EP2715229A1 - Dampferzeuger - Google Patents

Dampferzeuger

Info

Publication number
EP2715229A1
EP2715229A1 EP12724986.0A EP12724986A EP2715229A1 EP 2715229 A1 EP2715229 A1 EP 2715229A1 EP 12724986 A EP12724986 A EP 12724986A EP 2715229 A1 EP2715229 A1 EP 2715229A1
Authority
EP
European Patent Office
Prior art keywords
steam
boiler
combustion chamber
generator according
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12724986.0A
Other languages
English (en)
French (fr)
Other versions
EP2715229B1 (de
Inventor
Klaus VÖLKERER
Willibald Eidler
Arno Past
Josef Koglbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT
Original Assignee
Völkerer, Klaus
Willibald Eidler
Arno Past
Josef Koglbauer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Völkerer, Klaus, Willibald Eidler, Arno Past, Josef Koglbauer filed Critical Völkerer, Klaus
Priority to SI201230344T priority Critical patent/SI2715229T1/sl
Priority to PL12724986T priority patent/PL2715229T3/pl
Publication of EP2715229A1 publication Critical patent/EP2715229A1/de
Application granted granted Critical
Publication of EP2715229B1 publication Critical patent/EP2715229B1/de
Priority to HRP20151149TT priority patent/HRP20151149T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/02Steam boilers of forced-flow type of forced-circulation type
    • F22B29/023Steam boilers of forced-flow type of forced-circulation type without drums, i.e. without hot water storage in the boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/02Combinations of boilers having a single combustion apparatus in common
    • F22B33/10Combinations of boilers having a single combustion apparatus in common of two or more superposed boilers with separate water volumes and operating with two or more separate water levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/04Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways the tubes having plain outer surfaces, e.g. in vertical arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • F22G3/001Steam tube arrangements not dependent of location
    • F22G3/002Steam tube arrangements not dependent of location with helical steam tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G7/00Steam superheaters characterised by location, arrangement, or disposition
    • F22G7/14Steam superheaters characterised by location, arrangement, or disposition in water-tube boilers, e.g. between banks of water tubes

