen von (Holz-) Fasern, die dabei spröde werden und brechen können, innerhalb der Vorrichtung zu vermeiden, wird vorteilhafterweise eine Erwärmung der in die Vorrichtung eingebrachten Charge vermieden. Bevorzugt beträgt die Betriebstemperatur der Vorrichtung deshalb weniger als ungefähr 50°C. Zur Kühlung kann beispielsweise körniges Trockeneis vorgesehen werden, wie es auch als Sandersatz für Sandstrahlverfahren verwendet wird. Trockeneis ist deswegen von Vorteil, weil es einerseits den Füllgrad der Vorrichtung erhöht und andererseits den Zerkleinerungsvorgang weiter unterstützt, aber das Reaktionsgut nicht weiter befeuchtet. Auch der Einbau von Kühlrippen in die Außenwände des Reaktionsraums oder das Ansaugen von Kühlluft können zur Temperaturregelung des Reaktionsraums dienen.
- Mit der vorliegenden Erfindung können insbesondere Restholzchargen verwertet werden, die bisher nicht zur Fasergewinnung genutzt werden konnten, wodurch sich abermals erhebliche Ersparnisse bei den Produktionskosten ergeben. Bevorzugt handelt es sich bei dem faserhaltigen organischen Material daher um Holz und/oder um ein holzartiges Material und/oder um ein Erstschreddergut bspw. von Häckselplätzen und/oder um einen Reststoff aus der Papierherstellung und/oder um Altpapier und/oder um Stroh und/oder um Getreidehülsen und/oder um Erntereste aus der Landwirtschaft. Beispielsweise kann es sich bei dem Material um Rohholz wie Holzhackschnitzel, Kappholz, Restholz aus der Papierindustrie, holzige Anteile aus Hecken und Strauchschnitt, Hölzer aus Kurzumtriebsplantagen (KUP) oder um andere holzähnliche und faserhaltige Biomassen handeln. Insbesondere ist auch eine Verarbeitung von Rinde, insbesondere von Nadelholzrinde als Abfallprodukt aus Sägewerken denkbar. Als besonders vorteilhaft erweist sich eine Beimischung von Laubholz zum Nadelholz mit einem Anteil von ungefähr 10% bis 15%, da hierdurch die Qualität der erzeugten Fasern dahingehend verbessert wird, dass längere Fasern mit einer Länge von mehr als 2,5 mm gewonnen werden können. Hierdurch lassen sich Fasern für die Herstellung von verdichteten Dämmplatten aus Holzwerkstoffen, Einblasdämmstoffen aus Holz- und Zellulosefasern gewinnen. Ferner lassen sich Fasern oder Granulat für spritz- und extrudierfähige Biopolymere sowie sogenanntes Wood-Plastic-Composite oder WPC gewinnen.
- Zur Erzeugung von Faserstoffen ist es vorteilhaft, wenn das Ausgangsmaterial einen bestimmten Anteil von Wasser enthält, vorzugsweise ca. zwischen 35-55 Gew%. Bei einem geringeren Feuchtigkeitsanteil werden primär Granulate erzeugt.
- Besonders bevorzugt liegt das Verhältnis zwischen dem Volumen der Charge und dem Volumen des Innenraums vor Einsetzen der Prallbeanspruchung unterhalb von 6% oder von 5% oder zwischen 3% und 6% oder zwischen 3% und 5%.Dieses Verhältnis bzw. der Füllgrad der Vorrichtung lässt sich beispielsweise über die Auslastung eines die Vorrichtung antreibenden Motors messen. Sofern der Füllgrad oberhalb von 6% liegt, sinkt die Geschwindigkeit von sich im Innenraum bewegenden Partikeln der Charge, bzw. die Charge zerfasert nicht mehr und wird lediglich umgerührt und erwärmt. Sofern es sich bei dem Motor um einen zweipoligen Motor handelt, wird für diesen bevorzugt eine Drehzahl von 2800 U/min oder eine Drehzahl zwischen 1800 U/min und 3000 U/min eingestellt. Maßgeblich ist die Erreichung einer bestimmten Umfangsgeschwindigkeit des Rotors.
- Bei einer bevorzugten Ausführung wird der Faserstoff oder das Granulat wenigstens teilweise durch Absaugen aus dem Innenraum der Vorrichtung entnommen und/oder der Faserstoff und/oder das Granulat wird wenigstens teilweise während eines Betriebs der Vorrichtung aus deren Innenraum entnommen. Zum Absaugen weist die Entnahmeeinrichtung wenigstens ein in den Innenraum ragendes Absaugrohr auf. Das Absaugrohr ist mit variabler Eindringtiefe in den Innenraum schiebbar und/oder senkrecht zu einer Längsachse des Innenraumes verschwenkbar und/oder verschiebbar und/oder parallel zu einer Längsachse des Innenraumes verschwenkbar und/oder verschiebbar, um das Fasermaterial oder Granulat an verschiedenen Stellen des Innenraumes aus diesem absaugen zu können. Die Absaugung kann je nach Art der erzeugten Turbulenz und gewünschten Faserqualität zusätzlich oder alternativ auch oberhalb des eigentlichen Prallraums erfolgen; im Falle der Verwendung zweier oder mehrerer Absaugungen kann deren Absaugverhältnis zu einander einstellbar gestaltet sein. Parallel zum Absaugen kann des Weiteren die Entnahme einer Siebfraktion vorgesehen sein, die sowohl erhebliche Anteile von Fasermaterial als auch Grobstoffe enthält. Derartige Grobstoffe können dann mittels einer Siebkaskade ausgesiebt werden.
