EP0425717A1 - Durchlaufdampferzeuger - Google Patents

Durchlaufdampferzeuger Download PDF

Info

Publication number
EP0425717A1
EP0425717A1 EP89120140A EP89120140A EP0425717A1 EP 0425717 A1 EP0425717 A1 EP 0425717A1 EP 89120140 A EP89120140 A EP 89120140A EP 89120140 A EP89120140 A EP 89120140A EP 0425717 A1 EP0425717 A1 EP 0425717A1
Authority
EP
European Patent Office
Prior art keywords
section
heating surface
pipe section
steam generator
evaporator heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89120140A
Other languages
English (en)
French (fr)
Other versions
EP0425717B1 (de
Inventor
Joachim Dr. Dipl.-Phys. Franke
Volker Dr. Dipl.-Ing. Kefer
Eberhard Dipl.-Ing. Wittchow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP89120140A priority Critical patent/EP0425717B1/de
Priority to DE58909259T priority patent/DE58909259D1/de
Priority to CA002028796A priority patent/CA2028796A1/en
Priority to JP2295175A priority patent/JP2865851B2/ja
Publication of EP0425717A1 publication Critical patent/EP0425717A1/de
Priority to US07/782,869 priority patent/US5159897A/en
Application granted granted Critical
Publication of EP0425717B1 publication Critical patent/EP0425717B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the invention relates to a once-through steam generator according to the preamble of patent claim 1 or 2.
  • Such a continuous steam generator is known from "EVT register 45 / 86 ⁇ , pages 59 to 63.
  • the outlet channel of a gas turbine emitting hot gas is connected in this known continuous steam generator at the upper end of the gas train, so that the hot gas emitted by the gas turbine flows through the gas train from top to bottom.
  • the inlet header of the evaporator heating surface arranged in the gas flue is located at its lower end and the outlet header at its upper end. In this evaporator heating surface not only evaporation takes place, but also preheating of the water and overheating of the generated steam.
  • the tubes of the evaporator heating surface are traversed in the same direction with respect to the flow direction of the hot gas, starting from the inlet header to the outlet header in cross / counterflow to the vertically downward hot gas stream in the gas train.
  • the outlet header of the evaporator heating surface which is located at a higher level than the inlet header, is connected to a water-steam separating device (separator bottle).
  • the inlet header of the superheater heating surface arranged in the gas flue at the upper end is also connected to this water-steam separating device in terms of flow.
  • the tubes of this superheater heating surface also consistently go from the inlet header to the outlet header of the superheaters arranged at a locally higher level than this inlet header heating surface also in cross / countercurrent to the gas from above flows downward flowing hot gas.
  • a device emitting hot gas e.g. a gas turbine, set up to about normal zero, it may be cheaper to connect the outlet duct for hot gas of this device not at the upper end of the vertical gas duct of the continuous steam generator, but at the lower end, so that hot gas flows through the vertical gas duct from bottom to top.
  • the invention is based, to design the continuous steam generator optimally for this case, the task.
  • a continuous steam generator according to the invention has the features of the characterizing part of patent claim 1 or 2.
  • the evaporator heating surface of such a continuous steam generator in which not only evaporation, but also preheating of the water and overheating of the generated steam can take place, is partly flowed in cross-countercurrent to the hot gas flowing from bottom to top in gas train, so that the temperature difference between hot gas and Water / steam in the evaporator heating surface and thus also the size of the evaporator heating surface can be kept relatively low.
  • the evaporator heating surface is also flowed through by water / steam in cross / direct current to the hot gas in the direction of gravity, so that flow disturbances are largely avoided, which in particular causes evaporating water that has to flow in a pipe in the direction of gravity.
  • the continuous steam generator according to FIG 1 has a vertical throttle cable 2 with a rectangular cross-section with a gas-tight wall made of sheet steel. At the lower end of this gas train 2, an outlet duct 3 for hot gas from a gas turbine is connected, so that this hot gas flows through the vertical gas train 2 in the direction of arrow 32 from the bottom up.
  • An evaporator heating surface 4 is arranged within the vertical throttle cable 2, which has an inlet header 5 and an outlet header 6 outside the throttle cable 2.
  • the inlet header 5 is at a locally higher level than the outlet header 6, that is to say it is arranged above the outlet header 6.
  • the tubes of the evaporator heating surface 4 form three tube sections I, II and III.
  • the pipe section II is above the pipe section III and the pipe section I above the pipe section II.
  • the pipe section I has a section upper end 7 which is connected to the inlet manifold 5 in terms of flow.
  • this pipe section I has a lower section end 8 which merges on the outside of the throttle cable 2 into a lower section end 9 which the pipe section II has.
  • a section upper end 10 of the pipe section II merges on the outside of the throttle cable 2 into a section upper end II which the pipe section III has.
  • the lower section end 12 of the pipe section III is connected in terms of flow to the outlet header 6.
  • the pipe section I is flowed through in cross / counterflow to the hot gas, the direction of which is indicated by the arrow 32.
  • the water is preheated in this pipe section I, and evaporation can also begin.
