EP2683586A1 - Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs - Google Patents

Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs

Info

Publication number
EP2683586A1
EP2683586A1 EP12707763.4A EP12707763A EP2683586A1 EP 2683586 A1 EP2683586 A1 EP 2683586A1 EP 12707763 A EP12707763 A EP 12707763A EP 2683586 A1 EP2683586 A1 EP 2683586A1
Authority
EP
European Patent Office
Prior art keywords
driver
vehicle
data
pts
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12707763.4A
Other languages
English (en)
French (fr)
Inventor
Stefan Fritz
Bernd Hartmann
Alfred Eckert
Peter Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP2683586A1 publication Critical patent/EP2683586A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/085Taking automatic action to adjust vehicle attitude in preparation for collision, e.g. braking for nose dropping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal

Definitions

  • the present invention relates to a safety device for a motor vehicle with
  • At least one sensor unit for detecting the
  • an evaluation unit for data fusion of the environment data and an evaluation unit for the recognition of free spaces and objects, their position and movement, as well as
  • At least one sensor unit for detecting the Blasham ⁇ object and outputting environmental condition data and an evaluation unit for data fusion of the data environment with the environmental condition data to determine a Reibwertindikation, as well as with
  • At least one sensor unit for detecting the Anlagenzu ⁇ state and for outputting vehicle state data and an evaluation unit for data fusion of the vehicle state data with driver information for determining the driving condition, as well as with
  • the present invention relates to a method for operating a motor vehicle.
  • EP 1 735 187 A1 discloses such a safety device and a method for increasing road safety.
  • a supporting Fahrmanö ⁇ ver said preset by the driver at any time can be overridden during or after a driver caused by the steering angle an avoidance maneuver is given.
  • the known method is determined on the basis of environment signals whether a critical driving situation or an impending collision is present ⁇ . The method is preferably used in emergency situations for evasive maneuvers.
  • a system and a method is proposed for situational and collision-phase-optimized brake force regulation and chassis adaptation for combined braking / evasive maneuvers for motor vehicles.
  • a safety-of-driving coordinator is provided which calculates the risk of collision on the basis of a hazard assessment.
  • Au ⁇ ßerdem determined driving safety coordinator several Vorkollisionsphasen of the motor vehicle in relation to the object.
  • the driving safety coordinator determines a last braking point for stopping in front of the object, a last steering point of the unbraked vehicle for avoiding it, and a last steering point of the braked motor vehicle for rejecting the vehicle. in front of the object.
  • the precollision phases are designed to begin or end at these points.
  • An inventive idea is that the driving safety co-ordinator stretches the pre-collision phases situationally with the aid of a driver-independent braking intervention.
  • the decisive concept of the invention is that the driver safety coordinator performs a combined braking / avoiding maneuver within the pre-collision phases of the motor vehicle to ensure operational safety in a predictive and situational manner.
  • the driver safety coordinator Vorkollisionsphasen in consideration of alternative, of a combined brake / evasive action or a braking maneuver situational and / or to driver input to the driver according to the Kollisi ⁇ onsgefahr, the vehicle state and the Reibwertindikation controllable.
  • the driving safety coordinator to ensure the operational safety predictive and situational jektorie determined at least one allowable travel corridor and or optimalorientstra- and the driver input is limited by active part ⁇ controllable components on the travel corridor and actively controllable motor vehicle by means of Keeps components in the driving corridor or on the motor traction sector.
  • the driver safety coordinator is a haptic, audible and / or visual warning
  • the object underlying the invention is also achieved by a method having the features of claim 9. Since ⁇ when it is provided that the risk of collision is calculated by a safety coordinator and that Vorkollisi ⁇ onsphasen of the motor vehicle in relation to the object to be ermit ⁇ telt. A last braking point for stopping in front of the object, a last steering point of the unbraked vehicle for avoiding and a last steering point of the ge ⁇ braked motor vehicle to avoid the object are determined. The precollision phases begin or end at these points. In addition, the pre-collision phases are stretched by means of a driver-independent braking intervention.
  • the key idea of the invention is that predictive and situational a combined brake / evasive maneuver is carried out within the Vorkollisionsphasen of the motor vehicle to guarantee Leis ⁇ processing of operational safety.
  • the Vorkollisionsphasen taking into account an alternative, a combined brake / evasive action or a braking maneuver are situational and / or optimized according to driver input to the driver according to the Kollisi ⁇ onsgefahr, the vehicle state and the Reibwertindikation and made controllable.
  • Vorkol ⁇ lisionsphasen be determined again when a further object is detected in the movement direction of the motor vehicle.
  • the follow-Vorkollisions ⁇ phases repeat, if after or when changing lanes to an adjacent track appears re obstacle. Then, the ent ⁇ speaking phases of the method are repeated.
  • Figure 1 is a schematic representation of a vehicle with an environment sensor for detecting objects in the environment of the vehicle.
  • Fig. 2 is a schematic representation of a driver assistance ⁇ tenzsystems; a block diagram of the invention
  • Fig. 4 is a schematic representation of Vorkollisions ⁇ phases
  • Fig. 5a, b two representation of the longitudinal and transverse forces of a
  • Vehicle tire which are also known as Kamm ' shear circle ⁇ circle.
  • steering wheel is representative of all conceivable human-machine interfaces, which the driver can operate in the sense of steering and controlling the motor vehicle, such as ⁇ switch input, a joystick or a touchpad and externally transmitted Stell Commands.
  • FIG. 1 by way of example, a four-wheeled, two-axle vehicle 1 is illustrated, which ver ⁇ adds an environment sensor 2, with the objects detected in the environment of the vehicle ⁇ who can, which is in particular to other power ⁇ vehicles, the to move in the same or an adjacent lane sideways and / or in front of the vehicle 1.
  • objects 0 but also static or near-static objects such as trees, pedestrians or lane boundaries come into question.
  • the environmental sensor system 2 is, for example, a LIDAR sensor (Light Detection and Ranging), which is known per se to a person skilled in the art. However, there are others as well
  • Environment sensors such as radar sensors or optical camera systems used.
  • the information about the environment can be determined by means of the so-called car-to-X communication. This is the transmission of
  • the environment sensor 2 measures the distances d to the detected points of an object and the angle ⁇ between the connecting straight line to these points and the central longitudinal axis of the vehicle, as in FIG a point P of the object 0 veran ⁇ shows is.
  • the fronts of the detected objects facing the vehicle 1 are composed of a plurality of detected points, to which the sensor signals are transmitted, which establishes correlations between points and the shape of an object and determines a reference point for the object 0.
  • the center point of the object 0 or the center point of the detected points of the object can be selected as the reference point.
  • the speeds of the points detected and thus the speed of the detected objects projects, in contrast to a radar sensor (Doppier- effect) by means of the LIDAR-environment sensor 2 are not directly measure ⁇ ge. They are the difference between the measured in successive time steps intervals in a cyclically operating Whether ekterkennungsaku be credited ⁇ 21st Similarly, in principle, the acceleration of the objects can be determined by deriving their positions twice.
  • Fig. 2 shows a schematic representation of a remplias ⁇ sistenzsystems whose components are preferably carried out with the exception of Senso ⁇ reindeer, actuators and other hardware and software modules that are executed within the vehicle 1 by means of a microprocessor.
  • the object data is transmitted to a decision device 22 in the form of electronic signals within the driver assistance system shown schematically.
  • a decision device 22 in the form of electronic signals within the driver assistance system shown schematically.
  • an object ector trajectory is determined in block 23 on the basis of the information about the object 0.
  • a movement trajectory of the vehicle 1 is determined in block 24 on the basis of information about the driving dynamic condition of the vehicle 1, which are determined with the aid of further vehicle sensors 25.
  • a collision course is determined and the collision time is also determined in the decision means 22, that is the time period up to which it ⁇ mediated collision with the object 0, a certain value below, is transmitted to a trigger signal to a path presetting ⁇ device 27th
  • the trigger signal causes is first calculated within the path setting means from a ⁇ soft ground, ie anaturestraj ektorie. Then, based on the determined avoidance path orseparatingstraj ektorie a starting point for the evasive action be ⁇ true where the evasive maneuvers must be started to the object 0 barely dodge.
  • This Schrit ⁇ te are preferably repeated in intervals until kei ⁇ ne risk of collision due to changes in the heading of the object 0 or the vehicle 1 is more or until the vehicle 1 reaches the starting point for an evasive maneuver. If this is the case, parameters representing the avoidance path or these path are transmitted to a steering actuator control 28.
  • Fig. 3 the schematic structure of the safety device according to the invention is shown.
  • the idea is the networking of the various sensor units 2, 20, 30, 40.
  • Data fusion is the combination and completion of incomplete data sets for data cleansing.
  • Several incomplete in some records must be MITEI ⁇ Nander combined to a complete picture of the environmental field to receive.
  • MITEI ⁇ Nander combined to a complete picture of the environmental field to receive.
  • they must be brought to a common data scheme. This pre ⁇ gang and data schema integration is called. Through this data fusion, it is possible to obtain information about the environment of the motor vehicle 1, which have a better quality ⁇ .
  • At least one sensor unit 2 is used to detect the environmental conditions.
  • this so-called environment sensor system 2 is formed from a radar, lidar or video camera system or from a combination of the systems mentioned.