Definitions

  • the subject invention relates to a steam generator with a combustion chamber, at least one flue gas duct and a boiler assembly.
  • the risk potential of a steam boiler plant is mainly dependent on the volume of the pressure vessels and the maximum operating pressure, whereby the plants can be classified according to certain characteristics, such as the pressure content product (product of operating pressure times volume) in different hazard classes.
  • Pressure vessels with a low risk potential include overheating s endangered steam boilers or pressure vessels susceptible to overheating, the pressure-content product of which is less than 200 [bar x 1] or, if made of pipes with
  • These include, for example, so-called “fast steam generators”.
  • the subject invention solves this problem by a steam generator of the type mentioned, in which the boiler assembly has a plurality of individual, identically designed steam boilers, which have risers, which are guided through the combustion chamber.
  • the individual steam boilers can thereby be dimensioned relatively small, so that they have only a low risk potential and also meet the corresponding legal safety criteria.
  • the amount of steam that can be generated is not increased by an increase in boiler volume and maximum pressure, but is determined by the number of steam boilers that are operated via the combustion chamber.
  • the steam boilers can be designed as a natural circulation, forced circulation or forced circulation boiler. Forced-circulation boilers may, for example, have helical risers which are guided through the combustion chamber.
  • the steam boiler can each have a pipe construction, which at least the riser, a steam ablas srohr, a downpipe and a leading from this to the riser connecting pipe.
  • a pipe construction which at least the riser, a steam ablas srohr, a downpipe and a leading from this to the riser connecting pipe.
  • Pipe elements can be used. By choosing the preferably standardized tubes, a high compressive strength of the tube construction can be achieved in a simple manner.
  • the steam boilers can have a horizontally arranged evaporator tube at the operating level of the water level.
  • the water surface at which the generated steam can escape from the water significantly increased.
  • the achievable steam quality can be improved.
  • An advantageous embodiment of the invention may provide that the tube axes of a steam boiler are arranged substantially in the same, preferably vertical plane. Due to the flat construction achieved thereby, it is possible to arrange several steam generators in a small space next to each other, so that the space available in the combustion chamber can be optimally utilized.
  • a heat exchanger for feeding water may be arranged in the flue gas duct. This improves the
  • the heat exchanger advantageously comprises tubes whose tube axes are arranged substantially in the same plane as the tube axes of the boiler.
  • This allows an extremely compact construction of steam boiler and heat exchangers, wherein the tubes of the heat exchanger, for example, can be arranged within a frame formed by riser, steam outlet pipe, downpipe and connecting pipe.
  • Several flat juxtaposed heat exchanger of several juxtaposed, flat steam boilers can be arranged in an advantageous manner in the same flue gas duct. Baffles in the flue gas duct can increase the flow path of the flue gas in the heat exchanger and thus improve the heat transfer.
  • each steam boiler may be constructed of tubes up to and including a maximum of DN 32, wherein the pressure-content product (p x V) may be less than 350 [bar x 1].
  • the steam boiler has only a low risk potential and it can comply with the provisions that are prescribed by law for systems with low risk potential. National safety regulations may set different limits in different states. It lies however in the abilities of a
  • Combustion chamber walls may be provided at least one further steam boiler, the riser tubes are arranged in the region of the combustion chamber walls.
  • the risers such Brennraumwand- steam boiler, for example, in the areas where no risers of
  • the former identically constructed steam boiler are provided, like a cage around the
  • Combustion chamber wall be arranged so that the wall is cooled in all areas and the
  • Steam generation is used. This improves the steam yield and energy efficiency of the system while providing cooling of the combustion chamber walls.
  • the steam extraction lines leading away from the respective steam extraction connections of the steam boiler can open in a steam manifold. This is possible because the steam manifold, out of safety considerations, is no longer to count the volume of the steam boiler. Several steam boilers, whose steam is introduced into a common steam manifold, are therefore for the interpretation of the
  • the steam extraction lines leading away from the respective steam extraction connections of the steam boilers may optionally have one
  • Steam jet compressor each opening into a arranged in the combustion chamber superheater pipe. Steam superheating is beneficial, for example, for feeding steam engines or turbines.
  • the steam generator according to the invention can be used advantageously for the operation of a power plant, such as for power generation from biomass or gas, even in relatively small scale.
  • the steam jet compressors can be used to feed multi-stage steam engines, for example a turbine or a multi-stage steam engine
  • Axial piston motor are used, is derived from the engine, relaxed exhaust steam of a stage in the steam jet compressor with the steam supplied by the steam boiler fresh steam to the desired level and in the superheater is brought to the required temperature for the next stage.
  • the individual superheater tubes can advantageously be helically wound in the region of the combustion chamber and arranged in the manner of a cylinder. As a result, the available space in the combustion chamber can be used optimally.
  • Fig. 5 shows a similar-shaped steam boiler in a side view
  • FIG. 6 shows the steam boiler of FIG. 5 in a perspective view
  • Fig. 8 shows a further advantageous embodiment of the fiction, contemporary boiler assembly in which the steam extraction lines open in a vapor manifold
  • Fig. 9 shows the boiler assembly of Fig. 8 with the combustion chamber wall and the flue gas ducts.
  • Fig. 1 to 4 show a first fiction, contemporary embodiment of the steam generator in perspective view (Fig. 1), in two side views ( Figures 2 and 3) and a plan view (Fig. 4). For better visibility of the individual components has been dispensed with a representation of the walls of the combustion chamber and the flue gas duct. The figures thus show primarily the boiler assembly 2 of the invention.
  • the individual components are mounted on a frame 18, wherein the combustion chamber 1 is located in the middle of the substantially symmetrical construction.
  • the combustion chamber 1 is located in the middle of the substantially symmetrical construction.
  • five steam boilers are arranged, wherein for the sake of clarity in Fig. 1, only the steam boilers 3a to 3e of the right side are provided with reference numerals.
  • the illustrated steam boiler 3 is a natural circulation boiler, wherein the
  • Feed water is introduced via a feedwater supply 23 and preheated via a heat exchanger 11, which is located in the flue gas duct 10. Opposite the
  • Feedwater supply 23, a pressure measuring device 19 is arranged to control the operating pressure.
  • the flue gas channel 10 is shown in Fig. 5 only schematically by dashed lines, wherein in the interior of the flue gas duct 10 a plurality of baffles 20 are arranged, which extend the path of the flue gas in the region of the heat exchanger 11.
  • the baffles 20 are arranged obliquely in Fig. 5, but they can also transversely to the tubes of the
  • Heat exchanger 11 run when this is structurally easier to implement.
  • the riser 4 is arranged in the combustion chamber 1 and extends therein vertically along a combustion chamber wall. (A corresponding combustion chamber wall is shown, for example, in the embodiment shown in FIG. 9). However, the riser 4 may also have an oblique or tortuous course, unless this affects the arrangement of the other steam boiler.
  • a vent opening 21 In the upper part of the riser 4 is located in the combustion chamber 1, a vent opening 21 through which the flue gases from the combustion chamber 1 enter the flue gas duct 10.
  • Heat exchanger 11 is located just above this exhaust port 21st
  • the riser pipe 4 branches into a horizontally arranged evaporator tube 9 and a vapor discharge pipe 5 lying parallel above it.
  • the water level 8 is approximately in the middle of the evaporator tube 9, so that the water surface available for evaporation is maximized , This prevents vapor bubbles, which may form further below in the riser pipe 4, from rising up a "water plug” up to the steam extraction port 14, which would affect the quality and dryness of the vapor being removed
  • Safety valve 25 is arranged.
  • the steam outlet pipe 5 opens into a vertical level pipe 28, at the upper end of a level sensor 26 is used, via which the water level can be controlled.
  • a sight glass 27 is arranged for visual inspection on the level pipe 28 in the height of the operating water level 8.
  • the lower end of the fill level pipe 28 opens into a downpipe 6, which extends from the combustion chamber remote end of the evaporator tube 9 down.
  • the water cycle is closed by a connecting pipe 7, which enters the combustion chamber 1 in the lower region and opens into the riser pipe 4.
  • Connecting pipe 7 is further arranged in the lowest area of the boiler, a drain valve 29, via which the system can be emptied.
  • a circulation pump In order to provide a forced circulation instead of a natural circulation, only a circulation pump would have to be additionally installed, for example in the region of the downpipe 6 or the connecting pipe 7. This can be implemented constructively by a person skilled in the art without further ado.
  • a forced circulation boiler would not contain a downpipe 6, but the preheated in the heat exchanger 11 feed water would be fed directly to the riser 4 via a connecting pipe.
  • the riser 4 can be extended by being guided, for example, helically or meandering in the combustion chamber 1. This can be advantageous, above all, for steam generators without preheating or for forced circulation boilers.
  • Steam generators could form a cylindrical shape superimposed in the combustion chamber in the form of a multiple helix, whereby a uniform heating of all riser tubes could be achieved. It is also not mandatory that the riser pipes must be vertical and straight. Rather, for example, meandering pipes or diagonal running through the combustion chamber 1 pipes can be used as risers, as long as this is compatible with the arrangement of the other steam boiler.
  • Substantially rectangular steam boiler 3 has a flat shape. This makes it possible in a simple manner, closely juxtaposed several similar steam boiler, as can be seen for example in Fig. 1, in which on both sides of the combustion chamber five steam boilers 3a-3e are arranged flat side by side.
  • the illustrated embodiment of the steam boiler is constructed exclusively from standardized pipes, for example with a nominal diameter of DN 32 and DN 25, so that within the meaning of the Austrian Pressure Equipment Surveillance Ordinance (DGÜW-V) a steam boiler consisting of such pipes can only be used from a pressure content of more than 350 bar x 1] represents a steam boiler with a high risk potential.
  • DGÜW-V Austrian Pressure Equipment Surveillance Ordinance
  • the combustion chamber wall steam boiler 12 In order to use the remaining side surfaces of the combustion chamber to generate steam and to cool the fireclay panel of the combustion chamber walls, two more steam boilers, the combustion chamber wall steam boiler 12, provided, the riser tubes 13 extend bar-like vertically to the side surfaces of the combustion chamber wall and in addition to the additional steam yield cooling cause the combustion chamber walls.
  • a combustion chamber wall steam boiler 12 is shown removed.
  • Combustor wall steam boiler 12 has a plurality of parallel risers 13 which are secured to the frame 18 and are supplied with feed water via distribution pipes 30.
  • the distribution pipes 30 are in turn fed via a supply pipe 31, on which a feedwater supply 23 and a pressure measuring device 19 are provided.
  • the combustion chamber wall steam boiler 12 has a vertical level pipe 28 with a
  • the sight glass 27 is disposed at the level of the service water level.
  • the riser pipes 13 open into collecting pipes 32, via which the steam is discharged into a steam outlet pipe 5, at which a safety valve 25 and a steam extraction connection 14 are located.
  • the risers 13 form two groups, which are each arranged in a corner of the combustion chamber wall.
  • the first group of rising pipes 13a-13g are each of equal length and extend essentially over the entire height of the combustion chamber wall.
  • Risers 13h-13o of the second group are of different lengths, since at the
  • the combustion chamber wall, the riser ducts 13m to 13o extend between an intermediate tube 35 located above the firing opening, which is connected to the two riser ducts 13k and 131, and one of the upper manifolds 32. Both groups extend on the combustion chamber front and rear walls, respectively Substantially up to half of the combustion chamber, from where the corresponding risers of the opposite
  • Combustor wall steam boiler 12 begin. Thus, essentially the entire
  • Combustion chamber wall used for steam generation.
  • the two riser groups of a combustion chamber wall steam boiler 12 are spaced apart, wherein in the gap between the risers 4 of the five similar trained steam boiler 3 run.
  • On the frame 18 a plurality of receptacles 33 are provided for the risers 4 of the five similarly designed steam boilers 3.
  • the steam generator according to the invention shown in Fig. 1 to 4 is able to supply superheated steam in twelve different pressure levels a consumer.
  • a consumer for example, a multi-stage turbine or a multi-stage Achsialkolbenmotor be driven.
  • Achsialkolbenmotor be driven.
  • each steam jet compressor 16 is fed via a steam extraction line 15 with the steam generated in one of the twelve steam boilers 3, 12, with the steam in each
  • Steam boiler produced steam of substantially the same quality, for example, a pressure of 32 bar and a temperature of about 240 ° C (saturated steam).
  • saturated steam The second input of the steam jet compressor 16 is charged with the relaxed in the subsequent stage steam. This partially expanded steam is then in the
  • Steam jet compressor 16 is treated with the live steam and introduced into a superheater tube 17 in which the steam overheats to, for example, about 420 ° C and the
  • the superheater tubes 17 of the various stages are arranged helically parallel one above the other so that the entirety of the superheater tubes form a cylindrical shape.
  • the illustrated embodiment may generate steam at twelve different pressure levels. However, it is also easily possible to summarize several stages and to produce 16 four different pressure levels, for example, each with three parallel interconnected steam jet compressors. Several steam extraction lines 15 could also be fed together to a steam jet compressor 16. For example, four steam extraction lines could be combined in one of three steam jet compressors to generate three pressure levels. In cases where no different steam levels are needed, the steam jet compressor could be completely dispensed with, the steam of the
  • FIG. 8 shows a further embodiment of the steam generator according to the invention, which does not have a superheater. This embodiment is advantageous for all applications in which superheated saturated steam is not required, for example for steam cleaning or for temperature control in the chemical industry and the food industry (eg in breweries).
  • the individual steam extraction lines 15 of the twelve steam boilers 3, 12 are combined to form a single vapor manifold 36 and fed to the consumer.
  • the other components shown in Fig. 8 correspond to
  • Fig. 9 shows the steam generator of Fig. 8, but in Fig. 9, the combustion chamber walls 37 and the flue gas duct 10 are shown.
  • the combustion chamber walls 37 is a
  • Furnace opening 34 is provided, in which the burner is used.
  • the lateral opening in the flue gas duct 10 is closed by a simple bolted cover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Erfindung betrifft einen Dampferzeuger mit einem Brennraum (1), einem Rauchgaskanal (10) und einer Kesselbaugruppe (2). Die Kesselbaugruppe (2) weist für die Gewinnung einer entsprechenden Dampfmenge eine Vielzahl an einzelnen, gleichartig ausgebildeten Dampfkesseln (3) auf, welche Steigrohre (4) aufweisen, die durch den Brennraum (1) geführt sind. Gegebenenfalls können die Dampfkessel (3) jeweils eine Rohrkonstruktion aufweisen, welche zumindest das Steigrohr (4), ein Dampfablassrohr (5), ein Fallrohr (6) und ein von diesem zum Steigrohr (4) führendes Verbindungsrohr (7) aufweist.