  • This pipe section I is admitted by water in the direction of gravity flows, but also the difference between the temperature of the hot gas and the water / steam in the pipe section I is relatively large, so that the heating surface in the pipe section I can be relatively small. Furthermore, only relatively little steam is formed in the pipe section I, so that flow disturbances practically do not occur.
  • the pipe section II is flowed through by evaporating water in the direction of arrow 32 of the hot gas, that is to say in cross / direct current, and thus counter to gravity, so that flow disturbances in this pipe section II are avoided.
  • the pipe section III is finally flowed through again in the direction of the arrow 32 of the hot gas in cross / countercurrent, so that the difference between the temperature of the hot gas and the water / steam in the pipe section III is again relatively large, so that the heating surface size in the pipe section III again can be relatively small.
  • pipe section III not only evaporation but also overheating of the steam flowing through can take place.
  • the pipes of the evaporator heating surface 4 can have different inner diameters and thus lead to different mass flow densities, on the one hand to ensure the entrainment of steam bubbles in the case of cross / counterflow to the hot gas and on the other hand only a relatively low one in the case of cross / direct flow to the hot gas To generate friction pressure loss.
  • an evaporator heating surface 4 is arranged similar to that in FIG. 1, but the tubes of which form only two tube sections IV and V.
  • the pipe section IV located above the pipe section V has a section upper end 13 and a section lower end 14, the pipe section V a section upper end 15 and a section lower end 16.
  • the section upper end 13 of the pipe section IV merges on the outside of the throttle cable 2 into the upper section end 15 of the tubular section V, the lower section end 16 of which is connected in terms of flow to the outlet header 6 on the outside of the gas cable 2.
  • the lower section end 14 of the pipe section IV is connected in terms of flow to the inlet header 5 of the evaporator heating surface 4, which is also located outside the gas flue 2 and is arranged there at a locally higher level than the outlet header 6.
  • the inlet header 5 is connected by a water pipe 17 to an outlet header 18 of an economizer heating surface 19, which is arranged in the gas flue 2 at its upper end above the evaporator heating surface 4 and has an inlet header 20 also on the outside of the gas flue 2.
  • a pressure booster pump 21 which pumps water in the direction of the inlet header 5 of the evaporator heating surface 4 and which is followed by a valve 22 located in front of the inlet header 5 as a control valve.
  • a steam line 23 leads from the outlet header 6, which leads to an inlet header 24 of a superheater heating surface 25 arranged in the gas flue 2 at its lower end below the evaporator heating surface 4.
  • This superheater heating surface 25 has an outlet manifold 26 on the outside of the gas flue at a locally lower level than the outlet manifold 6.
  • a water-steam separating device (not shown) can also be installed in the steam line 23, which facilitates the start-up of the continuous steam generator.
  • the outlet header 18 of the economizer heating surface 19 advantageously forms a water-steam separating device, from which a steam line 27 also branches off and leads to the steam line 23 leaving the outlet header 6.
  • a separate connecting pipe 29 advantageously extends from each pipe of the evaporator heating surface 4 at a point 28 between the upper section 15 and the lower section 16.
  • This connecting pipe 29 is guided to a pressure compensation vessel 30, which is located outside the vertical throttle cable 2.
  • helically arranged ribs 104 are provided on the inside of the tubes of the evaporator heating surface 4 in the upper tube section IV, as a result of which an improved heat transfer from these tubes to the evaporating element in them Water is achieved.
  • the evaporation of feed water flowing from the inlet header 20 of the once-through steam generator according to FIG. 2 into the economiser heating surface 19 can already start in the tubes of the economiser heating surface 19.
  • the evaporation in the tubes of the economiser heating surface 19 can take place at low pressure and therefore also at a low evaporation temperature, since the economiser heating surface 19 is connected upstream of the booster pump 21. Therefore, the difference between the temperature of the hot gas in the gas flue 2 and the evaporation temperature in the tubes of the economizer heating surface 19 is relatively large, so that the economizer heating surface 19 can be made relatively small.
  • pressure loss within the tubes of the evaporator heating surface 4 can be compensated or overcompensated.
  • the supply to the evaporator heating surface 4 can always be controlled so that the steam is already overheated in the evaporator heating surface 4. Furthermore, the evaporation end in the tubes of the evaporator heating surface 4 can be varied with the control valve 22, as a result of which a desired steam temperature can always be set in the outlet header 26 of the superheater heating surface 25 depending on the load on the continuous steam generator.
  • a flow control valve for influencing the feed water supply can be connected upstream of the inlet collector 20 of the economiser heating surface 19 of the continuous steam generator according to FIG.
  • a control device assigned to this control valve can, as a control variable, have the fuel flow into the gas turbine with the outlet duct 3, the power generated by this gas turbine on an electric generator and / or the temperature of the air which is sucked in by a compressor belonging to the gas turbine.
  • the ratio between the heat flow emitted by the hot gas to the water or to the steam in the once-through steam generator and the feed water flow supplied can always be kept at a predetermined value.