  • the information obtained with the aid of at least one of these sensor ⁇ unit 2 information is combined with map information, GPS data and information obtained by means of a car-to-X communication within an evaluation unit 4 for data fusion of the environment data in the sense of a data fusion , After the data fusion, an evaluation of the improved environment data for the detection of objects 0 takes place.
  • the position and movement of the object 0 is transmitted to a driving safety coordinator 6.
  • This Fahr Industriesordinator 6 determined due to physical driving limits including the
  • Fig. 3 serves at least one white ⁇ direct sensor unit 20 of the detection of the environmental condition.
  • This at least one sensor unit 20 for detecting the state of the world order ⁇ is formed by a rain sensor, a thermocouples ⁇ ment and / or a camera system.
  • a data fusion is carried out in the evaluation unit 24 from the detected environmental condition data, and in step 25 a Reibwertindikation between tires and the road is determined from the adjusted environmental status data. This determination of the Reibwertindikation for example, based on the knowledge of the road condition.
  • This determined friction coefficient indication is also forwarded to the driving safety coordinator 6.
  • Another least one sensor unit 30 is for ⁇ he put a vehicle state.
  • This at least one sen ⁇ sorritt 30 for vehicle condition detection is formed from a wheel speed sensor, a lateral acceleration sensor, a longitudinal acceleration sensor or a yaw rate sensor. A combination of the mentioned sensors is also possible.
  • the vehicle condition detection sensor unit 30 is also called a vehicle condition observer.
  • the vehicle state data are combined with the determined friction value indication in the sense of a data fusion. By this measure, the vehicle state is calculated in step 35 and output to the driving safety coordinator 6.
  • Fig. 3 further disclosed is provided at least one further Sen ⁇ sorappel 40 for detecting the driver instructions and for outputting driver input data.
  • This at least one sensor unit 40 for detecting the driver specifications is formed by a steering angle sensor, a pedal angle sensor for the brake pedal and / or the accelerator pedal and / or by a giver of the direction indicator.
  • the encoder of practicallysanzei ⁇ ge is colloquially referred to as a turn signal.
  • the information includes whether the driver wants to turn left or right.
  • the assigned evaluation unit 44 is supplied with the newly determined vehicle state data and from these together with the driver service data a data fusion is performed. Since the data fusion effects a data cleansing by combining and completing incomplete data sets, a precise driver's target rate is calculated in step 45 and output to the driving safety coordinator 6.
  • the driving safety coordinator 6 thus the position and movement of the object 0 and the determined Reibwertin ⁇ dication are transmitted.
  • the driving safety coordinator 6 receives the vehicle condition and the driver's course. From these data, a permissible driving corridor or an optimal trajectory is determined.
  • the determination of the driving corridor or the movement trajectory is situational and predictive.
  • the driving corridor or theorientsstra ektorie are located within the predicted free surface on the left and right of the object 0 over. In order to maintain the vehicle 1 in the permitted corridor or on the optimumrangestraj ektorie, active components will be such ⁇ 9 controls that the driver input on the available corridor or the optimumorientstraj is limited ektorie.
  • These actively controllable components 9 are located in the chassis, drive or in a man-machine interface, such as Brake pedal, drive motor, steering, transmission, damper, stabilizer or direction indicator.
  • the driving safety coordinator 6 controls the actively activatable components 9 in such a way that an opposing force is generated on the accelerator pedal or an intervention in the drive motor, an intervention in the drivetrain or a braking intervention is performed in order to move the vehicle in the driving corridor or on the trajectory ectoria.
  • the actively activatable components 9 are controlled in such a way that an additional steering torque and / or an additional steering angle or a wheel-individual braking intervention for generating a
  • Yawing moments is generated.
  • This control is also suitable for keeping the vehicle in the driving corridor or on the traffic trajectory.
  • a special execution ⁇ form any action by the driver is overruled, so the driver retains control over his vehicle.
  • a situation-optimized braking force control is carried out for a combined braking / avoiding maneuver.
  • the vehicle 1 drives in the illustrated direction ⁇ travel on an object 0, so that a warning W is output to the driver.
  • This warning W to the driver takes place via a human-machine interface 7, also called a human-machine interface, HMI for short.
  • the warning W to the driver can be haptic, audible or visual.
  • all controllable components of the man-machine interface 7 are suitable, such as a counterforce on the accelerator pedal or a vibration of the steering wheel.
  • Warning lights and audible warning tones are also suitable for issuing a warning to the driver.
  • the pre-collision phase PI is used to calculate a last braking point PTB for the driving safety coordinator 6, the abbreviation PTB being derived from the English term "last point to brake.”
  • a last steering point PTS-u of the unbraked vehicle 1 and a last one it averages steering point PTS-b of the braked vehicle 1 ⁇ the abbreviations PTS u and PTS-b are in turn made the English terms "last point to steer - unbraked.” and "last point to steer - braked lane change" derived lane change. can be done either to the left or to the right and several times in succession, as shown In the multiple evasion, one starts from a multi-object and multi-collision situation.
  • the position and length of the precollision phase P3 between the last steering point PTS-u of the unbraked vehicle 1 and the last steering point PTS-b of the braked vehicle 1 can be influenced, which is indicated by the double arrow A.
  • the position and length of the pre-collision phase P3 be changed in situatively necessary cases.
  • the position of the last steering point of the ge ⁇ braked and the unrestrained vehicle 1 PTS-u and PTS-b and thus the length of the pre-collision phase P3 via a brake force distribution adjusted so that a Ausweichmanö ⁇ ver - only if an alternative possibility was recognized by the system - is still possible.
  • the fact that the last steering point PTS-b of the braked vehicle 1 in FIG. 4 is further to the left than the last steering point PTS-u of the unbraked vehicle 1 is due to the fact that a vehicle tire can transmit more steering forces to the road, if less or no braking force must be transmitted through the vehicle tire on the road.
  • the result is a direction vector for the vehicle 1.
  • the vehicle tire transmits forces to the road surface during driving and braking of the vehicle 1 as well as when steering to the left or right.
  • the brake pressure of a driver-independent braking intervention in the wheel brakes is reduced or reduced to zero at the beginning of the pre-collision phase P3, the steerability of the wheels is improved since more steering power can be transmitted to the roadway, as just explained. If the brake pressure at the beginning of the pre-collision phase 3 is reduced or reduced to zero, the last steering point moves in the direction of obstacle or object 0. This last steering point is then the steering point PTS-u of the unbraked vehicle 1, since the brake pressure has been reduced to zero. This means that the position and length of the pre-collision phase P3 is changed by the brake force distribution.
  • the driving safety coordinator 6 determines the position and length of the pre-collision phase P3 between the last steering point PTS-u of the unbraked vehicle 1 for evading and the last steering point PTS-b of the braked motor vehicle 1 for avoiding the object 0 situationally influenced by a driver-independent braking intervention to optimize emergency braking in the pre-collision phase P4a or an avoidance operation in the pre-collision phase P4b.
  • the braking force of the driver-independent braking intervention distributed either evenly or non-uniformly on the right and left wheels of the vehicle 1 ⁇ who, so in the case of uneven braking force distribution, the avoidance operation is supported.
  • the braking performance is at an early stage and significantly optimized before PTS u so much speed as possible is built from ⁇ .
  • the driver is warned accordingly earlier. That is, in the pre-collision phase P4a, the driving safety coordinator 6 initiates emergency braking when there is no possibility of avoidance.
  • the braking power is optimized in the pre-collision phase 4a.
  • the driving safety coordinator 6 determines, predictively and situationally, at least one permissible driving corridor and / or one optimal movement trajectory. As can be seen from Fig. 3 already erläu ⁇ tert the driver's selection is limited by means actively controllable Kom ⁇ components 9 on the driving corridor and the motor vehicle 1 by the active drivable component 9 held in the driving corridor or on theangostra ektorie.
  • the driving safety coordinator 6 uses a driver-independent braking intervention to influence the position and length of the precollision phase P3 between the last steering point PTS-u of the unbraked vehicle 1 for evading and the last steering point PTS-b of the braked motor vehicle 1 to avoid the object 0 or the last possible ⁇ chen point to steer PTS and PTS-b so that the Ausweichvor ⁇ gang ektorie under design driving corridor and / or in terms of the optimal Traj is optimized.
  • a combined braking / evasive maneuver will take place performed.
  • the driver-independent brake intervention is in any case released again, so that a speedy passage past the obstacle is not hindered. If the lane through another obstacle 0 blo ⁇ ckiert be Vorkollisionsphasen PI ', P2', P3 ', P4a' P4b 'determined again.
  • a combined braking / avoiding maneuver is again carried out.
  • Said evaluation units 4, 5, 24, 25, 34, 35, 44 may be formed within a common off ⁇ evaluation unit also merely as software modules or Abiauf ⁇ steps of a method.
  • the present invention provides that a driving safety coordinator in consideration of environment, environmental, vehicle state and on the basis of the driver request a kriti ⁇ specific driving situation in the Vorkollisionsphasen PI, P2, P3, P4a, divides P4b and driver-independent braking interventions, the position and length the phase P3 influenced so that an emergency braking maneuver P4a, an emergency avoidance P4b or a combined emergency braking / evasive maneuver is optimized. It is also contemplated that the Vorkollisionsphasen PI ', P2', P3 ', P4a', P4b 'be determined again when a white ⁇ teres object 0 in the movement direction of the motor vehicle 1 it will ⁇ known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

