EP2726580B1 - Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen - Google Patents

Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen Download PDF

Info

Publication number
EP2726580B1
EP2726580B1 EP12737233.2A EP12737233A EP2726580B1 EP 2726580 B1 EP2726580 B1 EP 2726580B1 EP 12737233 A EP12737233 A EP 12737233A EP 2726580 B1 EP2726580 B1 EP 2726580B1
Authority
EP
European Patent Office
Prior art keywords
oder
quaternizable
amino group
acid
polycarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12737233.2A
Other languages
English (en)
French (fr)
Other versions
EP2726580A1 (de
Inventor
Cornelia RÖGER-GÖPFERT
Harald BÖHNKE
Wolfgang Grabarse
Hannah Maria KÖNIG
Markus Hansch
Ludwig Völkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44947298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2726580(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to EP12737233.2A priority Critical patent/EP2726580B1/de
Publication of EP2726580A1 publication Critical patent/EP2726580A1/de
Application granted granted Critical
Publication of EP2726580B1 publication Critical patent/EP2726580B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16

Definitions

  • the present invention relates to novel quaternized nitrogen compounds, their preparation and use as a fuel additive, in particular as a detergent additive additive packages containing these compounds; as well as additized fuels. Furthermore, the present invention relates to the use of these quaternized nitrogen compounds as a fuel additive for reducing or preventing deposits in the injection systems of direct injection diesel engines, especially in common rail injection systems, to reduce the fuel consumption of direct injection diesel engines, especially diesel engines with common rail injection systems and minimizing powerloss in direct injection diesel engines, particularly in diesel engines with common rail injection systems.
  • direct-injection diesel engines the fuel is injected through a directly into the combustion chamber of the engine reaching multi-hole injection nozzle and finely distributed (atomized), instead of being introduced as in the classic (chamber) diesel engine in a vortex or vortex chamber.
  • the advantage of direct-injection diesel engines lies in their high performance for diesel engines and yet low consumption. In addition, these engines achieve a very high torque even at low speeds.
  • the diesel fuel is pumped from a pump with pressures up to 2000 bar into a high-pressure line, the common rail.
  • spur lines run to the various injectors, which inject the fuel directly into the combustion chamber.
  • the full pressure is always applied to the common rail, which allows a multiple injection or a special injection form. In the other injection systems, however, only a smaller variation of the injection possible.
  • Injection in the common rail is essentially subdivided into three groups: (1) preinjection, which substantially achieves softer combustion, so that hard combustion noises ("nails") are reduced and engine running appears quiet; (2) main injection, which is responsible, in particular, for a good torque curve; and (3.) post-injection, which provides in particular for a low NO x value.
  • preinjection which substantially achieves softer combustion, so that hard combustion noises ("nails") are reduced and engine running appears quiet
  • main injection which is responsible, in particular, for a good torque curve
  • post-injection which provides in particular for a low NO x value.
  • the fuel is not burned in the rule, but evaporated by residual heat in the cylinder.
  • the resulting exhaust gas / fuel mixture is transported to the exhaust system, where the fuel in the presence of suitable catalysts acts as a reducing agent for the nitrogen oxides NO x .
  • deposits can form under certain conditions, for example when using biodiesel-containing fuels or fuels with metal impurities such as zinc compounds, copper compounds, lead compounds and other metal compounds, the injection behavior of the Negatively affect the fuel and thereby affect the performance of the engine, ie In particular, reduce the power, but in part also deteriorate the combustion.
  • the formation of deposits is further enhanced by structural developments of the injectors, in particular by the change in the geometry of the nozzles (narrower, conical openings with rounded outlet). For a permanently optimal functioning of engine and injectors such deposits must be prevented or reduced in the nozzle openings by suitable fuel additives
  • IDID internal diesel injector deposits
  • Quaternized ammonium salts are described which are prepared by reacting an alkenyl succinimide with a monocarboxylic acid ester and are used as dispersants in lubricating oils to prevent sludge formation.
  • PIBSA polyisobutylsuccinic anhydride
  • DMAPA N, N-dimethylaminopropylamine
  • PIBSA polyisobutylsuccinic anhydride
  • DMAPA N, N-dimethylaminopropylamine
  • quaternization with methyl salicylate is described, for example.
  • an application in fuels, in particular diesel fuels is not proposed therein.
  • the use of PIBSA with low bis-malalination ⁇ 20% is not described therein.
  • quaternized ammonium salts of hydrocarbyl substituted succinimides are described which are useful as detergent additives for gasoline fuel compositions.
  • alkyl halides are preferably used.
  • the quaternized ammonium salts provided by the teachings have as counterion either a halide or a C 2 -C 8 hydrocarbyl carboxylate or a C 2 -C 8 hydrocarbyl sulfonate group.
  • PIBSA with low bis-malalination ⁇ 20% is also not described therein.
  • the WO 2006/135881 describes quaternized ammonium salts prepared by condensation of a hydrocarbyl-substituted acylating agent and an oxygen- or nitrogen-containing tertiary-amino-containing compound, and then Quaternization by means of hydrocarbyl epoxide in combination with stoichiometric amounts of an acid, such as in particular acetic acid.
  • claimed quaternizing agents are dialkyl sulfates, benzyl halides and hydrocarbyl-substituted carbonates, with dimethyl sulfate, benzyl chloride and dimethyl carbonate being experimentally investigated.
  • quaternizing have serious disadvantages, such as: toxicity or carcinogenicity (eg in dimethyl sulfate and alkylene oxides and benzyl halides), no residue-free combustion (eg dimethyl sulfate and alkyl halides), as well as insufficient reactivity, resulting in incomplete quaternization or non-economic reaction conditions ( long reaction times, high reaction temperatures, excess of quaternizing agent, eg dimethyl carbonate).
  • WO 2011/141731 A1 describes a gasoline composition containing a quaternary ammonium salt as an additive.
  • This additive is prepared by the reaction of a carboxylic acid ester with a reaction product obtainable by reacting a hydrocarbyl-substituted acylating agent with a compound containing an oxygen or nitrogen group and a quaternizable ammonium group.
  • the additive is used to reduce deposits in intake valves or injectors of a gasoline engine.
  • WO 2011/095819 A1 describes a diesel fuel composition containing a quaternary ammonium salt as an additive.
  • the additive is used to minimize power loss in direct injection diesel engines or to reduce deposits in injectors in direct injection diesel engines.
  • the preparation of the additive is accomplished by the reaction of a carboxylic acid ester with a reaction product obtainable by reacting a hydrocarbyl-substituted acylating agent with a compound containing an oxygen or nitrogen group and a quaternizable ammonium group.
  • the additives according to the invention produced in this way are superior to the conventionally prepared additives according to the prior art in a number of respects: they have low toxicity (owing to the targeted choice of the quaternizing agent, burn off ashless), show a high content of quaternized product, and allow an economic reaction during their production and surprisingly have improved handling properties, such as in particular improved solubility, such as in particular in diesel performance additive packages.At the same time, the additives of the invention show an improved effect with respect to avoiding deposits in diesel engines, in particular by the enclosed application examples illustrated.
  • a “condensation” or “condensation reaction” in the context of the present invention describes the reaction of two molecules with elimination of a smaller molecule, in particular a water molecule. If such cleavage is not detectable analytically, especially in stoichiometric amounts undetectable, and the two molecules nevertheless react, e.g. under addition, the respective reaction of the two molecules takes place "without condensation".
  • polyalkylene radicals examples include polyisobutenyl radicals derived from so-called “highly reactive” polyisobutenes (HR-PIB), which are distinguished by a high content of terminal double bonds (cf., for example, also US Pat Rath et al, Lubrication Science (1999), 11-2, 175-185 ). Terminal arranged double bonds are alpha-olefinic double bonds of the type which together are also referred to as vinylidene double bonds.
  • Suitable highly reactive polyisobutenes are, for example, polyisobutenes which have a proportion of vinylidene double bonds of greater than 70 mol%, in particular greater than 80 mol% or greater than 85 mol%.
  • polyisobutenes which have uniform polymer skeletons.
  • Uniform polymer skeletons have, in particular, those polyisobutenes which are composed of at least 85% by weight, preferably at least 90% by weight and more preferably at least 95% by weight, of isobutene units.
  • such highly reactive polyisobutenes have a number average molecular weight in the range mentioned above.
  • the highly reactive polyisobutenes may have a polydispersity in the range of 1.05 to 7, in particular from about 1.1 to 2.5, such as of less than 1.9 or less than 1.5.
  • polydispersity is meant the quotient of weight average molecular weight Mw divided by the number average molecular weight Mn.
  • Other number-average molecular weights can be adjusted in a manner known in principle by mixing polyisobutenes of different number-average molecular weights or by extractive enrichment of polyisobutenes of specific molecular weight range
  • PIBSA is prepared in a manner known in principle by reacting PIB with maleic anhydride (MSA), which in principle produces a mixture of PIBSA and bismaleinated PIBSA (BM PIBSA, see Scheme 1, below), which as a rule is not separated, but rather as such Follow-up reactions is used.
  • MSA maleic anhydride
  • BM PIBSA bismaleinated PIBSA
  • BMG degree of bismaleination
  • Hydrocarbyl-substituted polycarboxylic acid compound having a "low degree of bismaleination”, particularly corresponding polyisobutenylsuccinic acids or anhydrides thereof (also collectively referred to as PIBSA) are known in the art. Particularly advantageous are bis-maleination grades of 20% or less, or 15% or less, such as 14, 13, 12, or 10%; or 10% or less, such as 2-9, 3-8, 4-7, 5 or 6%. Their targeted production is described for example in the US 5,883,196 , Particularly suitable for their preparation are the above highly reactive polyisobutenes having an Mn in the range from about 500 to 2500, such as 550 to 3000, 1000 to 2000 or 1000 to 1500.
  • Short-chain hydrocarbyl or “low molecular weight hydrocarbyl” in particular represents straight-chain or branched alkyl or alkenyl, optionally interrupted by one or more, such as e.g. 2, 3 or 4 heteroatom groups, such as -O- or -NH-. or optionally one or more times, e.g. 2, 3 or 4 times substituted.
  • Alkyl or “lower alkyl” in particular represents saturated, straight-chain or branched hydrocarbon radicals having 1 to 4, 1 to 6, 1 to 8, or 1 to 10 or 1 to 20 carbon atoms, such as.
  • Hydroxyalkyl is in particular the mono- or polysubstituted, especially monohydricated, analogs of the above-mentioned alkyl radicals, such as, for example, the monohydroxylated analogs of the above straight-chain or branched alkyl radicals, e.g. the linear hydroxyalkyl groups having primary hydroxyl group such as hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl.
  • Alkenyl is mono- or polysubstituted, in particular monounsaturated, straight-chain or branched hydrocarbon radicals having 2 to 4, 2 to 6, 2 to 8 2 to 10 or 2 or to 20 carbon atoms and a double bond in any position, for.
  • C 2 -C 6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1 propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3 Methyl 3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-1
  • Alkylene represents straight-chain or mono- or poly-branched hydrocarbon bridging groups having 1 to 10 carbon atoms, such as, for example, C 1 -C 7 -alkylene groups selected from -CH 2 -, - (CH 2 ) 2 -, - (CH 2 ) 3 -, -CH 2 -CH (CH 3 ) -, -CH (CH 3 ) -CH 2 -, - (CH 2 ) 4 -, - (CH 2 ) 2 -CH (CH 3 ) -, -CH 2 -CH (CH 3 ) -CH 2 -, (CH 2 ) 4 -, - (CH 2 ) 5 -, - (CH 2 ) 6 , - (CH 2 ) 7 -, -CH (CH 3 ) -CH 2 -CH 2 -CH (CH 3 ) - or - CH (CH 3 ) -CH 2 -CH 2 -CH 2 -CH (CH 3 )
  • Substituents for radicals given herein are, in particular, unless otherwise specified, selected from keto groups, -COOH, -COO-alkyl, -OH, -SH, -CN, amino, -NO 2 , alkyl, or alkenyl groups ,
  • A3 polycarboxylic acid compounds, and hydrocarbyl-substituted polycarboxylic acid compounds:
  • the polycarboxylic acid compounds used are aliphatic di- or polyvalent (such as 3- or 4-valent), in particular of di-, tri- or tetracarboxylic acids, and analogs thereof, such as anhydrides or lower alkyl esters (partially or completely esterified), and optionally one or more (such as 2 or 3), in particular a long-chain alkyl radical and / or a high molecular weight hydrocarbyl radical, in particular a polyalkylene radical substituted.
  • di- or polyvalent such as 3- or 4-valent
  • di-, tri- or tetracarboxylic acids and analogs thereof, such as anhydrides or lower alkyl esters (partially or completely esterified), and optionally one or more (such as 2 or 3), in particular a long-chain alkyl radical and / or a high molecular weight hydrocarbyl radical, in particular a polyalkylene radical substituted.
  • Examples are C 3 -C 10 polycarboxylic acids, such as the dicarboxylic acids malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid, and their branched analogues; and the tricarboxylic acid citric acid; and anhydrides or lower alkyl esters thereof.
  • the polycarboxylic acid compounds may also be prepared from the corresponding monounsaturated acids and addition of at least one long chain alkyl group and / or high molecular weight hydrocarbyl group. Examples of suitable monounsaturated acids are fumaric acid, maleic acid, itaconic acid.
  • the hydrophobic "long chain” or “high molecular weight” hydrocarbyl moiety which provides sufficient solubility of the quaternized product in the fuel has a number average molecular weight (M n ) of 85 to 20,000, such as 113 to 10,000, or 200 to 10,000 or 350 to 5,000 such as 350 to 3,000, 500 to 2,500, 700 to 2,500, or 800 to 1,500.
  • Typical hydrophobic hydrocarbyl radicals include polypropenyl, polybutenyl and polyisobutenyl radicals, for example having a number average molecular weight M n of 3,500 to 5,000, 350 to 3,000, 500 to 2,500, 700 to 2,500 and 800 to 1,500.
  • Suitable hydrocarbyl-substituted compounds are described, for example in the DE 43 19 672 and the WO2008 / 138836 ,
  • Suitable hydrocarbyl-substituted polycarboxylic acid compounds also include polymeric, especially dimeric, forms of such hydrocarbyl-substituted polycarboxylic acid compounds. Dimer forms contain e.g. two acid anhydride groups which can be reacted independently of one another in the production process according to the invention with the quaternizable nitrogen compound.
  • Suitable quaternizing agents are in principle all suitable as such alkyl esters of a cycloaromatic or cycloaliphatic mono- or polycarboxylic acid (especially a mono- or dicarboxylic acid) or an aliphatic polycarboxylic acid (especially dicarboxylic acid) into consideration.
  • Particularly suitable quaternizing agents are the lower alkyl esters of salicylic acid, such as methyl salicylate, ethyl salicylate, n- and i-propyl salicylate, and n-, i- or tert-butyl salicylate.
  • Suitable "hydroxyalkyl-substituted mono- or polyamines" are those containing at least one, e.g. 1, 2, 3, 4, 5 or 6, hydroxyalkyl substituents are equipped.
  • hydroxyalkyl-substituted monoamines may be mentioned: N-hydroxyalkyl-monoamines, N, N-dihydroxyalkyl-monoamines and N, N, N-trihydroxyalkyl-monoamines, wherein the hydroxyalkyl groups are the same or different and are also as defined above , Hydroxyalkyl stands in particular for 2-hydroxyethyl, 3-hydroxypropyl or 4-hydroxybutyl.
  • hydroxyalkyl-substituted polyamines and especially “hydroxyalkyl-substituted diamines” may be mentioned: (N-hydroxyalkyl) -alkylenediamines, N, N-dihydroxyalkylalkylenediamines wherein the hydroxyalkyl groups are the same or different and are also as defined above.
  • Hydroxyalkyl stands in particular for 2-hydroxyethyl, 3-hydroxypropyl or 4-hydroxybutyl
  • Alkylene stands in particular for ethylene, propylene or butylene.
  • Suitable "diamines” are alkylenediamines, as well as the N-alkyl substituted analogs thereof, such as N-monoalkylated alkylenediamines and the N, N or N, N'-dialkylated alkylenediamines.
  • Alkylene in particular represents straight-chain or branched C 1-7 or C 1-4 -alkylene, as defined above.
  • Alkyl is in particular C 1-4 -alkyl as defined above.
  • Examples are, in particular, ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 1,4-butylenediamine and isomers thereof, pentanediamine and isomers thereof, hexanediamine and isomers thereof, heptanediamine and isomers thereof, and one or more times, such as a - or double C 1 -C 4 -alkylated, such as methylated, derivatives of the aforementioned diamine compounds, such as 3-dimethylamino-1-propylamine (DMAPA), N, N-diethylaminopropylamine, and N, N-dimethylaminoethylamine.
  • DMAPA 3-dimethylamino-1-propylamine
  • N-diethylaminopropylamine N, N-dimethylaminoethylamine.
  • Suitable straight-chain “polyamines” are, for example, dialkylenetriamine, trialkylenetetramine, tetraalkylenepentamine, pentaalkylenehexamine, and the N-alkyl-substituted analogs thereof, such as N-monoalkylated and the N, N or N, N'-dialkylated Alkylenpolyamine.
  • Alkylene in particular represents straight-chain or branched C 1-7 or C 1-4 -alkylene, as defined above.
  • Alkyl is in particular C 1-4 -alkyl as defined above.
  • Examples are in particular diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, dipropylenetriamine, tripropylenetetramine, tetrapropylenepentamine, pentapropylenhexamine, dibutylenetriamine, tributylenetetramine, tetrabutylenepentamine, pentabutylenhexamine; and the N, N-dialkyl derivatives thereof, especially the N, N-di-C 1-4 alkyl derivatives thereof.
  • N N-dimethyldimethylenetriamine, N, N-diethyldimethylenetriamine, N, N-dipropyldimethylenetriamine, N, N-dimethyldiethylene-1,2-triamine, N, N-diethyldiethylene-1,2-triamine, N, N-dipropyldiethylene-1,2-triamine, N, N-dimethyl-dipropylene-1,3-triamine (ie DMAPAPA), N, N-diethyl-dipropylene-1,3-triamine, N, N-dipropyl-dipropylene-1,3-triamine, N, N-dimethyldibutylene-1,4-triamine, N, N-diethyldibutylene-1,4-triamine, N, N-dipropyldibutylene-1,4-triamine, N, N-dimethyldipentylene-1,5-triamine, N, N-diethyl
  • Aromatic carbocyclic diamines having two primary amino groups are the di-amino substituted derivatives of benzene, biphenyl, naphthalene, tetrahydronaphthalene, fluorene, indene, and phenanthrene.
  • Aromatic or non-aromatic heterocycles having a primary and a tertiary amino group are, for example, the abovementioned N-heterocycles, which are aminoalkylated on at least one ring N atom, and in particular carry an amino-C 1-4 -alkyl group.
  • Aromatic or non-aromatic heterocycles having a tertiary amino group and a hydroxyalkyl group are, for example, the abovementioned N-heterocycles which are hydroxyalkylated on at least one ring N-atom, and in particular carry a hydroxyC 1-4 -alkyl group.
  • Group 1 SURNAME FORMULA Diamines with primary second N atom ethylenediamine 1,2-propylenediamine 1,3-propylene Isomeric butylenediamines, such as 1,5-pentylene Isomeric pentanediamines, such as Isomeric hexanediamines, such as Isomeric heptanediamines, such as Di- and polyamines with secondary second N-atom Diethylenetriamine (DETA) Dipropylenetriamine (DPTA), 3,3'-iminobis (N, N-dimethylpropylamine) Triethylenetetramine (TETA) Tetraethylenepentamine (TEPA) pentaethylenehexamine N-methyl-3-amino-1-propylamine bishexamethylenetriamine aromatics Diaminobenzenes, such as Diaminopyridines, such as SURNAME FORMULA heterocycles 1- (3-aminopropylene
  • the reaction of the hydrocarbyl-substituted polycarboxylic acid compound with the quaternizable nitrogen compound according to the present invention can be carried out under thermally controlled conditions so that substantially no condensation reaction occurs. In particular, no formation of water of reaction is observed. In particular, such a reaction takes place at a temperature in the range of 10 to 80, in particular 20 to 60 or 30 to 50 ° C.
  • the reaction time may be in the range of a few minutes or a few hours, e.g. about 1 minute to about 10 hours.
  • the reaction can be carried out at about 0.1 to 2 atm pressure, but especially at about atmospheric pressure.
  • an inert gas atmosphere such as e.g. Nitrogen, appropriate
  • the reaction can also be carried out under elevated, condensation-promoting temperatures, for. B. in the range of or 90 to 100 ° C or 100 to 170 ° C.
  • the reaction time may be in the range of a few minutes or a few hours, e.g. about 1 minute to about 10 hours.
  • the reaction can be carried out at about 0.1 to 2 atm pressure, but especially at about atmospheric pressure.
  • the reactants are presented in particular in approximately equimolar amounts, optionally a lower, z. B. 0.05 to 0.5 times, such as 0.1 to 0.3 times, molar excess of the polycarboxylic desired. If necessary you can the reactants are presented in a suitable inert organic aliphatic or aromatic solvent or a mixture thereof. Typical examples include Solvesso series solvents, toluene or xylene. The solvent can also serve, for example, azeotropically remove condensation water from the reaction mixture. In particular, however, the reactions are carried out without solvent.
  • reaction product thus formed can theoretically be further purified or the solvent removed. Usually, however, this is not absolutely necessary, so that the reaction product can be converted into the next synthesis step, the quaternization, without further purification.
  • the reaction product or reaction mixture from stage a) is mixed with at least one compound of the above formula 1 or 2, in particular in the required stoichiometric amounts, in order to achieve the desired quaternization.
  • the quaternizing agent is added in excess, e.g. 1.1 to 2.0, 1.25 to 2 or 1.25 to 1.75 equivalents of quaternizing agent per equivalent of quaternizable tertiary nitrogen atom.
  • reaction time can be in the range of a few minutes or a few hours, such as about 10 minutes to about 24 hours.
  • the reaction can be carried out at about 0.1 to 20 bar, such as 1 to 10 or 1.5 to 3 bar pressure, but especially at about atmospheric pressure.
  • the reactants may be presented in a suitable inert organic aliphatic or aromatic solvent or a mixture thereof for quaternization, or there may still be a sufficient amount of solvent from reaction step a).
  • suitable inert organic aliphatic or aromatic solvent or a mixture thereof for quaternization or there may still be a sufficient amount of solvent from reaction step a).
  • Typical examples include Solvesso series solvents, toluene or xylene.
  • the quaternization can also be carried out in the absence of a solvent
  • an acid may be expedient.
  • Aliphatic monocarboxylic acids such as, for example, C 1 -C 18 monocarboxylic acids, in particular lauric acid, isononanoic acid or neodecanoic acid, are preferred.
  • the quaternization can also be carried out in the presence of a Lewis acid.
  • the quaternization can also be carried out in the absence of any acid.
  • the final reaction product thus formed can theoretically be further purified or the solvent removed.
  • solvents may also be added after the reaction, e.g. Solvesso series solvent, 2-ethylhexanol, or substantially aliphatic solvents. Usually, however, this is not absolutely necessary, so that the reaction product can be used without further purification as an additive, if appropriate after mixing with further additive components (see below).
  • the fuel additized with the quaternized additive according to the invention is a gasoline fuel or in particular a middle distillate fuel, especially a diesel fuel.
  • the fuel may contain other conventional additives to improve the effectiveness and / or wear suppression.
  • these are primarily conventional detergent additives, carrier oils, cold flow improvers, lubricity improvers, corrosion inhibitors, demulsifiers, dehazers, defoamers, cetane improvers, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or Solvent.
  • the hydrophobic hydrocarbon residue in the above detergent additives which provides the sufficient solubility in the fuel has a number average molecular weight (M n ) of from 85 to 20,000, preferably from 113 to 10,000, more preferably from 300 to 5,000, more preferably from 300 to 3,000, even more preferred from 500 to 2,500 and in particular from 700 to 2,500, in particular from 800 to 1,500.
  • M n number average molecular weight
  • hydrophobic hydrocarbon radical in particular in combination with the polar, in particular polypropenyl, polybutenyl and polyisobutenyl radicals having a number average molecular weight M n of preferably from 300 to 5,000, particularly preferably from 300 to 3,000, more preferably from 500 to 2,500, even more preferably from 700 to 2,500 and in particular from 800 to 1,500 into consideration.
  • monoamino (Da) -containing additives are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in US Pat DE-A 196 20 262 are described.
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Dd) containing additives are preferably copolymers of C 2 - to C 40 olefins with maleic anhydride having a total molecular weight of 500 to 20,000, their carboxyl groups wholly or partially to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are in particular from the EP-A 307 815 known.
  • Such additives are primarily for preventing valve seat wear and can, as in the WO-A 87/01126 described, be used with advantage in combination with conventional fuel detergents such as poly (iso) -butene amines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (De) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobernsteinklakylesters, as described in particular in EP-A 639 632 is described.