Abstract

Ein optimal gestalteter Durchlaufdampferzeuger mit einem vertikalen Gaszug (2), in dem Heißgas von unten nach oben strömen kann, weist im Gaszug (2) eine Verdampferheizfläche (4) mit einem Eintritts- (5) und einem Austrittssammler (6) und mit Rohren auf, die einen oberen Rohrabschnitt mit einem Abschnittsoberrohr- und einem Abschnittsunterende und einen unteren Rohrabschnitt mit einem Abschnittsober- und einem Abschnittsunterende bilden; entweder geht das Abschnittsunterende (8) des oberen Rohrabschnittes (I) dieser Rohre in das Abschnittsunterende (9) des unteren Rohrabschnittes (II) oder das Abschnittsoberende (10) des oberen Rohrabschnittes (I) in das Abschnittsoberende (11) des unteren Rohrabschnittes (III) über (FIG 1).

Description

  • Die Erfindung betrifft einen Durchlaufdampferzeuger nach dem Oberbegriff des Patentanspruches 1 oder 2.
  • Ein derartiger Durchlaufdampferzeuger ist aus "EVT-Register 45/86˝, Seiten 59 bis 63 bekannt.
  • Der Austrittskanal einer Heißgas abgebenden Gasturbine ist bei diesem bekannten Durchlaufdampferzeuger am Oberende des Gaszuges angeschlossen, so daß das von der Gasturbine abge­gebene Heißgas den Gaszug von oben nach unten durchströmt.
  • Der Eintrittssammler der im Gaszug angeordneten Verdampfer­heizfläche befindet sich an deren Unterende und der Austritts­sammler an deren Oberende. In dieser Verdampferheizfläche findet nicht nur Verdampfung, sondern auch Vorwärmung des Wassers und Uberhitzung des erzeugten Dampfes statt. Die Rohre der Verdampferheizfläche werden in bezug auf die Strömungsrich­tung des Heißgases durchweg in gleicher Richtung ausgehend vom Eintrittssammler zum Austrittssammler im Kreuz-/ Gegenstrom zum vertikal nach unten gerichteten Heißgasstrom im Gaszug durch­strömt. Der auf örtlich höherem Niveau als der Eintrittssammler angeordnete Austrittssammler der Verdampferheizfläche ist an einer Wasser-Dampf-Trennvorrichtung (Abscheideflasche) an­geschlossen.
  • An dieser Wasser-Dampf-Trennvorrichtung ist auch der Eintritts­sammler der im Gaszug am Oberende angeordneten Uberhitzerheiz­fläche durchflußmäßig angeschlossen. Die Rohre dieser Über­hitzerheizfläche werden ebenfalls durchweg ausgehend vom Ein­trittssammler zum auf örtlich höherem Niveau als dieser Ein­trittssammler angeordneten Austrittssammler der Überhitzer­ heizfläche ebenfalls im Kreuz-/Gegenstrom zum im Gaszug von oben
    nach unten strömenden Heißgas durchströmt.
  • Wird eine Heißgas abgebende Vorrichtung, also z.B. eine Gas­turbine, auf etwa Normal-Null aufgestellt, kann es kosten­günstiger sein, den Austrittskanal für Heißgas dieser Vor­richtung nicht am Oberende des vertikalen Gaszuges des Durch­laufdampferzeugers anzuschließen, sondern am Unterende, so daß Heißgas den vertikalen Gaszug von unten nach oben durchströmt.
  • Der Erfindung liegt die Aufgabe zugrunde, den Durchlaufdampf­erzeuger auch für diesen Fall optimal zu gestalten.
  • Zur Lösung dieser Aufgabe hat ein Durchlaufdampferzeuger er­findungsgemäß die Merkmale des kennzeichnenden Teiles des Patentanspruches 1 oder 2.
  • Die Verdampferheizfläche eines solchen Durchlaufdampferzeugers, in der nicht nur Verdampfung, sondern auch Vorwärmung des Wassers und Überhitzung des erzeugten Dampfes stattfinden kann, wird zum Teil im Kreuz-Gegenstrom zum in Gaszug von unten nach oben durchströmenden Heißgas durchströmt, so daß die Tempera­turdifferenz zwischen Heißgas und Wasser/Dampf in der Ver­dampferheizfläche und damit auch die Größe der Verdampfer­heizfläche verhältnismäßig niedrig gehalten werden können. Zum Teil wird die Verdampferheizfläche aber auch vom Wasser/Dampf im Kreuz-/Gleichstrom zum Heißgas in Richtung entgegen der Schwerkraft durchströmt, so daß Durchflußstörungen weitgehend vermieden werden, die insbesondere verdampfendes Wasser ver­ursacht, das in einem Rohr in Richtung der Schwerkraft strömen muß.
  • Die Unteransprüche sind auf vorteilhafte Weiterbildungen des Durchlaufdampferzeugers nach den Patentansprüchen 1 bzw. 2 gerichtet.
  • Aus "Fossil beheizte Dampfkraftwerke", Technischer Verlag Resch, Verlag TÜV Rheinland, Köln, 1986, Seite 250, ist zwar ein Dampferzeuger mit einem vertikalen Gaszug bekannt, an dessen Unterende der Austrittskanal einer Gasturbine ange­schlossen ist, so daß der Gaszug vom Heißgas von unten nach oben durchströmt wird. Es handelt sich jedoch nicht um einen Durchlaufdampferzeuger, sondern um einen Zwangumlaufdampfer­zeuger mit einer Verdampferheizfläche im Gaszug, deren Ein­trittssammler ein örtlich niedrigeres Niveu als der Austritts­sammler hat. Sowohl der Eintritts- als auch der Austritts­sammler sind an einer Trommel angeschlossen, aus der Wasser in den Eintrittssammler der Verdampferheizfläche und durchweg im Kreuz-/Gleichstrom zum Heißgas von unten nach oben durch die Verdampferheizfläche gepumpt wird.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung an Ausführungsbeispielen näher erläutert:
    • FIG 1 zeigt schematisch und im Längsschnitt einen erfindungs­gemäßen Durchlaufdampferzeuger.
    • FIG 2 zeigt ebenfalls im Längsschnitt und schematisch eine andere Ausführungsform eines erfindungsgemäßen Durchlauf­dampferzeugers.