- Im Innenraum der erfindungsgemäßen Vorrichtung können ein oder mehrere Lenk- oder Flügelelemente vorgesehen sein, um Luft- bzw. Materialströme im Innenraum zu lenken. Sofern die Entnahmeeinrichtung ein Absaugrohr aufweist, so ist dieses vorzugsweise auf der Lee-Seite des Lenk- oder Flügelelementes angeordnet, um ein unerwünschtes Eindringen von Material in das Absaugrohr zu verhindern und dadurch möglichst optimale Ansaugergebnisse zu erzielen.
- Um während des Betriebes einen möglichst konstanten Absaugquerschnitt und damit Materialfluss gewährleisten zu können, weist das Absaugrohr wenigstens einen doppelwandigen Abschnitt mit Injektionsdüsen auf. Gemäß einem Beispiel, das kein Teil der Erfindung bildet, kann das Absaugrohr mit einer Reinigungsvorrichtung, insbesondere einer vorzugsweise verschiebbaren Schnecke ausgestattet sein.
- Der Faserstoff und/oder das Granulat können entweder kontinuierlich und/oder diskontinuierlich aus dem Innenraum entnommen werden. So kann beispielsweise der Faserstoff während des Betriebs der Vorrichtung kontinuierlich aus dem Innenraum abgesaugt werden, während Grobteile nach gewissen Zeitabständen durch eine Klappe oder ein Sieb aus dem Innenraum entnommen werden.
- Vorteilhafterweise kann ein Teil des organischen Materials aus dem Innenraum entnommen und anschließend in diesen wieder eingebracht werden. Beispielsweise lassen sich versehentlich mit abgesaugte Grobteile, die noch nicht bis zu einer vorgegebenen Größe zerkleinert worden sind, in die Vorrichtung zurückführen, um dort weiter zerkleinert zu werden.
- Als Förder- oder Ansaugluft wird kann vorteilhaft ein Gas mit einem Sauerstoffanteil von unter 13% oder kaltes, insbesondere mittels eines Feinstaubfilters entstaubtes Rauchgas in den Innenraum eingeführt werden. Dies ist insbesondere dann von Vorteil, wenn die Faserstoffe oder Granulate trocken und staubbildend und damit explosionsgefährdet sind, da die Zugabe eines solchen Gases die Explosionsgefahr vermindert. Bevorzugt wird eine rauchseitige und wärmeseitige Einbindung in ein Biomassekraftwerk, in dem besonders bevorzugt aus den zu zerkleinernden organischen Feststoffen und Granulaten vor dem Zerkleinern als stofflich unbrauchbar ausgesonderte Anteile verbrannt werden.
- Die Charge kann mittels eines mechanischen oder pneumatischen Dosierers in den Innenraum eingebracht werden. Sie kann dabei über Bänder, Förderwalzen, Stachelwalzen, Becher oder Schnecken gefördert werden und in verschiedenen Stückelungen, Materialmischungen und Feuchtigkeitsgraden eingebracht werden.
- Durch eine geeignete Wahl der Dosierer kann bspw. eine Vorzerkleinerung oder auch eine Vorkonditionierung des Materials erreicht werden.
- Dadurch, dass der Faserstoff und/oder das Granulat hinsichtlich der Partikelgröße mittels eines Ultraschall- oder optischen Verfahrens zu diskreten Zeitpunkten oder kontinuierlich vermessen wird, kann eine ständige Prozessüberwachung mit dem Ziel einer optimalen Qualität des erhaltenen Produktes erreicht werden. Beispielsweise können Messstellen wie optische Messeinrichtungen am Ende eines Absaugrohres der Entnahmeeinrichtung vorgesehen sein oder aber im Innenraum der erfindungsgemäßen Vorrichtung, um dort die Feuchtigkeit und die Temperatur zu messen. So kann mittels einer Hochgeschwindigkeitskamera in Verbindung mit einer Bildauswertung bzw. einem Partikelmessgerät während der Durchführung des erfindungsgemäßen Verfahrens die Faserqualität in situ bestimmt und gegebenenfalls als Eingangsgröße für ein Verstellen des Ansaugrohres verwendet werden.
- Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Zuhilfenahme von Figuren näher erklärt. Es zeigen:
- Fig. 1
- eine vereinfachte schematische Darstellung einer beispielhaften Vorrichtung, die kein Teil der Erfindung bildet, in räumlicher Ansicht und in der Draufsicht;
- Fig. 2
- eine Anlage mit einer erfindungsgemäßen Vorrichtung;
- Fig. 3
- ein verstellbares Absaugrohr einer erfindungsgemäßen Vorrichtung.