Description

Dampferzeuger
Die gegenständliche Erfindung betrifft einen Dampferzeuger mit einem Brennraum, zumindest einem Rauchgaskanal und einer Kesselbaugruppe.
Die Erzeugung von Dampf ist seit dem Beginn der industriellen Revolution eine wesentliche Notwendigkeit zahlreicher industrieller Einrichtungen. Trotz der langjährigen Erfahrung im Umgang mit Dampferzeugern ist deren Betrieb immer noch risikobehaftet, da es bei
Unachtsamkeit oder technischem Versagen zu gefährlichen Dampfexplosionen kommen kann. Daher ist die Aufstellung, der Betrieb und die Wartung von Dampferzeugern strengen behördlichen Regelungen unterworfen, wie etwa in Österreich der
„Druckgeräteüberwachungsverordnung" (DGÜW-V), der„Aufstellung und Betrieb von Dampfkessel Verordnung" (ABV) und dem„Dampfkesselbetriebsgesetz" (DKBG).
Das Gefahrenpotential einer Dampfkesselanlage ist vor allem vom Volumen der Druckbehälter und vom maximalen Betriebsdruck abhängig, wobei sich die Anlagen anhand bestimmter Merkmale, etwa des Druckinhaltsprodukts (Produkt aus Betriebsdruck mal Volumen) in verschiedene Gefahrenklassen einordnen lassen.
Für Dampfkessel, Druckbehälter oder Rohrleitung mit hohem Gefahrenpotential sind umfangreiche und kostenintensive Bestimmungen über die erste Betriebsprüfung, regelmäßige Betriebsprüfungen, Art der Überwachung, Revisionsfristen und Überwachungsmaßnahmen (Maßnahmen im Rahmen der wiederkehrenden Untersuchungen und Überprüfungen) sowie deren Dokumentation einzuhalten.
Anlagen mit geringem Gefahrenpotential sind von diesen strengen Regelungen ausgenommen und haben unter anderem den Vorteil, dass beispielsweise die Überwachung vom Betreiber selbst vorgenommen werden kann. Zu den Druckbehältern mit niedrigem Gefahrenpotential zählen etwa überhitzung s gefährdete Dampfkessel oder überhitzungsgefährdete Druckbehälter, deren Druckinhaltsprodukt kleiner als 200 [bar x 1] ist, oder, wenn sie aus Rohren mit
Nennweiten bis maximal einschließlich DN 32 bestehen, deren Druckinhaltsprodukt kleiner als 350 [bar x 1] ist. Dazu zählen beispielsweise sogenannte„Schnelldampferzeuger".
Schnelldampferzeuger liefern jedoch nur geringe Dampfmengen von meist geringer Qualität und sind daher für viele Anwendungen ungeeignet. Es besteht daher ein Bedarf an kostengünstigen Dampferzeugern mit einem geringen Gefahrenpotential, welche auch große Mengen qualitativ hochwertigen Dampfes erzeugen können. Dies würde bei größtmöglicher Betriebssicherheit die Kosten für die Dampferzeugung erheblich reduzieren.
Die gegenständliche Erfindung löst diese Aufgabe durch einen Dampferzeuger der eingangs genannten Art, bei welchem die Kesselbaugruppe eine Vielzahl an einzelnen, gleichartig ausgebildeten Dampfkesseln aufweist, welche Steigrohre aufweisen, die durch den Brennraum geführt sind. Die einzelnen Dampfkessel können dadurch verhältnismäßig klein dimensioniert werden, sodass sie nur ein geringes Gefahrenpotential haben und auch die entsprechenden rechtlichen Sicherheitskriterien erfüllen. Die erzeugbare Dampfmenge wird nicht durch eine Erhöhung von Kesselvolumen und Maximaldruck gesteigert, sondern sie bestimmt sich aus der Anzahl an Dampfkesseln, die über den Brennraum betrieben werden. Je nach Bedarf können die Dampfkessel als Naturumlauf-, Zwangsumlauf- oder Zwangsdurchlaufkessel ausgebildet sein. Zwangsdurchlaufkessel können beispielsweise wendeiförmige Steigrohre aufweisen, die durch den Brennraum geführt sind.
In vorteilhafter Weise können die Dampfkessel jeweils eine Rohrkonstruktion aufweisen, welche zumindest das Steigrohr, ein Dampf ablas srohr, ein Fallrohr und ein von diesem zum Steigrohr führendes Verbindungsrohr aufweist. Eine solche einen Medienkreislauf bewirkende Rohrkonstruktion ist einfach und kostengünstig herzustellen, wobei standardisierte
Rohrelemente verwendet werden können. Durch die Wahl der vorzugsweise genormten Rohre kann auf einfache Weise eine hohe Druckfestigkeit der Rohrkonstruktion erzielt werden.
In einer bevorzugten Ausführungsform der Erfindung können die Dampfkessel auf dem Betriebsniveau des Wasserspiegels ein horizontal angeordnetes Verdampferrohr aufweisen. Dadurch wird die Wasseroberfläche, an der der erzeugte Dampf aus dem Wasser entweichen kann, erheblich vergrößert. Die erzielbare Dampfqualität kann dadurch verbessert werden.
Eine vorteilhafte Ausgestaltung der Erfindung kann vorsehen, dass die Rohrachsen eines Dampfkessels im Wesentlichen in derselben, vorzugsweise vertikalen Ebene angeordnet sind. Durch die dadurch erzielte flache Konstruktion ist es möglich, mehrere Dampferzeuger auf engem Raum nebeneinander anzuordnen, sodass der im Brennraum verfügbare Platz optimal genutzt werden kann. Vorzugsweise kann in einer Ausführungsform der Erfindung im Rauchgaskanal ein Wärmetauscher zur Speisewasservorwärmung angeordnet sein. Dies verbessert die
Energieeffizienz des Systems.
Dabei kann der Wärmetauscher in vorteilhafter Weise Rohre aufweist, deren Rohrachsen im Wesentlichen in derselben Ebene wie die Rohrachsen des Dampfkessels angeordnet sind. Dies ermöglicht eine äußerst kompakte Bauweise von Dampfkessel und Wärmetauscher, wobei die Rohre des Wärmetauschers beispielsweise innerhalb eines von Steigrohr, Dampfablassrohr, Fallrohr und Verbindungsrohr gebildeten Rahmens angeordnet sein können. Mehrere flach nebeneinander angeordnete Wärmetauscher von mehreren nebeneinander angeordneten, flachen Dampfkesseln können in vorteilhafter Weise im gleichen Rauchgaskanal angeordnet sein. Leitbleche im Rauchgaskanal können den Strömungsweg des Rauchgases im Bereich der Wärmetauscher vergrößern und somit die Wärmeübertragung verbessern.
In vorteilhafter Weise kann jeder Dampfkessel aus Rohren bis einschließlich maximal DN 32 aufgebaut sein, wobei das Druckinhaltsprodukt (p x V) weniger als 350 [bar x 1] betragen kann. Dadurch kommt dem Dampfkessel nur ein geringes Gefahrenpotential zu und er kann den Bestimmungen entsprechen, die gesetzlich für Anlagen mit geringem Gefahrenpotential vorgegeben sind. Nationale Sicherheitsbestimmungen können in unterschiedlichen Staaten verschiedene Grenzwerte vorsehen. Es liege jedoch in den Fähigkeiten eines