    • FIG 3 zeigt im Längsschnittschnitt ein Rohr einer Verdampfer­heizfläche.
  • Der Durchlaufdampferzeuger nach FIG 1 weist einen vertikalen Gaszug 2 mit rechteckigem Querschnitt auf mit einer aus Stahlblech bestehenden gasdichten Wand. Am Unterende dieses Gaszuges 2 ist ein Austrittskanal 3 für Heißgas einer Gas­turbine angeschlossen, so daß dieses Heißgas den vertikalen Gaszug 2 in Richtung des Pfeiles 32 von unten nach oben durchströmt.
  • Innerhalb des vertikalen Gaszuges 2 ist eine Verdampferheiz­fläche 4 angeordnet, die einen Eintrittssammler 5 und einen Austrittssammler 6 außerhalb des Gaszuges 2 hat. Der Ein­trittssammler 5 befindet sich auf einem örtlich höheren Niveau als der Austrittssammler 6, ist also oberhalb des Austritts­sammler 6 angeordnet.
  • In FIG 1 ist nur ein einziges mäanderartig geführtes Rohr der Verdampferheizfläche 4 dargestellt. Tatsächlich sind eine Vielzahl solcher gleich ausgebildeter Rohre rechtwinklig zur Zeichenebene, d.h. quer im Gaszug 2 nebeneinander angeordnet und sowohl am Eintrittssammler 5 als auch am Austrittssammler 6 angeschlossen. An Rohrbögen 31 können die Rohre der Verdampfer­heizfläche 4 auch durch Wand des Gaszuges 2 hindurch nach außen geführt sein, so daß sich diese Rohrbögen 31 außerhalb des Gas­zuges 2 befinden.
  • Die Rohre der Verdampferheizfläche 4 bilden drei Rohrabschnitte I, II und III. Der Rohrabschnitt II befindet sich über dem Rohrabschnitt III und der Rohrabschnitt I über dem Rohrab­schnitt II. Der Rohrabschnitt I hat ein Abschnittsoberende 7, das am Eintrittssammler 5 durchflußmäßig angeschlossen ist. Ferner hat dieser Rohrabschnitt I ein Abschnittsunterende 8, das auf der Außenseite des Gaszuges 2 in ein Abschnittsunter­ende 9 übergeht, das der Rohrabschnitt II hat. Ein Abschnitts­oberende 10 des Rohrabschnittes II geht auf der Außenseite des Gaszuges 2 in ein Abschnittsoberende II über, das der Rohrab­schnitt III hat. Das Abschnittsunterende 12 des Rohrabschnittes III ist durchflußmäßig am Austrittssammler 6 angeschlossen.
  • Strömt Speisewasser aus dem Eintrittssammler 5 in die Ver­dampferheizfläche 4, so wird der Rohrabschnitt I im Kreuz-/­Gegenstrom zum Heißgas durchströmt, dessen Richtung der Pfeil 32 angibt. In diesem Rohrabschnitt I wird das Wasser vorge­wärmt, auch kann schon Verdampfung einsetzen. Zwar wird dieser Rohrabschnitt I vom Wasser in Richtung der Schwerkraft durch­ strömt, dafür ist aber auch die Differenz zwischen der Tempe­ratur des Heißgases und des Wassers/Dampfes in dem Rohrab­schnitt I verhältnismäßig groß, so daß die Heizfläche im Rohr­abschnitt I verhältnismäßig klein sein kann. Ferner wird im Rohrabschnitt I nur verhältnismäßig wenig Dampf gebildet, so daß Durchflußstörungen praktisch nicht auftreten.
  • Der Rohrabschnitt II wird von verdampfendem Wasser in Richtung des Pfeiles 32 des Heißgases, also im Kreuz-/Gleichstrom, und damit entgegen der Schwerkraft durchströmt, so daß in diesem Rohrabschnitt II Durchflußstörungen vermieden werden.
  • Der Rohrabschnitt III wird schließlich wieder gegen die Rich­tung des Pfeiles 32 des Heißgases im Kreuz-/Gegenstrom durch­strömt, so daß die Differenz zwischen der Temperatur des Heißgases und des Wassers/Dampfes im Rohrabschnitt III wieder verhältnismäßig groß ist, so daß die Heizflächengröße im Rohr­abschnitt III wieder verhältnismäßig klein sein kann. Im Rohrabschnitt III kann nicht nur Verdampfung, sondern auch schon Uberhitzung des durchströmenden Dampfes erfolgen. In den Rohrabschnitten I, II und III können die Rohre der Ver­dampferheizfläche 4 unterschiedliche Innendurchmesser haben und damit unterschiedliche Massenstromdichten führen, um einerseits beim Kreuz-/Gegenstrom zum Heißgas das Mitreißen von Dampf­blasen sicherzustellen und andererseits bei Kreuz-/Gleich­strom zum Heißgas nur einen verhältnismäßig niedrigen Rei­bungsdruckverlust zu erzeugen.
  • In FIG 2 sind gleiche Teile mit gleichen Bezugszeichen wie in FIG 1 versehen. Im vertikalen Gaszug 2 ist ähnlich wie in FIG 1 eine Verdampferheizfläche 4 angeordnet, deren Rohre jedoch nur zwei Rohrabschnitte IV und V bilden. Der über dem Rohrabschnitt V befindliche Rohrabschnitt IV hat ein Ab­schnittsoberende 13 und ein Abschnittsunterende 14, der Rohr­abschnitt V ein Abschnittsoberende 15 und ein Abschnitts­unterende 16. Das Abschnittsoberende 13 des Rohrabschnittes IV geht auf der Außenseite des Gaszuges 2 in das Abschnittsober­ende 15 des Rohrabschnittes V über, dessen Abschnittsunter­ende 16 durchflußmäßig am Austrittssammler 6 auf der Außen­seite des Gaszuges 2 angeschlossen ist. Das Abschnittsunter­ende 14 des Rohrabschnittes IV ist durchflaßmäßig an dem Ein­trittssammler 5 der Verdampferheizfläche 4 angeschlossen, der sich ebenfalls außerhalb des Gaszuges 2 befindet und dort auf einem örtlich höheren Niveau als der Austrittssammler 6 ange­ordnet ist.
  • Der Eintrittssammler 5 ist durch eine Wasserleitung 17 mit einem Austrittssammler 18 einer Economiserheizfläche 19 ver­bunden, die im Gaszug 2 an dessen Oberende oberhalb der Ver­dampferheizfläche 4 angeordnet ist und einen Eintrittssammler 20 ebenfalls auf der Außenseite des Gaszuges 2 aufweist.