- Eine stark vereinfachte und schematische Darstellung einer beispielhaften Vorrichtung 1 ist in der
Figur 1 dargestellt. Zu sehen ist ein zylinderförmiger Innenraum 2 der Prallreaktor genannten Vorrichtung 1, in den ein Absaugrohr 3 einer nicht näher dargestellten Entnahmeeinrichtung ragt. Ferner ist in der Nähe des Bodens des Innenraumes 2 in Rotor 4 im Innenraum 2 angeordnet, der von einem außerhalb des Innenraums 2 positionierten Antriebsmotor 5 in Drehung versetzt werden kann. - Um eine Charge eines faserhaltigen organischen Materials zu zerkleinern, wird die Charge in den Innenraum 2 des Prallreaktors 1 mittels eines in der Figur nicht dargestellten Dosierers eingefüllt. Der Füllvorgang wird durch den bei dem Betrieb des Prallreaktors 1 entstehenden Unterdruck unterstützt. Ebenfalls unterstützend wirkt bei einer Befüllung von oben die Schwerkraft. Es kann parallel auch eine Befüllung mittels bspw. einer Zufuhrschnecke von der Seite oder tangential in den Innenraum erfolgen. Mittels des Antriebsmotors 5 wird der Rotor 4 in Drehung versetzt. Der sich in der
Figur 1 im Uhrzeigersinn drehende Rotor 4 erzeugt bei entsprechender Drehgeschwindigkeit im Innenraum 2 einen sich im gleichen Drehsinn wie der Rotor 4 drehenden Luftwirbel, der das in den Innenraum 2 eingefüllte faserhaltige organische Material mit sich reißt und umherwirbelt. Hierdurch kommt es zu vielfachen Stößen des Materials gegen die Wandung des Innenraums 2 und/oder gegen in der Figur nicht dargestellten Prallelemente und den Rotor 4, aber auch von Teilen des Materials untereinander. Infolge dieser zum Teil sehr heftigen Stöße wird das Material zerkleinert bzw. zerfasert. Der starke spontane mechanische Krafteintrag erwärmt die feuchten holzigen Teile bis zum Verdampfungspunkt und trägt so zum Zerkleinern bei, ohne dass die einzelnen Fasern zerstört werden. Abhängig von der Drehgeschwindigkeit, der Zeit und der Art und dem Feuchtigkeitsgehalt des Materials kann dieses bis in einzelne Fasern hinab getrennt werden. - Durch Beigabe von feinstrukturiertem, holzähnlichem Material wie beispielsweise Grünschnitt oder KUP-Material kann ein Dämpfungseffekt erreicht werden, der zu einer Verbesserung der Faserqualität führt. Vorteilhaft sind hier insbesondere Beigaben von ca. 10-20 Gew% Grünschnitt zu Nadelholz-Hackschnitzeln.
- Da sich aufgrund der auftretenden Fliehkräfte sowie der Massenträgheit schwerere Teilchen auf einer Bahnkurve mit größerem Radius bewegen als leichtere Teilchen, nimmt die Größe des zerkleinerten Materials im Luftwirbel zur Mitte des Innenraumes 2 bzw. zu dessen Längsachse 6 hin ab. Mittels des Absaugrohres 3, das wie durch die Doppelpfeile in der
Figur 1 angedeutet beliebig weit in den Innenraum 2 schiebbar sowie senkrecht und parallel zur Längsachse 6 des Innenraumes 2 verschwenkbar bzw. verschiebbar ist, können durch entsprechendes Positionieren einer Öffnung des Absaugrohres 3 im Innenraum 2 während des Betriebs des Prallreaktors 1 aus dem zerkleinerten organischen Material hervorgegangene Faserstoffe oder Granulate verschiedener Größen aus dem Innenraum 2 abgesaugt werden. Dabei kann die Öffnung des Absaugrohres 3 auf einer dem im Innenraum 2 vorherrschenden Luftwirbel abgewandten Seite positioniert werden. Mit anderen Worten wird die Öffnung in Bezug auf den Luftwirbel auf der Lee-Seite angeordnet. - Das Absaugrohr 3 ist mit der im vorliegenden, nicht beanspruchten Beispiel als Schnecke ausgebildeten ggf. reversierbaren Reinigungseinheit 31 ausgestattet, durch welche ein Zusetzen des Absaugrohres durch das abgesaugte Material vermieden werden kann. Erfindungsgemäß ist, um das Festsetzen von feuchtem Fasermaterial im Innenraum des Absaugrohres 3 zu verhindern, anstelle der als Schnecke ausgebildeten Reinigungseinheit 31 ein doppelwandiges Absaugrohr mit Injektionsdüsen vorgesehen. In sonstigen Aspekten gleicht die erfindungsgemäße Vorrichtung der Vorrichtung gemäß
Fig. 1 . Durch das o.g. doppelwandige Absaugrohr mit Injektionsdüsen kann einerseits durch ein zyklisches Aufbauen eines Überdruckes in der Doppelwandung eine Reinigung der Rohrinnenseite vorgenommen werden. Alternativ oder zusätzlich kann auch durch einen ständigen Überdruck in der Doppelwandung eine Art Luftkissen im Bereich der Innenwandung des Absaugrohres 3 erzeugt werden, wodurch feuchtes Fasermaterial von der Wandung ferngehalten wird und ein Festsetzen desselben verhindert werden kann. - In der