Die Anmeldung betrifft eine Vorrichtung und ein Verfahren zur Erhöhung der Sicherheit für ein Kraftfahrzeug. Eine erste Sensoreinheit (2) erfasst das Umfeld, insbesondere Freiräume und Objekte (0), deren Position und Bewegung. Eine zweite Sensoreinheit (20) erfasst den Umweltzustand, eine dritte Sensoreinheit (30) den Fahrzeugzustand und eine vierte Sensoreinheit (40) die Fahrervorgaben. Die Daten werden fusioniert. Erfindungsgemäss ist ein Fahrsicherheitskoordinator (6) vorgesehen, der die Kollisionsgefahr berechnet anhand einer Gefahrenbewertung und dass der Fahrsicherheitskoordinator (6) Vorkollisionsphasen (P1, P2, P3, P4a, P4b) des Kraftfahrzeugs (1) in Bezug auf das Objekt (0) ermittelt.

Description

Sicherheitsvorrichtung für ein Kraftfahrzeug und Verfahren zum Betrieb eines Kraftfahrzeugs
Die vorliegende Erfindung betrifft eine Sicherheitsvorrichtung für ein Kraftfahrzeug mit
mindestens einer Sensoreinheit zum Erfassen der
Umfeldbedingungen und zur Ausgabe von Umfelddaten, einer Auswerteeinheit zur Datenfusion der Umfelddaten und einer Auswerteeinheit zur Erkennung von Freiräumen und Objekten, deren Position und Bewegung, sowie mit
mindestens einer Sensoreinheit zum Erfassen des Umweltzu¬ standes und zur Ausgabe von Umweltzustandsdaten und einer Auswerteeinheit zur Datenfusion der Umfelddaten mit den Umweltzustandsdaten zur Bestimmung einer Reibwertindikation, sowie mit
mindestens einer Sensoreinheit zum Erfassen des Fahrzeugzu¬ standes und zur Ausgabe von Fahrzeugzustandsdaten und einer Auswerteeinheit zur Datenfusion der Fahrzeugzustandsdaten mit Fahrervorgabedaten zur Bestimmung des Fahrzustandes, sowie mit
mindestens einer Sensoreinheit zum Erfassen der Fahrervorga¬ ben und zur Ausgabe von Fahrervorgabedaten und einer Auswerteeinheit zur Datenfusion der Fahrervorgabedaten mit den Fahrzeugzustandsdaten zur Bestimmung des Fahrersollkurses. Außerdem betrifft die vorliegende Erfindung ein Verfahren zum Betrieb eines Kraftfahrzeugs.
Aus der EP 1 735 187 AI ist eine derartige Sicherheitsvorrichtung und ein Verfahren zur Erhöhung der Sicherheit im Straßenverkehr bekannt. Bei dem vorbekannten System wird beim oder nach einem durch den Fahrer verursachten Lenkeinschlag eines Ausweichmanövers ein unterstützendes Fahrmanö¬ ver vorgegeben, wobei die Vorgabe vom Fahrer jederzeit übersteuert werden kann. Bei dem vorbekannten Verfahren wird anhand von Umfeldsignalen ermittelt, ob eine fahrdynamisch kritische Situation bzw. eine bevorstehende Kollision vor¬ liegt. Das Verfahren wird bevorzugt in Notsituationen für Ausweichmanöver eingesetzt.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren einzuführen, das pro-aktiv unter Berücksichtigung der Fahrsituation eine maximale Fahrsicherheit gewährleistet, die den Fahrer in seiner Fahraufgabe bestmöglich unterstützt.
Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung mit den Merkmalen der unabhängigen Patentansprüche gelöst. Es wird ein System und ein Verfahren zur situations- und kollisionsphasenoptimierten Bremskraftregelung und Fahr- werksanpassung für kombinierte Brems-/Ausweichmanöver für Kraftfahrzeuge vorgeschlagen. Dabei ist ein dass ein Fahrsi- cherheitskoordinator vorgesehen ist, der die Kollisionsgefahr berechnet anhand einer Gefahrenbewertung ermittelt. Au¬ ßerdem ermittelt der Fahrsicherheitskoordinator mehrere Vorkollisionsphasen des Kraftfahrzeugs in Bezug auf das Objekt. Dabei ermittelt der Fahrsicherheitskoordinator einen letzten Bremspunkt zum Anhalten vor dem Objekt, einen letzten Lenkpunkt des ungebremsten Fahrzeugs zum Ausweichen sowie einen letzten Lenkpunkt des gebremsten Kraftfahrzeugs zum Auswei- chen vor dem Objekt. Die Vorkollisionsphasen sind so ausgebildet, dass sie zu diesen Punkten beginnen oder enden. Ein Erfindungsgedanke besteht darin, dass der Fahrsicherheitsko- ordinator die Vorkollisionsphasen situativ mit Hilfe eines fahrerunabhängigen Bremseingriffs streckt.
Der entscheidende Erfindungsgedanke ist es, dass der Fahrsi- cherheitskoordinator innerhalb der Vorkollisionsphasen des Kraftfahrzeugs zur Gewährleistung der operationalen Sicherheit prädiktiv und situativ ein kombiniertes Brems- /Ausweichmanöver vornimmt. Dabei macht der Fahrsicherheits- koordinator die Vorkollisionsphasen unter Berücksichtigung einer Ausweichmöglichkeit, eines kombinierten Brems- /Ausweichmanövers oder eines Bremsmanövers situativ und/oder nach Fahrervorgabe für den Fahrer entsprechend der Kollisi¬ onsgefahr, des Fahrzeugzustands und der Reibwertindikation beherrschbar .
Bei einer Weiterbildung des Erfindungsgegenstandes ist vor¬ gesehen, dass dem Fahrsicherheitskoordinator die Reibwertindikation zwischen den Fahrzeugreifen und der Fahrbahn auf Basis einer Schätzung zugeführt wird, wobei die Reibwertin¬ dikation aus einem fahrerunabhängigen oder einem fahrerausgelösten Bremseingriff ermittelt wird.
Eine besonders vorteilhafte Weiterbildung sieht vor, dass der Fahrsicherheitskoordinator zur Gewährleistung der operationalen Sicherheit prädiktiv und situativ mindestens einen zulässigen Fahrkorridor und oder eine optimale Bewegungstra- jektorie ermittelt und die Fahrervorgabe mittels aktiv an¬ steuerbarer Komponenten auf den Fahrkorridor begrenzt und das Kraftfahrzeug mittels der aktiv ansteuerbaren Komponenten im Fahrkorridor oder auf der Bewegungstra ektorie hält. Dabei ist der Fahrsicherheitskoordinator dazu eingerichtet, eine haptische, akustische und/oder optische Warnung
und/oder Lenkempfehlung an den Fahrer auszugeben.
Die der Erfindung zugrunde liegende Aufgabe wird auch durch ein Verfahren mit den Merkmalen des Anspruchs 9 gelöst. Da¬ bei ist vorgesehen, dass die Kollisionsgefahr durch einen Sicherheitskoordinator berechnet wird und dass Vorkollisi¬ onsphasen des Kraftfahrzeugs in Bezug auf das Objekt ermit¬ telt werden. Es werden ein letzter Bremspunkt zum Anhalten vor dem Objekt, ein letzter Lenkpunkt des ungebremsten Fahrzeugs zum Ausweichen sowie ein letzter Lenkpunkt des ge¬ bremsten Kraftfahrzeugs zum Ausweichen vor dem Objekt ermittelt. Die Vorkollisionsphasen beginnen oder enden an diesen Punkten. Außerdem werden die Vorkollisionsphasen mit Hilfe eines fahrerunabhängigen Bremseingriffs gestreckt.
Der entscheidende Erfindungsgedanke ist es, dass innerhalb der Vorkollisionsphasen des Kraftfahrzeugs zur Gewährleis¬ tung der operationalen Sicherheit prädiktiv und situativ ein kombiniertes Brems-/Ausweichmanöver durchgeführt wird. Dabei werden die Vorkollisionsphasen unter Berücksichtigung einer Ausweichmöglichkeit, eines kombinierten Brems- /Ausweichmanövers oder eines Bremsmanövers situativ und/oder nach Fahrervorgabe für den Fahrer entsprechend der Kollisi¬ onsgefahr, des Fahrzeugzustands und der Reibwertindikation optimiert und beherrschbar gemacht.
Ein weiterer entscheidender Gedanke ist es, dass die Vorkol¬ lisionsphasen erneut ermittelt werden, wenn ein weiteres Objekt in Bewegungsrichtung des Kraftfahrzeugs erkannt wird. Bei einem Folgeszenario wiederholen sich die Vorkollisions¬ phasen, wenn nach oder beim Spurwechsel auf eine benachbarte Spur ein erneutes Hindernis auftaucht. Dann werden die ent¬ sprechenden Phasen des Verfahrens wiederholt. Die Erfindung wird nachfolgend anhand eines Ausführungsbei¬ spiels im Zusammenhang mit der beiliegenden Zeichnung näher erläutert. In der Zeichnung zeigt:
Fig. 1 eine schematische Darstellung eines Fahrzeugs mit einer Umfeldsensorik zum Erfassen von Objekten im Umfeld des Fahrzeugs;
Fig. 2 eine schematische Darstellung eines Fahrerassis¬ tenzsystems ; eine Block-Darstellung der erfindungsgemäß
SicherheitsVorrichtung;
Fig. 4 eine schematische Darstellung von Vorkollisions¬ phasen und
Fig. 5a, b zwei Darstellung der Längs- und Querkräfte eines
Fahrzeugreifens, die auch als Kamm' scher Kreis be¬ kannt sind.
Im Sinne der vorliegenden Erfindung steht „Lenkrad" stellvertretend für alle denkbaren Mensch-Maschine- Schnittstellen, die der Fahrzeugführer im Sinne eines Lenken und Steuern des Kraftfahrzeugs bedienen kann, wie beispiels¬ weise Schaltereingaben, ein Joystick oder ein Touchpad sowie auch von extern übermittelte Stell-Kommandos .
Im Folgenden wird zunächst allgemein anhand von Fig. 1 und 2 eine Sicherheitsvorrichtung für Kraftfahrzeuge erläutert und anhand der Fig. 3 und 4 ein Ausführungsbeispiel der Erfin¬ dung näher erläutert. In Fig. 1 ist beispielhaft ein vierrädriges, zweiachsiges Fahrzeug 1 dargestellt, das über eine Umfeldsensorik 2 ver¬ fügt, mit dem Objekte 0 im Umfeld des Fahrzeugs erfasst wer¬ den können, bei denen es sich insbesondere um weitere Kraft¬ fahrzeuge handelt, die sich in derselben oder einer benachbarten Fahrspur seitlich und/oder vor dem Fahrzeug 1 bewegen. Als Objekte 0 kommen aber auch statische oder nahezu statische Objekte wie beispielsweise Bäume, Fußgänger oder Fahrbahnbegrenzungen in Frage. Beispielhaft wird eine
Umfeldsensorik 2 mit einem Erfassungsbereich 3 gezeigt, der einen Raumwinkel vor, neben oder hinter dem Fahrzeug 1 um- fasst, in dem beispielhaft ein Objekt 0 dargestellt ist. Bei der Umfeldsensorik 2 handelt sich beispielsweise um einen LIDAR-Sensor (Light Detection and Ranging) der dem Fachmann an sich bekannt ist. Ebenfalls sind jedoch auch andere
Umfeldsensoren wie Radarsensoren oder optische Kamerasysteme einsetzbar. Darüber hinaus kann die Information um das Umfeld mittels der sogenannten Car-to-X-Kommunikation ermittelt werden. Darunter versteht man die Übertragung von
Umfeldinformationen von anderen Fahrzeugen oder von anderen Erfassungspunkten an das Fahrzeug 1. Die Umfeldsensorik 2 misst die Abstände d zu den erfassten Punkten eines Objekts sowie die Winkel φ zwischen den Verbindungsgeraden zu diesen Punkten und der Mittellängsachse des Fahrzeugs, wie dies in Fig. 1 beispielhaft für einen Punkt P des Objekts 0 veran¬ schaulicht ist. Die dem Fahrzeug 1 zugewandten Fronten der erfassten Objekte setzen sich aus mehreren erfassten Punkten zusammen, zu der die Sensorsignale übermittelt werden, die Korrelationen zwischen Punkten und der Form eines Objekts herstellt und einen Bezugspunkt für das Objekt 0 bestimmt. Als Bezugspunkt kann dabei beispielsweise der Mittelpunkt des Objekts 0 bzw. der Mittelpunkt der erfassten Punkte des Objekts gewählt werden. Die Geschwindigkeiten der detektier- ten Punkte und damit die Geschwindigkeit der erfassten Ob- jekte können im Gegensatz zu einem Radar-Sensor (Doppier- Effekt) mittels des LIDAR-Umfeldsensors 2 nicht direkt ge¬ messen werden. Sie werden aus der Differenz zwischen den in aufeinander folgenden Zeitschritten gemessenen Abständen in einer taktweise arbeitenden Ob ekterkennungseinheit 21 be¬ rechnet. In ähnlicher Weise kann grundsätzlich auch die Beschleunigung der Objekte durch zweimaliges Ableiten ihrer Positionen bestimmt werden.
Fig. 2 zeigt eine schematische Darstellung eines Fahreras¬ sistenzsystems, dessen Bestandteile mit Ausnahme von Senso¬ ren, Aktuatoren und sonstiger Hardware vorzugsweise als Softwaremodule ausgeführt sind, die innerhalb des Fahrzeugs 1 mittels eines Mikroprozessors ausgeführt werden. Wie in Fig. 2 gezeigt, werden die Objektdaten in Form von elektronischen Signalen innerhalb des schematisch dargestellten Fahrerassistenzsystems an eine Entscheidungseinrichtung 22 übermittelt. In der Entscheidungseinrichtung 22 wird in Block 23 anhand der Informationen über das Objekt 0 eine Ob- j ekttraj ektorie bestimmt. Ferner wird eine Bewegungstraj ek- torie des Fahrzeugs 1 in Block 24 anhand von Informationen über den fahrdynamischen Zustand des Fahrzeugs 1 ermittelt, die mit Hilfe von weiteren Fahrzeugsensoren 25 bestimmt werden. Insbesondere werden dabei die beispielsweise mit Hilfe von Raddrehzahlsensoren ermittelbare Fahrzeuggeschwindig¬ keit, der mittels eines Lenkwinkelsensors gemessene Lenkwin¬ kel δ an den lenkbaren Rädern des Fahrzeugs 1, die Gierrate und/oder die Querbeschleunigung des Fahrzeugs 1, die mittels entsprechender Sensoren gemessen werden, herangezogen. Darüber hinaus ist es möglich, aus den mit den Fahrzeugsensoren 25 gemessenen fahrdynamischen Zuständen des Fahrzeugs modellbasierte Größen zu berechnen bzw. zu schätzen. Ein Hinweis auf den Reibwert zwischen den Reifen des Fahrzeugs 1 und der Fahrbahn wird dabei ebenfalls aus den Fahrzeugsenso- ren oder aus dem Fahrbahnzustand gewonnen. Diese Reibwertindikation wird insbesondere durch das Bremsenregelsystem ermittelt. Dann wird in der Entscheidungseinrichtung 22 innerhalb des Blocks 26 überprüft, ob sich das Kraftfahrzeug 1 auf einem Kollisionskurs mit einem der erfassten Objekte 0 befindet. Falls ein derartiger Kollisionskurs festgestellt wird und die ebenfalls in der Entscheidungseinrichtung 22 ermittelte Kollisionszeit, d.h. die Zeitdauer bis zu der er¬ mittelten Kollision mit dem Objekt 0, einen bestimmten Wert unterschreitet, wird ein Auslösesignal an eine Bahnvorgabe¬ einrichtung 27 übermittelt. Das Auslösesignal führt dazu, dass zunächst innerhalb der Bahnvorgabeeinrichtung eine Aus¬ weichbahn, d.h. eine Bewegungstraj ektorie, berechnet wird. Dann wird aufgrund der ermittelten Ausweichbahn bzw. Bewegungstraj ektorie ein Startpunkt für das Ausweichmanöver be¬ stimmt, an dem das Ausweichmanöver gestartet werden muss, um dem Objekt 0 gerade noch ausweichen zu können. Diese Schrit¬ te werden vorzugsweise in Zeitschritten wiederholt, bis kei¬ ne Kollisionsgefahr aufgrund von Kursänderungen des Objekts 0 oder des Fahrzeugs 1 mehr besteht oder bis das Fahrzeug 1 den Startpunkt für ein Ausweichmanöver erreicht. Ist dies der Fall, werden die Ausweichbahn oder diese Bahn repräsentierende Parameter an eine Lenkungsaktuatorsteuerung 28 übermittelt .