Durchschnittsfachmanns, die erfindungsgemäßen Lehren auch auf andere Normen oder gesetzliche Bestimmungen vorteilhaft anzuwenden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann zur Kühlung der
Brennraumwände zumindest ein weiterer Dampfkessel vorgesehen sein, dessen Steigrohre im Bereich der Brennraumwände angeordnet sind. Die Steigrohre solcher Brennraumwand- Dampfkessel können beispielsweise in den Bereichen, wo keine Steigleitungen der
erstgenannten gleichartig aufgebauten Dampfkessel vorgesehen sind, käfigartig um die
Brennraumwand angeordnet sein, sodass die Wand in allen Bereichen gekühlt und zur
Dampferzeugung genutzt wird. Dies verbessert die Dampfausbeute und die Energieeffizienz des Systems und sorgt gleichzeitig für eine Kühlung der Brennraumwände.
Vorzugsweise können die von den jeweiligen Dampfentnahme- Anschlüssen der Dampfkessel wegführenden Dampfentnahmeleitungen in einer Dampfsammelleitung münden. Dies ist möglich, da die Dampfsammelleitung, aus sicherheitstechnischen Überlegungen heraus, nicht mehr zum Volumen der Dampfkessel zu zählen ist. Mehrere Dampfkessel, deren Dampf in eine gemeinsame Dampfsammelleitung eingeleitet wird, sind daher für die Auslegung der
Sicherheitskriterien nicht als Gesamtvolumen, sondern jeweils einzeln zu betrachten. Somit ist es möglich, große Dampfmengen mit einem erfindungsgemäßen Dampferzeuger herzustellen, der hinsichtlich der Sicherheit und der gesetzlichen Betriebsbestimmungen einem
Schnelldampferzeuger entspricht.
Andererseits können die von den jeweiligen Dampfentnahme- Anschlüssen der Dampfkessel wegführenden Dampfentnahmeleitungen, gegebenenfalls über jeweils einen
Dampfstrahlverdichter, jeweils in ein im Brennraum angeordnetes Überhitzerrohr münden. Eine Dampfüberhitzung ist beispielsweise für die Beschickung von Dampfmotoren oder -turbinen günstig. Der erfindungsgemäße Dampferzeuger kann dadurch vorteilhaft zum Betrieb eines Kraftwerks, etwa zur Stromerzeugung aus Biomasse oder -gas, auch in verhältnismäßig kleinem Maßstab verwendet werden. Die Dampfstrahlverdichter können zur Speisung mehrstufiger Dampfmaschinen, beispielsweise einer Turbine oder eines mehrstufigen
Axialkolbenmotors, verwendet werden, wobei aus dem Motor stammender, entspannter Abdampf einer Stufe im Dampfstrahlverdichter mit dem vom Dampfkessel zugeleiteten Frischdampf auf das jeweils gewünschte Druckniveau und im Überhitzer auf die erforderliche Temperatur für die nächste Stufe gebracht wird.
Die einzelnen Überhitzerrohre können in vorteilhafter Weise im Bereich des Brennraums schraubenlinienförmig gewunden und zylinderartig angeordnet sein. Dadurch kann der im Brennraum zur Verfügung stehende Platz optimal genutzt werden.
Die Erfindung wird nunmehr unter Bezugnahme auf die beigefügten Zeichnungen beispielhaft beschrieben, wobei
Fig. 1 eine erfindungs gemäße Kesselbaugruppe in schaubildlicher Darstellung,
Fig. 2 und 3 die Kesselbaugruppe der Fig. 1 in jeweils einer Seitenansicht und
Fig. 4 die selbe Kesselbaugruppe in einer Draufsicht;
Fig. 5 einen der gleichartig ausgebildeten Dampfkessel in einer Seitenansicht und
Fig. 6 den Dampfkessel der Fig. 5 in schaubildlicher Darstellung;
Fig. 7 einen Brennraumwand-Dampfkessel in schaubildlicher Darstellung;
Fig. 8 eine weitere vorteilhafte Ausführungsform der erfindungs gemäßen Kesselbaugruppe, bei welcher die Dampfentnahmeleitungen in einer Dampfsammelleitung münden, und . 9 die Kesselbaugruppe der Fig. 8 mit der Brennraumwand und den Rauchgaskanälen zeigt.
In der folgenden Beschreibung sind gleichartige Bauteile jeweils mit den gleichen
Bezugszeichen versehen. Sofern dies für die Beschreibung erforderlich ist, werden die
Bezugszeichen von Bauteilen, die in einer Figur mehrfach vorhanden sind, durch
Kleinbuchstaben ergänzt.
Fig. 1 bis 4 zeigen eine erste erfindungs gemäße Ausführungsform des Dampferzeugers in schaubildlicher Darstellung (Fig. 1), in zwei Seitenansichten (Fig.2 und 3) und einer Draufsicht (Fig. 4). Zur besseren Sichtbarkeit der einzelnen Bauelemente wurde auf eine Darstellung der Wände des Brennraums und des Rauchgaskanals verzichtet. Die Figuren zeigen somit in erster Linie die Kesselbaugruppe 2 der Erfindung.
Die einzelnen Bauelemente sind auf einem Rahmen 18 montiert, wobei sich der Brennraum 1 in der Mitte der im Wesentlichen symmetrischen Konstruktion befindet. Auf beiden Seiten sind je fünf Dampfkessel angeordnet, wobei der Übersichtlichkeit halber in Fig. 1 nur die Dampfkessel 3a bis 3e der rechten Seite mit Bezugszeichen versehen sind.
Der Aufbau der einzelnen Dampfkessel 3 wird nunmehr mit Bezugnahme auf die Fig. 5 und 6 näher erläutert. Der dargestellte Dampfkessel 3 ist ein Naturumlaufkessel, wobei das
Speisewasser über eine Speisewasserzuführung 23 eingebracht und über einen Wärmetauscher 11 vorgewärmt wird, welcher sich im Rauchgaskanal 10 befindet. Gegenüber der
Speisewasserzuführung 23 ist zur Regelung des Betriebsdrucks eine Druckmesseinrichtung 19 angeordnet. Der Rauchgaskanal 10 ist in Fig. 5 nur schematisch durch Strichlinien dargestellt, wobei im Inneren des Rauchgaskanals 10 mehrere Umlenkbleche 20 angeordnet sind, welche den Weg des Rauchgases im Bereich des Wärmetauschers 11 verlängern. Die Umlenkbleche 20 sind in Fig. 5 schräg angeordnet, sie können jedoch auch quer zu den Rohren des
Wärmetauschers 11 verlaufen, wenn dies konstruktiv einfacher umzusetzen ist. Das
Speisewasser steigt in den Rohren des Wärmetauschers 11 hoch, wird dabei bei gleichzeitiger Kühlung der Rauchgase vorgewärmt und wird im oberen Bereich des Steigrohrs 4 dem
Wasserkreislauf zugefügt. Das Steigrohr 4 ist im Brennraum 1 angeordnet und verläuft darin vertikal entlang einer Brennraumwandung. (Eine entsprechende Brennraumwand ist beispielsweise in der in Fig. 9 dargestellten Ausführungsform gezeigt). Das Steigrohr 4 kann jedoch auch einen schrägen oder gewundenen Verlauf aufweisen, sofern dies die Anordnung der weiteren Dampfkessel nicht beeinträchtigt. Im oberen Bereich des Steigrohrs 4 befindet sich im Brennraum 1 eine Abzugsöffnung 21, über welche die Rauchgase aus dem Brennraum 1 in den Rauchgaskanal 10 eintreten. Die Zuleitung 22 für das Speisewasser aus dem