Figur 2 ist der Prallreaktor 1 als Bestandteil einer größeren Anlage 7 zum Herstellen von Fasermaterial aus in verschiedenen Fraktionen anfallendem Rohholz (A) gezeigt. Im Folgenden werden einzelne Bestandteile der Anlage 7 sowie deren Funktionsweisen im Gesamtbetrieb der Anlage 7 beschrieben. - Bei dem genannten Rohholz (A) handelt es sich beispielsweise um Holz-Hackschnitzel, Erstschreddergut oder holzartige Reststoffe von ungefähr 250 mm bis 300 mm Länge und einem ungefähren Durchmesser von bis zu zirka 100 mm, wobei rund 10% bis 15% des Rohholzes (A) aus Laubholz bestehen, die in einem Separator 8 der Anlage 7, wie zum Beispiel einem Schwerkraftsichter, einem Stern- oder Trommelsieb oder einem Prallreaktor ähnlich dem Prallreaktor 1, gereinigt, klassifiziert und homogenisiert werden. Im Fall einer Verwendung eines Prallreaktors als Separator 8 kann dieser mit Sieben oder Klappen zur Materialentnahme ausgerüstet sein; ansonsten kann er im Wesentlichen baugleich dem Prallreaktor 1 ausgeführt sein. Ebenso ist denkbar, insgesamt nur einen Prallreaktor zu verwenden, welcher sequentiell als Klassifizierer oder Vorzerkleinerer (vgl. BZ 8) und als Zerfaserer (vgl. BZ 1) verwendet werden kann. Dabei wird die Klassifizierung des Rohholzes (A) in einem Prallreaktor bevorzugt, da dabei neben einer ersten Zerkleinerung des Rohholzes (A) auch eine weitgehende Homogenisierung, Entmineralisierung und Entrindung in einem einzigen Arbeitsdurchgang erfolgen können. Kornanteile 9, die für die weitere stoffliche Nutzung unbrauchbar sind, da sie beispielsweise einen hohen mineralischen Anteil oder einen hohen Anteil an Störstoffen oder Rindenanteilen enthalten, werden ausgeschleust und können beispielsweise einer thermischen Nutzung zugeführt werden. So ist es zum Beispiel möglich, in der Anlage 7 ein Biomassekraftwerk vorzusehen, um aus den Kornanteilen 9 durch Verbrennen Wärme zu erzeugen und diese Wärme an anderer Stelle der Anlage 7 zum Beispiel als Trocknungswärme zu nutzen.
- Aus dem Separator 8 als Überkorn oder Unterkorn anfallendes Gutkorn A1 wird zunächst in einen Dosierbehälter 10 und von dort über einen Dosierer 11 in den Prallreaktor 1 gefördert. Verschiedene weitere Holzfraktionen oder Zuschlagstoffe wie zum Beispiel Bindemittel, Brand- oder Schädlings-Inhibitoren, können als Zusatzmaterial (B) mittels des Dosierers 12 zusätzlich in den Prallreaktor 1 eingefüllt werden, ebenso Gutkorn 18, das, wie unten näher erläutert wird, mittels des Dosierers 13 in den Prallreaktor 1 rückgeführt wird, um ein geeignetes Zielkorn herzustellen. Beispielsweise ist für die Dämmstoffherstellung ein Zielkorn mit einem hohen Anteil an vereinzelten Naturfasern mit einer Länge von 0,5 mm bis 3,5 mm und einem Durchmesser von 0,02 mm bis 0,06 mm notwendig oder es sind Faserbündel erforderlich, die aus drei bis zehn Einzelfasern entsprechender Länge bestehen. Eine aus den genannten Ausgangsmaterialien bestehende Charge des Prallreaktors 1 nimmt zwischen 3% und 6% des Innenraumes 2 des Prallreaktors 1 ein.
- Im Prallreaktor 1 wird nun mit dem durch den Antriebsmotor 5 angetriebenen Rotor 4 ein Luftwirbel erzeugt, durch den Partikel der Charge neben den direkten Stößen durch den Rotor 4 selbst auf Geschwindigkeiten zwischen 80 m/s und 130 m/s beschleunigt und durch Prallbeanspruchung zerkleinert werden.
- Die infolge der Prallbeanspruchung entstehenden Produkte können kontinuierlich oder diskontinuierlich über das Absaugrohr 3 aus dem Innenraum 2 abgesaugt werden. Da die Eindringtiefe des Absaugrohrs 3 in den Innenraum 2 einstellbar ist und da das Absaugrohr 3 vertikal und horizontal verschwenkbar bzw. verschiebbar ist, kann das Absaugrohr 3 so eingestellt werden, dass nur Produkte mit gewünschten Fasergrößen oder Faserqualitäten abgesaugt werden. Dabei sind die Rohrdimension und die Gestaltung der Abzugsöffnung weitere wichtige Faktoren. In einem nachgeschalteten Zyklon 14 der Anlage 7 werden diese abgesaugten Produkte abgeschieden.
- Falls erforderlich, können Produkte aber auch diskontinuierlich aus dem Prallreaktor 1 abgezogen, in einem Behälter 15 gesammelt und einer weiteren Verwendung, beispielsweise einer thermischen, zugeführt werden. Möglich ist auch die Rückführung der Produkte A2 über eine Zuleitung 16 zurück in den Prallreaktor 1.