In Fig. 3 ist der schematische Aufbau der erfindungsgemäßen Sicherheitsvorrichtung dargestellt. Der Gedanke ist dabei die Vernetzung der verschiedenen Sensoreinheiten 2, 20, 30, 40. Mit den zur Verfügung stehenden Daten aus den Sensoreinheiten 2, 20, 30, 40 wird eine Datenfusion durchgeführt. Als Datenfusion bezeichnet man die Zusammenführung und Vervollständigung lückenhafter Datensätze zur Datenbereinigung. Dabei müssen mehrere zum Teil unvollständige Datensätze mitei¬ nander kombiniert werden, um ein vollständiges Bild des Um- felds zu erhalten. Bevor die Datenfusion der Datensätze zweier Sensoreinheiten 2, 20, 30, 40 möglich ist, müssen sie auf ein gemeinsames Datenschema gebracht werden. Dieser Vor¬ gang wird auch Datenschema-Integration genannt. Durch diese Datenfusion ist es möglich, Informationen zum Umfeld des Kraftfahrzeugs 1 zu gewinnen, die eine bessere Qualität auf¬ weisen. Eine bessere Datenqualität steht dabei für eine exaktere und schnellere Berechnung der Kollisionsgefahr und der Vorkollisionsphasen PI, P2, P3, P4a, P4b. Wie nachfolgend noch näher erläutert wird, findet eine Datenfusion ebenfalls statt, um verbesserte Informationen zum Umweltzu¬ stand, zum Fahrzeugzustand und für die Fahrervorgabedaten zu erhalten .
Zum Erfassen der Umfeldbedingungen dient mindestens eine Sensoreinheit 2. Diese sogenannte Umfeldsensorik 2 wird wie bereits erwähnt aus einem Radar-, Lidar- oder einem Videokamera-System gebildet oder aus einer Kombination der genannten Systeme. Die mit Hilfe mindestens einer dieser Sensor¬ einheit 2 erhaltenen Informationen werden mit Karteninformationen, GPS-Daten und Informationen, die mit Hilfe einer Car-to-X-Kommunikation erhalten werden, innerhalb einer Auswerteeinheit 4 zur Datenfusion der Umfelddaten im Sinne einer Datenfusion miteinander kombiniert. Nach der Datenfusion erfolgt eine Auswertung der verbesserten Umfelddaten zur Erkennung von Objekten 0. Die Position und Bewegung des Objekts 0 wird an einen Fahrsicherheitskoordinator 6 übermittelt. Dieser Fahrsicherheitskoordinator 6 ermittelt aufgrund fahrphysikalischer Grenzwerte unter Einbeziehung der
Umfelddaten Vorkollisionsphasen PI, P2, P3, P4a, P4b und gewährleistet damit die operationale Sicherheit des Fahrzeugs 1 prädiktiv und situativ, indem die Vorkollisionsphasen PI, P2, P3, P4a, P4b so gestaltet werden, dass ein kombiniertes Brems-/Ausweichmanöver oder ein Bremsmanöver durchgeführt wird. Die Vorkollisionsphasen PI, P2, P3, P4a, P4b werden nachfolgend anhand von Fig. 4 näher erläutert.
Wie Fig. 3 weiter entnehmbar ist, dient mindestens eine wei¬ tere Sensoreinheit 20 der Erfassung des Umweltzustandes . Diese mindestens eine Sensoreinheit 20 zur Erfassung des Um¬ weltzustandes wird durch einen Regensensor, ein Thermoele¬ ment und/oder durch ein Kamerasystem gebildet. Unter Berücksichtigung der Reifenkennlinie der verwendeten Fahrzeugrei¬ fen wird aus den ermittelten Umweltzustandsdaten eine Datenfusion in der Auswerteeinheit 24 durchgeführt und im Schritt 25 wird aus den bereinigten Umweltzustandsdaten eine Reibwertindikation zwischen Reifen und Fahrbahn ermittelt. Diese Ermittlung der Reibwertindikation erfolgt beispielsweise auf Grund der Kenntnis des Fahrbahnzustands. Diese ermittelte Reibwertindikation wird ebenfalls an den Fahrsicherheitsko- ordinator 6 weiter geleitet.
Eine weitere mindestens eine Sensoreinheit 30 dient zum Er¬ fassen eines Fahrzeugzustandes. Diese mindestens eine Sen¬ soreinheit 30 zur Fahrzeugzustandserfassung ist aus einem Raddrehzahlsensor, einem Querbeschleunigungssensor, einem Längsbeschleunigungssensor oder einem Gierratensensor gebildet. Eine Kombination der genannten Sensoren ist ebenfalls möglich. Die Sensoreinheit 30 zur Fahrzeugzustandserfassung wird auch Fahrzeugzustandsbeobachter genannt. In einer diesem Fahrzeugzustandsbeobachter zugeordneten Auswerteeinheit 34 werden die Fahrzeugzustandsdaten mit der ermittelten Reibwertindikation im Sinne einer Datenfusion kombiniert. Durch diese Maßnahme wird im Schritt 35 der Fahrzeugzustand berechnet und an den Fahrsicherheitskoordinator 6 ausgegeben . Wie Fig. 3 weiter offenbart ist mindestens eine weitere Sen¬ soreinheit 40 zum Erfassen der Fahrervorgaben und zur Ausgabe von Fahrervorgabedaten vorgesehen. Diese mindestens eine Sensoreinheit 40 zum Erfassen der Fahrervorgaben wird durch einen Lenkwinkelsensor, einen Pedalwinkelsensor für das Bremspedal und/oder das Fahrpedal und/oder durch einen Geber der Richtungsanzeige gebildet. Der Geber der Richtungsanzei¬ ge wird umgangssprachlich auch als Blinker bezeichnet. Die Information beinhaltet, ob der Fahrer nach links oder rechts abbiegen will. Der zugeordneten Auswerteeinheit 44 werden die eben ermittelten Fahrzeugzustandsdaten zugeführt und aus diesen gemeinsam mit den Fahrervorgabedaten eine Datenfusion durchgeführt. Da die Datenfusion durch Zusammenführung und Vervollständigung lückenhafter Datensätze eine Datenbereinigung bewirkt, wird im Schritt 45 ein präziser Fahrersollkurs berechnet und an den Fahrsicherheitskoordinator 6 ausgegeben .
Dem Fahrsicherheitskoordinator 6 werden somit die Position und Bewegung des Objekts 0 sowie die ermittelte Reibwertin¬ dikation übermittelt. Zudem erhält der Fahrsicherheitskoordinator 6 den Fahrzeugzustand und den Fahrersollkurs. Aus diesen Daten wird ein zulässiger Fahrkorridor oder eine optimale Bewegungstra ektorie ermittelt. Die Ermittlung des Fahrkorridors oder der Bewegungstra ektorie erfolgt situativ und prädiktiv. Der Fahrkorridor bzw. die Bewegungstra ektorie befinden sich innerhalb der prädizierten Freifahrfläche links und rechts am Objekt 0 vorbei. Um das Fahrzeug 1 in dem zulässigen Korridor oder auf der optimalen Bewegungstra- j ektorie zu halten, werden aktive Komponenten 9 derart ange¬ steuert, dass die Fahrervorgabe auf den verfügbaren Korridor bzw. die optimale Bewegungstraj ektorie begrenzt wird. Diese aktiv ansteuerbaren Komponenten 9 befinden sich im Chassis, Antrieb oder in einer Mensch-Maschinen-Schnittstelle, wie Bremspedal, Antriebsmotor, Lenkung, Getriebe, Dämpfer, Stabilisator oder Richtungsanzeiger. Konkret steuert der Fahr- sicherheitskoordinator 6 die aktiv ansteuerbaren Komponenten 9 derart an, dass eine Gegenkraft am Fahrpedal erzeugt wird oder ein Eingriff in den Antriebsmotor, ein Eingriff in den Antriebsstrang oder ein Bremseingriff durchgeführt wird, um das Fahrzeug im Fahrkorridor bzw. auf der Bewegungstraj ekto- rie zu halten. Alternativ oder zusätzlich werden die aktiv ansteuerbaren Komponenten 9 derart angesteuert, dass ein zusätzliches Lenkmoment und/oder ein Zusatzlenkwinkel oder ein radindividueller Bremseingriff zur Erzeugung eines
Giermoments erzeugt wird. Diese Ansteuerung ist ebenfalls geeignet, um das Fahrzeug im Fahrkorridor bzw. auf der BEwe- gungstra ektorie zu halten. In einer besonderen Ausführungs¬ form ist jede Maßnahme vom Fahrer überstimmbar, sodass der Fahrer die Gewalt über sein Fahrzeug 1 behält.