  • Günstigerweise befindet sich in der Wasserleitung 17 eine Druckerhöhungspumpe 21, die Wasser in Richtung des Eintritts­sammlers 5 der Verdampferheizfläche 4 pumpt und der ein vor dem Eintrittssammler 5 befindliches Ventil 22 als Regelarmatur nachgeschaltet ist.
  • Vom Austrittssammler 6 geht eine Dampfleitung 23 ab, die zu einem Eintrittssammler 24 einer im Gaszug 2 an dessen Unterende unterhalb der Verdampferheizfläche 4 angeordneten Uberhitzer­heizfläche 25 führt. Diese Überhitzerheizfläche 25 hat außen am Gaszug einen Austrittssammler 26 auf örtlich niedrigerem Niveau als der Austrittssammler 6. In die Dampfleitung 23 kann vor­teilhafterweise auch eine nicht dargestellte Wasser-Dampf-­Trennvorrichtung eingebaut sein, die das Anfahren des Durch­laufdampferzeugers erleichtert.
  • Der Austrittssammler 18 der Economiserheizfläche 19 bildet günstigerweise eine Wasser-Dampf-Trennvorrichtung, von der auch noch eine Dampfleitung 27 abgeht und zu der vom Austrittssamm­ler 6 abgehenden Dampfleitung 23 führt.
  • Im unteren Rohrabschnitt V der Verdampferheizfläche 4 geht an einer Stelle 28 zwischen Abschnittsoberende 15 und Ab­schnittsunterende 16 von jedem Rohr der Verdampferheizfläche 4 günstigerweise ein eigenes Verbindungsrohr 29 ab. Dieses Verbindungsrohr 29 ist zu einem Druckausgleichsgefäß 30 ge­führt, welches sich außerhalb des vertikalen Gaszuges 2 be­findet.
  • Wie der Längsschnitt nach FIG 3 durch ein Rohr der Ver­dampferheizfläche 4 im oberen Rohrabschnitt IV zeigt, sind an den Rohren der Verdampferheizfläche 4 im oberen Rohrab­schnitt IV an der Innenseite schraubenförmig angeordnete Rippen 104 vorgesehen, wodurch ein verbesserter Wärmeübergang von die­sen Rohren an das in ihnen verdampfende Wasser erzielt wird.
  • Die Verdampfung von aus dem Eintrittssammler 20 des Durchlauf­dampferzeugers nach FIG 2 in die Economiserheizfläche 19 ein­strömendem Speisewasser kann bereits in den Rohren der Economiserheizfläche 19 einsetzen. Die Verdampfung in den Rohren der Economiserheizfläche 19 kann bei niedrigem Druck und deshalb auch bei einer niedrigen Verdampfungstemperatur erfol­gen, da die Economiserheizfläche 19 durchflußmäßig vor die Druckerhöhungspumpe 21 geschaltet ist. Deshalb ist die Differenz zwischen der Temperatur des Heißgases im Gaszug 2 und der Verdampfungstemperatur in den Rohren der Economiserheiz­fläche 19 verhältnismäßig groß, so daß die Economiserheizfläche 19 verhältnismäßig klein ausgeführt sein kann.
  • Mit Hilfe der Druckerhöhungspumpe 21 kann Druckverlust inner­halb der Rohre der Verdampferheizfläche 4 kompensiert oder überkompensiert werden.
  • Bereits in der Economiserheizfläche 19 entstandener Dampf kann in dem eine Wasser-Dampf-Trennvorrichtung bildenden Austritts­sammler 18 dieser Economiserheizfläche 19 vom Wasser getrennt und über die Dampfleitung 27 zur Dampfleitung 23 zwischen dem Austrittssammler 6 der Verdampferheizfläche 4 und dem Ein­trittssammler 24 der Überhitzerheizfläche 25 geführt werden. Die Druckerhöhungspumpe 21 braucht daher nur einen verhält­nismäßig kleinen Wasserstrom zu fördern.
  • Mit Hilfe des Regelventils 22 kann die Zufuhr in die Ver­dampferheizfläche 4 stets so geregelt werden, daß der Dampf bereits in der Verdampferheizfläche 4 überhitzt wird. Ferner kann das Verdampfungsende in den Rohren der Verdampferheiz­fläche 4 mit dem Regelventil 22 variiert werden, wodurch stets ein gewünschte Dampftemperatur im Austrittssammler 26 der Über­hitzerheizfläche 25 je nach der Last am Durchlaufdampferzeuger eingestellt werden kann.
  • Mit Hilfe des Druckausgleichgefäßes 30 erfolgt ein Druckaus­gleich zwischen den durchflußmäßig parallel geschalteten Roh­ren der Verdampferheizfläche 4, wodurch Durchflußunterschiede in den einzelnen Rohren dieser Verdampferheizfläche 4 reduziert werden können, die durch unterschiedliche Beheizung der ein­zelnen Rohre dieser Verdampferheizfläche 4 infolge örtlicher Temperaturunterschiede im Heißgas entstehen.
  • Aus der Uberhitzerheizfläche 25 tritt schließlich überhitzter Dampf in den Austrittssammler 26 über.
  • Dem Eintrittssammler 20 der Economiserheizfläche 19 des Durch­laufdampferzeugers nach FIG 2 kann ein Regelventil zum Beein­flussen der Speisewasserzufuhr durchflußmäßig vorgeschaltet sein. Eine diesem Regelventil zugeordnete Regeleinrichtung kann als Regelgröße den Brennstoffstrom in die Gasturbine mit dem Austrittskanal 3, die mit dieser Gasturbine an einem elektri­schen Generator erzeugte Leistung und/oder die Temperatur der Luft haben, die ein zur Gasturbine gehörender Verdichter an­saugt.
  • Je größer der Brennstoff oder die Leistung des elektrischen Generators bzw. je kleiner die Temperatur der vom Verdichter angesaugten Luft ist, umso weiter wird mit Hilfe der Regel­einrichtung das Regelventil zum Beeinflussen der Speisewasser­zufuhr geöffnet.
  • Auf diese Weise kann das Verhältnis zwischen dem vom Heißgas an das Wasser bzw. an den Dampf im Durchlaufdampferzeuger abge­gebenen Wärmestrom und dem zugeführten Speisewasserstrom stets auf einem vorgegebenen Wert gehalten werden.