- Anschließend an den Zyklon 14 werden die Produkte in einen weiteren Schwerkraft-Abscheider 17 wie zum Beispiel einen Zick-Zack Sichter gefördert und dort nach gewünschten Zielfraktionen (C) separiert. Alternativ kann auch eine Siebanlage verwendet werden. Überkorn wird dabei aus dem Schwerkraft-Abscheider 17 oder der Siebanlage in einen Behälter 18 abgezogen und mittels des Dosierers 13 zur nochmaligen Zerfaserung in den Prallreaktor 1 zurückgefördert. Dem Schwerkraft-Abscheider 17 kann der Gasstrom 23' zugeführt werden, der aus derselben Quelle wie der Gasstrom 23 stammen kann.
- Über einen weiteren Zyklon 19 erfolgt eine abermalige Abscheidung der Zielfraktionen (C). Das dabei anfallende Zielkorn kann anschließend in einen Pufferspeicher 20 und dann über eine Dosierung einem Trockner 21 zugeführt werden. In diesem wird das Zielkorn (C1) auf eine vorgegebene Endfeuchtigkeit getrocknet. Hierzu wird Wärme verwendet, die in dem oben genannten Biomassekraftwerk durch Verbrennen bspw. der Kornanteile 9 gewonnen wird und dem Trockner 21 mittels des Gasstroms 23" zugeführt wird. Das Zielkorn (C1) liegt schließlich als verwendungsfertiges Endprodukt beispielsweise in Form einer Fasermenge als Primär- oder Sekundär-Rohstoff in einem Bunker 22 der Anlage 7 vor. Das Endprodukt kann beispielsweise Fasern von 0,5 mm bis 2,5 mm Länge und einem Durchmesser von 20 µm bis 60 µm aufweisen.
- Sofern die genannten Vor- und Zwischenprodukte (A, B, C) bereits trocken oder staubbildend und damit explosionsgefährdet sind, wird als Förder- oder Ansaugluft ein Gas 23 mit geringem Sauerstoffanteil, vorzugsweise ein trockenes Rauchgas, mit einer geeigneten Temperatur in den Prallreaktor 1 geleitet. Hier ist eine rauchgasseitige und wärmeseitige Einbindung in ein Biomassekraftwerk und insbesondere in das oben bereits erwähnte Biomassekraftwerk, in dem die Kornanteile 9 verbrannt werden, förderlich.
- An verschiedenen Stellen 24, 25, 26 der Anlage 7 wird die Qualität und Quantität des Gutkorns kontinuierlich gemessen. Hierfür eignet sich insbesondere ein Ultraschall-Messverfahren. Über eine Summenbildung aus den Messstellen 24, 25, 26 werden die Dosierer und damit das Füllvolumen des Prallreaktors 1 geregelt. Dabei soll die Prozesssteuerung einen möglichst kontinuierlichen Produktionsprozess bei entsprechender Gutkornqualität gewährleisten.
- Bei der beschriebenen Anlage 7 hängt die Qualität der im Prallreaktor 1 produzierten Fasern von verschiedenen Faktoren ab, zu denen die Stückgröße, Holzart und der Feuchtigkeitsgehalt sowie die Rohdichte der Einsatzstoffe, der Befüllungsgrad des Innenraums 2, die Geometrie und das Volumen des Innenraums 2, die Ausbildung des Rotors 4 sowie eventuell vorgesehener Prallkörper, Winkel und Abstände des Rotors 4 von den Wänden des Innenraums 2, die Zentrifugalbeschleunigung der Materialien, die Zu- und Abführorgane des Prallreaktors 1, die Luftzirkulation und Durchströmung des Innenraums 2, sowie die durchschnittliche Wegstrecke von Partikeln im Innenraum 2 gehören.
- Es hat sich gezeigt, dass sich insbesondere der Befüllungsgrad des Prallreaktors 1 als Steuerungs- bzw. Regelgröße besonders eignet. Vorteilhaft sind Befüllungsgrade im Bereich von 3-6%.
- In der
Figur 3 ist derjenige Bereich des Prallreaktors 1, in welchem das Absaugrohr 3 in dessen Innenraum 2 ragt, noch einmal genauer zu sehen. Bei dem Absaugrohr 3 handelt es sich um ein Rohr, das mit einem Absaugschlauch 35 verbunden ist. Das von einer Halterung 36 gehaltene Absaugrohr 3 durchstößt oberhalb des Bodens 37 des Prallreaktors 1 dessen Wandung, welche eine vom Innenraum 2 abgewandte Abdeckplatte 38 und eine dem Innenraum 2 zugewandte Siebplatte 39 umfasst. Im Innenraum 2 sind dem Absaugrohr 3 benachbart Abweis-Flügel 40 derart an der Siebplatte 39 angebracht, dass sich die Öffnung des Absaugrohres 3 während des Betriebs des Prallreaktors 1 auf der Lee-Seite der Abweis-Flügel 40 befindet. Die in Höhe und Winkel verstellbaren Abweis-Flügel 40 stellen sicher, dass kein Material ungewollt in das Absaugrohr 3 eindringen kann. Ebenfalls gut erkennbar inFigur 3 ist ein weiteres Absaugrohr 3', welches in einem Bereich 22 oberhalb desjenigen Bereiches des Innenraums, in welchem die Zerkleinerung vorrangig erfolgt, angeordnet ist. Grundsätzlich besteht die Möglichkeit, den Prallreaktor 1 mit beiden Rohre 3 und 3' oder auch nur mit einem der genannten Rohre auszustatten.