Anhand von Fig. 4 wird nun näher erläutert, wie innerhalb der erfindungsgemäßen Vorkollisionsphasen PI, P2, P3, P4a, P4b eine situationsoptimierte Bremskraftregelung für ein kombiniertes Brems-/Ausweichmanöver vorgenommen wird. In der Phase PO fährt das Fahrzeug 1 in der dargestellten Fahrt¬ richtung auf ein Objekt 0 auf, sodass eine Warnung W an den Fahrer ausgegeben wird. Diese Warnung W an den Fahrer erfolgt über eine Mensch-Maschinen-Schnittstelle 7, auch Hu- man-Machine-Interface, kurz HMI, genannt. Die Warnung W an den Fahrer kann haptisch, akustisch oder optisch erfolgen. Dazu sind alle ansteuerbaren Komponenten der Mensch- Maschinen-Schnittstelle 7 geeignet, wie eine Gegenkraft am Fahrpedal oder ein Vibrieren des Lenkrads. Warnlampen und akustische Warntöne sind ebenfalls geeignet eine Warnung an den Fahrzeugführer auszugeben. Die Vorkollisionsphase PI wird dazu verwendet, dass der Fahrsicherheitskoordinator 6 einen letzten Bremspunkt PTB berechnet wird, wobei die Abkürzung PTB aus dem englischen Begriff „last point to brake" abgeleitet ist. Außerdem wird ein letzter Lenkpunkt PTS-u des ungebremsten Fahrzeugs 1 und ein letzter Lenkpunkt PTS-b des gebremsten Fahrzeugs 1 er¬ mittelt. Die Abkürzungen PTS-u und PTS-b sind wiederum aus den englischen Begriffen „last point to steer - unbraked" und „last point to steer - braked lane change" abgeleitet. Der Spurwechsel kann wahlweise nach links oder nach rechts und mehrfach nacheinander, wie dargestellt erfolgen. Bei dem mehrfachen Ausweichen geht man von einer Multiobjekt- und Multikollisionssituation aus.
Wie Fig. 4 weiter entnehmbar ist die Lage und Länge der Vorkollisionsphase P3 zwischen dem letzten Lenkpunkt PTS-u des ungebremsten Fahrzeugs lund dem letzten Lenkpunkt PTS-b des gebremsten Fahrzeugs 1 beeinflussbar, was durch den Doppelpfeil A angedeutet ist. Durch einen fahrerunabhängigen
Bremseingriff kann die Lage und Länge der Vorkollisionsphase P3 in situativ notwendigen Fällen verändert werden. Mit anderen Worten wird die Lage des letzten Lenkpunkts des ge¬ bremsten und des ungebremsten Fahrzeugs 1 PTS-u und PTS-b und damit die Länge der Vorkollisionsphase P3 über eine Bremskraftverteilung so eingestellt, dass ein Ausweichmanö¬ ver - nur dann, wenn eine Ausweichmöglichkeit vom System erkannt wurde - noch möglich gemacht wird. Die Tatsache dass der letzte Lenkpunkt PTS-b des gebremsten Fahrzeugs 1 in der Fig. 4 weiter links liegt als der letzte Lenkpunkt PTS-u des ungebremsten Fahrzeugs 1 liegt daran, dass ein Fahrzeugrei¬ fen mehr Lenkkräfte auf die Fahrbahn übertragen kann, wenn weniger oder keine Bremskraft durch den Fahrzeugreifen auf die Fahrbahn übertragen werden muss. In diesem Zusammenhang wird kurz auf den Fig. 5a und 5b dargestellten Kamm' sehen Kreis verwiesen: Es ergibt sich ein Richtungsvektor für das Fahrzeug 1. Der Fahrzeugreifen überträgt Kräfte auf die Fahrbahn beim Antreiben und beim Bremsen des Fahrzeugs 1 genauso wie beim Lenken nach links oder rechts. Wie dem
Kamm' sehen Kreis aus Fig. 5a, b unmittelbar entnehmbar ist, kann das ungebremste und nicht angetriebene Fahrzeugrad die größten Lenkkräfte auf die Fahrbahn übertragen.
Wird also zu Beginn der Vorkollisionsphase P3 der Bremsdruck eines fahrerunabhängigen Bremseingriffs in den Radbremsen reduziert oder auf null abgesenkt, ergibt sich eine bessere Lenkbarkeit der Räder, da mehr Lenkkraft auf die Fahrbahn übertragen werden kann, wie eben erläutert wurde. Wird der Bremsdruck zu Beginn der Vorkollisionsphase 3 als reduziert oder auf Null abgesenkt, wandert der letzte Lenkpunkt in Richtung Hindernis bzw. Objekt 0. Dieser letzte Lenkpunkt ist dann der Lenkpunkt PTS-u des ungebremsten Fahrzeugs 1, da der Bremsdruck auf Null reduziert wurde. Das bedeutet, dass durch die Bremskraftverteilung die Lage und Länge der Vorkollisionsphase P3 verändert wird. Diese Erkenntnis nutzt das vorliegende Verfahren, dass der Fahrsicherheitskoordina- tor 6 die Lage und Länge der Vorkollisionsphase P3 zwischen dem letzten Lenkpunkt PTS-u des ungebremsten Fahrzeugs 1 zum Ausweichen und dem letzten Lenkpunkt PTS-b des gebremsten Kraftfahrzeugs 1 zum Ausweichen vor dem Objekt 0 situativ mit Hilfe eines fahrerunabhängigen Bremseingriffs beein- flusst um eine Notbremsung in der Vorkollisionsphase P4a oder einen Ausweichvorgang in der Vorkollisionsphase P4b zu optimieren. Dabei kann die Bremskraft des fahrerunabhängigen Bremseingriffs entweder gleichmäßig oder ungleichmäßig auf die rechten und linken Räder des Fahrzeugs 1 verteilt wer¬ den, sodass im Fall der ungleichmäßigen Bremskraftverteilung den Ausweichvorgang unterstützt wird. Für den Fall, dass keine Ausweichmöglichkeit vorhanden ist, wird die Bremsleistung schon frühzeitig und deutlich vor PTS-u so optimiert wird, möglichst viel Geschwindigkeit ab¬ gebaut wird. Der Fahrer wird entsprechend früher gewarnt. Das heißt, in der Vorkollisionsphase P4a leitet der Fahrsi- cherheitskoordinator 6 eine Notbremsung ein, wenn keine Ausweichmöglichkeit vorhanden ist. In diesem Fall wird in der Vorkollisionsphase 4a die Bremsleistung optimiert. Durch diese Maßnahme kann eine Kollision des eigenen Fahrzeugs 1 mit dem Objekt 0 noch vermieden werden oder die Kollisionsfolgen werden so weit abgemildert, wie es der als Bremsweg zur Verfügung stehende Raum zulässt.
Zur Gewährleistung der operationalen Sicherheit ermittelt der Fahrsicherheitskoordinator 6 prädiktiv und situativ mindestens einen zulässigen Fahrkorridor und oder eine optimale Bewegungstra ektorie . Wie anhand von Fig. 3 bereits erläu¬ tert wird die Fahrervorgabe mittels aktiv ansteuerbarer Kom¬ ponenten 9 auf den Fahrkorridor begrenzt und das Kraftfahrzeug 1 mittels der aktiv ansteuerbaren Komponenten 9 im Fahrkorridor oder auf der Bewegungstra ektorie gehalten. Dabei beeinflusst der Fahrsicherheitskoordinator 6 mit Hilfe eines fahrerunabhängigen Bremseingriffs die Lage und Länge der Vorkollisionsphase P3 zwischen dem letzten Lenkpunkt PTS-u des ungebremsten Fahrzeugs 1 zum Ausweichen und dem letzten Lenkpunkt PTS-b des gebremsten Kraftfahrzeugs 1 zum Ausweichen vor dem Objekt 0 beziehungsweise den letztmögli¬ chen Punkt zu Lenken PTS-u, PTS-b so, dass der Ausweichvor¬ gang unter Berücksichtigung des zulässigen Fahrkorridors und/oder im Hinblick auf die optimale Traj ektorie optimiert wird .
Wird eine Ausweichmöglichkeit erkannt, so wird in der Vor- kollisionsphase P3 ein kombiniertes Brems-/Ausweichmanöver vorgenommen. In der darauf folgenden Phase P4b wird der fahrerunabhängige Bremseingriff in jedem Fall wieder gelöst, sodass ein zügiges Vorbeifahren am Hindernis nicht behindert wird. Ist die Fahrspur durch ein weiteres Hindernis 0 blo¬ ckiert, werden Vorkollisionsphasen PI', P2 ' , P3 ' , P4a', P4b' erneut ermittelt. Entsprechend der neuen Vorkollisionsphasen PI', P2 ' , P3 ' , P4a', P4b' wird wiederum ein kombiniertes Brems-/Ausweichmanöver durchgeführt .
Die genannten Auswerteeinheiten 4, 5, 24, 25, 34, 35, 44, können auch lediglich als Softwarebausteine oder Abiauf¬ schritte eines Verfahrens innerhalb einer gemeinsamen Aus¬ werteeinheit ausgebildet sein.
Die vorliegende Erfindung sieht vor, dass ein Fahrsicher- heitskoordinator unter Berücksichtigung von Umfeld, Umwelt-, Fahrzeugzustand sowie anhand der Fahrervorgabe eine kriti¬ sche Fahrsituation in die Vorkollisionsphasen PI, P2, P3, P4a, P4b einteilt und durch fahrerunabhängige Bremseingriffe die Lage und Länge der Phase P3 derart beeinflusst, sodass ein Notbremsmanöver P4a, ein Notausweichvorgang P4b oder ein kombiniertes Notbrems-/Ausweichmanöver optimiert wird. Es ist ebenfalls vorgesehen, dass die Vorkollisionsphasen PI', P2 ' , P3 ' , P4a', P4b' erneut ermittelt werden, wenn ein wei¬ teres Objekt 0 in Bewegungsrichtung des Kraftfahrzeugs 1 er¬ kannt wird.