Wärmetauscher 11 befindet sich knapp oberhalb dieser Abzugsöffnung 21.
Oberhalb der Zuleitung 22 verzweigt sich das Steigrohr 4 in ein horizontal angeordnetes Verdampferrohr 9 und ein parallel darüber liegendes Dampfablassrohr 5. Im Betrieb befindet sich der Wasserspiegel 8 in etwa in der Mitte des Verdampferrohrs 9, sodass die für das Ausdampfen zur Verfügung stehende Wasseroberfläche maximiert wird. Dies verhindert, dass Dampfblasen, die sich weiter unterhalb im Steigrohr 4 bilden können, beim Aufsteigen einen „Wasserpfropfen" bis zum Dampfentnahme- Anschluss 14 nach oben drücken, was die Qualität und die Trockenheit des entnommenen Dampfes beeinträchtigen würde. Im Verdampferrohr 9 kann hingegen der Dampf in einem breiten Bereich aus dem Wasser austreten und entweder über die Verlängerung des Steigrohres 4 oder über ein zusätzliches Ausdampfrohr 24 in das Dampfablassrohr 5 aufsteigen. Der Dampfentnahme- Anschluss 14, an dem der Dampf an eine Dampfentnahmeleitung 15 (Fig. 1 bis 4) abgegeben wird, befindet sich am Dampfablassrohr 5 an der obersten Stelle des Dampfkessels 3. Weiters ist am Dampfablassrohr 5 ein
Sicherheitsventil 25 angeordnet.
Das Dampfablassrohr 5 mündet in einem vertikalen Füllstandsrohr 28, an dessen oberem Ende ein Füllstandssensor 26 eingesetzt ist, über den der Wasserspiegel kontrolliert werden kann. Zusätzlich ist am Füllstandsrohr 28 in der Höhe des Betriebs-Wasserspiegels 8 ein Schauglas 27 zur Sichtkontrolle angeordnet. Das untere Ende des Füllstandsrohrs 28 mündet in ein Fallrohr 6, welches sich vom brennraumfernen Ende des Verdampferrohrs 9 nach unten erstreckt. Der Wasserkreislauf wird durch ein Verbindungsrohr 7 geschlossen, welches im unteren Bereich in den Brennraum 1 eintritt und in das Steigrohr 4 mündet. Am
Verbindungsrohr 7 ist weiters im tiefstgelegenen Bereich des Dampfkessel ein Ablassventil 29 angeordnet, über welches das System entleert werden kann.
Um anstelle eines Naturumlaufs einen Zwangsumlauf vorzusehen, müsste lediglich zusätzlich eine Umwälzpumpe eingebaut werden, beispielsweise im Bereich des Fallrohrs 6 oder des Verbindungsrohrs 7. Dies kann von einem Fachmann konstruktiv ohne Weiteres umgesetzt werden.
Um die Erfindung mit Zwangsdurchlaufkesseln zu betreiben, wären etwas weitergehende konstruktive Änderungen erforderlich, die jedoch auch dem Können eines Durchschnittsfachmanns entsprechen. Ein Zwangsumlaufkessel würde kein Fallrohr 6 enthalten, sondern das im Wärmetauscher 11 vorgewärmte Speisewasser würde direkt über ein Verbindungsrohr dem Steigrohr 4 zugeführt.
Das Steigrohr 4 kann verlängert werden, indem es beispielsweise wendel- oder mäanderförmig im Brennraum 1 geführt wird. Dies kann vor allem bei Dampferzeugern ohne Vorwärmung oder bei Zwangsumlaufkesseln vorteilhaft sein. Die gewundenen Steigrohre mehrerer
Dampferzeuger könnten in Form einer Mehrfachhelix übereinander gelegt im Brennraum eine Zylinderform ausbilden, wodurch sich eine gleichmäßige Erwärmung aller Steigrohre erzielen ließe. Es ist weiters nicht zwingend erforderlich, dass die Steigrohre vertikal und gerade ausgebildet sein müssen. Vielmehr können beispielsweise auch mäandrierende Rohre oder diagonal durch den Brennraum 1 verlaufende Rohre als Steigleitungen verwendet werden, sofern dies mit der Anordnung der anderen Dampfkessel vereinbar ist.
Wie in Fig. 6 gut zu erkennen ist, sind in der dargestellten Ausführungsform alle Rohre des Dampfkessels 3 in einer gemeinsamen vertikalen Ebene angeordnet, sodass der im
Wesentlichen rechteckige Dampfkessel 3 eine flache Form aufweist. Dadurch ist es auf einfache Weise möglich, mehrere gleichartige Dampfkessel eng nebeneinander anzuordnen, wie dies beispielsweise in Fig. 1 zu sehen ist, in der auf beiden Seiten des Brennraums jeweils fünf Dampfkessel 3a-3e flach nebeneinander angeordnet sind.
Die dargestellte Ausführungsform des Dampfkessels ist ausschließlich aus genormten Rohren, beispielsweise mit einem Nenndurchmesser von DN 32 und DN 25, aufgebaut, sodass im Sinne der österreichischen Druckgeräteüberwachungsverordnung (DGÜW-V) ein aus solchen Rohren bestehender Dampfkessel erst ab einem Druckinhaltsprodukt von über 350 [bar x 1] ein Dampfkessel mit hohem Gefahrenpotential darstellt. Bei der Verwendung größerer
Rohrdurchmesser würde bereits ein Druckinhaltsprodukt von über 200 [bar x 1] ein hohes Gefahrenpotential des Kessels bedingen. Bei der in Fig. 5 und 6 dargestellten Ausführungsform kann bei einer maximalen Höhe von etwa 190-200 cm und einer maximalen Breite von etwa 70-90 cm durch eine geeignete Dimensionierung der Rohre ein Dampfkesselvolumen von etwa 10 Liter erreicht werden. Bei einem maximalen Betriebdruck von 32 bar ergibt sich ein Druckinhaltsprodukt von ca. 320 [bar x 1], sodass dem Dampfkessel gemäß DGÜW-V ein geringes Gefahrenpotential zukommt. Wieder unter Bezugnahme auf die Fig. 1 bis 4 ist zu erkennen, dass die zehn Steigrohre 4 der Dampfkessel 3 an zwei gegenüberliegenden Seiten des Brennraums 1 stab gitterartig angeordnet sind. Um auch die restlichen Seitenflächen des Brennraums zur Dampferzeugung zu nutzen und die Schamottverkleidung der Brennraumwände zu kühlen, sind zwei weitere Dampfkessel, die Brennraumwand-Dampfkessel 12, vorgesehen, deren Steigrohre 13 stabgitterförmig vertikal an den Seitenflächen der Brennraumwand verlaufen und neben der zusätzlichen Dampfausbeute eine Kühlung der Brennraumwände bewirken.
In Fig. 7 ist ein Brennraumwand-Dampfkessel 12 herausgelöst dargestellt. Der
Brennraumwand-Dampfkessel 12 weist eine Vielzahl an parallelen Steigrohren 13 auf, die am Rahmen 18 befestigt sind und über Verteilerrohre 30 mit Speisewasser versorgt werden. Die Verteilerrohre 30 werden wiederum über ein Zuleitungsrohr 31 gespeist, an welchem eine Speisewasserzuführung 23 und eine Druckmesseinrichtung 19 vorgesehen sind. Weiters weist der Brennraumwand-Dampfkessel 12 ein vertikales Füllstandsrohr 28 mit einem