Claims (8)

1. Durchlaufdampferzeuger mit einem vertikalen Gaszug zum An­schließen an einen Austrittskanal einer Vorrichtung, insbeson­dere einer Gasturbine, die Heißgas abgibt, mit einer Ver­dampferheizfläche im vertikalen Gaszug, die einen Eintritts- und einen Austrittssammler aufweist,
dadurch gekennzeichnet,
daß die Rohre der Verdampferheizfläche (4) einen oberen Rohr­abschnitt (I) mit einem Abschnittsober- (7) und einem Ab­schnittsunterende (8) und einen unteren Rohrabschnitt (II) ebenfalls mit einem Abschnittsober- (10) und einem Abschnitts­unterende (9) bilden und daß das Abschnittsunterende (8) des oberen Rohrabschnittes (I) dieser Rohre in das Abschnitts­unterende (9) des unteren Rohrabschnittes (II) übergeht.
2. Durchlaufdampferzeuger mit einem vertikalen Gaszug zum Anschließen an einen Austrittskanal einer Vorrichtung, insbe­sondere einer Gasturbine, die Heißgas abgibt, mit einer Ver­dampferheizfläche im vertikalen Gaszug, die einen Eintritts- und einen Austrittssammler aufweist,
dadurch gekennzeichnet,
daß die Rohre der Verdampferheizfläche (4) einen oberen Rohr­abschnitt (II; IV) mit einem Abschnittsober- (10; 13) und einem Abschnittsunterende (9; 14) und einen unteren Rohrabschnitt (III; V) ebenfalls mit einem Abschnittsober- (11; 15) und einem Abschnittsunterende (12; 16) bilden und daß das Ab­schnittsoberende (10; 13) des oberen Rohrabschnittes (II; IV) dieser Rohre in das Abschnittsoberende (11; 15) des unteren Rohrabschnittes (III; V) übergeht.
3. Durchlaufdampferzeuger nach Anspruch 2,
dadurch gekennzeichnet,
daß das Abschnittsunterende (14) des oberen Rohrabschnittes (IV) der Rohre der Verdampferheizfläche (4) am Eintrittssammler (5) dieser Verdampferheizfläche (4) durchflußmäßig ange­schlossen ist und daß dieser Eintrittssammler (5) durch eine Wasserleitung (17) mit einem Austrittssammler (18) einer im Gaszug (2) angeordneten Economiserheizfläche (19) durchflußmäßig verbunden ist.
4. Durchlaufdampferzeuger nach Anspruch 3,
dadurch gekennzeichnet,
daß sich in der Wasserleitung (17) eine Druckerhöhungspumpe (21) mit durchflußmäßig nachgeschalteter Regelarmatur (22) befindet.
5. Durchlaufdampferzeuger nach Anspruch 3,
dadurch gekennzeichnet,
daß der Austrittssammler (18) der Economiserheizfläche (19) eine Wasser-Dampf-Trennvorrichtung bildet.
6. Durchlaufdampferzeuger nach Anspruch 5,
dadurch gekennzeichnet,
daß das Abschnittsunterende (16) des unteren Rohrabschnittes (V) der Rohre der Verdampferheizfläche (4) am Austrittssammler (6) dieser Verdampferheizfläche (4) durchflußmäßig angeschlos­sen ist und
daß eine Dampfleitung (27) vom Austrittssammler (18) der Economiserheizfläche (19) zu einer Dampfleitung (23) zwischen dem Austrittssammler (6) der Verdampferheizfläche (4) und einem Eintrittssammler (24) einer Überhitzerheizfläche (25) führt, die im Gaszug (2) angeordnet ist.
7. Durchlaufdampferzeuger nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß in mindestens einem Rohrabschnitt der Verdampferheiz­fläche (4) ausgehend von einer Stelle (28) jedes der Rohre zwischen Abschnittsoberende und Abschnittsunterende dieses Rohrabschnittes ein Verbindungsrohr (29) zu einem Druckaus­ gleichsgefäß (30) geführt ist, welches sich außerhalb des vertikalen Gaszuges (2) befindet.
8. Durchlaufdampferzeuger nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die Rohre der Verdampferheizfläche (4) in einem Rohrab­schnitt an der Innenseite schraubenförmig angeordnete Rippen (104) aufweisen.
EP89120140A 1989-10-30 1989-10-30 Durchlaufdampferzeuger Expired - Lifetime EP0425717B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP89120140A EP0425717B1 (de) 1989-10-30 1989-10-30 Durchlaufdampferzeuger
DE58909259T DE58909259D1 (de) 1989-10-30 1989-10-30 Durchlaufdampferzeuger.
CA002028796A CA2028796A1 (en) 1989-10-30 1990-10-29 Continuous-flow steam generator
JP2295175A JP2865851B2 (ja) 1989-10-30 1990-10-30 貫流蒸気発生器
US07/782,869 US5159897A (en) 1989-10-30 1991-10-15 Continuous-flow steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89120140A EP0425717B1 (de) 1989-10-30 1989-10-30 Durchlaufdampferzeuger