Claims

Patentansprüche :
1. Sicherheitsvorrichtung für ein Kraftfahrzeug (1) mit mindestens einer Sensoreinheit (2) zum Erfassen der Umfeldbedingungen und zur Ausgabe von Umfelddaten, einer Auswerteeinheit (4) zur Datenfusion der Umfelddaten und einer Auswerteeinheit (5) zur Erkennung von Frei¬ räumen und Objekten (0), deren Position und Bewegung, sowie mit
mindestens einer Sensoreinheit (20) zum Erfassen des Umwelt zustandes und zur Ausgabe von Umwelt zustandsdaten und einer Auswerteeinheit (24) zur Datenfusion der Umfelddaten mit den Umwelt zustandsdaten zur Bestimmung einer Reibwertindikation, sowie mit
mindestens einer Sensoreinheit (30) zum Erfassen des Fahrzeugzustandes und zur Ausgabe von Fahrzeugzustands¬ daten und einer Auswerteeinheit (34) zur Datenfusion der Fahrzeugzustandsdaten mit der Reibwertindikation und den Fahrervorgabedaten zur Bestimmung des Fahrzustandes, sowie mit
mindestens einer Sensoreinheit (40) zum Erfassen der Fahrervorgaben und zur Ausgabe von Fahrervorgabedaten und einer Auswerteeinheit (44) zur Datenfusion der Fahrervorgabedaten mit den Fahrzeugzustandsdaten zur Bestimmung des Fahrersollkurses, dadurch gekennzeichnet, dass ein Fahrsicherheitskoordinator (6) vorgesehen ist, der die Kollisionsgefahr berechnet anhand einer Gefahrenbewertung und dass der Fahrsicherheitskoordinator (6) Vorkollisionsphasen (PI, P2, P3, P4a, P4b) des Kraftfahrzeugs (1) in Bezug auf das Objekt (0) ermit¬ telt.
2. Sicherheitsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Fahrsicherheitskoordinator (6) einen letzten Bremspunkt (PTB) zum Anhalten vor dem Objekt (0) , einen letzten Lenkpunkt (PTS-u) des ungebremsten Fahrzeugs (1) zum Ausweichen sowie einen letzten Lenkpunkt (PTS-b) des gebremsten Kraftfahrzeugs (1) zum Ausweichen vor dem Objekt (0) ermittelt und dass die Vorkollisionsphasen (PI, P2, P3, P4a, P4b) zu diesen Punkten (PTB, PTS-b, PTS-u) beginnen oder enden.
3. Sicherheitsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Fahrsicherheitskoordinator (6) die Lage und Länge der Vorkollisionsphase (P3) zwischen dem letzten Lenkpunkt (PTS-u) des ungebremsten Fahrzeugs (1) zum Ausweichen und dem letzten Lenkpunkt (PTS-b) des gebremsten Kraftfahrzeugs (1) zum Auswei¬ chen vor dem Objekt (0) situativ mit Hilfe eines fah¬ rerunabhängigen Bremseingriffs beeinflusst um einen Bremsvorgang (P4a) oder einen Ausweichvorgang (P4b) zu optimieren .
4. Sicherheitsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Bremskraft des fahrerunabhängigen Bremseingriffs entweder gleichmäßig oder ungleichmäßig auf die rechten und linken Räder des Fahrzeugs (1) ver¬ teilt wird, sodass im Fall der ungleichmäßigen Brems- kraftverteilung das Ausweichmanöver unterstützt wird.
5. Sicherheitsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fahrsicher¬ heitskoordinator (6) innerhalb der Vorkollisionsphasen (PI, P2, P3, P4a, P4b) des Kraftfahrzeugs (1) zur Ge¬ währleistung der operationalen Sicherheit prädiktiv und situativ ein kombiniertes Brems-/Ausweichmanöver vornimmt .
6. Sicherheitsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Fahrsicherheitskoordinator (6) die Vorkollisionsphasen (PI, P2, P3, P4a, P4b) unter Berücksichtigung einer Ausweichmöglichkeit , eines kombi¬ nierten Brems-/Ausweichmanövers oder eines Bremsmanö¬ vers situativ und/oder nach Fahrervorgabe für den Fahrer entsprechend der Kollisionsgefahr, der Fahrsituation, des Fahrzeugzustands und der Reibwertindikation op¬ timiert und beherrschbar macht.
7. Sicherheitsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass dem Fahrsicherheitskoordinator (6) die Reibwertindikation zwischen den Fahrzeugreifen und der Fahrbahn auf Basis einer Schätzung zugeführt wird, wo¬ bei die Reibwertindikation aus einem fahrerunabhängigen oder einem fahrerausgelösten Bremseingriff ermittelt wird .
8. Sicherheitsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fahrsicher¬ heitskoordinator (6) zur Gewährleistung der operationa- len Sicherheit prädiktiv und situativ mindestens einen zulässigen Fahrkorridor und oder eine optimale Bewe- gungstra ektorie ermittelt und die Fahrervorgabe mit¬ tels aktiv ansteuerbarer Komponenten (9) auf den Fahrkorridor begrenzt und das Kraftfahrzeug (1) mittels der aktiv ansteuerbaren Komponenten (9) im Fahrkorridor oder auf der Bewegungstra ektorie hält.
9. Sicherheitsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Fahrsicherheitskoordinator (6) mit Hilfe eines fahrerunabhängigen Bremseingriffs die Lage und Länge der Vorkollisionsphase (P3) zwischen dem letzten Lenkpunkt (PTS-u) des ungebremsten Fahrzeugs (1) zum Ausweichen und dem letzten Lenkpunkt (PTS-b) des gebremsten Kraftfahrzeugs (1) zum Ausweichen vor dem Objekt (0) beziehungsweise den letztmöglichen Punkt zu Lenken (PTS-u, PTS-b) so beeinflusst, dass der Aus¬ weichvorgang unter Berücksichtigung des zulässigen Fahrkorridors und/oder im Hinblick auf die optimale Trajektorie optimiert wird.
10. Sicherheitsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fahrsicher- heitskoordinator (6) dazu eingerichtet ist, eine hapti- sche, akustische und/oder optische Warnung und/oder Lenkempfehlung an den Fahrer auszugeben.