  • Such additives are primarily used to prevent valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Polyoxy-C 2 -C 4 -alkylene (Df) containing additives are preferably polyether or polyetheramines, which by reaction of C 2 - to C 60 -alkanols, C 6 -C 30 alkanediols, mono- or di-C 2 - to C 30 -alkylamines, C 1 - to C 30 -alkylcyclohexanols or C 1 - to C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of Polyetheramines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are used in particular in the EP-A 310 875 .
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (Dg) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 ° C, as in particular in DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • the groups having hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of diamines or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives with a Acid and an amide, Carbon Textreimide with monoamines, Carbonklareimide with di- or polyamines, which still have free amine groups in addition to the imide function, or diimides, which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • the further detergent additive according to the present invention is used only up to a maximum of 100% of the amount by weight of compounds having betaine structure.
  • Such fuel additives are general known and described for example in documents (1) and (2). Preference is given to the reaction products of alkyl- or alkenyl-substituted succinic acids or derivatives thereof with amines and particularly preferably to the reaction products of polyisobutenyl-substituted succinic acids or derivatives thereof with amines.
  • reaction products with aliphatic polyamines in particular ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and hexaethyleneheptamine, which have an imide structure.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated moieties containing (Di) additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • Such "polyisobutene-Mannich bases" are particularly in the EP-A 831 141 described.
  • One or more of said detergent additives may be added to the fuel in such an amount that the dosage rate of these detergent additives is preferably from 25 to 2500 ppm by weight, in particular from 75 to 1500 ppm by weight, especially from 150 to 1000% by weight . ppm.
  • Co-used carrier oils may be mineral or synthetic.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils having viscosities such as from class SN 500 to 2000, but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. It is also useful as a "hydrocrack oil” known and obtained in the refining of mineral oil fraction (Vakuumdestillatites with a boiling range of about 360 to 500 ° C, available from high pressure catalytically hydrogenated and isomerized and dewaxed natural mineral oil). Also suitable are mixtures of the abovementioned mineral carrier oils.
  • suitable synthetic carrier oils are polyolefins (polyalphaolefins or polyinternalolefins), (poly) esters, poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-started polyethers, alkylphenol-started polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 to C 4 -alkylene groups, which are prepared by reacting C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 - to C 30 -alkylamines, C 1 - to C 30 -alkyl-cyclohexanols or C 1 - to C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of polyetheramines , are obtainable by subsequent reductive amination with ammonia, monoamines or polyamines.
  • EP-A 310 875 Such products are used in particular in the EP-A 310 875 .
  • EP-A 356 725 EP-A 700 985 and the US-A 4,877,416 described.
  • poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof can be used as polyetheramines. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are, in particular, esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as are described in particular in US Pat DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and of isotridecanol, eg. B. di- (n- or isotridecyl) phthalate.
  • particularly suitable synthetic carrier oils are alcohol-started polyethers having about 5 to 35, preferably about 5 to 30, particularly preferably 10 to 30 and in particular 15 to 30 C 3 - to C 6 -alkylene oxide units, for.
  • suitable starter alcohols are long-chain alkanols or with long-chain alkyl-substituted phenols, wherein the long-chain alkyl radical is in particular a straight-chain or branched C 6 - to C 18 -alkyl radical.
  • Specific examples include tridecanol and nonylphenol.
  • Particularly preferred alcohol-started polyethers are the reaction products (polyetherification products) of monohydric aliphatic C 6 - to C 18 -alcohols with C 3 - to C 6 -alkylene oxides.
  • monohydric aliphatic C 6 -C 18 -alcohols are hexanol, heptanol, octanol, 2-ethylhexanol, nonyl alcohol, decanol, 3-propylheptanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, octadecanol and their constitution and position isomers.
  • the alcohols can be used both in the form of pure isomers and in the form of technical mixtures.
  • a particularly preferred alcohol is tridecanol.
  • C 3 - to C 6 -alkylene oxides are propylene oxide, such as 1,2-propylene oxide, butylene oxide, such as 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran, pentylene oxide and hexylene oxide.
  • particularly preferred are C 3 to C 4 alkylene oxides, ie, propylene oxide such as 1,2-propylene oxide and butylene oxide such as 1,2-butylene oxide, 2,3-butylene oxide and isobutylene oxide.
  • butylene oxide is used.
  • Suitable synthetic carrier oils are alkoxylated alkylphenols, as described in the DE-A 10 102 913 are described.
  • Particular carrier oils are synthetic carrier oils, the alcohol-initiated polyethers described above being particularly preferred.
  • the carrier oil or the mixture of different carrier oils is added to the fuel in an amount of preferably from 1 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight and in particular from 20 to 100 ppm by weight.
  • Suitable cold flow improvers are in principle all organic compounds which are able to improve the flow behavior of middle distillate fuels or diesel fuels in the cold. Conveniently, they must have sufficient oil solubility.
  • middle distillates of fossil origin ie for conventional mineral diesel fuels
  • used cold flow improvers (“middle distillate flow improvers", "MDFI") come into consideration.
  • MDFI middle distillate flow improvers
  • WASA wax anti-settling additive
  • Suitable C 2 to C 40 olefin monomers for the copolymers of class (K1) are, for example, those having 2 to 20, in particular 2 to 10, carbon atoms and having 1 to 3, preferably 1 or 2, in particular having a carbon-carbon double bond.
  • the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and, above all, ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from carboxylic alkenyl esters, (meth) acrylic esters and further olefins.
  • olefins are polymerized in, these are preferably higher molecular weight than the abovementioned C 2 to C 40 olefin base monomers. If, for example, ethylene or propene is used as the olefin base monomer, C 10 - to C 40 - ⁇ -olefins are particularly suitable as further olefins. Other olefins are polymerized in most cases only when monomers with carboxylic acid ester functions are used.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with C 1 - to C 20 -alkanols, in particular C 1 - to C 10 -alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec. Butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol and structural isomers thereof.
  • Suitable carboxylic alkenyl esters are, for example, C 2 -C 14 -alkenyl esters, for example the vinyl and propenyl esters, of carboxylic acids having 2 to 21 carbon atoms, whose hydrocarbon radical may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids with a branched hydrocarbon radical preference is given to those whose branching is in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie the carboxylic acid being a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • carboxylic alkenyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, with vinyl esters being preferred.
  • a particularly preferred carboxylic acid alkenyl ester is vinyl acetate; typical resulting copolymers of group (K1) are the most commonly used ethylene-vinyl acetate copolymers ("EVA").
  • copolymers of class (K1) are those which contain two or more different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • terpolymers of a C 2 - to C 40 - ⁇ -olefin, a C 1 - to C 20 alkyl ester of an ethylenically unsaturated monocarboxylic acid having 3 to 15 carbon atoms and a C 2 - to C 14 alkenyl ester of a saturated monocarboxylic acid having 2 to 21 Carbon atoms are suitable as copolymers of class (K1).
  • Such terpolymers are in of the WO 2005/054314 described.
  • a typical such terpolymer is composed of ethylene, 2-ethylhexyl acrylate and vinyl acetate.
  • the at least one or the other ethylenically unsaturated monomers are present in the copolymers of class (K1) in an amount of preferably from 1 to 50% by weight, in particular from 10 to 45% by weight and especially from 20 to 40% by weight. %, based on the total copolymer, copolymerized.
  • the majority by weight of the monomer units in the copolymers of class (K1) is thus usually derived from the C 2 to C 40 based olefins.
  • the copolymers of class (K1) preferably have a number average molecular weight M n of from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 8000.
  • Typical comb polymers of component (K2) are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol having at least 10 carbon atoms available.
  • Other suitable comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • Suitable comb polymers may also be polyfumarates or polymaleinates.
  • homopolymers and copolymers of vinyl ethers are suitable comb polymers.
  • suitable comb polymers are, for example, those which are described in the WO 2004/035715 and in " Comb-like polymers. Structure and Properties ", NA Platé and VP Shibaev, J. Poly. Sci. Macromolecular Revs., 8, pp. 117-253 (1974 Also mixtures of comb polymers are suitable.
  • suitable polyoxyalkylenes are, for example, polyoxyalkylene esters, polyoxyalkylene ethers, mixed polyoxyalkylene ester ethers, and mixtures thereof.
  • these polyoxyalkylene contain at least one, preferably at least two linear alkyl groups each having 10 to 30 carbon atoms and a polyoxyalkylene group having a number average molecular weight of up to 5000.
  • Such polyoxyalkylene compounds are for example in the EP-A 061 895 as well as in the U.S. 4,491,455 described.
  • Particular polyoxyalkylene compounds are based on polyethylene glycols and polypropylene glycols with a number average Molecular weight of 100 to 5000.
  • polyoxyalkylene mono- and diesters of fatty acids having 10 to 30 carbon atoms such as stearic acid or behenic acid are suitable.
  • Polar nitrogen compounds suitable as a component of class (K4) may be of both ionic and nonionic nature, and preferably have at least one, especially at least two, tertiary nitrogen substituent of the general formula> NR 7 wherein R 7 is C 8 - to C 40 hydrocarbon radical stands.
  • the nitrogen substituents may also be quaternized, that is in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides obtainable by reacting at least one amine substituted with at least one hydrocarbyl radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines preferably contain at least one linear C 8 - to C 40 -alkyl radical.
  • suitable primary amines for the preparation of said polar nitrogen compounds are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues
  • suitable secondary amines are, for example, dioctadecylamine and methylbehenylamine.
  • amine mixtures in particular industrially available amine mixtures such as fatty amines or hydrogenated tallamines, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • the component of class (K4) is an oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the poly (C 2 - to C 20 -carboxylic acids) which have at least one tertiary amino group and are based on this reaction product preferably contain at least 3 carboxyl groups, in particular 3 to 12, especially 3 to 5 carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, usually via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which are connected in the case of several nitrogen atoms via hydrocarbon chains.
  • the component of class (K4) is an oil-soluble reaction product based on at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) of the general formula IIa or IIb in which the variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula III and the variable B denotes a C 1 - to C 19 -alkylene group.
  • the compounds of the general formula IIa and IIb have in particular the properties of a WASA.
  • the preferred oil-soluble reaction product of component (K4) in particular that of general formula IIa or IIb, is an amide, an amide ammonium salt or an ammonium salt in which no, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 -C 6 -alkylene groups of the variable A are, for example, 1,1-ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4- Butylene, 2-methyl-1,3-propylene, 1,5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene (hexamethylene) and in particular 1,2-ethylene.
  • the variable A comprises 2 to 4, in particular 2 or 3 carbon atoms.
  • C 1 - to C 19 -alkylene groups of the variables B are before, for example, 1,2-ethylene, 1,3-propylene, 1,4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, Tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecamethylene and especially methylene.
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form the component (K4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • these amines are secondary amines on which the oil-soluble reaction products of component (K4) are based and have the general formula HN (R 8 ) 2 , in which the two variables R 8 are each independently straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular C 14 - to C 24 -alkyl radicals.
  • These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived with regard to their longer-chain alkyl radicals from naturally occurring fatty acid or from its derivatives.
  • the two radicals R 8 are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, only a few or no free acid groups are present. Preferably, the oil-soluble reaction products of component (K4) are completely in the form of the amide structures.
  • Typical examples of such components (K4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group, dioleylamine , Dipalmitinamin, Dikokosfettamin, distearylamine, dibehenylamine or especially Ditalgfettamin.
  • a particularly preferred component (K4) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated ditallow fatty amine.
  • component (K4) include the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mole of phthalic anhydride and 2 moles of ditallow fatty amine, the latter being hydrogenated or can not be hydrogenated, and the reaction product of 1 mole of a Alkenylspirobislactons with 2 moles of a dialkylamine, for example Ditalgfettamin and / or tallow fatty amine, the latter two may be hydrogenated or unhydrogenated, called.
  • component of class (K4) are cyclic compounds with tertiary amino groups or condensates of long-chain primary or secondary amines with carboxylic acid-containing polymers, as described in US Pat WO 93/18115 are described.
  • Sulfocarboxylic acids, sulfonic acids or their derivatives which are suitable as cold flow improvers of the component of class (K5) are, for example, the oil-soluble carboxamides and carboxylic acid esters of ortho-sulfobenzoic acid in which the sulfonic acid function is present as sulfonate with alkyl-substituted ammonium cations, as described in US Pat EP-A 261 957 to be discribed.
  • suitable poly (meth) acrylic acid esters are both homo- and copolymers of acrylic and methacrylic acid esters. Preferred are copolymers of at least two mutually different (meth) acrylic acid esters, which differ with respect to the fused alcohol. Optionally, the copolymer contains a further, different of which olefinically unsaturated monomer copolymerized.
  • the weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 14 and C 15 alcohols wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic esters are, for example, in WO 00/44857 described.
  • the middle distillate fuel or diesel fuel is the cold flow improver or the mixture of various cold flow improvers in a total amount of preferably 10 to 5000 ppm by weight, more preferably from 20 to 2000 ppm by weight, more preferably from 50 to 1000 ppm by weight and in particular from 100 to 700 ppm by weight, for example from 200 to 500 ppm by weight, added.
  • Suitable lubricity improvers are usually based on fatty acids or fatty acid esters. Typical examples are Tall oil fatty acid, such as in the WO 98/004656 described, and glycerol monooleate. Also in the US Pat. No. 6,743,266 B2 described reaction products of natural or synthetic oils, such as triglycerides, and alkanolamines are suitable as such lubricity improvers.
  • Suitable corrosion inhibitors include succinic esters, especially with polyols, fatty acid derivatives, eg, oleic esters, oligomerized fatty acids, substituted ethanolamines, and products sold under the tradename RC 4801 (Rhein Chemie Mannheim, Germany) or HiTEC 536 (Ethyl Corporation).
  • Suitable demulsifiers are e.g. the alkali or alkaline earth salts of alkyl-substituted phenol and naphthalene sulfonates and the alkali or alkaline earth salts of fatty acids, as well as neutral compounds such as alcohol alkoxylates, e.g. Alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylate or tert-pentylphenol ethoxylate, fatty acids, alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), e.g. also in the form of EO / PO block copolymers, polyethyleneimines or polysiloxanes.
  • EO ethylene oxide
  • PO propylene oxide
  • Suitable dehazers are e.g. alkoxylated phenol-formaldehyde condensates such as the NALCO 7D07 (Nalco) and TOLAD 2683 (Petrolite) products available under the tradename.
  • Suitable antifoams are e.g. Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Suitable cetane number improvers are e.g. aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide.
  • Suitable antioxidants include substituted phenols such as 2,6-di-tert-butylphenol and 6-di-tert-butyl-3-methylphenol and phenylenediamines such as N, N'-di-sec-butyl-p-phenylenediamine.
  • Suitable metal deactivators are e.g. Salicylic acid derivatives such as N, N'-disalicylidene-1,2-propanediamine.
  • Suitable ones are e.g. non-polar organic solvents such as aromatic and aliphatic hydrocarbons, for example, toluene, xylenes, white spirit, and products sold under the trade name SHELLSOL (Royal Dutch / Shell Group) and EXXSOL (ExxonMobil), as well as polar organic solvents, for example, alcohols such as 2 Ethylhexanol, decanol and isotridecanol.
  • solvents usually enter the diesel fuel together with the abovementioned additives and co-additives, which they are intended to dissolve or dilute for better handling.
  • the additive of the invention is outstandingly suitable as a fuel additive and can be used in principle in any fuels. It has a number of beneficial effects on the operation of internal combustion engines with fuels.
  • the quaternized additive according to the invention is preferably used in middle distillate fuels, in particular diesel fuels.
  • the present invention therefore also fuels, especially middle distillate fuels, with an effective as an additive to achieve beneficial effects in the operation of internal combustion engines, such as diesel engines, especially direct injection diesel engines, especially of diesel engines with common rail injection systems, effective content on the quaternized additive according to the invention.
  • This effective content is generally from 10 to 5000 ppm by weight, preferably from 20 to 1500 ppm by weight, in particular from 25 to 1000 ppm by weight, especially from 30 to 750 ppm by weight, each based on the total amount of fuel.
  • Middle distillate fuels such as diesel fuels or fuel oils
  • mineral middle distillate mineral fuels or diesel fuels available through refining
  • those produced by coal gasification or gas liquefaction [GTL] or by biomass to liquid (BTL) fuels are also included. are available, suitable. Also suitable are mixtures of the abovementioned middle distillate fuels or diesel fuels with regenerative fuels, such as biodiesel or bioethanol.
  • the quaternized additive according to the invention can also be used in mixtures of such middle distillates with biofuel oils (biodiesel).
  • biofuel oils biodiesel
  • such mixtures are also encompassed by the term "middle distillate fuel”. They are commercially available and usually contain the biofuel oils in minor amounts, typically in amounts of 1 to 30 wt .-%, in particular from 3 to 10 wt .-%, based on the total amount of middle distillate fossil, vegetable or animal origin and biofuel.
  • Biofuel oils are generally based on fatty acid esters, preferably substantially on alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, in particular C 1 - to C 4 -alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, especially triglycerides, by means of lower alcohols, for example ethanol or especially methanol (“ FAME ”) are available.
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biofuel oil or components thereof include, for example, sunflower methyl ester, palm oil methyl ester (“PME”), soybean oil methyl ester (“SME”) and in particular rapeseed oil methyl ester (“RME”).
  • PME palm oil methyl ester
  • SME soybean oil methyl ester
  • RME rapeseed oil methyl ester
  • the middle distillate fuels or diesel fuels are particularly preferably those with a low sulfur content, ie with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular less as 0.005 wt .-% and especially less than 0.001 wt .-% sulfur.
  • gasoline fuels are all commercially available gasoline fuel compositions into consideration.
  • a typical representative here is the market-standard basic fuel of Eurosuper according to EN 228.
  • petrol fuel compositions of the specification are also according to WO 00/47698 Possible fields of use for the present invention.
  • the quaternized additive according to the invention is particularly suitable as a fuel additive in fuel compositions, especially in diesel fuels, to overcome the initially described problems in direct injection diesel engines, especially in those with common rail injection systems.
  • test methods described herein are not limited to the specific embodiments but are part of the general disclosure of the description and generally applicable in the context of the present invention.
  • the power loss was determined on the basis of the official test method CEC F-098-08.
  • the power loss is a direct measure of the formation of deposits in the injectors.
  • the Keep Clean Test is based on the CEC Test Procedure F-098-08 Issue 5.
  • the same test setup and motor type (PEUGEOT DW10) are used as in the CEC procedure.
  • the initial power (Po, KC [kW]) is calculated from the measured torque at 4,000 rpm full load immediately after the engine starts and warms up.
  • the procedure is described in issue 5 of the test procedure CEC F-98-08.
  • the same test setup and the PEUGEOT DW10 motor type are used.
  • the final power (P end , KC) is determined in the 12th cycle in step 12, (see table above). Again, the operating point is 4000 / min full load. P end , KC [kW] is calculated from the measured torque.
  • the fuel used was a commercial diesel fuel from Craigrmann (RF-06-03). To this was added, in order to artificially stimulate the formation of deposits on the injectors, 1 ppm by weight of zinc in the form of a zinc neodecanoate solution.
  • PIBSA Made from maleic anhydride and PIB 1000 in a known manner.
  • grades having saponification numbers in the range of 84-95 mg KOH / g were used.
  • DMAPA was used with the respective PIBSA quality in a molar ratio of 1: 1 corresponding to the saponification number.
  • the PIBSA grades used had bis-malalization (BMG) levels of less than 15%.
  • Polyisobutylenesuccinic anhydride (1659 g) is dissolved in Solvent Naphta Heavy (SNH, Exxon Mobil, CAS 64742-95-5) (1220 g) and 3-dimethylamino-1-propylamine (DMAPA, 153 g) is added.
  • the reaction solution is stirred for 8 h at 170 ° C, with formed condensation water is distilled off continuously.
  • the PIBSA-DMAPA succinimide is obtained as a solution in Solvent Naphta Heavy (TBN 0.557 mmol / g).
  • Polyisobutylene succinic anhydride (PIBSA, 2198 g) is heated to 110 ° C and 3-dimethylamino-1-propylamine (DMAPA, 182 g) is added within 40 min. added, with the reaction mixture heated to 140 ° C. The reaction mixture is heated to 170 ° C and held for 3 h at this temperature, with 28 g of distillate are collected.
  • PIBSA-DMAPA succinimide is obtained as a viscous oil (TBN 0.735 mmol / g).
  • Polyisobutylene succinic anhydride (PIBSA, 2198 g) is heated to 110 ° C and 3-dimethylamino-1-propylamine (DMAPA, 182 g) is added within 40 min. added, with the reaction mixture heated to 140 ° C. The reaction mixture is heated to 170 ° C and held for 3 h at this temperature, with 28 g of distillate are collected.
  • PIBSA-DMAPA succinimide is obtained as a viscous oil (TBN 0.735 mmol / g).
  • the power loss was determined on the basis of the official test method CEC -098-08 as described above.
  • the power loss is a direct measure of the formation of deposits in the injectors.
  • a common direct-injection diesel engine with common-rail system was used.
  • the fuel used was a commercial diesel fuel from Craigrmann (RF-06-03). To this was added 1 wt ppm zinc in the form of a zinc didodecanoate solution to artificially stimulate the formation of deposits on the injectors.
  • the following table shows the results of relative power loss (powerloss) at 4000 rpm after 12 hours of continuous operation without interruption.
  • the value P 0 indicates the power after 10 minutes and the value P end the power at the end of the measurement:
  • Table 2 Results of the DW10 test additive Dose [mg / kg] Time [h] Po [KW] Pend [KW] Power loss basic value 0 12 99.3 94.3 5.0% M1, according to production example 2 160 12 98.7 97.4 1:32% M2, according to Preparation Example 4 160 12 99 98.1 0.9% M3, according to Preparation Example 5 160 12 98.1 95.7 2.4%
  • the additive M1 according to the invention has an improved effect compared to the base value and has an improved effect at least in comparison with the example M3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Lubricants (AREA)