Füllstandssensor 26 und einem Schauglas 27 auf. Das Schauglas 27 ist auf dem Niveau des Betriebswasserspiegels angeordnet. An ihrem oberen Ende münden die Steigrohre 13 in Sammelrohren 32, über welche der Dampf in ein Dampf ablas srohr 5 geleitet wird, an dem sich ein Sicherheitsventil 25 und ein Dampfentnahme- Anschluss 14 befinden.
Die Steigleitungen 13 bilden zwei Gruppen, die jeweils in einer Ecke der Brennraumwand angeordnet sind. Die erste Gruppe der Steigleitungen 13a- 13g sind jeweils gleich lang und erstrecken sich im Wesentlichen über die gesamte Höhe der Brennraumwand. Die
Steigleitungen 13h-13o der zweiten Gruppe sind unterschiedlich lang, da an der
Brennraumvorderseite ein Raum für eine Feuerungsöffnung 34 frei gehalten sein muss. Die Steigleitungen 13h bis 131 erstrecken sich im Wesentlichen über die gesamte Höhe der
Brennraumwand, die Steigleitungen 13m bis 13o erstrecken sich hingegen zwischen einem oberhalb der Feuerungsöffnung befindlichen Zwischenrohr 35, das mit den zwei Steigleitungen 13k und 131 verbunden ist, und einem der oberen Sammelrohre 32. Beide Gruppen erstrecken sich an der Brennraumvorder- und -rückwand jeweils im Wesentlichen bis zur Hälfte des Brennraums, von wo aus die entsprechenden Steigleitungen des gegenüberliegenden
Brennraumwand-Dampfkessels 12 beginnen. Somit wird im Wesentlichen die gesamte
Brennraumwand zur Dampferzeugung genutzt.
Die beiden Steigleitungsgruppen eines Brennraumwand-Dampfkessels 12 sind voneinander beabstandet, wobei in der Lücke dazwischen die Steigleitungen 4 der fünf gleichartig ausgebildeten Dampfkessel 3 verlaufen. Am Rahmen 18 sind mehrere Aufnahmen 33 für die Steigrohre 4 der fünf gleichartig ausgebildeten Dampfkesseln 3 vorgesehen.
Der in Fig. 1 bis 4 dargestellte erfindungsgemäße Dampferzeuger ist in der Lage, überhitzten Dampf in zwölf verschiedenen Druckstufen einem Verbraucher zuzuführen. Als Verbraucher kann beispielsweise eine mehrstufige Turbine oder ein mehrstufiger Achsialkolbenmotor angetrieben werden. Zur Erzeugung der unterschiedlichen Dampfqualitäten dienen
kaskadierend geschaltete Dampfstrahlverdichter 16, die oberhalb des Brennraums angeordnet sind. Jeder Dampf Strahlverdichter 16 wird über eine Dampfentnahmeleitung 15 mit dem in einem der zwölf Dampfkessel 3, 12 erzeugten Dampf beschickt, wobei der in jedem
Dampfkessel erzeugte Dampf im Wesentlichen die gleiche Qualität aufweist, beispielsweise einen Druck von 32 bar und eine Temperatur von etwa 240° C (Sattdampf). Den zweite Eingang des Dampfstrahlverdichters 16 wird mit dem in der nachfolgenden Arbeitsstufe entspannten Dampf beschickt. Dieser teilentspannte Dampf wird dann im
Dampf strahl Verdichter 16 mit dem Frischdampf aufbereitet und in ein Überhitzerrohr 17 eingeleitet, in dem der Dampf auf beispielsweise etwa 420°C überhitzt und der
nachgeschalteten Arbeitsstufe zugeführt wird. Wie in den Fig. 1 bis 4 zu erkennen ist, sind die Überhitzerrohre 17 der verschiedenen Stufen parallel übereinanderliegend wendeiförmig angeordnet, sodass die Gesamtheit der Überhitzerrohre eine Zylinderform ausbilden.
Die dargestellte Ausführungsform kann Dampf in zwölf unterschiedlichen Druckstufen erzeugen. Es ist jedoch auch problemlos möglich, mehrere Stufen zusammenzufassen und beispielsweise mit je drei parallel zusammengeschalteten Dampfstrahlverdichtern 16 vier unterschiedliche Druckstufen zu erzeugen. Es könnten auch mehrere Dampfentnahmeleitungen 15 zusammengefasst einem Dampf Strahlverdichter 16 zugeleitet werden. Beispielsweise könnten zur Erzeugung von drei Druckstufen jeweils vier Dampfentnahmeleitungen zusammengefasst in einen von insgesamt drei Dampfstrahlverdichtern eingespeist werden. In Fällen, in denen keine unterschiedlichen Dampfstufen benötigt werden, könnte auf die Dampfstrahlverdichter auch gänzlich verzichtet werden, wobei der Dampf von den
Dampfentnahmeleitungen 15 direkt in die Überhitzerrohre 17 eingeleitet würde. Es ist auch möglich unterschiedliche Dampfdrücke zu erzeugen, indem den Druck in den einzelnen Dampfkesseln unterschiedliche geregelt wird. Der erfindungsgemäße Dampferzeuger kann somit flexibel an unterschiedliche Bedürfnisse angepasst werden. In Fig. 8 ist eine weitere Ausführungsform des erfindungsgemäßen Dampferzeugers dargestellt, der keinen Überhitzer aufweist. Diese Ausführungsform ist für alle Einsatzbereiche vorteilhaft, bei denen nicht überhitzter Sattdampf benötigt wird, etwa zur Dampfreinigung oder zur Temperaturregelung in der chemischen Industrie und der Nahrungsmittelindustrie (z.B. in Brauereien). Wie in Fig. 8 zu erkennen ist, werden die einzelnen Dampfentnahmeleitungen 15 der zwölf Dampfkessel 3, 12 zu einer einzigen Dampfsammelleitung 36 zusammengefasst und dem Verbraucher zugeleitet. Die weiteren in Fig. 8 gezeigten Bauteile entsprechen im
Wesentlichen der in Fig. 1 dargestellten Ausführungsform, sodass keine weiter detaillierte Erläuterung erforderlich ist.
Fig. 9 zeigt den Dampferzeuger der Fig. 8, wobei jedoch in Fig. 9 auch die Brennraumwände 37 und der Rauchgaskanal 10 dargestellt sind. In den Brennraumwänden 37 ist eine
Feuerungsöffnung 34 vorgesehen, in welche der Brenner eingesetzt wird. Die seitliche Öffnung im Rauchgaskanal 10 wird durch eine einfache angeschraubte Abdeckung verschlossen.
Bezugszeichenliste :
Brennraum 1
Kesselbaugruppe 2
Dampfkessel 3
Steigrohr 4
Dampfablassrohr 5
Fallrohr 6
Verbindungsrohr 7
Wasserspiegel 8
Verdampferrohr 9
Rauchgaskanal 10
Wärmetauscher 11
Brennraumwand-Dampfkessel 12
Steigrohre 13 des Brennraumwand-Dampfkessels
Dampfentnahme- Anschluss 14
Dampfentnahmeleitungen 15
Dampfstrahlverdichter 16
Überhitzerrohr 17
Rahmen 18
Druckmesseinrichtung 19
Umlenkbleche 20
Abzugsöffnung 21
Zuleitung 22
Speisewasserzuführung 23
Ausdampfrohr 24
Sicherheitsventil 25
Füllstandssensor 26
Schauglas 27
Füllstandsrohr 28
Ablassventil 29
Verteilerrohre 30
Zuleitung srohr 31
Sammelrohre 32
Aufnahmen 33
Feuerungsöffnung 34
Zwischenrohr 35
Dampfsammelleitung 36
Brennraumwände 37