Publications (2)

Publication Number Publication Date
EP0425717A1 true EP0425717A1 (de) 1991-05-08
EP0425717B1 EP0425717B1 (de) 1995-05-24

Family

ID=8202076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120140A Expired - Lifetime EP0425717B1 (de) 1989-10-30 1989-10-30 Durchlaufdampferzeuger

Country Status (5)

Country Link
US (1) US5159897A (de)
EP (1) EP0425717B1 (de)
JP (1) JP2865851B2 (de)
CA (1) CA2028796A1 (de)
DE (1) DE58909259D1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126631A1 (de) * 1991-08-12 1993-02-18 Siemens Ag Gasbeheizter abhitzedampferzeuger
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
WO1999051916A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
WO1999051915A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
WO2003048638A1 (en) * 2001-12-05 2003-06-12 Nooter/Eriksen, Inc. Evaporator and evaporative process for generating saturated steam
WO2009106563A2 (de) * 2008-02-26 2009-09-03 Alstom Technology Ltd Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
WO2011091883A3 (de) * 2010-02-01 2012-05-31 Siemens Aktiengesellschaft Vermeidung statischer instabilitäten in zwangdurchlauf-dampferzeugern durch kombinierte gleich- und gegenstromschaltung
DE102011004271A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
DE102011004276A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufverdampfer
WO2011094663A3 (en) * 2010-02-01 2012-08-23 Nooter/Eriksen, Inc. Process and apparatus for heating feedwater in a heat recovery steam generator
DE102011004279A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Dampferzeuger für solarthermisches Kraftwerk
WO2012110329A2 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solarthermischer dampferzeuger
WO2012028493A3 (de) * 2010-09-03 2014-04-10 Siemens Aktiengesellschaft Solarthermischer durchlaufverdampfer
EP3204691A4 (de) * 2014-10-09 2018-07-18 Nooter/Eriksen, Inc. Vertikale, berohrte überkritische durchlaufverdampferrohrschlange für einen abhitzekessel

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142376A1 (de) * 1991-12-20 1993-06-24 Siemens Ag Fossil befeuerter durchlaufdampferzeuger
ES2122842B1 (es) * 1995-01-19 1999-06-16 Stork Ketels Bv Instalacion para la generacion de vapor.
DE29510720U1 (de) * 1995-07-01 1995-09-07 Balcke Duerr Ag Wärmetauscher
DE19544226B4 (de) * 1995-11-28 2007-03-29 Alstom Kombianlage mit Mehrdruckkessel
DE19651936C2 (de) * 1996-12-14 2000-08-31 Nem Bv Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
RU2193726C2 (ru) * 1997-06-30 2002-11-27 Сименс Акциенгезелльшафт Парогенератор, работающий на отходящем тепле
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
EP1512906A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
EP1512907A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Verfahren zum Anfahren eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
EP1512905A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger sowie Verfahren zum Betreiben des Durchlaufdampferzeugers
DE102005023082B4 (de) * 2005-05-13 2014-05-28 Alstom Technology Ltd. Durchlaufdampferzeuger
WO2007009176A1 (en) * 2005-07-19 2007-01-25 Ceramic Fuel Cells Limited Steam generator
AU2006272450B2 (en) * 2005-07-19 2010-09-02 Chaozhou Three-Circle (Group) Co., Ltd. Steam generator
EA016385B1 (ru) * 2007-03-22 2012-04-30 Нутер/Эриксен, Инк. Высокоэффективный нагреватель питательной воды
IT1395108B1 (it) * 2009-07-28 2012-09-05 Itea Spa Caldaia
GB2497541B (en) * 2011-12-13 2014-05-14 Rolls Royce Plc Method and apparatus for the treatment of part of a component using a fluidised bed of powder, the apparatus including a powder screen
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator
WO2014108980A1 (ja) * 2013-01-10 2014-07-17 パナソニック株式会社 ランキンサイクル装置及び熱電併給システム
JP2014152948A (ja) * 2013-02-05 2014-08-25 Mitsubishi Heavy Ind Ltd 伝熱管および排熱回収ボイラ
DE102014226837A1 (de) * 2014-09-22 2015-11-12 Enolcon Gmbh Variabel einsetzbares Wärmetauschersystem und Verfahren zum Betreiben eines Wärmetauschersystems
EP3048366A1 (de) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Abhitzedampferzeuger
CN107448923A (zh) * 2017-08-11 2017-12-08 重庆博帝节能设备有限公司 一种节能蒸汽火胆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122082B (de) * 1957-12-13 1962-01-18 Ver Kesselwerke Ag Zwangdurchlaufdampferzeuger
US3177659A (en) * 1962-08-02 1965-04-13 Westinghouse Electric Corp Heat exchange apparatus
FR2394751A1 (fr) * 1977-06-16 1979-01-12 Bbc Brown Boveri & Cie Rechauffeur a melange pour l'eau d'alimentation avec systeme regulateur
EP0359735B1 (de) * 1988-09-14 1993-07-21 AUSTRIAN ENERGY & ENVIRONMENT SGP/WAAGNER-BIRO GmbH Abhitze-Dampferzeuger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167299A (en) * 1935-10-19 1939-07-25 Firm Schmidt Sche Heissdampf G Method and apparatus for preventing excess pressure increase in steam generators with low water content
CH401092A (de) * 1963-04-02 1965-10-31 Sulzer Ag Anordnung zum Kühlen von Teilen eines Dampferzeugers durch Speisewasser
CH632331A5 (de) * 1978-10-03 1982-09-30 Sulzer Ag Verfahren zum anfahren eines zwanglaufdampferzeugers.
CH635184A5 (de) * 1978-12-22 1983-03-15 Sulzer Ag Dampferzeugeranlage.
US4248179A (en) * 1979-07-13 1981-02-03 Foster Wheeler Energy Corporation Internally grooved heat transfer conduit
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
US4552099A (en) * 1984-10-25 1985-11-12 Westinghouse Electric Corp. Anticipatory boiler feedpump suction head controller system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122082B (de) * 1957-12-13 1962-01-18 Ver Kesselwerke Ag Zwangdurchlaufdampferzeuger
US3177659A (en) * 1962-08-02 1965-04-13 Westinghouse Electric Corp Heat exchange apparatus
FR2394751A1 (fr) * 1977-06-16 1979-01-12 Bbc Brown Boveri & Cie Rechauffeur a melange pour l'eau d'alimentation avec systeme regulateur
EP0359735B1 (de) * 1988-09-14 1993-07-21 AUSTRIAN ENERGY & ENVIRONMENT SGP/WAAGNER-BIRO GmbH Abhitze-Dampferzeuger