Description

  • Die vorliegende Erfindung betrifft neuartige quaternisierte Stickstoffverbindungen, deren Herstellung und Verwendung als Kraftstoffadditiv, wie insbesondere als Detergensadditiv Additivpakete, welche diese Verbindungen enthalten; sowie damit additivierte Kraftstoffe. Weiterhin betrifft die vorliegende Erfindung die Verwendung dieser quaternisierten Stickstoffverbindungen als Kraftstoffzusatz zur Verringerung oder Verhinderung von Ablagerungen in den Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, und zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen.
  • Stand der Technik:
  • Bei direkteinspritzenden Dieselmotoren wird der Kraftstoff durch eine direkt in den Brennraum des Motors reichende Mehrloch-Einspritzdüse eingespritzt und feinst verteilt (vernebelt), anstatt wie beim klassischen (Kammer-) Dieselmotor in eine Vor- oder Wirbelkammer eingeführt zu werden. Der Vorteil der direkteinspritzenden Dieselmotoren liegt in ihrer für Dieselmotoren hohen Leistung und einem dennoch geringen Verbrauch. Außerdem erreichen diese Motoren ein sehr hohes Drehmoment schon bei niedrigen Drehzahlen.
  • Zur Zeit werden im Wesentlichen drei Verfahren eingesetzt, um den Kraftstoff direkt in den Brennraum des Dieselmotors einzuspritzen: die konventionelle Verteilereinspritzpumpe, das Pumpe-Düse-System (Unit-Injector-System bzw. Unit-Pump-System) und das Common-Rail-System.
  • Beim Common-Rail-System wird der Dieselkraftstoff von einer Pumpe mit Drücken bis zu 2000 bar in eine Hochdruckleitung, die Common-Rail gefördert. Ausgehend von der Common-Rail laufen Stichleitungen zu den verschiedenen Injektoren, die den Kraftstoff direkt in den Brennraum injizieren. Dabei liegt auf der Common-Rail stets der volle Druck an, was eine Mehrfacheinspritzung oder eine spezielle Einspritzform ermöglicht. Bei den anderen Injektionssystemen ist dagegen nur eine geringere Variation der Einspritzung möglich. Die Einspritzung beim Common-Rail wird im Wesentlichen in drei Gruppen unterteilt: (1.) Voreinspritzung, durch die im Wesentlichen eine weichere Verbrennung erreicht wird, so dass harte Verbrennungsgeräusche (" Nageln") vermindert werden und der Motorlauf ruhig erscheint; (2.) Haupteinspritzung, die insbesondrere für einen guten Drehmomentverlauf verantwortlich ist; und (3.) Nacheinspritzung, die insbesondere für einen geringen NOx-Wert sorgt. Bei dieser Nacheinspritzung wird der Kraftstoff in der Regel nicht verbrannt, sondern durch Restwärme im Zylinder verdampft. Das dabei gebildete Abgas-/Kraftstoffgemisch wird zur Abgasanlage transportiert, wo der Kraftstoff in Gegenwart geeigneter Katalysatoren als Reduktionsmittel für die Stickoxide NOx wirkt.
  • Durch die variable, zylinderindividuelle Einspritzung kann beim Common-Rail-Einspritzsystem der Schadstoffausstoß des Motors, z.B. der Ausstoß von Stickoxiden (NOx), Kohlenmonoxid (CO) und insbesondere von Partikeln (Ruß), positiv beeinflusst werden. Dies ermöglicht beispielsweise, dass mit Common-Rail-Einspritzsystemen ausgerüstete Motoren der Euro 4-Norm theoretisch auch ohne zusätzlichen Partikelfilter genügen können.
  • In modernen Common-Rail-Dieselmotoren können sich unter bestimmten Bedingungen, beispielsweise bei Verwendung von biodieselhaltigen Kraftstoffen oder von Kraftstoffen mit Metall-Verunreinigungen wie Zink-Verbindungen, Kupfer-Verbindungen, Bleiverbindungen und weiteren Metallverbindungen, an den Injektoröffnungen Ablagerungen bilden, die das Einspritzverhalten des Kraftstoffs negativ beeinflussen und dadurch die Performance des Motors beeinträchtigen, d.h. insbesondere die Leistung verringern, aber zum Teil auch die Verbrennung verschlechtern. Die Bildung von Ablagerungen wird durch bauliche Weiterentwicklungen der Injektoren, insbesondere durch die Veränderung der Geometrie der Düsen (engere, konische Öffnungen mit abgerundetem Auslass) noch verstärkt. Für eine dauerhaft optimale Funktionsweise von Motor und Injektoren müssen solche Ablagerungen in den Düsenöffnungen durch geeignete Kraftstoffadditive verhindert oder reduziert werden
  • In den Einspritzsystemen modernen Dieselmotoren verursachen Ablagerungen signifikante Performance-Probleme. Weit verbreitet ist die Erkenntnis, dass derartige Ablagerungen in den Sprühkanälen zu einer Verringerung des Kraftstoffflusses und damit zu Leistungsverlusten (power loss) führen können. Ablagerungen an der Injektorspitze beeinträchtigen dagegen die optimale Ausbildung von Kraftstoff-Sprühnebel und bedingen dadurch eine verschlechterte Verbrennung und damit verbunden höhere Emissionen und vermehrten Kraftstoffverbrauch. Im Gegensatz zu diesen herkömmlichen, "äußeren" Ablagerungsphänomenen bereiten auch "interne" Ablagerungen (zusammengefasst als innere Diesel-Injektor-Ablagerungen (IDID)) in bestimmten Teilen der Injektoren, wie an der Düsennadel, am Steuerkolben, am Ventilkolben, am Ventilsitz, an der Ansteuereinheit und an den Führungen dieser Komponenten zunehmend Performance-Probleme. Herkömmliche Additive zeigen eine unzureichende Wirkung gegen diese IDIDs.
  • Aus der US 4,248,719 sind quaternisierte Ammoniumsalze beschrieben, welche durch Umsetzung eines Alkenylsuccinimids mit einem Monocarbonsäureester hergestellt werden und als Dispergiermittel in Schmierölen zur Verhinderung von Schlammbildung Anwendung finden. Insbesondere ist beispielsweise die Umsetzung von Polyisobutylbernsteinsäureanhydrid (PIBSA) mit N,N-Dimethylaminopropylamin (DMAPA) und Quaternisierung mit Methylsalicylat beschrieben. Eine Anwendung in Kraftstoffen, insbesondere Dieselkraftstoffen, wird darin jedoch nicht vorgeschlagen. Die Verwendung von PIBSA mit niedrigen Bismaleinierungsgraden < 20 % wird darin nicht beschrieben.
  • Aus der US 4,171,959 sind quaternisierte Ammoniumsalze von hydrocarbylsubstituierten Succinimiden beschrieben, welche als Detergensadditive für Ottokraftstoffzusammensetzungen geeignet sind. Zur Quaternisierung werden bevorzugt Alkylhalogenide eingesetzt. Erwähnt sind außerdem organische C2-C8-Hydrocarbyl-Carboxylate und - Sulfonate. Folglich weisen die gemäß dortiger Lehre bereitgestellten quaternisierten Ammoniumsalze als Gegenion entweder ein Halogenid oder ein C2-C8-Hydrocarbyl-Carboxylat oder ein C2-C8-Hydrocarbyl-Sulfonat-Gruppe auf. Die Verwendung von PIBSA mit niedrigen Bismaleinierungsgraden <20 % wird darin ebenfalls nicht beschrieben.
  • Aus der EP-A-2 033 945 sind Kaltfließverbesserer bekannt, welche durch Quaternisierung spezieller tertiärer Monoamine, die wenigstens einen C8-C40-Alkylrest tragen, mit einem C1-C4-Alkylester spezieller Carbonsäuren hergestellt werden. Beispiele solcher Carbonsäureester sind Dimethyloxalat, Dimethylmaleat, Dimethylphthalat und Dimethylfumarat. Andere Anwendungen als zur Verbesserung des CFPP Werts von Mitteldestillaten sind in der EP-A-2 033 945 nicht belegt.
  • Die WO 2006/135881 beschreibt quaternisierte Ammoniumsalze, hergestellt durch Kondensation eines Hydrocarbyl-substituierten Acylierungsmittels und einer Sauerstoffoder Stickstoffatom-haltigen Verbindung mit tertiärer Aminogruppe, und anschließender Quaternisierung mittels Hydrocarbylepoxid in Kombination mit stöchiometrischen Mengen einer Säure, wie insbesondere Essigsäure. Weitere in der WO 2006/135881 beanspruchte Quaternisierungsmittel sind Dialkylsulfate, Benzylhalogenide und hydrocarbylsubstituierte Carbonate, wobei Dimethylsulfat, Benzylchlorid und Dimethylcarbonat experimentell untersucht wurden.
  • Die in der WO 2006/135881 bevorzugt verwendeten Quaternisierungsmittel weisen jedoch gravierende Nachteile auf, wie: Toxizität bzw. Carcinogenität (z.B. bei Dimethylsulfat und Alkylenoxiden und Benzylhalogeniden), keine rückstandsfreie Verbrennung (z.B. bei Dimethylsulfat und Alkylhalogeniden), sowie unzureichende Reaktivität, welche zu unvollständiger Quaternierung oder nicht-ökonomischen Reaktionsbedingungen (lange Reaktionszeiten, hohe Reaktionstemperaturen, Überschuss an Quaternierungsmittel; z.B. bei Dimethylcarbonat) führt.
  • WO 2011/141731 A1 beschreibt eine Ottokraftstoffzusammensetzung, die ein quaternäres Ammoniumsalz als Additiv enthält. Dieses Additiv wird hergestellt durch die Reaktion eines Carbonsäureesters mit einem Reaktionsprodukt, das durch Umsetzung eines hydrocarbyl-substituierten Acylierungsmittels mit einer Verbindung, die eine Sauerstoff- oder eine Stickstoffgruppe sowie eine quaternisierbare Ammoniumgruppe enthält, erhältlich ist. Das Additiv wird zur Verringerung von Ablagerungen in Einlassventilen oder Einspritzdüsen eines Ottomotors verwendet.
  • WO 2011/095819 A1 beschreibt eine Dieselkraftstoffzusammensetzung, die ein quaternäres Ammoniumsalz als Additiv enthält. Das Additiv wird zur Minimierung des Leistungsverlustes in direkteinspritzenden Dieselmotoren oder zur Verringerung von Ablagerungen in Einspritzdüsen in direkteinspritzenden Dieselmotoren verwendet. Die Herstellung des Additivs erfolgt durch die Reaktion eines Carbonsäureesters mit einem Reaktionsprodukt, das durch Umsetzung eines hydrocarbyl-substituierten Acylierungsmittels mit einer Verbindung, die eine Sauerstoff- oder eine Stickstoffgruppe sowie eine quaternisierbare Ammoniumgruppe enthält, erhältlich ist.
  • Es bestand daher die Aufgabe, verbesserte quaternisierte Kraftstoffadditive, insbesondere auf der Basis von Hydrocarbyl-substituierten Polycarbonsäureverbindungen, bereitzustellen, welche die genannten Nachteile des Standes der Technik nicht mehr aufweisen.
  • Kurze Beschreibung der Erfindung:
  • Es wurde nun überraschenderweise gefunden, dass obige Aufgabe durch Bereitstellung spezieller quaternisierter Stickstoffverbindungen bzw. damit additivierter Kraftstoffzusammensetzungen gelöst wird.
  • Überraschenderweise sind die so hergestellten erfindungsgemäßen Additive den in konventioneller Weise hergestellten Additive gemäß Stand der Technik in mehrfacher Hinsicht überlegen: Sie besitzen geringe Toxizität (bedingt durch die gezielte Wahl des des Quaternierungsmittels, verbrennen rückstandsfrei (ashless), zeigen einen hohen Gehalt an quaterniertem Produkt, und erlauben eine ökonomische Reaktionsführung bei deren Herstellung und weisen überraschenderweise verbesserte Handling-Eigenschaften, wie insbesondere verbesserte Löslichkeit, wie insbesondere in Diesel Performance Additiv-Paketen, auf. Gleichzeitig zeigen die erfindungsgemäßen Additive eine verbesserte Wirkung bezüglich Vermeidung von Ablagerungen in Dieselmotoren, wie insbesondere durch die beiliegenden Anwendungsbeispiele veranschaulicht.
  • Detaillierte Beschreibung der Erfindung: A1) Spezielle Ausführungsformen
  • Die vorliegende Erfindung betrifft insbesondere folgende spezielle Ausführungsformen:
    1. 1. Kraftstoffstoffzusammensetzung, insbesondere Kraftstoffzusammensetzung, enthaltend in einer Hauptmenge eines üblichen Kraftstoffs einen Anteil (insbesondere eine wirksame Menge) wenigstens eines eine quaternisierte Stickstoffverbindung umfassenden Reaktionsprodukts (oder eine aus dem Reaktionsprodukt durch Aufreinigung erhaltene, eine quaternisierte Stickstoffverbindung enthaltende Teilfraktion davon), wobei das Reaktionsprodukt erhältlich ist durch
      • a1) Umsetzung einer mit hochmolekularem Hydrocarbyl substituierten Polycarbonsäureverbindung, mit einer Verbindung umfassend wenigstens eine mit der Polycarbonsäure reaktiven (insbesondere addierbaren oder kondensierbaren) Sauerstoff- oder Stickstoffgruppe sowie enthaltend wenigstens eine quaternisierbare Aminogruppe, wobei man eine quaternisierbaren hydrocarbyl-substituierten Polycarbonsäureverbindung (durch Addition oder Kondensation) erhält, und
      • a2) deren anschließende Umsetzung mit einem Quaternisierungsmittel, das die wenigstens eine quaternisierbare, wie z.B. tertiäre, Aminogruppe in eine quaternäre Ammoniumgruppe überführt, wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure (insbesondere einer Mono- oder Dicarbonsäure) oder einer aliphatischen Polycarbonsäure (insbesondere Dicarbonsäure) ist; oder
      • b) Umsetzung einer quaternisierbaren mit hochmolekularem Hydrocarbyl substituierten Polycarbonsäureverbindung, enthaltend wenigstens eine quaternisierbare Aminogruppe mit einem Quaternisierungsmittel, das die wenigstens eine quaternisierbare, wie z.B. tertiäre, Aminogruppe in eine quaternäre Ammoniumgruppe überführt,
        wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure (insbesondere einer Mono- oder Dicarbonsäure) oder einer aliphatischen Polycarbonsäure (insbesondere Dicarbonsäure) ist,
        wobei pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente an Quaternisierungsmittel eingesetzt werden; und/oder
        die hydrocarbyl-substituierte Polycarbonsäureverbindung eine Polyisobutenylbersteinsäure oder ein Anhydrid davon ist, wobei diese einen Bismaleinierungsgrad von 2 bis 20 Gew.-% oder 2 bis 15 Gew.-% , jeweils bezogen auf das Umsetzungsprodukt, aufweist.
    2. 2. Kraftstoffzusammensetzung nach Ausführungsform 1, wobei pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente, wie z.B. 1,3, 1,4, 1,5, 1,6, 1,7, 1,8 oder 1,9 Äquivalente an Quaternisierungsmittel eingesetzt werden. Durch Erhöhung des Anteils an Quaternierungsmittel im beanspruchten Bereich können deutlich verbesserte Produktausbeuten erzielt werden.
    3. 3. Kraftstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei die hydrocarbyl-substituierte Polycarbonsäureverbindung eine Polyisobutenylbersteinsäure oder ein Anhydrid davon ist, wobei diese einen Bismaleinierungsgrad von 2 bis 20% oder 2 bis 15%, wie z.B. 15, 14, 13, 12, 11,10, 9, 8, 7, 6, 5, 4, 3oder 2% , jeweils bezogen auf das Umsetzungsprodukt, aufweist.
      Niedriger Bismaleinierungsgrade können zu einer deutlichen Verbesserung der Löslichkeit des Additivs und/ oder Verträglichkeit der Bestandteile bei der Formulierung von Additivpaketen beitragen.
    4. 4. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei das Quaternisierungsmittel eine Verbindung der allgemeinen Formel 1 ist