Claims

Patentansprüche
1. Dampferzeuger mit einem Brennraum (1), zumindest einem Rauchgaskanal (10) und einer Kesselbaugruppe (2), dadurch gekennzeichnet, dass die Kesselbaugruppe (2) eine Vielzahl an einzelnen, gleichartig ausgebildeten Dampfkesseln (3) aufweist, welche Steigrohre (4) aufweisen, die durch den Brennraum (1) geführt sind.
2. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass die
Dampfkessel (3) jeweils eine Rohrkonstruktion aufweisen, welche zumindest das Steigrohr (4), ein Dampfablassrohr (5), ein Fallrohr (6) und ein von diesem zum Steigrohr (4) führendes Verbindungsrohr (7) aufweist.
3. Dampferzeuger nach Anspruch 2, dadurch gekennzeichnet, dass die
Dampfkessel (3) auf dem Betriebsniveau des Wasserspiegels (8) ein horizontal angeordnetes Verdampferrohr (9) aufweisen.
4. Dampferzeuger nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Rohrachsen eines Dampfkessels (3) im Wesentlichen in derselben, vorzugsweise vertikalen Ebene angeordnet sind.
5. Dampferzeuger nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass im Rauchgaskanal (10) ein Wärmetauscher (11) zur
Speisewas servorwärmung angeordnet ist.
6. Dampferzeuger nach Anspruch 5, dadurch gekennzeichnet, dass der
Wärmetauscher (11) Rohre aufweist, deren Rohrachsen im Wesentlichen in derselben Ebene wie die Rohrachsen des Dampfkessels (3) angeordnet sind.
7. Dampferzeuger nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass jeder Dampfkessel aus Rohren bis einschließlich maximal DN 32 aufgebaut ist, wobei das Druckinhaltsprodukt (p x V) weniger als 350 [bar x 1] beträgt.
8. Dampferzeuger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Kühlung der Brennraumwände (37) zumindest ein weiterer
Dampfkessel (12) vorgesehen ist, dessen Steigrohre (13) im Bereich der Brennraumwände angeordnet sind.
9. Dampferzeuger nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die von den jeweiligen Dampfentnahme- Anschlüssen (14) der
Dampfkessel (3, 12) wegführenden Dampfentnahmeleitungen (15) in einer
Dampfsammelleitung (36) münden.
10. Dampferzeuger nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die von den jeweiligen Dampfentnahme- Anschlüssen (14) der Dampfkessel (3, 12)
wegführenden Dampfentnahmeleitungen (15), gegebenenfalls über jeweils einen
Dampfstrahlverdichter (16), jeweils in ein im Brennraum angeordnetes Überhitzerrohr (17) münden.
11. Dampferzeuger nach Anspruch 10, dadurch gekennzeichnet, dass die einzelnen Überhitzerrohre (16) im Bereich des Brennraums schraubenlinienförmig gewunden und zylinderartig angeordnet sind.
EP12724986.0A 2011-05-30 2012-05-30 Dampferzeuger Active EP2715229B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201230344T SI2715229T1 (sl) 2011-05-30 2012-05-30 Generator pare
PL12724986T PL2715229T3 (pl) 2011-05-30 2012-05-30 Wytwornica pary
HRP20151149TT HRP20151149T1 (hr) 2011-05-30 2015-10-29 Parni generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA790/2011A AT511485B1 (de) 2011-05-30 2011-05-30 Dampferzeuger mit einem brennraum, zumindest einem rauchgaskanal und einer kesselbaugruppe
PCT/EP2012/060127 WO2012163961A1 (de) 2011-05-30 2012-05-30 Dampferzeuger