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126631A1 (de) * 1991-08-12 1993-02-18 Siemens Ag Gasbeheizter abhitzedampferzeuger
DE4126631C2 (de) * 1991-08-12 1995-09-14 Siemens Ag Gasbeheizter Abhitzedampferzeuger
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
WO1999051916A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
WO1999051915A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
WO2003048638A1 (en) * 2001-12-05 2003-06-12 Nooter/Eriksen, Inc. Evaporator and evaporative process for generating saturated steam
WO2009106563A2 (de) * 2008-02-26 2009-09-03 Alstom Technology Ltd Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
WO2009106563A3 (de) * 2008-02-26 2010-11-11 Alstom Technology Ltd Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
US10167743B2 (en) 2008-02-26 2019-01-01 General Electric Technology Gmbh Method for controlling a steam generator and control circuit for a steam generator
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
WO2011091883A3 (de) * 2010-02-01 2012-05-31 Siemens Aktiengesellschaft Vermeidung statischer instabilitäten in zwangdurchlauf-dampferzeugern durch kombinierte gleich- und gegenstromschaltung
WO2011094663A3 (en) * 2010-02-01 2012-08-23 Nooter/Eriksen, Inc. Process and apparatus for heating feedwater in a heat recovery steam generator
WO2012028493A3 (de) * 2010-09-03 2014-04-10 Siemens Aktiengesellschaft Solarthermischer durchlaufverdampfer
DE102011004271A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
WO2012110329A2 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Solarthermischer dampferzeuger
WO2012110329A3 (de) * 2011-02-17 2014-04-10 Siemens Aktiengesellschaft Solarthermischer dampferzeuger
DE102011004279A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Dampferzeuger für solarthermisches Kraftwerk
DE102011004276A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufverdampfer
EP3204691A4 (de) * 2014-10-09 2018-07-18 Nooter/Eriksen, Inc. Vertikale, berohrte überkritische durchlaufverdampferrohrschlange für einen abhitzekessel
US10634339B2 (en) 2014-10-09 2020-04-28 Nooter/Eriksen, Inc. Once-through vertical tubed supercritical evaporator coil for an HRSG

Also Published As

Publication number Publication date
US5159897A (en) 1992-11-03
DE58909259D1 (de) 1995-06-29
CA2028796A1 (en) 1991-05-01
JP2865851B2 (ja) 1999-03-08
EP0425717B1 (de) 1995-05-24
JPH03170701A (ja) 1991-07-24

Similar Documents

Publication Publication Date Title
EP0425717B1 (de) Durchlaufdampferzeuger
EP0944801B1 (de) Dampferzeuger
EP0773349B1 (de) Helix-Dampferzeuger für Kraftwerksanlagen
EP0617778A1 (de) Fossil befeuerter durchlaufdampferzeuger.
EP2204611A1 (de) Abhitzedampferzeuger
EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
EP0357590B1 (de) Abhitze-Dampferzeuger
WO2004072544A1 (de) Luftkühler für kraftwerksanlagen sowie anwendung eines solchen luftkühlers
EP0084846B1 (de) Wärmetauscher für den Betrieb einer Heissdampf-Kesselanlage
DE2256633C3 (de) Dampferzeuger
DE2621340B2 (de) Abhitzedampferzeuger
EP0278357B1 (de) Vorrichtung zum Erzeugen von Rauchgas zum Antreiben einer Gasturbine
EP0812407B1 (de) Verfahren und system zum anfahren eines durchlaufdampferzeugers
DE3126321C2 (de) Durchlaufdampferzeuger mit Economiser und Absperrorganen
EP3224541B1 (de) Abhitzedampferzeuger
EP0848207A2 (de) Durchlaufdampferzeuger mit einem Gaszug zum Anschliessen an eine Heissgas abgebende Vorrichtung
DE1275072B (de) UEberkritischer Zwangdurchlauf-Dampferzeuger mit ueberlagertem Zwangumlauf
DE3121297A1 (de) Verfahren und vorrichtung zur regelung der waerme von einem waermetauscher zuzufuehrenden waermeabgebenden gasen
DE2515623A1 (de) Dampferzeuger mit u-foermig gekruemmten rohren
DE42698C (de) Schlangenrohrkessel
WO1994010501A1 (de) Dampferzeuger
DE596407C (de) Heizungskessel
AT210442B (de) Dampfkessel für Kohle-, Öl- oder Gasfeuerung
DE2914116C2 (de)
AT209914B (de) Dampfkessel, insbesondere für Triebwagen sowie Diesellokomotiven

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17Q First examination report despatched

Effective date: 19920403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 58909259

Country of ref document: DE

Date of ref document: 19950629

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090114

Year of fee payment: 20

Ref country code: GB

Payment date: 20081020

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091029