Claims (12)
- Verfahren zum Herstellen von organischen Faserstoffen oder Granulaten, bei dem eine wenigstens ein faserhaltiges organisches Material aufweisende Charge in einen Innenraum (2) einer Vorrichtung (1) zum Zerkleinern von Materialien durch eine Prallbeanspruchung eingebracht und in diesem Innenraum (2) mittels Prallbeanspruchung zerkleinert wird, wobei ein organischer Faserstoff oder ein organisches Granulat aus dem Innenraum (2) entnommen wird, wobei die Entnahme mittels eines in den Innenraum (2) ragenden Absaugrohres (3) erfolgt, wobei das Absaugrohr (3) senkrecht zu einer Längsachse (6) des Innenraumes (2) verschwenkbar und/oder verschiebbar ist,
dadurch gekennzeichnet, dass
das Absaugrohr (3) wenigstens einen doppelwandigen Abschnitt mit Injektionsdüsen aufweist. - Verfahren nach Anspruch 1, wobei es sich bei dem faserhaltigen organischen Material um Holz oder um ein holzartiges Material oder um ein Erstschreddergut oder um einen Reststoff aus der Papierherstellung oder um Altpapier oder um Stroh oder um Getreidehülsen oder um Erntereste aus der Landwirtschaft oder um Grünschnitt oder eine Kombination mehrerer der vorgenannten Stoffe handelt.
- Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass vereinzelte Naturfasern mit einer Länge von 0,5 mm bis 3,5 mm und einem Durchmesser von 0,02 mm bis 0,06 mm erhalten werden.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verhältnis zwischen dem Volumen der Charge und dem Volumen des Innenraums (2) vor Einsetzen der Prallbeanspruchung unterhalb von 6% oder von 5% oder zwischen 3% und 6% oder zwischen 3% und 5% liegt.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Faserstoff oder das Granulat wenigstens teilweise durch Absaugen aus dem Innenraum (2) der Vorrichtung (1) entnommen wird und/oder bei dem der Faserstoff und/oder das Granulat wenigstens teilweise während eines Betriebs der Vorrichtung (1) aus deren Innenraum (2) entnommen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem Faserstoff und/oder Granulat kontinuierlich und/oder diskontinuierlich aus dem Innenraum (2) entnommen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei ein Teil des organischen Materials aus dem Innenraum (2) entnommen und anschließend in diesen wieder eingebracht wird.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei als Förder- oder Ansaugluft ein Gas (23) mit einem Sauerstoffanteil von unter 13% oder Rauchgas in den Innenraum (2) eingeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Charge mittels eines mechanischen Dosierers (11) in den Innenraum (2) eingebracht wird.
- Verfahren nach einem der vorangehenden Ansprüche, wobei der Faserstoff und/oder das Granulat hinsichtlich der Partikelgröße mittels eines Ultraschall- oder optischen Verfahrens zu diskreten Zeitpunkten oder kontinuierlich vermessen wird.
- Vorrichtung (1) zum Herstellen von organischen Faserstoffen oder Granulaten mit einem Innenraum (2) zum Aufnehmen einer wenigstens ein faserhaltiges organisches Material aufweisenden Charge, wobei die Vorrichtung (1) zum Zerkleinern der im Innenraum (2) aufgenommenen Charge durch eine Prallbeanspruchung eingerichtet ist, und wobei die Vorrichtung (1) ferner wenigstens eine Entnahmeeinrichtung zum Entnehmen des Faserstoffes oder Granulats aus dem Innenraum (2) aufweist, wobei die Entnahmeeinrichtung wenigstens ein in den Innenraum (2) ragendes Absaugrohr (3) aufweist, wobei das Absaugrohr (3) senkrecht zu einer Längsachse (6) des Innenraumes (2) verschwenkbar und/oder verschiebbar ist,
dadurch gekennzeichnet, dass das Absaugrohr (3) wenigstens einen doppelwandigen Abschnitt mit Injektionsdüsen aufweist. - Vorrichtung nach Anspruch 11, wobei Mittel zur zeitlich diskreten oder kontinuierlichen Vermessung des Faserstoffes und/oder des Granulates hinsichtlich der Partikelgröße mittels eines Ultraschall- oder optischen Verfahrens vorhanden sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011080375A DE102011080375A1 (de) | 2011-08-03 | 2011-08-03 | Verfahren und Vorrichtung zum Herstellen von organischen Faserstoffen oder Granulaten |
PCT/EP2012/065252 WO2013017687A2 (de) | 2011-08-03 | 2012-08-03 | Verfahren und vorrichtung zum herstellen von organischen faserstoffen oder granulaten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2739398A2 EP2739398A2 (de) | 2014-06-11 |
EP2739398B1 true EP2739398B1 (de) | 2020-01-15 |
Family
ID=46614491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12743456.1A Active EP2739398B1 (de) | 2011-08-03 | 2012-08-03 | Verfahren und vorrichtung zum herstellen von organischen faserstoffen oder granulaten |