              R1OC(O)R2     (1)

      worin
      • R1 für einen niedermolekularen Hydrocarbylrest, wie Alkyl- oder Alkenylrest, insbesondere einen Niedrigalkylrest, wie insbesondere Methyl oder Ethyl, steht und
      • R2 für einen gegebenenfalls substituierten einkernigen cyclischen Hydrocarbylrest, insbesondere einen Aryl- oder Cycloalkyl- oder Cycloalkenylrest, insbesondere Aryl, wie Phenyl, steht, wobei der Substituent ausgewählt ist unter OH, NH2, NO2, C(O)OR3, und R1OC(O)-, worin R1 die oben angegebenen Bedeutungen besitzt und R3 für H oder R1 steht, wobei der Substituent insbesondere OH ist. Insbesondere ist das Quaternisierungsmittel ein Phthalat oder ein Salicylat, wie Dimethyl-Phthalat, oder Methylsalicylat.
    5. 5. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei das Quaternisierungsmittel eine Verbindung der allgemeinen Formel 2 ist

              R1OC(O)-A-C(O)OR1a     (2)

      worin
      • R1 und R1a unabhängig voneinander für einen niedermolekularen Hydrocarbylrest, wie einen Alkyl- oder Alkenylrest, insbesondere einen Niedrigalkylrest steht und A für Hydrocarbylen (wie insbesondere C1-C7-Alkylen oder C2-C7-Alkenylen) steht.
    6. 6. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei die quaternisierte Stickstoffverbindung ein zahlenmittleres Molekulargewicht im Bereich von 400 bis 5000 insbesondere 800 bis 3000 oder 900 bis 1500 aufweist.
    7. 7. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei das Quaternisierungsmittel ausgewählt ist unter Alkylsalicylaten, Dialkylphthalaten und Dialkyloxalaten; wobei Alkylsalicylate, insbesondere Niedrigalkylsalicylate , wie Methyl-, Ethyl- und n-Propylsalicylate besonders zu nennen sind.
    8. 8. Kraftstoffstoffzusammensetzung nach Ausführungsform 1, wobei die mit der Polycarbonsäure reaktive (addierbare oder kondensierbare), eine Sauerstoff- oder Stickstoffgruppe sowie wenigstens eine quaternisierbare Aminogruppe enthaltende Verbindung ausgewählt ist unter
      1. a. Hydroxyalkyl-substituierten Mono- oder Polyaminen mit wenigstens einer quaternisierbaren, primären, sekundären oder tertiären Aminogruppe
      2. b. geradkettigen oder verzweigtem, cyclischen, heterocyclischen, aromatischen oder nichtaromatischen Polyaminen mit wenigstens einer primären oder sekundären Aminogruppe und mit wenigstens einer quaternisierbaren, primären, sekundären oder tertiären Aminogruppe;
      3. c. Piperazinen,
      wobei Gruppe a. besonders zu nennen ist
    9. 9. Kraftstoffstoffzusammensetzung nach Ausführungsform 8, wobei die mit der Polycarbonsäure reaktive, insbesondere addierbare oder kondensierbare, eine Sauerstoff- oder Stickstoffgruppe sowie wenigstens eine quaternisierbare Aminogruppe enthaltende Verbindung ausgewählt ist unter
      1. a. Hydroxyalkyl-substituierten primären, sekundären oder tertiären Monoaminen und Hydroxyalkyl-substituierten primären, sekundären oder tertiären Diaminen.
      2. b. geradkettigen oder verzweigten aliphatischen Diaminen mit zwei primären Aminogruppen; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer sekundären Aminogruppe; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer tertiären Aminogruppe; aromatischen carbo-cyclischen Diaminen mit zwei primären Aminogruppen; aromatischen heterocyclischen Polyaminen mit zwei primären Aminogruppen; aromatischen oder nichtaromatischen Heterozyklen mit einer primären und einer tertiären Aminogruppe;
      wobei Gruppe a. besonders zu nennen ist
    10. 10. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, ausgewählt unter Dieselkraftstoffen, Biodieselkraftstoffen, Ottokraftstoffen, und Alkanol-haltigen Ottokraftstoffen.
    11. 11. Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei die hydrocarbyl-substituierte Polycarbonsäureverbindung eine Polyisobutenylbersteinsäure oder ein Anhydrid (PIBSA) davon ist, wobei diese einen niedrigen Bismaleinierungsgrad, insbesondere 10% oder weniger als 10% , wie z.B. 2 bis 9, oder 3 bis 7 %, aufweist. Insbesondere sind derartige PIBSAs von HR-PIB mit einem Mn im Bereich von etwa 400 bis 3000 abgeleitet.
      Insbesondere sind obige Kraftstoffzusammensetzungen vor allem Dieselkraftstoffe.
    12. 12. Verwendung eines Reaktionsproduktes erhältlich nach einem Verfahren gemäß der Definition in einer der vorhergehenden Ausführungsformen, insbesondere gemäß Ausführungsform 2, 3, 4, 5 und vor allem Ausführungsform 7, 8oder 9 oder aus dem Reaktionsprodukt durch teilweise oder vollständige Aufreinigung gewonnener quaternisierter Stickstoffverbindung als Kraftstoffadditiv.
      In einer besonderen Ausgestaltung (A) der Erfindung werden quaternisierte Reaktionsprodukte bereitgestellt, welche man ausgehend von Polyisobutenylbersteinsäure oder einem Anhydrid davon herstellt, wobei diese Verbindung einen Bismaleinierungsgrad von 2 bis 20% oder 2 bis 15%, wie z.B. 15, 14, 13, 12, 11,10, 9, 8, 7, 6, 5, 4, 3 oder 2%, aufweist. Diese Polyisobutenylbersteinsäure-Verbindung wird mit einer Verbindung, umfassend wenigstens eine mit der Polyisobutenylbersteinsäure-Verbindung reaktiven (insbesondere addierbaren oder kondensierbaren) Sauerstoff- oder Stickstoffgruppe sowie enthaltend wenigstens eine quaternisierbare Aminogruppe, umgesetzt (durch Addition oder Kondensation) und anschließend quaternisiert.
      In einer besonderen Ausgestaltung (B) der Erfindung werden quaternisierte Reaktionsprodukte bereitgestellt, welche man durch Quaternisierung unter Anwendung eines Überschusses an Quaternisierungsmittel erhält. Insbesondere werden pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente, wie z.B. 1,3, 1,4, 1,5, 1,6, 1,7, 1,8 oder 1,9 Äquivalente an Quaternisierungsmittel eingesetzt. Besonders brauchbare Quaternisierungsmittel sind solche der Formel (1), insbesondere die Niedrigalkylester der Salicylsäure wie Methylsalicylat, Ethylsalicylat, n- und i-Propylsalicylat, und n-, i- oder tert-Butylsalicylat.
      In einer weiteren besonderen Ausgestaltung (C) werden Ausgestaltung (A) und (B) kombiniert, d.h. die aus obigen Polyisobutenylbersteinsäure-Verbindungen gemäß Ausgestaltung (A) hergestellten quaternisierbaren Verbindungen werden gemäß Ausgestaltung (B) quaternisiert.
    13. 13. Verwendung einer quaternisierter Stickstoffverbindung nach Ausführungsform 12, hergestellt nach einem Verfahren
      umfassend die Umsetzung einer quaternisierbaren hydrocarbyl-substituierten Polycarbonsäureverbindung, enthaltend wenigstens eine tertiäre, quaternisierbare Aminogruppe mit einem Quaternisierungsmittel, das die wenigstens eine tertiäre Aminogruppe in eine quaternäre Ammoniumgruppe überführt,
      wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure (insbesondere einer Mono- oder Dicarbonsäure) oder einer aliphatischen Polycarbonsäure (insbesondere Dicarbonsäure) ist und wobei pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente an Quaternisierungsmittel eingesetzt werden, als Kraftstoffadditiv.
    14. 14. Verwendung eines Reaktionsproduktes oder einer quaternisierten Stickstoffverbindung nach Ausführungsform 12 oder einer Verbindung hergestellt nach Ausführungsform 13 als Kraftstoffadditiv, insbesondere Dieselkraftstoffadditiv.
    15. 15. Verwendung nach Ausführungsform 14 als Additiv zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, wie z.B. bestimmt in einem XUD9 Test nach CEC-F-23-01, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen, wie z.B. bestimmt in einem DW10 Test in Anlehnung an CEC F-098-08.
    16. 16. Verwendung nach Ausführungsform 14 als Ottokraftstoffadditiv zur Verringerung von Ablagerungen im Einlasssystem eines Ottomotors, wie insbesondere DISI (Direct Injection Spark Igniton)und PFI (Port Fuel Injector) - Motoren .
    17. 17. Verwendung nach Ausführungsform 14 als Dieselkraftstoffadditiv, insbesondere als Kaltfließverbesserer, als Wachs-Anti-Settling Additiv (WASA) oder als Additiv zur Verringerung und/oder Vermeidung von Ablagerungen in den Einspritzsystemen, wie insbesondere der Internal Diesel Injector Deposits (IDID) und / oder von Ventilkleben in direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen.
      Weiterhin sind hierin beschrieben:
    18. 18. Additivkonzentrat, enthaltend in Kombination mit weiteren Diesel- oder Ottokraftstoffadditiven, insbesondere Dieselkraftstoffadditiven, wenigstens ein Reaktionsprodukt oder eine quaternisierte Stickstoffverbindung gemäß der Definition in Ausführungsform 12 oder hergestellt nach Ausführungsform 13.
    A2) Allgemeine Definitionen
  • Eine "Kondensation" oder "Kondensationsreaktion" im Sinne der vorliegenden Erfindung beschreibt die Umsetzung von zwei Molekülen unter Abspaltung eines kleineren Moleküls, insbesondere eines Wasser-Moleküls. Ist eine derartige Abspaltung analytisch nicht nachweisbar, insbesondere in stöchiometrischen Mengen nicht nachweisbar, und die beiden Moleküle reagieren trotzdem, z.B. unter Addition, so erfolgt die betreffende Umsetzung der beiden Moleküle "ohne Kondensation" .
  • Werden keine gegenteiligen Angaben gemacht, so gelten folgende allgemeine Bedeutungen:
    • "Hydrocarbyl" ist breit auszulegen und umfasst sowohl langkettige als auch kurzkettige, gerade oder verzweigte Kohlenwasserstoffreste, welche ggf. zusätzlich Heteroatome, wie z.B. O, N, NH,S, in ihrer Kette enthalten können.
    • "Langkettige" oder "hochmolekulare" Hydrocarbylreste haben ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, wie z.B. 113 bis 10.000, oder 200 bis 10.000 oder 350 bis 5.000, wie z.B. 350 bis 3.000, 500 bis 2.500, 700 bis 2.500, oder 800 bis 1.500. Sie sind insbesondere im Wesentlichen aus C2-6-, insbesondere C2-4-Monomerbausteinen, wie Ethylen, Propylen, n- oder iso-Butylen oder Mischungen davon aufgebaut, wobei die verschiedenen Monomere statistisch verteilt oder als Blöcke einpolymerisiert enthalten sein können. Derartige langkettige Hydrocarbylreste werden auch als Polyalkylenreste oder Poly-C2-6- oder Poly-C2-4-alkylenreste bezeichnet. Geeignete langkettige Hydrocarbylreste und deren Herstellung sind beispielsweise auch beschreiben in der WO2006/135881 und der dort zitierten Literatur.
  • Beispiele für besonders brauchbare Polyalkylen-Reste sind Polyisobutenyl-Reste, abgeleitet von sogenannten "hochreaktiven" Polyisobutenen (HR-PIB), die sich durch einen hohen Gehalt an terminal angeordneten Doppelbindungen auszeichnen (vgl. z.B. auch Rath et al, Lubrication Science (1999), 11-2, 175-185). Terminal angeordnete Doppelbindungen sind dabei alpha-olefinische Doppelbindungen des Typs
    Figure imgb0001
    welche zusammen auch als Vinyliden-Doppelbindungen bezeichnet werden. Geeignete hochreaktive Polyisobutene sind beispielsweise Polyisobutene, die einen Anteil an Vinyliden-Doppelbindungen von größer 70 Mol-%, insbesondere größer 80 Mol-% oder größer 85 Mol-% aufweisen. Bevorzugt sind insbesondere Polyisobutene, die einheitliche Polymergerüste aufweisen. Einheitliche Polymergerüste weisen insbesondere solche Polyisobutene auf, die zu wenigstens 85 Gew.-%, vorzugsweise zu wenigstens 90 Gew.-% und besonders bevorzugt zu wenigstens 95 Gew.-% aus Isobuteneinheiten aufgebaut sind. Vorzugsweise weisen solche hochreaktiven Polyisobutene ein zahlenmittleres Molekulargewicht in dem oben genannten Bereich auf. Darüber hinaus können die hochreaktiven Polyisobutene eine Polydispersität im Bereich von 1,05 bis 7, insbesondere von etwa 1,1 bis 2,5, wie z.B. von kleiner 1,9 oder kleiner 1,5, aufweisen. Unter Polydispersität versteht man den Quotienten aus gewichtsmittlerem Molekulargewicht Mw geteilt durch das zahlenmittlere Molekulargewicht Mn.
  • Besonders geeignete hochreaktive Polyisobutene sind z.B. die Glissopal-Marken der BASF SE, insbesondere Glissopal® 1000 (Mn = 1000), Glissopal ®V 33 (Mn = 550), Glissopal ® 1300 (Mn = 1300) und Glissopal ® 2300 (Mn = 2300) und deren Mischungen. Andere zahlenmittlere Molekulargewichte können nach im Prinzip bekannter Weise durch Mischen von Polyisobutenen unterschiedlicher zahlenmittlerer Molekulargewichte oder durch extraktive Anreicherung von Polyisobutenen bestimmter Molekulargewichtsbereiche eingestellt werden.
  • PIBSA wird in prinzipiell bekannter Weise durch Umsetzung von PIB mit Maleinsäureanhydrid (MSA) hergestellt, wobei prinzipiell ein Gemisch von PIBSA und bismaleiniertem PIBSA (BM PIBSA, vgl. Schema 1, unten) entsteht, das in der Regel nicht getrennt, sondern als solches in Folgereaktionen eingesetzt wird. Das Verhältnis der beiden Komponenten zueinander kann durch den "Bismaleinierungsgrad" (BMG) angegeben werden. Der BMG ist an sich bekannt (Siehe auch US 5,883,196 ). Der BMG kann auch nach folgender Formel bestimmt werden: BMG = 100 % × ( wt % BM PIBSA / wt % BM PIBSA + wt % PIBSA
    Figure imgb0002
    wobei wt-%(X) für den Gewichtsanteil der Komponente X (X = PIBSA oder BM PIBSA) im Umsetzungsprodukt von PIB mit MSA steht
    Figure imgb0003
  • Hydrocarbyl-substituierte Polycarbonsäureverbindung mit einen "niedrigen Bismaleinierungsgrad" , insbesondere entsprechende Polyisobutenylbersteinsäuren oder Anhydride davon (insgesamt auch bezeichnet als PIBSA) sind aus dem Stand der Technik bekannt. Vorteilhaft sind insbesondere Bismaleinierungsgrade von 20 % oder weniger, oder 15% oder weniger, wie z.B. 14, 13, 12, oder 10%; oder 10% oder weniger, wie z.B. 2-9, 3-8, 4-7, 5 oder 6 %. Deren gezielte Herstellung ist z.B. beschrieben in der US 5,883,196 . Zu deren Herstellung eignen sich insbesondere obige hochreaktive Polyisobutene, mit einem Mn im Bereich von etwa 500 bis 2500, wie z.B. 550 bis 3000, 1000 bis 2000 oder 1000 bis 1500.
  • Als nichtlimitierendes Beispiel für ein entsprechendes PIBSA kann Glissopal ® SA, abgeleitet von HR-PIB (Mn=1000), mit einem Bismaleinierungsgrad von 9% genannt werden.
  • "Kurzkettiges Hydrocarbyl" oder "niedermolekulares Hydrocarbyl" steht insbesondere für geradkettiges oder verzweigtes Alkyl oder Alkenyl, gegebenenfalls unterbrochen durch eine oder mehrere, wie z.B. 2, 3 oder 4 Heteroatomgruppen, wie -O- oder - NH-. oder gegebenenfalls ein- oder mehrfach, wie z.B. 2, 3 oder 4-fach substituiert.
  • "Alkyl" oder "Niedrigalkyl" steht insbesondere für gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 1 bis 6, 1 bis 8, oder 1 bis 10 oder 1 bis 20 Kohlenstoffatomen, wie z. B. Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl; sowie n-Heptyl, n-Octyl, n-Nonyl und n-Decyl, sowie die ein- oder mehrfach verzweigten Analoga davon.
  • "Hydroxyalkyl" steht insbesondere für die ein- oder mehrfach, insbesondere einfach hydroxylierten Analoga obiger Alkylreste, wie z.B. die monohydroxylierten Analoga obiger geradkettiger oder verzweigter Alkylreste, wie z.B. die linearen Hydroxyalkylgruppen mit primärer Hydroxylgruppe, wie Hydroxymethyl, 2-Hydroxyethyl, 3-Hydroxypropyl, 4-Hydroxybutyl.
  • "Alkenyl" steht für ein- oder mehrfach, insbesondere einfach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 2 bis 6, 2 bis 8 2 bis 10 oder 2 oder bis 20 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z. B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl.
  • "Alkylen" steht für geradkettige oder ein- oder mehrfach verzweigte Kohlenwasserstoff-Brückengruppen mit 1 bis 10 Kohlenstoffatomen, wie z.B. C1-C7-Alkylengruppen ausgewählt unter -CH2-, -(CH2)2-, -(CH2)3-, -CH2-CH(CH3)-, -CH(CH3)-CH2-, -(CH2)4-, - (CH2)2-CH(CH3)-, -CH2-CH(CH3)-CH2-, (CH2)4-, -(CH2)5-, -(CH2)6, -(CH2)7-, -CH(CH3)-CH2-CH2-CH(CH3)- oder - CH(CH3)-CH2-CH2-CH2-CH(CH3)- oder C1-C4-Alkylengruppen ausgewählt unter -CH2-, -(CH2)2-, -(CH2)3-, -CH2-CH(CH3)-, -CH(CH3)-CH2-, -(CH2)4-, -(CH2)2-CH(CH3)-, -CH2-CH(CH3)-CH2-.
  • "Alkenylen" steht für die ein- oder mehrfach, insbesondere einfach ungesättigten Analoga obiger Alkylengruppen mit 2 bis 10 Kohlenstoffatomen, insbesondere für C2-C7-Alkenylene oder C2-C4-Alkenylen, wie -CH=CH-, -CH=CH-CH2-, -CH2-CH=CH-, -CH=CH-CH2-CH2-, -CH2-CH=CH-CH2-, -CH2-CH2-CH=CH-, -CH(CH3)-CH=CH-, -CH2-C(CH3)=CH-.
  • "Zyklische Hydrocarbylreste" umfassen insbesondere:
    • Cycloalkyl: carbocyclische Reste mit 3 bis 20 Kohlenstoffatomen, wie z.B. C3-C12-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl, Cycloheptyl, sowie Cyclopropyl-methyl, Cyclopropyl-ethyl, Cyclobutyl-methyl, Cyclobutyl-ethyl, Cyclopentyl-methyl, Cyclopentyl-ethyl, Cyclohexylmethyl oder C3-C7-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclopropyl-methyl, Cyclopropyl-ethyl, Cyclobutyl-methyl, Cyclopentyl-ethyl, Cyclohexyl-methyl, wobei die Anbindung an den Rest des Moleküls über jegliches geeignetes C-Atom erfolgen kann.
    • Cycloalkenyl: monocyclische, einfach ungesättigte Kohlenwasserstoffgruppen mit 5 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopenten-1-yl, Cyclopenten-3-yl, Cyclohexen-1-yl, Cyclohexen-3-yl und Cyclohexen-4-yl;
    • Aryl: ein- oder mehrkernige, vorzugsweise ein- oder zweikernige, gegebenenfalls substituierte aromatische Reste mit 6 bis 20 wie z.B. 6 bis 10 Ring-Kohlenstoffatomen, wie z.B. Phenyl, Biphenyl, Naphthyl wie 1- oder 2-Naphthyl, Tetrahydronaphthyl, Fluorenyl, Indenyl und Phenanthrenyl. Diese Arylreste können gegebenenfalls 1, 2, 3, 4, 5 oder 6 gleiche oder verschiedene Substituenten tragen.
  • "Substituenten" für hierin angegebene Reste, sind insbesondere, wenn keine anderen Angaben gemacht werde, ausgewählt sind unter Ketogruppen, - COOH, -COO-Alkyl, - OH, -SH, -CN, Amino, -NO2, Alkyl, oder Alkenylgruppen.
  • Der Begriff "etwa" im Kontext einer Zahlenangabe oder eines Wertebereiches bezeichnet Abweichungen von den konkret offenbarten Werten. Hierbei handelt es sich gewöhnlich um üblichen Abweichungen. Diese können um beispielsweise um ±10% bis ±0,1% von den konkret angegebenen Werten abweichen. Typischerweise liegen solche Abweichungen bei etwa ±8% bis ±1% oder ±5%, ±4%, ±3% oder ±2%.
  • A3) Polycarbonsäure-Verbindungen, und Hydrocarbyl-substituierte PolycarbonsäureVerbindungen:
  • Die eingesetzten Polycarbonsäure-Verbindungen ist aliphatische zwei- oder mehrwertige (wie z.B. 3- oder 4-wertig), insbesondere von Di-, Tri- oder Tetracarbonsäuren, sowie Analoga davon, wie Anhydride oder Niedrigalkylester (teilweise oder vollständig verestert), und gegebenenfalls durch einen oder mehrere (wie z.B. 2 oder 3), insbesondere einem langkettigen Alkylrest und/oder einem hochmolekularen Hydrocarbylrest, insbesondere einem Polyalkylenrest substituiert. Beispiele sind C3 - C10 Polycarbonsäuren, wie die Dicarbonsäuren Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Suberinsäure, Azelainsäure und Sebacinsäure, und deren verzweigte Analoga; sowie die Tricarbonsäure Citronensäure; sowie Anhydride oder Niedrigalkylester davon von. Die Polycarbonsäure-Verbindungen können auch aus den entsprechenden einfach ungesättigten Säuren und Addition wenigstens eines langkettigen Alkylrests und/oder hochmolekularen Hydrocarbylrests erzeugt werden. Beispiele geeigneter einfach ungesättigter Säuren sind Fumarsäure, Maleinsäure, Itaconsäure.
  • Der hydrophobe "langkettige" oder "hochmolekulare" Hydrocarbylrest, welcher für die ausreichende Löslichkeit des quaternisierten Produkts im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, wie z.B. 113 bis 10.000, oder 200 bis 10.000 oder 350 bis 5.000, wie z.B. 350 bis 3.000, 500 bis 2.500, 700 bis 2.500, oder 800 bis 1.500. Als typische hydrophobe Hydrocarbylreste sind zu nennen Polypropenyl-, Polybutenyl- und Polyisobutenylreste, z.B. mit einem zahlenmittleren Molekulargewicht Mn von 3.500 bis 5.000, 350 bis 3.000, 500 bis 2.500, 700 bis 2.500 und 800 bis 1.500.
  • Geeignete Hydrocarbyl substituierte Verbindungen sind z.B. beschrieben in der DE 43 19 672 und der WO2008/138836 .
  • Geeignete Hydrocarbyl-substituierte Polycarbonsäure-Verbindungen umfassen auch polymere, insbesondere dimere Formen solcher Hydrocarbyl-substituierten Polycar, bonsäure-Verbindungen. Dimere Formen enthalten z.B. zwei Säureanhydridgruppen welche unabhängig voneinander im erfindungsgemäßen Herstellungsverfahren mit der quaternisierbaren Stickstoffverbindung umgesetzt werden können.
  • A4) Quaternisierungsmittel:
  • Als Quaternisierungsmittel kommen im Prinzip alle als solche geeigneten Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure (insbesondere einer Mono- oder Dicarbonsäure) oder einer aliphatischen Polycarbonsäure (insbesondere Dicarbonsäure) in Betracht.
  • In einer besonderen Ausführungsform erfolgt die Quaternisierung des mindestens einen quaternisierbaren tertiären Stickstoffatoms jedoch mit mindestens einem Quaternisierungsmittel ausgewählt unter
    1. a) Verbindungen der allgemeinen Formel 1 ist