Publications (2)

Publication Number Publication Date
EP2715229A1 true EP2715229A1 (de) 2014-04-09
EP2715229B1 EP2715229B1 (de) 2015-07-29

Family

ID=46201627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724986.0A Active EP2715229B1 (de) 2011-05-30 2012-05-30 Dampferzeuger

Country Status (8)

Country Link
EP (1) EP2715229B1 (de)
AT (1) AT511485B1 (de)
DK (1) DK2715229T3 (de)
HR (1) HRP20151149T1 (de)
HU (1) HUE026453T2 (de)
PL (1) PL2715229T3 (de)
SI (1) SI2715229T1 (de)
WO (1) WO2012163961A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524791B1 (de) 2021-12-09 2022-09-15 Andritz Tech & Asset Man Gmbh Waermeuebertragerelement und dessen verwendung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE499583A (de) *
DE465425C (de) * 1926-11-07 1928-09-24 Schmidt Sche Heissdampf Ges M Dampfkessel, insbesondere fuer Kohlenstaubfeuerung, mit mittelbarer Erzeugung des Betriebsdampfs
FR1120404A (fr) * 1954-05-03 1956-07-05 Siemens Ag Chaudière à haute pression avec surchauffe intermédiaire simple ou multiple par les gaz et fumées
CH349997A (de) * 1956-06-27 1960-11-15 Rossi Giovanni Dampferzeuger
JPS61130705A (ja) * 1984-11-30 1986-06-18 三菱重工業株式会社 ボイラ装置
JPS61191803A (ja) * 1985-02-20 1986-08-26 三菱重工業株式会社 ボイラ
JPH0692803B2 (ja) * 1988-04-26 1994-11-16 株式会社ヒラカワガイダム ボイラ
US5005530A (en) * 1990-06-08 1991-04-09 Tsai Frank W Furnace radiant sections with vertical heat exchanger tubing, and convection section
FI122210B (fi) * 2006-05-18 2011-10-14 Foster Wheeler Energia Oy Kiertopetikattilan keittopintarakenne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012163961A1 *

Also Published As

Publication number Publication date
EP2715229B1 (de) 2015-07-29
WO2012163961A1 (de) 2012-12-06
HUE026453T2 (en) 2016-05-30
SI2715229T1 (sl) 2015-12-31
AT511485B1 (de) 2013-09-15
HRP20151149T1 (hr) 2015-12-18
PL2715229T3 (pl) 2016-04-29
DK2715229T3 (en) 2015-11-09
AT511485A1 (de) 2012-12-15

Similar Documents

Publication Publication Date Title
EP0425717A1 (de) Durchlaufdampferzeuger
EP2324285B1 (de) Abhitzedampferzeuger
DE19929088C1 (de) Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
EP2180250A1 (de) Durchlaufdampferzeuger
WO2010142495A2 (de) Durchlaufverdampfer
EP2715229B1 (de) Dampferzeuger
DE3636491C2 (de) Würzekochvorrichtung
WO2010102864A2 (de) Durchlaufverdampfer
DE3132659A1 (de) "dampfkraftwerk und dampferzeuger insbesondere fuer ein solches dampfkraftwerk"
EP2676072B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers
DE102010006892B4 (de) Vorrichtung zur Erhitzung von Erdgas
DE874678C (de) Roehrengaserhitzer, insbesondere fuer feste Brennstoffe, vorzugsweise zur Verwendungbei zweistufigen Gasturbinenanlagen
DE2538824A1 (de) Verfahren zur rationelleren ausnutzung der abwaerme von abfallverbrennungsanlagen und vorrichtung
EP1570208B1 (de) Verfahren zur herstellung eines durchlaufdampferzeugers und durchlaufdampferzeuger
EP1174672A2 (de) Kombi- oder Dampfkraftanlage
DE102021116921B4 (de) Verfahren zum Bestimmen einer Betriebsgröße, Wärmetauscher und rauchgasführendes System
AT210442B (de) Dampfkessel für Kohle-, Öl- oder Gasfeuerung
EP3048366A1 (de) Abhitzedampferzeuger
DE914183C (de) Wasserrohrkessel fuer Dampf und Heisswasser, insbesondere fuer mittleren Betriebsdruck
DE102015213862B3 (de) Verbrennungskraftwerksanlage mit verbesserter Effizienz durch korrosionsbeständige Wärmeübertrager
DE102012106121B3 (de) Dampferzeuger mit einem in einem Gehäuse aufgenommenen ersten Behälter
DE102018010145A1 (de) Wärmeübertrager für hohe Drücke und Temperaturen
DE202008011709U1 (de) Abkühlanordnung
DE1751842B1 (de) Gasbeheizter waermetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20140102

Extension state: BA

Payment date: 20140102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 739625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003949

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20151149

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20151102

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Free format text: FORMER OWNER: EIDLER, WILLIBALD, AT

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003949

Country of ref document: DE

Representative=s name: PUCHBERGER & PARTNER PATENTANWAELTE, AT

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003949

Country of ref document: DE

Representative=s name: PUCHBERGER, BERGER & PARTNER, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012003949

Country of ref document: DE

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Free format text: FORMER OWNERS: EIDLER, WILLIBALD, TERNITZ, AT; KOGLBAUER, JOSEF, GRAFENBACH, AT; PAST, ARNO, GRAFENBACH, AT; VOELKERER, KLAUS, DIEPHOLZ, AT

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20151149

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UNDV, AT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003949

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E026453

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20119

Country of ref document: SK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20160502

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: VOELKERER, KLAUS

Effective date: 20160304

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 739625

Country of ref document: AT

Kind code of ref document: T

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Effective date: 20161108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151149

Country of ref document: HR

Payment date: 20170502

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170519

Year of fee payment: 6

Ref country code: HR

Payment date: 20170502

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20170519

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20151149

Country of ref document: HR

Effective date: 20180530

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180531

Ref country code: NL

Ref legal event code: MM

Effective date: 20180601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

Ref country code: BE

Ref legal event code: PD

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: KOGLBAUER, JOSEF

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 20119

Country of ref document: SK

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230523

Year of fee payment: 12

Ref country code: IT

Payment date: 20230526

Year of fee payment: 12

Ref country code: FR

Payment date: 20230526

Year of fee payment: 12

Ref country code: DE

Payment date: 20230503

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230523

Year of fee payment: 12

Ref country code: CH

Payment date: 20230602

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230519

Year of fee payment: 12

Ref country code: SE

Payment date: 20230519

Year of fee payment: 12

Ref country code: PL

Payment date: 20230428

Year of fee payment: 12

Ref country code: HU

Payment date: 20230523

Year of fee payment: 12

Ref country code: FI

Payment date: 20230523

Year of fee payment: 12

Ref country code: AT

Payment date: 20230502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 12