Country Status (4)
Country | Link |
---|---|
US (1) | US9511373B2 (de) |
EP (1) | EP2739398B1 (de) |
DE (2) | DE102011080375A1 (de) |
WO (1) | WO2013017687A2 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016115714A1 (de) | 2016-08-24 | 2018-03-01 | Schäfer E. Technik u. Sondermaschinen GmbH | Prallreaktor |
EP3379003A1 (de) | 2017-03-24 | 2018-09-26 | Leopold Kasseckert | Einblasbares dämmmaterial aus stroh |
CN106939524B (zh) * | 2017-04-10 | 2023-07-04 | 济南大学 | 一种基于物态变化碎浆的无注水式制浆设备 |
CN110064468A (zh) * | 2019-05-11 | 2019-07-30 | 夏江华 | 一种面粉加工设备 |
AT524167A3 (de) * | 2020-09-07 | 2022-08-15 | Johannes Schörkhuber | Verfahren zur herstellung von holzpellets |
IT202100003767A1 (it) * | 2021-02-18 | 2022-08-18 | Desuneco S R L | Pannello di isolamento termico traspirante di tipo perfezionato |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268179A (en) * | 1963-09-09 | 1966-08-23 | Sturtevant Mill Co | Rotary pulverizer mill with aspirator means |
US6375103B1 (en) * | 2000-03-31 | 2002-04-23 | Hosokawa Micron Powder Systems | Mill for pulverizing and classifying particulate material |
CA2594861A1 (en) * | 2004-01-16 | 2005-07-28 | Advanced Grinding Technologies Pty Limited | Processing apparatus and methods |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2014240A1 (de) * | 1970-03-25 | 1971-10-14 | Metallgesellschaft Ag, 6000 Frankfurt | Verfahren zur Herstellung unterschiedlicher Wirrvliese auf einer Produktionsanlage |
DE2128106C3 (de) * | 1971-06-05 | 1981-04-02 | Lindemann Maschinenfabrik GmbH, 4000 Düsseldorf | Vorrichtung zum Zerkleinern von Altpapier |
US4069979A (en) * | 1976-11-12 | 1978-01-24 | Yamamura Glass Kabushiki Kaisha | Method and apparatus for breaking up and separating waste glass to obtain cullet |
US4789105A (en) * | 1986-04-18 | 1988-12-06 | Hosokawa Micron Corporation | Particulate material treating apparatus |
DE3635220A1 (de) * | 1986-10-16 | 1988-04-21 | Standard Elektrik Lorenz Ag | Wickelvorrichtung |
US5236133A (en) * | 1991-12-04 | 1993-08-17 | Lundquist Lynn C | Method of container label removal |
AU7622696A (en) | 1995-11-11 | 1997-06-05 | Schafer Elektrotechnik - Sondermaschinen | Process and device for the processing of components from mixed materials and other building materials mixed therewith and the use thereof |
DE19915154A1 (de) | 1999-03-27 | 2000-09-28 | Uec Umwelt Entsorgungs Center | Verfahren zur Herstellung von porösen, schwer entflammbaren Faserverbundwerkstoffen aus nachwachsenden Rohstoffen durch thermo-mechanische Aufbereitung und hydro-thermale Weiterverarbeitung |
DE10218424A1 (de) * | 2001-04-30 | 2002-12-12 | Schmidt Seeger Ag | Schrotmühle sowie Verfahren zur Zerkleinerung von Mahlgut |
DE10242770B4 (de) | 2002-09-14 | 2011-04-07 | Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg | Verfahren zur Herstellung von Holzfaser-Dämmplatten |
ES2365401T3 (es) * | 2004-07-14 | 2011-10-04 | Ctu Clean Technology Universe Ag | Dispositivo para el desmenuzamiento mecánico de un material de alimentación heterogéneo y procedimiento para su funcionamiento. |
JP5248801B2 (ja) * | 2007-04-11 | 2013-07-31 | 日本コークス工業株式会社 | 粉砕分散処理システム |
DE102008035188A1 (de) * | 2007-07-31 | 2009-02-19 | Anton Maier | Strahlmühle mit einem Fluidstrahl zum Zerkleinern und/oder Trennen eines Mahlgutes |
US7900857B2 (en) * | 2008-07-17 | 2011-03-08 | Xyleco, Inc. | Cooling and processing materials |
DE102009053059A1 (de) * | 2009-11-16 | 2011-05-19 | Schäfer Elektrotechnik und Sondermaschinen GmbH | Vorrichtung und Verfahren zur Erzeugung eines feinkörnigen Brennstoffs aus festen oder pastösen Energierohstoffen durch Torrefizierung und Zerkleinerung |
DE102010006916A1 (de) * | 2010-02-04 | 2011-08-04 | Schäfer Elektrotechnik und Sondermaschinen GmbH, 67308 | Vorrichtung und Verfahren zur Erzeugung eines feinkörnigen Brennstoffs durch Trocknung und Prallzerkleinerung |
-
2011
- 2011-08-03 DE DE102011080375A patent/DE102011080375A1/de not_active Ceased
-
2012
- 2012-08-03 WO PCT/EP2012/065252 patent/WO2013017687A2/de active Application Filing
- 2012-08-03 DE DE202012007423U patent/DE202012007423U1/de not_active Expired - Lifetime
- 2012-08-03 US US14/236,720 patent/US9511373B2/en active Active
- 2012-08-03 EP EP12743456.1A patent/EP2739398B1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268179A (en) * | 1963-09-09 | 1966-08-23 | Sturtevant Mill Co | Rotary pulverizer mill with aspirator means |
US6375103B1 (en) * | 2000-03-31 | 2002-04-23 | Hosokawa Micron Powder Systems | Mill for pulverizing and classifying particulate material |