              R1OC(O)R2     (1)

      worin
      • R1 für einen Niedrigalkylrest steht und
      • R2 für einen gegebenenfalls substituierten einkernigen Aryl- oder Cycloalkylrest steht, wobei der Substituent ausgewählt ist unter OH, NH2, NO2, C(O)OR3; R1aOC(O)-, worin R1a die oben für R1 angegebenen Bedeutungen besitzt, und R3 für H oder R1 steht;
      oder
    2. b) Verbindungen der allgemeinen Formel 2

              R1OC(O)-A-C(O)OR1a     (2)

      worin
      • R1 und R1a unabhängig voneinander für einen Niedrigalkylrest steht und
      • A für Hydrocarbylen (wie Alkylen oder Alkenylen) steht
      • Besonders geeignet sind Verbindungen der Formel 1, worin
      • R1 für einen C1-, C2- oder C3-Alkylrest steht und
      • R2 für einen substituierten Phenylrest steht, wobei der Substituent für HO- oder einen Esterrest der Formel R1aOC(O)- steht der sich in para-, meta- oder insbesondere ortho-Stellung zum Rest R1OC(O)- am aromatischen Ring befindet.
  • Als insbesondere geeignete Quaternisierungsmittel sind die Niedrigalkylester der Salicylsäure zu nennen sich, wie Methylsalicylat, Ethylsalicylat, n- und i-Propylsalicylat, und n-, i- oder tert-Butylsalicylat.
  • A5) Quarternisierte oder Quaternisierbare Stickstoff-Verbindungen
  • Die mit der Polycarbonsäure-Verbindung reaktiven, quaternisierbaren Stickstoff-Verbindungen sind ausgewählt unter
    1. a. Hydroxyalkyl-substituierten Mono- oder Polyaminen mit wenigstens einer quarternisierten (z.B. Cholin) oder quaternisierbaren, primären, sekundären oder tertiären Aminogruppe,
    2. b. geradkettigen oder verzweigtem, cyclischen, heterocyclischen, aromatischen oder nichtaromatischen Polyaminen mit wenigstens einer primären oder sekundären (anhydridreaktiven) Aminogruppe und mit wenigstens einer quarternisierten oder quaternisierbaren, primären, sekundären oder tertiären Aminogruppe;
    3. c. Piperazinen.
      Insbesondere ausgewählt sind die quaternisierbaren Stickstoff-Verbindungen unter
    4. d. Hydroxyalkyl-substituierten primären, sekundären, tertiären oder quartären Monoaminen und Hydroxyalkyl-substituierten primären, sekundären, tertiären oder quartären Diaminen.
    5. e. geradkettigen oder verzweigten aliphatischen Diaminen mit zwei primären Aminogruppen; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer sekundären Aminogruppe; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer tertiären Aminogruppe; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer quartären Aminogruppe; aromatischen carbo-cyclischen Diaminen mit zwei primären Aminogruppen; aromatischen heterocyclischen Polyaminen mit zwei primären Aminogruppen; aromatischen oder nichtaromatischen Heterozyklen mit einer primären und einer tertiären Aminogruppe;
  • Beispiele für geeignete "hydroxyalkyl-substituierte Mono- oder Polyamine" sind solche die mit wenigstens einem, wie z.B. 1, 2, 3, 4, 5 oder 6, Hydroxyalkyl-Substituierten ausgestattet sind.
  • Als Beispiele für "Hydroxyalkyl-substituierte Monoamine" können genannt werden: N-Hydroxyalkyl-monoamine, N,N-Dihydroxyalkyl-monoamine und N,N,N-Trihydroxyalkyl-monoamine, wobei die Hydroxyalkylgruppen gleich oder verschieden sind und außerdem wie oben definiert sind. Hydroxyalkyl steht dabei insbesondere für 2-Hydroxyethyl, 3-Hydroxypröpyl oder 4-Hydroxybutyl.
  • Beispielsweise können folgende "Hydroxyalkyl-substituierte Polyamine" und insbesondere "Hydroxyalkyl-substituierte Diamine" genannt werden: (N-Hydroxyalkyl)-alkylendiamine, N,N-Dihydroxyalkyl-alkylendiamine, wobei die Hydroxyalkylgruppen gleich oder verschieden sind und außerdem wie oben definiert sind. Hydroxyalkyl steht dabei insbesondere für 2-Hydroxyethyl, 3-Hydroxypropyl oder 4-Hydroxybutyl; Alkylen steht dabei insbesondere für Ethylen, Propylen oder Butylen.
  • Geeignete "Diamine" sind Alkylendiamine, sowie die N-alkylsubstituierten Analoga davon, wie N-monoalkylierten Alkylendiamine und die N,N- oder N, N' -dialkylierten Alkylendiamine. Alkylen steht insbesondere für geradkettiges oder verzweigtes C1-7 oder C1-4-Alkylen, wie oben definiert. Alkyl steht insbesondere für C1-4-Alkyl gemäß obiger Definition. Beispiele sind insbesondere Ethylendiamin, 1,2-Propylendiamin, 1,3-Propylendiamin, 1,4-Butylendiamin und Isomere davon, Pentandiamin und Isomere davon, Hexandiamin und Isomere davon, Heptandiamin und Isomere davon, sowie ein- oder mehrfach, wie z.B. ein - oder zweifach C1-C4-alkylierte, wie z.B. methylierte, Derivate der vorher genannten Diamin-Verbindungen, wie 3-Dimethylamino-1-propylamin (DMAPA), N,N-Diethylaminopropylamin, und N,N-Dimethylaminoethylamin.
  • Geeignete geradkettige "Polyamine" sind beispielsweise Dialkylentriamin, Trialkylentetramin, Tetraalkylenpentamin, Pentaalkylenhexamin, sowie die N-alkylsubstituierten Analoga davon, wie N-monoalkylierten und die N,N- oder N, N' - dialkylierten Alkylenpolyamine. Alkylen steht insbesondere für geradkettiges oder verzweigtes C1-7 oder C1-4-Alkylen, wie oben definiert. Alkyl steht insbesondere für C1-4-Alkyl gemäß obiger Definition.
  • Beispiele sind insbesondere Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Dipropylentriamin, Tripropylenetetramin, Tetrapropylenpentamin, Pentapropylenhexamin, Dibutylentriamin, Tributylentetramin, Tetrabutylenpentamin, Pentabutylenhexamin; sowie die N,N-Dialkylderivate davon, insbesondere die N,N-Di-C1-4-alkylderivate davon. Als Beispiele können genannt werden: N,N-Dimethyldimethylentriamin, N,N-Diethyldimethylentriamin, N,N-Dipropyldimethylentriamin, N,N-Dimethyldiethylen-1,2-triamin, N,N-Diethyldiethylen-1,2-triamin, N,N-Dipropyldiethylen-1,2-triamin, N,N-Dimethyldipropylen-1,3-triamin (i.e. DMAPAPA), N,N-Diethyldipropylen-1,3-triamin, N,N-Dipropyldipropylen-1,3-triamin, N,N-Dimethyldibutylen-1,4-triamin, N,N-Diethyldibutylen-1,4-triamin, N,N-Dipropyldibutylen-1,4-triamin, N,N-Dimethyldipentylen-1,5-triamin, N,N-Diethyldipentylen-1,5-triamin, N,N-Dipropyldipentylen-1,5-triamin, N,N-Dimethyldihexylen-1,6-triamin, N,N-Diethyldihexylen-1,6-triamin und N,N-Dipropyldihexylen-1,6-triamin,
  • "Aromatische carbocyclischen Diamine" mit zwei primären Aminogruppen sind die di-aminosubstituierten Derivate von Benzol, Biphenyl, Naphthalin, Tetrahydronaphthalin, Fluoren, Inden und Phenanthren.
  • "Aromatische oder nicht-aromatische heterocyclische Polyamine" mit zwei primären Aminogruppen sind die mit zwei Aminogruppen substituierten Derivate von folgenden Heterocyclen:
    • 5- oder 6-gliedriges gesättigtes oder einfach ungesättigtes Heterocyclen, enthaltend ein bis zwei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome als Ringglieder, z. B. Tetrahydrofuran, Pyrrolidin, Isoxazolidin, Isothiazolidin, Pyrazolidin, Oxazolidin, Thiazolidin, Imidazolidin, Pyrrolin, Piperidin, Piperidinyl, 1,3- Dioxan, Tetrahydropyran, Hexahydropyridazin, Hexahydropyrimidin, Piperazin;
    • 5-gliedrige aromatische Heterocyclen, enthaltend neben Kohlenstoffatomen ein, zwei oder drei Stickstoffatome oder ein oder zwei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder, z. B. Furan, Thian, Pyrrol, Pyrazol, Oxazol, Thiazol, Imidazol und 1,3,4-Triazol; Isoxazol, Isothiazol, Thiadiazol, Oxadiazol
    • 6-gliedrige Heterocyclen enthaltend neben Kohlenstoffatomen ein oder zwei bzw. ein, zwei oder drei Stickstoffatome als Ringglieder, z. B. Pyridinyl, Pyridazin, Pyrimidin, Pyrazinyl, 1,2,4-Triazin , 1,3,5-Triazin-2-yl;
  • "Aromatische oder nichtaromatische Heterozyklen mit einer primären und einer tertiären Aminogruppe" sind beispielsweise die oben genannten N-Heterocyclen, welche an wenigstens einem Ring-N-Atom aminoalkyliert sind, und insbesondere eine Amino-C1-4-alkylgruppe tragen.
  • "Aromatischen oder nichtaromatischen Heterozyklen mit einer tertiären Aminogruppe und einer Hydroxyalkylgruppe" sind beispielsweise die oben genannten N-Heterocyclen, welche an wenigstens einem Ring-N-Atom hydroxyalkyliert sind, und insbesondere eine Hydroxy-C1-4-alkylgruppe tragen.
  • Folgende Gruppen einzelner Verbindungsklassen quaternisierbarer Stickstoffverbindungen seien insbesondere genannt: Gruppe 1:
    NAME FORMEL
    Diamine mit primärem zweiten N-Atom
    Ethylendiamin
    Figure imgb0004
    1,2-Propylendiamin
    Figure imgb0005
    1,3-Propylendiamin
    Figure imgb0006
    Isomere Butylendiamine, wie z.B.
    Figure imgb0007
    1,5-Pentylendiamin
    Figure imgb0008
    Isomere Pentandiamine, wie z.B.
    Figure imgb0009
    Isomere Hexandiamine, wie z.B.
    Figure imgb0010
    Isomere Heptandiamine, wie z.B.
    Figure imgb0011
    Di- und Polyamine mit sekundärem zweiten N-atom
    Diethylentriamin (DETA)
    Figure imgb0012
    Dipropylentriamin (DPTA), 3,3'-Iminobis(N,N-dimethylpropylamin)
    Figure imgb0013
    Triethylentetramin (TETA)
    Figure imgb0014
    Tetraethylenpentamin (TEPA)
    Figure imgb0015
    Pentaethylenhexamin
    Figure imgb0016
    N-Methyl-3-amino-1-propylamin
    Figure imgb0017
    Bishexamethylentriamin
    Figure imgb0018
    Aromaten
    Diaminobenzole, wie z.B.
    Figure imgb0019
    Diaminopyridine, wie z.B.
    Figure imgb0020
    Gruppe 2:
    NAME FORMEL
    Heterozyklen
    1-(3-Aminopropyl)imidazol
    Figure imgb0021
    4-(3-Aminopropyl)-morpholin
    Figure imgb0022
    1-(2-Aminoethylpiperidin)
    Figure imgb0023
    2-(1-Piperazinyl)ethylamin (AEP)
    Figure imgb0024
    N-Methylpiperazin
    Figure imgb0025
    Amine mit tertiärem zweiten N-Atom
    3,3-Diamino-N-methyldipropylamin
    Figure imgb0026
    3-Dimethylamino-1-propylamin (DMAPA)
    Figure imgb0027
    N,N-Diethylaminopropylamin
    Figure imgb0028
    N,N-Dimethylaminoethylamin
    Figure imgb0029
    Gruppe 3:
    NAME FORMEL
    Alkohole mit primären und sekundärem Amin
    Ethanolamin
    Figure imgb0030
    3-Hydroxy-1-propylamin
    Figure imgb0031
    Diethanolamin
    Figure imgb0032
    Diisopropanolamin
    Figure imgb0033
    N-(2-Hydroxyethyl)ethylendiamin
    Figure imgb0034
    Alkohole mit tertiärem Amin
    Triethanolamin, (2,2I,2II-Nitrilotriethanol)
    Figure imgb0035
    1-(3-Hydroxypropyl)imidazol
    Figure imgb0036
    Tris(hydroxymethyl)amin
    Figure imgb0037
    3-Dimethylamino-1-propanol
    Figure imgb0038
    3-Diethylamino-1-propanol
    Figure imgb0039
    2-Dimethylamino-1-ethanol
    Figure imgb0040
    4-Diethylamino-1-butanol
    Figure imgb0041
  • A6) Herstellung erfindungsgemäßer Additive: a) Reaktion mit Sauerstoff oder Stickstoffgruppe:
  • Die Umsetzung der Hydrocarbyl-substituierten Polycarbonsäure-Verbindung mit der quaternisierbaren Stickstoffverbindung gemäß der vorliegenden Erfindung kann unter thermisch kontrollierten Bedingungen erfolgen, so dass im Wesentlichen keine Kondensationsreaktion erfolgt. Insbesondere ist dann keine Bildung von Reaktionswasser zu beobachten. Insbesondere erfolgt eine derartige Reaktion bei einer Temperatur im Bereich von 10 bis 80, insbesondere 20 bis 60 oder 30 bis 50 °C. Die Reaktionsdauer kann dabei im Bereich von wenigen Minuten oder einigen Stunden, wie z.B. etwa 1 Minute bis zu etwa 10 Stunden liegen. Der Umsetzung kann dabei bei etwa 0,1 bis 2 atm Druck, insbesondere aber etwa bei Normaldruck erfolgen. Beispielsweise ist eine Inertgas-Atmosphäre, wie z.B. Stickstoff, zweckmäßig
  • Insbesondere kann die Reaktion auch unter erhöhten, eine Kondensation begünstigenden Temperaturen, z. B. im Bereich von oder 90 bis 100 °C oder 100 bis 170 °C erfolgen. Die Reaktionsdauer kann dabei im Bereich von wenigen Minuten oder einigen Stunden, wie z.B. etwa 1 Minute bis zu etwa 10 Stunden liegen. Der Umsetzung kann dabei bei etwa 0,1 bis 2 atm Druck, insbesondere aber etwa bei Normaldruck erfolgen.
  • Die Reaktanden werden insbesondere in etwa äquimolaren Mengen vorgelegt, gegebenenfalls ist ein geringer, z. B. 0,05 bis 0,5-facher, wie z.B. 0,1 bis 0,3 facher, molarer Überschuss der Polycarbonsäureverbindung wünschenswert. Falls erforderlich können die Reaktanden in einem geeigneten inerten organischen aliphatischen oder aromatischen Lösungsmittel oder einem Gemisch davon, vorgelegt werden. Typischen Beispiele sind z.B. Lösungsmittel der Solvesso Serie, Toluol oder Xylol. Das Lösungsmittel kann beispielsweise auch dazu dienen, Kondensationswasser azeotrop aus dem Reaktionsgemisch zu entfernen. Insbesondere werden die Reaktionen aber ohne Lösungsmittel durchgeführt.
  • Das so gebildete Reaktionsprodukt kann theoretisch weiter aufgereinigt oder das Lösungsmittel entfernt werden. Gewöhnlich ist dies aber nicht zwingend notwendig, so dass das Reaktionsprodukt ohne weitere Aufreinigung in den nächsten Syntheseschritt, der Quaternisierung, überführt werden kann.
  • b) Quaternisierung Die Quaternisierung gemäß Reaktionsschritt (b) wird nun in an sich bekannter Weise durchgeführt
  • Zur Durchführung der Quaternisierung versetzt man das Reaktionsprodukt oder Reaktionsgemisch aus Stufe a) mit wenigstens einer Verbindung obiger Formel 1 oder 2, insbesondere in den erforderlichen stöchiometrischen Mengen, um die gewünschte Quaternisierung zu erreichen. Pro Äquivalent an quaternisierbarem tertiären Stickstoffatom wird das Quaternisierungsmittel im Überschuss zugesetzt, wie z.B. pro Äquivalent an quaternisierbarem tertiären Stickstoffatom 1,1 bis 2,0, 1,25 bis 2 oder 1,25 bis 1,75 Äquivalente an Quaternisierungsmittel.
  • Man arbeitet hierbei typischerweise bei Temperaturen im Bereich von 50 bis 180°C, wie z.B. 90 bis 160 °C oder 100 bis 140 °C. Die Reaktionsdauer kann dabei im Bereich von wenigen Minuten oder einigen Stunden, wie z.B. etwa 10 Minuten bis zu etwa 24 Stunden liegen. Der Umsetzung kann dabei bei etwa 0,1 bis 20 bar, wie z.B. 1 bis 10 oder 1,5 bis 3 bar Druck, insbesondere aber etwa bei Normaldruck erfolgen.
    Falls erforderlich können die Reaktanden in einem geeigneten inerten organischen aliphatischen oder aromatischen Lösungsmittel oder einem Gemisch davon, für die Quaternisierung vorgelegt werden, oder es ist noch eine ausreichender Anteil an Lösungsmittel aus Reaktionsschritt a) vorhanden. Typischen Beispiele sind z.B. Lösungsmittel der Solvesso Serie, Toluol oder Xylol. Die Quaternisierung kann aber auch in Abwesenheit eines Lösungsmittels durchgeführt werden
  • Zur Durchführung der Quaternisierung kann die Zugabe katalytisch wirksamer Mengen einer Säure zweckmäßig sein. Bevorzugt sind dabei aliphatische Monocarbonsäuren, wie z.B. C1-C18- Monocarbonsäuren wie insbesondere Laurinsäure, Isononansäure oder Neodecansäure. Die Quaternisierung kann auch in Anwesenheit einer LewisSäure durchgeführt werden. Die Quaternisierung kann aber auch in Abwesenheit jeglicher Säure durchgeführt werden.
  • c) Aufarbeitung des Reaktionsgemisches
  • Das so gebildete Reaktionsendprodukt kann theoretisch weiter aufgereinigt oder das Lösungsmittel kann entfernt werden. Um die weitere Prozessierbarkeit der Produkte zu verbessern kann aber auch nach der Reaktion Lösungsmittel zugesetzt werden, wie z.B. Lösungsmittel der Solvesso Reihe, 2-Ethylhexanol, oder im wesentlichen aliphatische Lösungsmittel. Gewöhnlich ist dies aber nicht zwingend notwendig, so dass das Reaktionsprodukt ohne weitere Aufreinigung als Additiv, gegebenenfalls nach Abmischung mit weiteren Additivkomponenten (s. unten) einsetzbar ist.
  • B) Weitere Additivkomponenten
  • Der mit dem erfindungsgemäßen quaternisierten Additiv additivierte Kraftstoff ist ein Ottokraftstoff oder insbesondere ein Mitteldestillat-Kraftstoff, vor allem ein Dieselkraftstoff.
  • Der Kraftstoff kann weitere übliche Additive zur Wirksamkeitsverbesserung und/oder Verschleißunterdrückung enthalten.
  • Im Falle von Dieselkraftstoffen sind dies in erster Linie übliche Detergens-Additive, Trägeröle, Kaltfließverbesserer, Schmierfähigkeitsverbesserer (Lubricity Improver), Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Cetanzahlverbesserer, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
  • Im Falle von Ottokraftstoffen sind dies vor allem Schmierfähigkeitsverbesserer (Friction Modifier), Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
  • Typische Beispiele geeigneter Co-Additive sind im folgenden Abschnitt aufgeführt:
  • B1) Detergens-Additive
  • Vorzugsweise handelt es sich bei den üblichen Detergens-Additiven um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20.000 und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter:
    • (Da) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
    • (Db) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;
    • (Dc) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
    • (Dd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
    • (De) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
    • (Df) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind;
    • (Dg) Carbonsäureestergruppen;
    • (Dh) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder
    • (Di) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen.
  • Der hydrophobe Kohlenwasserstoffrest in den obigen Detergens-Additiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, vorzugsweise von 113 bis 10.000, besonders bevorzugt von 300 bis 5.000, stärker bevorzugt von 300 bis 3.000, noch stärker bevorzugt von 500 bis 2.500 und insbesondere von 700 bis 2.500, vor allem von 800 bis 1500. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren insbesondere Polypropenyl-, Polybutenyl- und Polyisobutenylreste mit einem zahlenmittleren Molekulargewicht Mn von vorzugsweise jeweils 300 bis 5.000, besonders bevorzugt 300 bis 3.000, stärker bevorzugt 500 bis 2.500 noch stärker bevorzugt 700 bis 2.500 und insbesondere 800 bis 1.500 in Betracht.
  • Als Beispiele für obige Gruppen von Detergens-Additiven seien die folgenden genannt:
    • Mono- oder Polyaminogruppen (Da) enthaltende Additive sind vorzugsweise Polyalkenmono- oder Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000, besonders bevorzugt 500 bis 2500 und insbesondere 700 bis 2500. Derartige Additive auf Basis von hochreaktivem Polyisobuten, welche aus dem Polyisobuten, das bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethylaminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 bekannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der β- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine, wie z. B. Ammoniak, Monoamine oder die oben genannten Polyamine, eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.
  • Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A 97/03946 beschrieben sind.
  • Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die aus Polyisobutenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in der DE-A 196 20 262 beschrieben sind.
  • Nitrogruppen (Db), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A96/03367 und in der WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α ,β -Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z. B. α -Nitro-β -hydroxypolyisobuten) dar.
  • Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (Dc) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyisobuten mit Mn = 300 bis 5000 mit Ammoniak, Mono- oder Polyaminen, wie sie insbeson-dere in der EP-A 476 485 beschrieben sind.
  • Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Dd) enthaltende Additive sind vorzugsweise Copolymere von C2- bis C40-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20.000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)-butenaminen oder Polyetheraminen eingesetzt werden.
  • Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (De) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobernsteinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)butenaminen oder Polyetheraminen eingesetzt werden.
  • Polyoxy-C2-C4-alkylengruppierungen (Df) enthaltende Additive sind vorzugsweise Polyether oder Polyetheramine, welche durch Umsetzung von C2- bis C60-Alkanolen, C6-bis C30-Alkandiolen, Mono- oder Di-C2- bis C30-alkylaminen, C1- bis C30-Alkylcyclohexanolen oder C1- bis C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875 , EP-A 356 725 , EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
  • Carbonsäureestergruppen (Dg) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 100 °C, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften.
  • Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder insbesondere Imidogruppen (Dh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobutenylbernsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit Mn = vorzugsweise 300 bis 5000, besonders bevorzugt 300 bis 3000, stärker bevorzugt 500 bis 2500, noch stärker bevorzugt 700 bis 2500 und insbesondere 800 bis 1500, mit Maleinsäureanhydrid auf thermischem Weg in einer En-Reaktion oder über das chlorierte Polyisobuten erhältlich sind. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säureamide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Beim Vorliegen von Imidogruppierungen D(h) wird das weitere Detergens-Additiv im Sinne der vorliegenden Erfindung jedoch nur bis maximal 100 % der Gewichtsmenge an Verbindungen mit Betainstruktur eingesetzt. Derartige Kraftstoffadditive sind allgemein bekannt und beispielsweise in den Dokumenten (1) und (2) beschrieben. Bevorzugt handelt es sich um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen und besonders bevorzugt um die Umsetzungsprodukte von Polyisobutenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen. Von besonderem Interesse sind hierbei Umsetzungsprodukte mit aliphatischen Polyaminen (Polyalkylenimine) wie insbesondere Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Hexaethylenheptamin, welche eine Imidstruktur aufweisen.
  • Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (Di) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin oder Dimethylaminopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben.
  • Dem Kraftstoff können ein oder mehrere der genannten Detergens-Additive in solch einer Menge zugegeben werden, dass die Dosierrate an diesen Detergens-Additiven vozugsweise 25 bis 2500 Gew.-ppm, insbesondere 75 bis 1500 Gew.-ppm, vor allem 150 bis 1000 Gew.-ppm, beträgt.
  • B2) Trägeröle
  • Mitverwendete Trägeröle können mineralischer oder synthetischer Natur sein. Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 bis 2000, aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 500 °C, erhältlich aus unter Hochdruck katalytisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.
  • Beispiele für geeignete synthetische Trägeröle sind Polyolefine (Polyalphaolefine oder Polyinternalolefine), (Poly)ester, Poly)alkoxylate, Polyether, aliphatische Polyetheramine, alkylphenolgestartete Polyether, alkylphenolgestartete Polyetheramine und Carbonsäureester langkettiger Alkanole.
  • Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
  • Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2-bis C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- bis C60-Alkanolen, C6- bis C30-Alkandiolen, Mono- oder Di-C2- bis C30-alkylaminen, C1- bis C30-Alkyl-cyclohexanolen oder C1- bis C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875 , EP-A 356 725 , EP-A 700 985 und der US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine Poly-C2- bis C6-Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
  • Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 Kohlenstoffatomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Iso-tridecanols, z. B. Di-(n- oder Isotridecyl)phthalat.
  • Weitere geeignete Trägerölsysteme sind beispielsweise in der DE-A 38 26 608 , DE-A 41 42 241 , DE-A 43 09 074 , EP-A 452 328 und der EP-A 548 617 beschrieben.
  • Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Polyether mit etwa 5 bis 35, vorzugsweise etwa 5 bis 30, besonders bevorzugt 10 bis 30 und insbesondere 15 bis 30 C3- bis C6-Alkylenoxideinheiten, z. B. Propylenoxid-, n-Butylenoxid- und Isobutylenoxid-Einheiten oder Gemischen davon, pro Alkoholmolekül. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6- bis C18-Alkylrest steht. Als besondere Beispiele sind zu nennen Tridecanol und Nonylphenol. Besonders bevorzugte alkoholgestartete Polyether sind die Umsetzungsprodukte (Polyveretherungsprodukte) von einwertigen aliphatischen C6- bis C18-Alkoholen mit C3- bis C6-Alkylenoxiden. Beispiele für einwertige aliphatische C6-C18-Alkohole sind Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonylalkohol, Decanol, 3-Propylheptanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Octadecanol und deren Konstitutions- und Stellungsisomere. Die Alkohole können sowohl in Form der reinen Isomere als auch in Form technischer Gemische eingesetzt werden. Ein besonders bevorzugter Alkohol ist Tridecanol. Beispiele für C3- bis C6-Alkylenoxide sind Propylenoxid, wie 1,2-Propylenoxid, Butylenoxid, wie 1,2-Butylenoxid, 2,3-Butylenoxid, Isobutylenoxid oder Tetrahydrofuran, Pentylenoxid und Hexylenoxid. Besonders bevorzugt sind hierunter C3- bis C4-Alkylenoxide, d.h. Propylenoxid wie 1,2-Propylenoxid und Butylenoxid wie 1,2-Butylenoxid, 2,3-Butylenoxid und Isobutylenoxid. Speziell verwendet man Butylenoxid.
  • Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind.
  • Besondere Trägeröle sind synthetische Trägeröle, wobei die zuvor beschriebenen alkoholgestarteten Polyether besonders bevorzugt sind.
  • Das Trägeröl bzw. das Gemisch verschiedener Trägeröle wird dem Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm zugesetzt.
  • B3) Kaltfließverbesserer
  • Geeignete Kaltfließverbesserer sind im Prinzip alle organischen Verbindungen, welche in der Lage sind, das Fließverhalten von Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen in der Kälte zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür die üblicherweise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen mineralischen Dieselkraftstoffen, eingesetzten Kaltfließverbesserer (" middle distillate flow improvers" , "MDFI") in Betracht. Jedoch können auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs ("WASA") aufweisen. Auch können sie zum Teil oder überwiegend als Nukleatoren wirken. Es können aber auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen eingesetzt werden.
  • Typischerweise wird der Kaltfließverbesserer ausgewählt aus:
    • (K1) Copolymeren eines C2- bis C40-Olefins mit wenigstens einem weiteren ethylenisch ungesättigten Monomer;
    • (K2) Kammpolymeren;
    • (K3) Polyoxyalkylenen;
    • (K4) polaren Stickstoffverbindungen;
    • (K5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
    • (K6) Poly(meth)acrylsäureestern.
  • Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (K1) bis (K6) als auch Mischungen von Vertretern aus verschiedenen Klassen (K1) bis (K6) eingesetzt werden.
  • Geeignete C2- bis C40-Olefin-Monomere für die Copolymeren der Klasse (K1) sind beispielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (α -Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch α -Olefine, besonders bevorzugt α -Olefine mit 2 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1-Buten, 1-Penten, 1-Hexen und vor allem Ethylen.
  • Bei den Copolymeren der Klasse (K1) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen.
  • Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C40-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismonomer Ethylen oder Propen ein, eignen sich als weitere Olefine insbesondere C10- bis C40-α -Olefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.
  • Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit C1- bis C20-Alkanolen, insbesondere C1- bis C10-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Strukturisomeren hiervon.
  • Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis C14-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
  • Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Propenyl-ester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäurealkenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (K1) sind die mit am häufigsten eingesetzten Ethylen-Vinylacetat-Copolymere ("EVA").
    Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.
  • Als Copolymere der Klasse (K1) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.
  • Auch Terpolymere aus einem C2- bis C40-α -Olefin, einem C1- bis C20-Alkylester einer ethylenisch ungesättigten Monocarbonsäure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis C14-Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen sind als Copolymere der Klasse (K1) geeignet. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethylen, Acrylsäure-2-ethylhexylester und Vinylacetat aufgebaut.
  • Das wenigstens eine oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copolymeren der Klasse (K1) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (K1) stammt somit in der Regel aus den C2- bis C40-Basis-Olefinen.
  • Die Copolymere der Klasse (K1) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 8000 auf.
  • Typische Kammpolymere der Komponente (K2) sind beispielsweise durch die Copolymerisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α -Olefin oder einem ungesättigten Ester wie Vinylacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere geeignete Kammpolymere sind Copolymere von α -Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Geeignete Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere. Als Komponente der Klasse (K2) geeignete Kammpolymere sind beispielsweise auch solche, die in der WO 2004/035715 und in "Comb-Like Polymers. Structure and Properties" , N. A. Platé und V. P. Shibaev, J. Poly. Sci. Macromolecular Revs. 8, Seiten 117 bis 253 (1974)" beschrieben sind. Auch Gemische von Kammpolymeren sind geeignet.
  • Als Komponente der Klasse (K3) geeignete Polyoxyalkylene sind beispielsweise Polyoxyalkylenester, Polyoxyalkylenether, gemischte Polyoxyalkylenesterether und Gemische davon. Bevorzugt enthalten diese Polyoxyalkylenverbindungen wenigstens eine, vorzugsweise wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem zahlenmittleren Molekulargewicht von bis zu 5000. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A 061 895 sowie in der US 4 491 455 beschrieben. Besondere Polyoxyalkylenverbindungen basieren auf Polyethylenglykolen und Polypropylenglykolen mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Weiterhin sind Polyoxyalkylenmono- und -diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behensäure geeignet.
  • Als Komponente der Klasse (K4) geeignete polare Stickstoffverbindungen können sowohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens zwei Substituenten in Form eines tertiären Stickstoffatoms der allgemeinen Formel >NR7, worin R7 für einen C8- bis C40-Kohlenwasserstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen C8- bis C40-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetradecylamin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1,2-dicarbonsäure, Cyclohexen-1,2-dicarbonsäure, Cyclopentan-1,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
  • Insbesondere ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbon-säuren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den Polycarbonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, meist über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
  • Vorzugsweise ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbonsäuren) der allgemeinen Formel IIa oder IIb
    Figure imgb0042
    Figure imgb0043
    in denen die Variable A eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe oder die Gruppierung der Formel III
    Figure imgb0044
    darstellt und die Variable B eine C1- bis C19-Alkylengruppe bezeichnet. Die Verbindungen der allgemeinen Formel IIa und IIb weisen insbesondere die Eigenschaften eines WASA auf.
  • Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (K4), insbesondere das der allgemeinen Formel IIa oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
  • Geradkettige oder verzweigte C2- bis C6-Alkylengruppen der Variablen A sind beispielsweise 1,1-Ethylen, 1,2-Propylen, 1,3-Propylen, 1,2-Butylen, 1,3-Butylen, 1,4-Butylen, 2-Methyl-1,3-propylen, 1,5-Pentylen, 2-Methyl-1,4-butylen, 2,2-Dimethyl-1,3-propylen, 1,6-Hexylen (Hexamethylen) und insbesondere 1,2-Ethylen. Vorzugsweise umfasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.
  • C1- bis C19-Alkylengruppen der Variablen B sind vor beispielsweise 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.
  • Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (K4) sind üblicherweise Monoamine, insbesondere aliphatische Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
  • Meist sind diese den öllöslichen Umsetzungsprodukten der Komponente (K4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HN(R8)2 auf, in der die beiden Variablen R8 unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C30-Alkylreste, insbesondere C14- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäure bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R8 gleich.
  • Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. Vorzugsweise liegen die öllöslichen Umsetzungsprodukte der Komponente (K4) vollständig in Form der Amidstrukturen vor.
  • Typische Beispiele für derartige Komponenten (K4) sind Umsetzungsprodukte der Nitrilotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1,2-diamintetraessigsäure mit jeweils 0,5 bis 1,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1,2 Mol pro Carboxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (K4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin.
  • Als weitere typische Beispiele für die Komponente (K4) seien die N,N-Dialkylammoniumsalze von 2-N' ,N' -Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäureanhydrid und 2 Mol Ditalgfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditalgfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.
  • Weitere typische Strukturtypen für die Komponente der Klasse (K4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/18115 beschrieben sind.
  • Als Kaltfließverbesserer der Komponente der Klasse (K5) geeignete Sulfocarbonsäuren, Sulfonsäuren oder deren Derivate sind beispielsweise die öllöslichen Carbonsäureamide und Carbonsäureester von ortho-Sulfobenzoesäure, in denen die Sulfonsäurefunktion als Sulfonat mit alkylsubstituierten Ammoniumkationen vorliegt, wie sie in der EP-A 261 957 beschrieben werden.
  • Als Kaltfließverbesserer der Komponente der Klasse (K6) geeignete Poly(meth)acrylsäureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäureestern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten C14- und C15-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben.
  • Dem Mitteldestillat-Kraftstoff bzw. Dieselkraftstoff wird der Kaltfließverbesserer bzw. das Gemisch verschiedener Kaltfließverbesserer in einer Gesamtmenge von vorzugsweise 10 bis 5000 Gew.-ppm, besonders bevorzugt von 20 bis 2000 Gew.-ppm, stärker bevorzugt von 50 bis 1000 Gew.-ppm und insbesondere von 100 bis 700 Gew.-ppm, z.B. von 200 bis 500 Gew.-ppm, zugegeben.
  • B4) Schmierfähigkeitsverbesserer
  • Geeignete Schmierfähigkeitsverbesserer (Lubricity Improver bzw. Friction Modifier) basieren üblicherweise auf Fettsäuren oder Fettsäureestern. Typische Beispiele sind Tallölfettsäure, wie beispielsweise in der WO 98/004656 beschrieben, und Glycerinmonooleat. Auch die in der US 6 743 266 B2 beschriebenen Reaktionsprodukte aus natürlichen oder synthetischen Ölen, beispielsweise Triglyceriden, und Alkanolaminen sind als solche Schmierfähigkeitsverbesserer geeignet.
  • B5) Korrosionsinhibitoren
  • Geeignete Korrosionsinhibitoren sind z.B. Bernsteinsäureester, vor allem mit Polyolen, Fettsäurederivate, z.B. Ölsäureester, oligomerisierte Fettsäuren, substituierte Ethanolamine und Produkte, die, unter dem Handelsnamen RC 4801 (Rhein Chemie Mannheim, Deutschland) oder HiTEC 536 (Ethyl Corporation) vertrieben werden.
  • B6) Demulgatoren
  • Geeignete Demulgatoren sind z.B. die Alkali- oder Erdalkalisalze von Alkyl-substituierten Phenol- und Naphthalinsulfonaten und die Alkali- oder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen wie Alkoholalkoxylate, z.B. Alkoholethoxylate, Phenolalköxylate, z.B. tert-Butylphenolethoxylat oder tert-Pentylphenolethoxylat, Fettsäuren, Alkylphenole, Kondensationsprodunkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockcopolymeren, Polyethylenimine oder auch Polysiloxane.
  • B7) Dehazer
  • Geeignete Dehazer sind z.B. alkoxylierte Phenol-Formaldehyd-Kondensate, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte NALCO 7D07 (Nalco) und TOLAD 2683 (Petrolite).
  • B8) Antischaummittel
  • Geeignete Antischaummittel sind z.B. Polyether-modifizierte Polysiloxane, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) und RHODOSIL (Rhone Poulenc).
  • B9) Cetanzahlverbesserer
  • Geeignete Cetanzahlverbesserer sind z.B. aliphatische Nitrate wie 2-Ethylhexylnitrat und Cyclohexylnitrat sowie Peroxide wie Di-tert-butylperoxid.
  • B10) Antioxidantien
  • Geeignete Antioxidantien sind z.B. substituierte Phenole, wie 2,6-Di-tert.-butylphenol und 6-Di-tert.-butyl-3-methylphenol sowie Phenylendiamine wie N,N'-Di-sec.-butyl-p-phenylendiamin.
  • B11) Metalldeaktivatoren
  • Geeignete Metalldeaktivatoren sind z.B. Salicylsäurederivate wie N,N'-Disalicyliden-1,2-propandiamin.
  • B12) Lösungsmittel
  • Geeignete sind z.B. unpolare organische Lösungsmittel wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylole, "white spirit" und Produkte, die unter dem Handelsnamen SHELLSOL (Royal Dutch/Shell Group) und EXXSOL (ExxonMobil) vertrieben werden, sowie polare organische Lösungsmittel, beispielsweise Alkohole wie 2-Ethylhexanol, Decanol und Isotridecanol. Derartige Lösungsmittel gelangen meist zusammen mit den vorgenannten Additiven und Co-Additiven, die sie zur besseren Handhabung lösen oder verdünnen sollen, in den Dieselkraftstoff.
  • C) Kraftstoffe
  • Das erfindungsgemäße Additiv eignet sich in hervorragender Weise als Kraftstoffzusatz und kann im Prinzip in jeglichen Kraftstoffen eingesetzt werden. Es bewirkt eine ganze Reihe von vorteilhaften Effekten beim Betrieb von Verbrennungsmotoren mit Kraftstoffen. Bevorzugt wird das erfindungsgemäße quaternisierte Additiv in Mitteldestillat-Kraftstoffen, insbesondere Dieselkraftstoffen, eingesetzt.
  • Gegenstand der vorliegenden Erfindung sind daher auch Kraftstoffe, insbesondere Mitteldestillat-Kraftstoffe, mit einem als Zusatzstoff zur Erzielung von vorteilhaften Effekten beim Betrieb von Verbrennungsmotoren, beispielsweise von Dieselmotoren, insbesondere von direkteinspritzenden Dieselmotoren, vor allem von Dieselmotoren mit Common-Rail-Einspritzsystemen, wirksamen Gehalt an dem erfindungsgemäßen quaternisierten Additiv. Dieser wirksame Gehalt (Dosierrate) liegt in der Regel bei 10 bis 5000 Gew.-ppm, vorzugsweise bei 20 bis 1500 Gew.-ppm, insbesondere bei 25 bis 1000 Gew.-ppm, vor allem bei 30 bis 750 Gew.-ppm, jeweils bezogen auf die Gesamtmenge an Kraftstoff.
  • Bei Mitteldestillat-Kraftstoffen wie Dieselkraftstoffen oder Heizölen handelt es sich vorzugsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch darüber hinaus. Dies können aber auch so genannte "Ultra Low Sulfur Diesel" oder "City Diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen mineralischen Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen sind auch solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL)-Kraftstoffe] oder durch Biomasse-Verflüssigung ["biomass to liquid" (BTL)-Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Mitteldestillat-Kraftstoffe bzw. Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel oder Bioethanol.
  • Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann' s Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff.).
  • Das erfindungsgemäße quaternisierte Additiv kann neben seiner Verwendung in den oben genannten Mitteldestillat-Kraftstoffen aus fossilem, pflanzlichem oder tierischem Ursprung, die im wesentlichen Kohlenwasserstoffmischungen darstellen, auch in Mischungen aus solchen Mitteldestillaten mit Biobrennstoffölen (Biodiesel) eingesetzt werden. Derartige Mischungen werden im Sinne der vorliegenden Erfindung auch von dem Begriff " Mitteldestillat-Kraftstoff" umfasst. Sie sind handelsüblich und enthalten meist die Biobrennstofföle in untergeordneten Mengen, typischerweise in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 10 Gew.-%, bezogen auf die Gesamtmenge aus Mitteldestillat fossilen, pflanzlichem oder tierischen Ursprungs und Biobrennstofföl.
  • Biobrennstofföle basieren in der Regel auf Fettsäureestern, vorzugsweise im wesentlichen auf Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere C1- bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol oder vor allem Methanol (" FAME" ), erhältlich sind. Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biobrennstofföl oder Komponenten hierfür Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester("RME").
  • Besonders bevorzugt handelt es sich bei den Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen um solche mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel.
  • Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegende Erfindung.
  • Das erfindungsgemäße quaternisierte Additiv eignet sich insbesondere als Kraftstoffzusatz in Kraftstoffzusammensetzungen, insbesondere in Dieselkraftstoffen, zur Überwindung der eingangs geschilderten Probleme bei direkteinspritzenden Dieselmotoren, vor allem bei solchen mit Common-Rail-Einspritzsystemen.
  • Die Erfindung wird nun anhand der folgenden Ausführungsbeispiele näher beschrieben. Die hierin beschriebenen Testmethoden sind nicht auf die konkreten Ausführungsbeispiele beschränkt sondern sind Teil der allgemeinen Offenbarung der Beschreibung und im Rahmen der vorliegenden Erfindung allgemein anwendbar.
  • Experimenteller Teil: A. Allgemeine Testmethoden Motorentest b1) XUD9 Test - Bestimmung der Flow Restriction
  • Die Durchführung erfolgt nach den Standardbestimmungen gemäß CEC F-23-01.
  • b2) DW10 - Keep Clean Test
  • Zur Untersuchung des Einflusses der erfindungsgemäßen Verbindungen auf die Performance von direkteinspritzenden Dieselmotoren wurde der Leistungsverlust (power-loss) in Anlehnung an die offizielle Testmethode CEC F-098-08 bestimmt. Der Leistungsverlust ist ein direktes Maß für Bildung von Ablagerungen in den Injektoren.
  • Der Keep Clean Test lehnt sich an die CEC Test Prozedur F-098-08 Issue 5 an. Dabei kommen der gleiche Testaufbau und Motorentyp (PEUGEOT DW10) wie in der CEC Prozedur zum Einsatz.
  • Besonderheiten des eingesetzten Tests:
  • a) Injektoren
  • Bei den Versuchen kamen gereinigte Injektoren zum Einsatz. Die Reinigungsdauer im Ultraschallbad in 60°C Wasser + 10% Superdecontamine (Intersciences, Brüssel) betrug 4h.
  • b) Testlaufzeiten
  • Der.Testzeitraum betrug 12h ohne Abstellphasen. Der einstündige Testzyklus (siehe folgende Tabelle) aus der CEC F-098-08 wurde dabei 12-mal durchfahren.
    Stufe Dauer (Minuten) Motorgeschw. (Upm) +/-20 Last (%) Drehmoment (Nm) +/-5 Ladelufttemperatur nach Ladelaufkühler (°C) +/-3
    1 2 1750 (20) 62 45
    2 7 3000 (60) 173 50
    3 2 1750 (20) 62 45
    4 7 3500 (80) 212 50
    5 2 1750 (20) 62 45
    6 10 4000 100 * 50
    7 2 1250 (10) 25 43**
    8 7 3000 100 * 50
    9 2 1250 (10) 25 43**
    10 10 2000 100 * 50
    11 2 1250 (10) 25 43**
    12 7 4000 100 * 50
    Σ = 1 h
    * für zu erwartenden Bereich siehe CEC-098-08
    ** Zielwert
  • c) Leistungsbestimmung
  • Die Anfangsleistung (Po, KC [kW] ) wird aus dem gemessenen Drehmoment bei 4000/min Volllast direkt nach Teststart und Warmlauf des Motors berechnet. Die Vorgehensweise ist in der Issue 5 der Testprozedur CEC F-98-08 beschrieben. Dabei wird der gleiche Testaufbau und der Motorentyp PEUGEOT DW10 verwendet.
  • Die Endleistung (Pend, KC) wird im 12. Zyklus in Stufe 12, (siehe Tabelle oben) bestimmt. Auch hier ist der Betriebspunkt 4000/min Volllast. Pend, KC [kW] errechnet sich aus dem gemessenen Drehmoment.
  • Der Leistungsverlust im KC wird wie folgt berechnet: Powerloss , KC % = 1 P end , KC / P 0 , KC × 100
    Figure imgb0045
  • Als Kraftstoff wurde ein handelsüblicher Dieselkraftstoff der Fa. Haltermann (RF-06-03) eingesetzt. Diesem wurden zur künstlichen Anregung der Bildung von Ablagerungen an den Injektoren 1 Gew.-ppm Zink in Form einer Zink-neodecanoat-Lösung zugesetzt.
  • B. Herstellungsbeispiele: Verwendete Reaktanden:
  • PIBSA: Hergestellt aus Maleinsäureanhydrid und PIB 1000 in bekannter Weise. Für die folgenden erfindungsgemäßen Herstellungsbeispiele und Vergleichsbeispiele wurden Qualitäten mit Verseifungzahlen im Bereich von 84-95 mg KOH/g verwendet. Dabei wurde DMAPA mit der jeweiligen PIBSA-Qualität im Molverhältnis 1:1 entsprechend der Verseifungszahl eingesetzt. Die verwendeten PIBSA-Qualitäten hatten Bismaleinierungsgrade (BMG) von kleiner 15 %.
    DMAPA: M = 102,18
    Methylsalicylat: M = 152,14
    Dimethylphthalat: M = 194,19
    Dimethyloxalat: M = 118,09
    Dimethylsulfat: M = 126,13
    Dimethylcarbonat M = 90,08
  • Herstellungsbeispiel 1: Synthese eines erfindungsgemäßen quatemisierten Succinimids (PIBSA/DMAPA/Dimethylphthalat)
  • Polyisobutylenbernsteinsäureanhydrid (1659 g) wird Solvent Naphta Heavy (SNH, Exxon Mobil, CAS64742-95-5) (1220 g) gelöst und 3-Dimethylamino-1-propylamin (DMAPA; 153 g) wird zugegeben. Die Reaktionslösung wird 8 h bei 170°C gerührt, wobei gebildetes Kondensationswasser kontinuierlich abdestilliert wird. Man erhält das PIBSA-DMAPA-Succinimid als Lösung in Solvent Naphta Heavy (TBN 0,557 mmol/g).
  • Ein Teil dieser Lösung des PIBSA-DMAPA-Succinimids (181 g) wird Phthalsäuredimethylester (19,4 g) gegeben und die erhaltene Reaktionslösung wird für 11 h bei 120°C und anschliessend für 24 h bei 150°C gerührt. Nach Abkühlen auf Raumtemperatur erhält man als Produkt das Ammoniumcarboxylat als Lösung in Solvent Naphta Heavy. 1H-NMR-Analyse bestätigt die Quaternierung.
  • Herstellungsbeispiel 2: Synthese eines erfindungsgemäßen quatemisierten Suocinimids (PIBSA/DMAPA/Methylsalycilat)
  • Polyisobutylenbernsteinsäureanhydrid (PIBSA; 2198 g) wird auf 110°C erhitzt und 3-Dimethylamino-1-propylamin (DMAPA; 182 g) wird innerhalb von 40 min. zugegeben, wobei sich das Reaktionsgemisch auf 140°C erwärmt. Das Reaktionsgemisch wird auf 170°C erwärmt und 3 h bei dieser Temperatur gehalten, wobei 28 g Destillat aufgefangen werden. Man erhält das PIBSA-DMAPA-Succinimid als zähes Öl (TBN 0,735 mmol/g).
  • Ein Gemisch dieses PIBSA-DMAPA-Succinimids (284,5 g), Methylsalicylat (65,5 g) (d.h. etwa 2 Äquivalente methylsalicylat je Äquivalent tertiäre Aminogruppe) und 3,3,5 Trimethylhexansäure (Fa. BASF) (0,75 g) wird auf 140-150°erhitzt und das Reaktionsgemisch wird 6 h bei bei dieser Temperatur gerührt. Nach Abkühlen auf Raumtemperatur erhält man als Produkt das Ammoniumsalicylat als zähes Öl. 1H-NMR-Analyse bestätigt die Quaternierung. Durch Zugabe von Pilot 900 Öl ,Petrochem Carless Ltd., wird der Wirkstoffgehalt der Lösung auf 50 Gew. % eingestellt.
  • Herstellungsbeispiel 3: Synthese eines erfindungsgemäßen quatemisierten Suocinimids (PIBSA/DMAPA/Dimethyloxalat)
  • Polyisobutylenbernsteinsäureanhydrid (PIBSA; 2198 g) wird auf 110°C erhitzt und 3-Dimethylamino-1-propylamin (DMAPA; 182 g) wird innerhalb von 40 min. zugegeben, wobei sich das Reaktionsgemisch auf 140°C erwärmt. Das Reaktionsgemisch wird auf 170°C erwärmt und 3 h bei dieser Temperatur gehalten, wobei 28 g Destillat aufgefangen werden. Man erhält das PIBSA-DMAPA-Succinimid als zähes Öl (TBN 0,735 mmol/g).
  • Ein Gemisch dieses PIBSA-DMAPA-Succinimids (211 g), Dimethyloxalat (34,5 g) und Laurinsäure (4,9 g) wird auf 120°C erhitzt und anschließend für 4 h bei dieser Temperatur gerührt. Überschüssiges Dimethyloxalat wird am Rotationsverdampfer im Vakuum (p = 5 mbar) bei 120°C entfernt. Man erhält als Produkt das Ammoniummethyloxalat als zähes Öl. 1H-NMR-Analyse bestätigt die Quaternierung.
  • Zum Vergleich mit dem Stand der Technik wurden die Beispiele 2 und 4 aus der WO 2006/135881 nachgearbeitet.
  • Herstellungsbeispiel 4: Synthese eines bekannten quatemisierten Succinimids (Vergteichsbeispiel) (Beispiel 2 aus der WO 2006/135881)
  • Eine Lösung von PIBSA (420,2 g) in Pilot 900 Öl ,Petrochem Carless Ltd. ,(51,3 g) wird vorgelegt und auf 110°C erhitzt. Innerhalb von 50 Minuten wird DMAPA (31,4 g) zudosiert, wobei eine leicht exotherme Reaktion beobachtet wird. Innerhalb von 80 Minuten wird das Reaktionsgemisch auf 150°C erwärmt und der Ansatz anschließend 3 h bei dieser Temperatur gehalten, wobei das entstehende Reaktionswasser abdestilliert. Nach Abkühlen auf Raumtemperatur erhält man das PIBSA-DMAPA-Succinimid als Lösung in Pilot 900 Öl (TBN 0,62 mmol/g).
  • Ein Teil des so erhaltenen PIBSA-DMAPA-Succinimids als Lösung in Pilot 900 Öl, Petrochem Carless Ltd., (354 g) wird vorgelegt und auf 90°C erhitzt. Dimethylsulfat (26,3 g) wird zudosiert, wobei die Reaktionstemperatur auf 112°C steigt. Anschließend wird das Reaktionsgemisch für 3 h bei 100°C gerührt. Nach Abkühlen auf Raumtemperatur erhält man das quaternisierte PIBSA-DMAPA-Succinimid als Lösung in Pilot 900 Öl. 1H-NMR-Analyse bestätigte die Quaternierung. Der Austrag wurde durch Zugabe von Pilot 900 Öl auf einen Wirkstoffgehalt von 50 Gew. % eingestellt.
  • Herstellungsbeispiel 5: Synthese eines bekannten quatemisierten Succinimids (Vergleichsbeispiel) (Beispiel 4 aus der WO 2006/135881)
  • Eine Lösung von PIBSA (420,2 g) in Pilot 900 Öl ,Petrochem Carless Ltd. ,(51,3 g) wird vorgelegt und auf 110°C erhitzt. Innerhalb von 50 Minuten wird DMAPA (31,4 g) zudosiert, wobei eine leicht exotherme Reaktion beobachtet wird. Innerhalb von 80 Minuten wird das Reaktionsgemisch auf 150°C erwärmt und der Ansatz anschließend 3 h bei dieser Temperatur gehalten, wobei das entstehende Reaktionswasser abdestilliert. Nach Abkühlen auf Raumtemperatur erhält man das PIBSA-DMAPA-Succinimid als Lösung in Pilot 900 Öl (TBN 0,62 mmol/g).
  • Ein Teil des so erhaltenen PIBSA-DMAPA-Succinimids als Lösung in Pilot 900 Öl, Petrochem Carless Ltd., (130 g), Dimethylcarbonat (20 g) und Methanol (17,4) werden in einen Autoklaven gefüllt, mit Stickstoff inertisiert und ein Vordruck von 1,3 bar eingestellt. Anschließend wird das Reaktionsgemisch unter Eigendruck zuerst 1 h bei 90°C, dann 24 h bei 140°C gerührt. Nach Abkühlen auf Raumtemperatur wird der Autoklav entspannt und der Inhalt mit wenig Toluol als Lösungsmittel vollständig ausgespült. Alle niedrig siedenden Bestandteile werden anschließend am Rotationsverdampfer im Vakuum entfernt und man erhält das quaternisierte PIBSA-DMAPA-Succinimid als Lösung in Pilot 900 Öl. 1H-NMR-Analyse bestätigte die teilweise Quaternierung. Der Austrag wird durch Zugabe von Pilot 900 Öl auf einen Wirkstoffgehalt von 50 Gew.% eingestellt.
  • C. Anwendungsbeispiele:
  • In den folgenden Anwendungsbeispielen werden die Additive entweder als Reinsubstanz (so wie in obigen Herstellungsbeispielen synthetisiert) oder in Form eines Additiv-Paketes eingesetzt.
    • M1 : Additiv gemäß Herstellungsbeispiel 2 (Erfindung, mit Methylsalicylat quaterniert)
    • M2 : Additiv gemäß Herstellungsbeispiel 4 (Vergleich, mit Dimethylsulfat quaterniert)
    • M3 : Additiv gemäß Herstellungsbeispiel 5 (Vergleich, mit Dimethycarbonat quaterniert)
    Anwendungsbeispiel 1: Bestimmung der Additivwirkung auf die Bildung von Ablagerungen in Dieselmotor-Einspritzdüsen a) XUD9 Tests
  • Verwendeter Kraftstoff: RF-06-03 (Referenzdiesel, Haltermann Products, Hamburg) Die Ergebnisse sind in Tabelle 1 zusammengefasst. Tabelle 1 :XUD9 Tests
    Bsp. Bezeichnung Dosierung gem. Herstellungsbeispiel[mg/kg] Flow restriction 0,1 mm Nadelhub [%]
    #1 M1, gemäß Herstellungsbeispiel 2 30 10.7
    #2. M2,gemäß Herstellungsbeispiel 4 30 48.5
    #3 M3, gemäß Herstellungsbeispiel 5 30 20.8
  • Es zeigte sich, dass das erfindungsgemäße Additiv M1 bei gleicher Dosierung eine gegenüber dem Stand der Technik (M2, M3) verbesserte Wirkung aufweist.
  • b) DW10 Test
  • Zur Untersuchung des Einflusses der erfindungsgemäßen Verbindung auf die Performance von direkteinspritzenden Dieselmotoren wurde der Leistungsverlust (powerloss) in Anlehnung an die offizielle Testmethode CEC -098-08 wie oben beschrieben bestimmt. Der Leistungsverlust ist ein direktes Maß für Bildung von Ablagerungen in den Injektoren. Verwendet wurde ein gebräuchlicher direkteinspritzender Dieselmotor mit Common-Rail-System.
  • Als Kraftstoff wurde ein handelsüblicher Dieselkraftstoff der Fa. Haltermann (RF-06-03) eingesetzt. Diesem wurden zur künstlichen Anregung der Bildung von Ablagerungen an den Injektoren 1 Gew.-ppm Zink in Form einer Zink-Didodecanoat-Lösung zugesetzt.
  • Die nachfolgende.Tabelle zeigt die Ergebnisse der Bestimmungen des relativen Leistungsverlustes (Powerloss) bei 4000 rpm nach 12 Stunden Dauerbetrieb ohne Unterbrechung. Der Wert P0 gibt dabei die Leistung nach 10 Minuten und der Wert Pend die Leistung am Ende der Messung an:
  • Die Versuchsergebnisse sind in Tabelle 2 dargestellt. Tabelle 2: Ergebnisse des DW10 Tests
    Additiv Dosis [mg/kg] Zeit [h] Po [KW] Pend [KW] Powerloss
    Grundwert 0 12 99.3 94.3 5.0%
    M1, gemäß Herstellungsbeispiel 2 160 12 98.7 97.4 1.32%
    M2, gemäß Herstellungsbeispiel 4 160 12 99 98.1 0.9 %
    M3,gemäß Herstellungsbeispiel 5 160 12 98.1 95.7 2.4 %
  • Dabei zeigt sich, dass das erfindungsgemäße Additiv M1 eine gegenüber dem Grundwert verbesserte Wirkung aufweist und zumindest gegenüber dem Beispiel M3 eine verbesserte Wirkung aufweist.
  • Anwendungsbeispiel 2: Bestimmung der Löslichkeitseigenschaften
  • Zur Bestimmung der Löslichkeitseigenschaften wurden folgende Additivpakete hergestellt und getestet: M 4 (Erfindung)
    Substanz Gehalt [ppm]
    Additiv gem. Herstellungsbeispiel 2 160,00
    Dehazer, kommerziell 3,00
    Antischaum, Silicon based, kommerziell 6,00
    Solvent Naphta Heavy 80,00
    Gesamt 249,00
    M 5 (Vergleich, Dimethylsulfat)
    Substanz Gehalt [ppm]
    Additiv gem. Herstellungsbeispiel 4 160,00
    Dehazer, kommerziell 3,00
    Antifoam, Silicon based, kommerziell 6,00
    Solvent Naphta Heavy 420,00
    Gesamt 589,00
    M 6 (Vergleich, Dimethylcarbonat)
    Substanz Gehalt [ppm]
    Additiv gem. Herstellungsbeispiel 5 160,00
    Dehazer (kommerziell) 3,00
    Antifoam, Silicon based, kommerziell 6,00
    Solvent Naphta Heavy 150,00
    Gesamt 319,00
  • Das Ergebnis der Löslichkeitsversuche ist in folgender Tabelle zusammengefasst: Es wird die minimal notwendige Menge an Lösungsmittel (Solvent Naphtha Heavy) angegeben, um bei sonst identischen Mengen Aktivsubstanz, Pilot 900, Antischaum, Dehazer bei Raumtemperatur ein homogenes, klares Dieselperformance-Paket zu erhalten. Tabelle 3: Ermittlung des Lösungsmittelbedarfes
    Additiv Additiv-Paket Minimal notwendige Lösungsmittelmenge für ein homogenes Paket
    PIBSA-DMAPA-Imid-Methylsalicylat M4 32 %
    PIBSA-DMAPA-Imid-Dimethylsulfat M5 71%
    PIBSA-DMAPA-Imid-Dimethylcarbonat M6 47%
  • Überraschenderweise zeigte sich, dass das Additiv gemäß Herstellungsbeispiel 2 die besten Löslichkeitseigenschaften aufweist, also am wenigsten Lösungsmittel erfordert.
  • Auf die Offenbarung der hierin zitierten Druckschriften wird ausdrücklich Bezug genommen.