CA2594861A1 (en) * | 2004-01-16 | 2005-07-28 | Advanced Grinding Technologies Pty Limited | Processing apparatus and methods |
Also Published As
Publication number | Publication date |
---|---|
WO2013017687A2 (de) | 2013-02-07 |
DE202012007423U1 (de) | 2012-09-17 |
EP2739398A2 (de) | 2014-06-11 |
DE102011080375A1 (de) | 2013-02-07 |
US9511373B2 (en) | 2016-12-06 |
WO2013017687A3 (de) | 2013-06-06 |
US20140203119A1 (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2739398B1 (de) | Verfahren und vorrichtung zum herstellen von organischen faserstoffen oder granulaten | |
EP3025106A2 (de) | Biomasseverarbeitungsvorrichtung und -verfahren | |
EP3121544A2 (de) | Verfahren und vorrichtung zum aufbereiten von organischen festbrennstoffen, insbesondere waldhackschnitzeln | |
EP1035237A2 (de) | Vorrichtung zur Behandlung oder Weiterverarbeitung, insbesondere zur Zerlegung von Stoffen oder Stoffgemischen | |
EP2418075A2 (de) | Vorrichtung und Verfahren zur Herstellung von Pellets aus Biomasse | |
EP3778041B1 (de) | Vorrichtung zur abtrennung und/oder gewinnung von silikatpartikeln aus pflanzlichem material | |
DE3105597C2 (de) | Abfallaufbereitung | |
DE102015223333B4 (de) | Verfahren und Anlage zur Aufbereitung hochfester Papierprodukte | |
EP2673090A2 (de) | Verfahren und vorrichtung zum zerkleinern und trocknen von feuchtigkeitshaltigem material, insbesondere von holz. | |
DE2553900A1 (de) | Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen | |
EP3253493B1 (de) | Zerkleinerungsvorrichtung zur rückgewinnung von sekundärrohstoffen aus entsorgtem material sowie verfahren zu deren steuerung | |
DE102013107983A1 (de) | Pelletierungsvorrichtung und Verfahren zur Herstellung von Pellets | |
WO2011029904A1 (de) | System zur überführung von holzfasern in einen durch dosiervorrichtungen verarbeitbaren zustand, sowie aufbereitetes holzfasermaterial und extrudat daraus | |
EP2350239B1 (de) | Verfahren zur aufbereitung von braunkohle | |
EP3641996B1 (de) | Anlage und verfahren zur herstellung von beleimten pflanzenpartikeln | |
DE3836608C2 (de) | ||
DE202008016663U1 (de) | Zerkleinerungsvorrichtung | |
DE10011949C2 (de) | Anlage zur Verarbeitung von umweltbelastenden Abprodukten | |
DE102013107981A1 (de) | Biomasseverarbeitungsvorrichtung und -verfahren | |
DE102013107985A1 (de) | Vorrichtung zur Erzeugung für Energie aus Biomasse und Verfahren zur Energiegewinnung aus Biomasse | |
DE4231100A1 (de) | Verfahren zur Abtrennung von faserförmigen und stengelförmigen Bestandteilen aus fossilen Brennstoffen | |
DE202015100504U1 (de) | Zerkleinerungsvorrichtung zur Rückgewinnung von Sekundärrohstoffen aus entsorgtem Material | |
DE10125419C1 (de) | Verfahren zum Abscheiden von Übergrössen aus einem erdfeuchten Stoffgemisch und eine Vorrichtung zur Durchführung des Verfahrens | |
DE3318826A1 (de) | Verfahren und einrichtung zur faserigen feinzerkleinerung von holz, rinde oder holzartigen pflanzenteilen | |
EP1136245A2 (de) | Anlage zur effizienten Verarbeitung von umweltbelastenden Abprodukten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140210 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KUSCHE, STEPAN Inventor name: BENGEL, WOLFGANG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BENGEL, WOLFGANG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502012015707 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B02C0013140000 Ipc: B02C0013286000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B02C 19/00 20060101ALI20190515BHEP Ipc: B02C 13/14 20060101ALI20190515BHEP Ipc: B02C 13/286 20060101AFI20190515BHEP Ipc: B02C 23/08 20060101ALI20190515BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190726 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012015707 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1224686 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200607 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200416 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200515 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012015707 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200803 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200803 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200803 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1224686 Country of ref document: AT Kind code of ref document: T Effective date: 20200803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220822 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220831 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012015707 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240301 |