Claims (12)

  1. Kraftstoffzusammensetzung, enthaltend in einer Hauptmenge eines üblichen Kraftstoffs einen Anteil wenigstens eines eine quaternisierte Stickstoffverbindung umfassenden Reaktionsprodukts, oder eine aus dem Reaktionsprodukt durch Aufreinigung erhaltene, eine quaternisierte Stickstoffverbindung enthaltende Teilfraktion davon, wobei das Reaktionsprodukt erhältlich ist durch
    a1) Umsetzung einer hydrocarbyl-substituierten Polycarbonsäureverbindung, mit einer Verbindung umfassend wenigstens eine mit der Polycarbonsäure reaktiven, insbesondere addierbaren oder kondensierbaren, Sauerstoff- oder Stickstoffgruppe sowie enthaltend wenigstens eine quaternisierbare Aminogruppe, wobei man eine quaternisierbaren hydrocarbyl-substituierten Polycarbonsäureverbindung erhält, und
    a2) deren anschließende Umsetzung mit einem Quaternisierungsmittel, das die wenigstens eine quaternisierbare Aminogruppe in eine quaternäre Ammoniumgruppe überführt, wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure, insbesondere einer Mono- oder Dicarbonsäure, oder einer aliphatischen Polycarbonsäure ist; oder
    b) Umsetzung einer quaternisierbaren hydrocarbyl-substituierten Polycarbonsäureverbindung, enthaltend wenigstens eine quaternisierbare Aminogruppe mit einem Quaternisierungsmittel, das die wenigstens eine quaternisierbare Aminogruppe in eine quaternäre Ammoniumgruppe überführt, wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure, insbesondere einer Mono- oder Dicarbonsäure, oder einer aliphatischen Polycarbonsäure ist.
    wobei pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente an Quaternisierungsmittel eingesetzt werden; und/oder
    die hydrocarbyl-substituierte Polycarbonsäureverbindung eine Polyisobutenylbersteinsäure oder ein Anhydrid davon ist, wobei diese einen Bismaleinierungsgrad von 2 bis 20 Gew.-% oder 2 bis 15 Gew.-% , jeweils bezogen auf das Umsetzungsprodukt, aufweist.
  2. Kraftstoffzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Quaternisierungsmittel eine Verbindung der allgemeinen Formel 1 ist

            R1OC(O)R2     (1)

    worin
    R1 für einen Niedrigalkylrest steht und
    R2 für einen gegebenenfalls substituierten einkernigen Aryl- oder Cycloalkylrest steht, wobei der Substituent ausgewählt ist unter OH, NH2, NO2, C(O)OR3, und R1OC(O)-, worin R1 die oben angegebenen Bedeutungen besitzt und R3 für H oder R1 steht.
  3. Kraftstoffzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Quaternisierungsmittel eine Verbindung der allgemeinen Formel 2 ist

            R1OC(O)-A-C(O)OR1a     (2)

    worin
    R1 und R1a unabhängig voneinander für einen Niedrigalkylrest steht und
    A für Hydrocarbylen steht.
  4. Kraftstoffzusammensetzung nach einem der vorhergehenden Ansprüche, wobei die quaternisierte Stickstoffverbindung ein zahlenmittleres Molekulargewicht im Bereich von 500 bis 5000, 800 bis 3000 oder 900 bis 1500 aufweist.
  5. Kraftstoffzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Quaternisierungsmittel ausgewählt ist unter Alkylsalicylaten, Dialkylphthalaten und Dialkyloxalaten.
  6. Kraftstoffzusammensetzung nach Anspruch 1, wobei die mit der Polycarbonsäure reaktive, insbesondere addierbare oder kondensierbare, eine Sauerstoff- oder Stickstoffgruppe sowie wenigstens eine quaternisierbare Aminogruppe enthaltende Verbindung ausgewählt ist unter
    a) Hydroxyalkyl-substituierten Mono- oder Polyaminen mit wenigstens einer quaternisierbaren, primären, sekundären oder tertiären Aminogruppe
    b) geradkettigen oder verzweigtem, cyclischen, heterocyclischen, aromatischen oder nichtaromatischen Polyaminen mit wenigstens einer primären oder sekundären Aminogruppe und mit wenigstens einer quatemisierbaren, primären, sekundären oder tertiären Aminogruppe;
    c) Piperazinen.
  7. Kraftstoffzusammensetzung nach Anspruch6, wobei die mit der Polycarbonsäure reaktive, insbesondere addierbare oder kondensierbare, eine Sauerstoff- oder Stickstoffgruppe sowie wenigstens eine quaternisierbare Aminogruppe enthaltende Verbindung ausgewählt ist unter
    a) Hydroxyalkyl-substituierten primären, sekundären oder tertiären Monoaminen und Hydroxyalkyl-substituierten primären, sekundären oder tertiären Diaminen.
    b) geradkettigen oder verzweigten aliphatischen Diaminen mit zwei primären Aminogruppen; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer sekundären Aminogruppe; Di- oder Polyaminen mit wenigstens einer primären und wenigstens einer tertiären Aminogruppe; aromatischen carbo-cyclischen Diaminen mit zwei primären Aminogruppen; aromatischen heterocyclischen Polyaminen mit zwei primären Aminogruppen; aromatischen oder nichtaromatischen Heterozyklen mit einer primären und einer tertiären Aminogruppe.
  8. Kraftstoffstoffzusammensetzung nach einem der vorhergehenden Ansprüche, ausgewählt unter Dieselkraftstoffen, Biodieselkraftstoffen, Ottokraftstoffen, und Alkanol-haltigen Ottokraftstoffen.
  9. Verwendung eines Reaktionsproduktes erhältlich nach einem Verfahren gemäß der Definition in einem der vorhergehenden Ansprüche oder aus dem Reaktionsprodukt gewonnener quatemisierter Stickstoffverbindung; oder
    einer quaternisierten Stickstoffverbindung, hergestellt nach einem Verfahren, umfassend die Umsetzung einer quaternisierbaren hydrocarbyl-substituierten Polycarbonsäureverbindung, enthaltend wenigstens eine tertiäre, quaternisierbare Aminogruppe mit einem Quaternisierungsmittel, das die wenigstens eine tertiäre Aminogruppe in eine quaternäre Ammoniumgruppe überführt,
    wobei das Quaternisierungsmittel der Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure, insbesondere einer Mono- oder Dicarbonsäure, oder einer aliphatischen Polycarbonsäure ist; und wobei pro Äquivalent an quaternisierbarem tertiären Stickstoffatom etwa 1,1 bis etwa 2,0 oder etwa 1,25 bis etwa 2,0 Äquivalente an Quaternisierungsmittel eingesetzt werden;
    als Kraftstoffadditiv.
  10. Verwendung nach Anspruch 9 als Additiv zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, oder Dieselmotoren mit Common-Rail-Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, oder in Dieselmotoren mit Common-Rail-Einspritzsystemen.
  11. Verwendung nach Anspruch 9 als Ottokraftstoffadditiv zur Verringerung von Ablagerungen im Einlasssystem eines Ottomotors, oder DISI (Direct Injection Spark Igniton) und PFI (Port Fuel Injector) - Motoren.
  12. Verwendung nach Anspruch 9 als Dieselkraftstoffadditiv, als Kaltfließverbesserer, als Wachs-Anti-Settling Additiv (WASA) oder als Additiv zur Verringerung und/oder Vermeidung von Ablagerungen in den Einspritzsystemen, der Internal Diesel Injector Deposits (IDID) und / oder von Ventilkleben in direkteinspritzenden Dieselmotoren, oder in Common-Rail-Einspritzsystemen .
EP12737233.2A 2011-06-28 2012-06-28 Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen Active EP2726580B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12737233.2A EP2726580B1 (de) 2011-06-28 2012-06-28 Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11171763A EP2540808A1 (de) 2011-06-28 2011-06-28 Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen
PCT/EP2012/062553 WO2013000997A1 (de) 2011-06-28 2012-06-28 Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen
EP12737233.2A EP2726580B1 (de) 2011-06-28 2012-06-28 Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen

Publications (2)

Publication Number Publication Date
EP2726580A1 EP2726580A1 (de) 2014-05-07
EP2726580B1 true EP2726580B1 (de) 2016-04-27

Family

ID=44947298

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11171763A Ceased EP2540808A1 (de) 2011-06-28 2011-06-28 Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen
EP12737233.2A Active EP2726580B1 (de) 2011-06-28 2012-06-28 Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11171763A Ceased EP2540808A1 (de) 2011-06-28 2011-06-28 Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen

Country Status (11)

Country Link
EP (2) EP2540808A1 (de)
KR (1) KR102070364B1 (de)
CN (1) CN103764806B (de)
AU (3) AU2012277805C1 (de)
BR (1) BR112013033798A2 (de)
CA (1) CA2840524C (de)
ES (1) ES2579852T3 (de)
HU (1) HUE030070T2 (de)
MX (1) MX2014000038A (de)
PL (1) PL2726580T3 (de)
WO (1) WO2013000997A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540808A1 (de) 2011-06-28 2013-01-02 Basf Se Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen
US20130133243A1 (en) 2011-06-28 2013-05-30 Basf Se Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
US8690970B2 (en) * 2012-02-24 2014-04-08 Afton Chemical Corporation Fuel additive for improved performance in fuel injected engines
KR20150126365A (ko) 2013-03-13 2015-11-11 빈터샬 홀딩 게엠베하 치환 트리스(2-히드록시페닐)메탄의 제조 방법
MY186439A (en) 2013-06-07 2021-07-22 Basf Se Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
ES2728113T3 (es) 2013-09-20 2019-10-22 Basf Se Uso de derivados especiales de compuestos cuaternizados de nitrógeno, como aditivos en combustibles
MY180330A (en) 2014-01-29 2020-11-28 Basf Se Use of polycarboxylic-acid-based additives for fuels
WO2015184301A2 (en) * 2014-05-30 2015-12-03 The Lubrizol Corporation Coupled quaternary ammonium salts
US9677020B2 (en) 2014-06-25 2017-06-13 Afton Chemical Corporation Hydrocarbyl soluble quaternary ammonium carboxylates and fuel compositions containing them
WO2017202735A1 (en) 2016-05-23 2017-11-30 Shell Internationale Research Maatschappij B.V. Use of a wax anti-settling additive in automotive fuel compositions
US11078418B2 (en) 2016-07-05 2021-08-03 Basf Se Corrosion inhibitors for fuels and lubricants
CN110724510B (zh) * 2018-07-17 2021-09-07 中国石油化工股份有限公司 一种耐高温普适性缓蚀剂的制备方法、缓蚀剂及应用
KR20200092752A (ko) 2019-01-25 2020-08-04 전수훈 인체 및 식물에 이로운 물 제조 및 저장장치
EP3963032B1 (de) 2019-05-03 2023-01-25 Basf Se Emulgatorpaket mit quaternärem ammoniumtensid für kraftstoffemulsionen
CN114051527A (zh) 2019-06-26 2022-02-15 巴斯夫欧洲公司 新的汽油燃料添加剂包
US11845905B2 (en) 2019-11-07 2023-12-19 Totalenergies Onetech Lubricant for a marine engine
EP3945126B1 (de) * 2020-07-31 2024-03-13 Basf Se Enttrübungszusammensetzungen für kraftstoffe
CA3197368A1 (en) 2020-11-04 2022-05-12 Jochen Wagner Aqueous emulsifier package with anionic surfactant for fuel emulsion
US12091618B2 (en) 2020-11-20 2024-09-17 Basf Se Mixtures for improving or boosting the separation of water from fuels
EP4263766B1 (de) 2020-12-16 2024-10-09 Basf Se Mischungen zur verbesserung der stabilität von additivpaketen
EP4284902A1 (de) 2021-01-27 2023-12-06 Basf Se Verzweigte primäre alkylamine als additive für benzinkraftstoffe
EP4074810B1 (de) 2021-04-15 2023-11-15 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
BR112023021769A2 (pt) 2021-04-22 2023-12-26 Basf Se Uso de derivados de poli-isobuteno, e, composição
EP4105301A1 (de) 2021-06-15 2022-12-21 Basf Se Neue benzinadditivpaket
WO2022263244A1 (en) 2021-06-16 2022-12-22 Basf Se Quaternized betaines as additives in fuels
EP4163353A1 (de) 2021-10-06 2023-04-12 Basf Se Verfahren zur verringerung von ablagerungen auf einlassventilen
EP4166631A1 (de) 2021-10-15 2023-04-19 Basf Se Verfahren zur reduktion von asphaltenen aus schiffstreibstoffen
EP4166630A1 (de) 2021-10-15 2023-04-19 Basf Se Verfahren zur reduktion von asphaltenen aus schiffstreibstoffen
WO2023117895A1 (en) 2021-12-21 2023-06-29 Basf Se Chemical product passport for production data
EP4269541A1 (de) 2022-04-29 2023-11-01 Basf Se Neue mischungen zur verbesserung oder verstärkung der wasserabscheidung aus brennstoffen
WO2024061760A1 (de) 2022-09-23 2024-03-28 Basf Se Verminderung der kristallisation von paraffinen in kraftstoffen
EP4382588A1 (de) 2022-12-06 2024-06-12 Basf Se Additive zur verbesserung der thermischen stabilität von kraftstoffen
WO2024149635A1 (en) 2023-01-12 2024-07-18 Basf Se Branched amines as additives for gasoline fuels

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171959A (en) 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
US4248719A (en) 1979-08-24 1981-02-03 Texaco Inc. Quaternary ammonium salts and lubricating oil containing said salts as dispersants
WO1987003003A1 (en) 1985-11-08 1987-05-21 The Lubrizol Corporation Fuel compositions
EP0629638A1 (de) 1993-06-14 1994-12-21 BASF Aktiengesellschaft Verfahren zur Herstellung von Polyisobutylbernsteinsäureanhydriden
US5883196A (en) 1995-05-24 1999-03-16 Basf Aktiengesellschaft Preparation of polyalkenylsuccinic acid derivatives and their use as fuel and lubricant additives
WO2006135881A2 (en) 2005-06-16 2006-12-21 The Lubrizol Corporation Quaternary ammonium salt detergents for use in fuels
WO2011095819A1 (en) 2010-02-05 2011-08-11 Innospec Limited Fuel compositions
WO2011110860A1 (en) 2010-03-10 2011-09-15 Innospec Limited Fuel composition comprising detergent and quaternary ammonium salt additive
WO2011141731A1 (en) 2010-05-10 2011-11-17 Innospec Limited Composition, method and use
EP2540808A1 (de) 2011-06-28 2013-01-02 Basf Se Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464182A (en) 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
JPS58138791A (ja) 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
IN184481B (de) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
EP0307815B1 (de) 1987-09-15 1992-04-08 BASF Aktiengesellschaft Kraftstoffe für Ottomotoren
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
DE19754039A1 (de) 1997-12-05 1999-06-24 Basf Ag Verfahren zur Herstellung von Ethylencopolymeren in segmentierten Rohrreaktoren und Verwendung der Copolymere als Fließverbesserer
GB9827366D0 (en) 1998-12-11 1999-02-03 Exxon Chemical Patents Inc Macromolecular materials
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
WO2001072930A2 (en) 2000-03-31 2001-10-04 Texaco Development Corporation Fuel additive composition for improving delivery of friction modifier
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
DE10247795A1 (de) 2002-10-14 2004-04-22 Basf Ag Verwendung von Hydrocarbylvinyletherhomopolymeren zur Verbesserung der Wirkung von Kaltfliessverbesserern
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
PL1801187T3 (pl) * 2005-12-22 2016-04-29 Clariant Produkte Deutschland Oleje mineralne o polepszonej płynności w niskich temperaturach, zawierające dodatki detergentowe
WO2008138836A2 (de) 2007-05-11 2008-11-20 Basf Se Verfahren zur herstellung von polyisobutylbernsteinsäureanhydriden
EP2033945A1 (de) 2007-09-06 2009-03-11 Infineum International Limited Quaternäre Ammoniumsalze

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171959A (en) 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
US4248719A (en) 1979-08-24 1981-02-03 Texaco Inc. Quaternary ammonium salts and lubricating oil containing said salts as dispersants
WO1987003003A1 (en) 1985-11-08 1987-05-21 The Lubrizol Corporation Fuel compositions
EP0629638A1 (de) 1993-06-14 1994-12-21 BASF Aktiengesellschaft Verfahren zur Herstellung von Polyisobutylbernsteinsäureanhydriden
US5883196A (en) 1995-05-24 1999-03-16 Basf Aktiengesellschaft Preparation of polyalkenylsuccinic acid derivatives and their use as fuel and lubricant additives
WO2006135881A2 (en) 2005-06-16 2006-12-21 The Lubrizol Corporation Quaternary ammonium salt detergents for use in fuels
WO2011095819A1 (en) 2010-02-05 2011-08-11 Innospec Limited Fuel compositions
WO2011110860A1 (en) 2010-03-10 2011-09-15 Innospec Limited Fuel composition comprising detergent and quaternary ammonium salt additive
WO2011141731A1 (en) 2010-05-10 2011-11-17 Innospec Limited Composition, method and use
EP2540808A1 (de) 2011-06-28 2013-01-02 Basf Se Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BASF AKTIENGESELLSCHAFT: "Technical Information Glissopal ® 1000, 1300 and 2300", December 2005 (2005-12-01), pages 1 - 8, XP055348804

Also Published As

Publication number Publication date
CN103764806A (zh) 2014-04-30
AU2012277805A1 (en) 2014-02-20
EP2540808A1 (de) 2013-01-02
PL2726580T3 (pl) 2016-12-30
AU2016273853A1 (en) 2017-01-05
CA2840524C (en) 2020-09-08
AU2012277805B2 (en) 2016-09-15
BR112013033798A2 (pt) 2017-02-14
MX2014000038A (es) 2014-02-17
AU2019201700A1 (en) 2019-04-04
KR20140051253A (ko) 2014-04-30
CA2840524A1 (en) 2013-01-03
WO2013000997A1 (de) 2013-01-03
AU2019201700B2 (en) 2020-05-21
EP2726580A1 (de) 2014-05-07
ES2579852T3 (es) 2016-08-17
HUE030070T2 (en) 2017-04-28
AU2012277805C1 (en) 2020-09-03
CN103764806B (zh) 2016-08-17
AU2016273853B2 (en) 2018-12-20
KR102070364B1 (ko) 2020-01-29

Similar Documents

Publication Publication Date Title
EP2726580B1 (de) Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen
EP3004294B1 (de) Mit alkylenoxid und hydrocarbyl-substituierter polycarbonsäure quaternisierter stickstoffverbindungen als additive in kraft- und schmierstoffen
EP3046999B1 (de) Verwendung spezieller derivate quaternisierter stickstoffverbindungen als additive in kraftstoffen
EP3099720B1 (de) Verwendung von polycarbonsäure-basierten additiven für kraftstoffe
US10119085B2 (en) Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
EP2912149B1 (de) Verwendung von quaternisierten ammoniumsalze von hydrocarbylepoxiden als additive in kraft- und schmierstoffen
EP2591016B1 (de) Säurefreie quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen
EP2791291B1 (de) Verwendung quaternisierter alkylamine als additive in kraft- und schmierstoffen
EP2773729B1 (de) Verwendung von quaternisierten polyetheraminen als additive in kraft- und schmierstoffen
EP3322774A1 (de) Verwendung von korrosionsinhibitoren für kraft- und schmierstoffe
EP2811007A1 (de) Verwendung mit Alkylenoxid und Hydrocarbyl-substituierter Polycarbonsäure quaternisierter Alkylamine als Additive in Kraft- und Schmierstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794830

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006930

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2579852

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012006930

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

26 Opposition filed

Opponent name: INNOSPEC LIMITED

Effective date: 20170125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E030070

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160628

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160628

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20220617

Year of fee payment: 11

Ref country code: IT

Payment date: 20220622

Year of fee payment: 11

Ref country code: HU

Payment date: 20220613

Year of fee payment: 11

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230314

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230721

Year of fee payment: 12

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240618

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240618

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240604

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240611

Year of fee payment: 13

Ref country code: SE

Payment date: 20240624

Year of fee payment: 13

Ref country code: BE

Payment date: 20240625

Year of fee payment: 13