11. Verfahren zum Betrieb eines Kraftfahrzeugs (1) mit mindestens einer Sensoreinheit (2) zum Erfassen der Umfeldbedingungen und zur Ausgabe von Umfelddaten, einer Auswerteeinheit (4) zur Datenfusion der Umfelddaten und einer Auswerteeinheit (5) zur Erkennung von Frei¬ räumen und Objekten (0), deren Position und Bewegung, sowie mit
mindestens einer Sensoreinheit (20) zum Erfassen des Umwelt zustandes und zur Ausgabe von Umwelt zustandsdaten und einer Auswerteeinheit (24) zur Datenfusion der Umfelddaten mit den Umwelt zustandsdaten zur Bestimmung einer Reibwertindikation, sowie mit
mindestens einer Sensoreinheit (30) zum Erfassen des Fahrzeugzustandes und zur Ausgabe von Fahrzeugzustands¬ daten und einer Auswerteeinheit (34) zur Datenfusion der Fahrzeugzustandsdaten mit Fahrervorgabedaten zur Bestimmung des Fahrzustandes, sowie mit
mindestens einer Sensoreinheit (40) zum Erfassen der Fahrervorgaben und zur Ausgabe von Fahrervorgabedaten und einer Auswerteeinheit (44) zur Datenfusion der Fah- rervorgabedaten mit den Fahrzeugzustandsdaten zur Bestimmung des Fahrersollkurses, dadurch gekennzeichnet, dass die Kollisionsgefahr durch einen Sicherheitskoordinator (6) anhand einer Gefahrenbewertung berechnet wird und dass Vorkollisionsphasen (PI, P2, P3, P4a, P4b) des Kraftfahrzeugs (1) in Bezug auf das Objekt (0) ermittelt werden.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass ein letzter Bremspunkt (PTB) zum Anhalten vor dem Objekt (0), ein letzter Lenkpunkt (PTS-u) des unge¬ bremsten Fahrzeugs (1) zum Ausweichen sowie ein letzter Lenkpunkt (PTS-b) des gebremsten Kraftfahrzeugs (1) zum Ausweichen vor dem Objekt (0) ermittelt wird und dass die Vorkollisionsphasen (PI, P2, P3, P4a, P4b) zu die¬ sen Punkten (PTB, PTS-b, PTS-u) beginnen oder enden.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Lage und Länge der Vorkollisi¬ onsphase (P3) zwischen dem letzten Lenkpunkt (PTS-u) des ungebremsten Fahrzeugs (1) zum Ausweichen und dem letzten Lenkpunkt (PTS-b) des gebremsten Kraftfahrzeugs (1) zum Ausweichen vor dem Objekt (0) situativ mit Hilfe eines fahrerunabhängigen Bremseingriffs beeinflusst werden, um einen Bremsvorgang (P4a) oder einen Ausweichvorgang (P4b) zu optimieren.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass innerhalb der Vorkollisions¬ phasen (PI, P2, P3, P4a, P4b) des Kraftfahrzeugs (1) zur Gewährleistung der operationalen Sicherheit prädik- tiv und situativ ein kombiniertes Brems- /Ausweichmanöver durchgeführt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Vorkollisionsphasen (PI, P2, P3, P4a, P4b) unter Berücksichtigung einer Ausweichmöglichkeit, eines kombinierten Brems-/Ausweichmanövers oder eines Bremsmanövers situativ und/oder nach Fahrervorgabe für den Fahrer entsprechend der Kollisionsgefahr, des Fahrzeugzustands und der Reibwertindikation optimiert und beherrschbar gemacht werden.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass die Vorkollisionsphasen (ΡΙ', Ρ2', P3', P4a', P4b') in einer Multiobjekt- und/oder Multikollisionssituation erneut ermittelt werden, wenn ein weiteres Objekt (0) in Bewegungsrichtung des Kraftfahrzeugs (1) erkannt wird.
EP12707763.4A 2011-03-09 2012-03-08 Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs Withdrawn EP2683586A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011005262 2011-03-09
PCT/EP2012/053994 WO2012120076A1 (de) 2011-03-09 2012-03-08 Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs

Publications (1)

Publication Number Publication Date
EP2683586A1 true EP2683586A1 (de) 2014-01-15

Family

ID=45811503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707763.4A Withdrawn EP2683586A1 (de) 2011-03-09 2012-03-08 Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs

Country Status (4)

Country Link
US (1) US9174641B2 (de)
EP (1) EP2683586A1 (de)
DE (1) DE102012203673A1 (de)
WO (1) WO2012120076A1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2681085B1 (de) 2011-03-01 2017-05-10 Continental Teves AG & Co. oHG Verfahren und vorrichtung zur prädiktion und adaption von bewegungstrajektorien von kraftfahrzeugen
WO2012117057A1 (de) 2011-03-01 2012-09-07 Continental Teves Ag & Co. Ohg Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs
FR2999511B1 (fr) * 2012-12-19 2015-12-04 Peugeot Citroen Automobiles Sa Procede de modulation de la reponse en couple a un enfoncement de la pedale d'accelerateur d'un vehicule comportant des systemes de detection des conditions meteorologiques
DE102012112801A1 (de) 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben eines Fahrerassistenzsystems
DE112013006126A5 (de) 2012-12-20 2015-09-10 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zum automatisierten Bremsen und Lenken eines Fahrzeugs
DE102012112724A1 (de) * 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung eines Fahrbahnzustands aus Umfeldsensordaten
DE102013200023A1 (de) * 2013-01-02 2014-07-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kompensation von beim Bremsvorgang auftretender Beeinflussung der Querdynamik bei einem Kraftfahrzeug
EP2752348A1 (de) * 2013-01-04 2014-07-09 Continental Automotive Systems, Inc. Adaptives Notbrems- und Lenkunterstützungssystem auf Grundlage der Fahreraufmerksamkeit
DE102013205877B4 (de) * 2013-04-03 2023-08-31 Continental Autonomous Mobility Germany GmbH Verfahren und Sicherheitsvorrichtung zum sicheren Betrieb eines Kraftfahrzeugs
DE102013208727A1 (de) * 2013-05-13 2014-11-13 Robert Bosch Gmbh Ausweichassistent für Kraftfahrzeuge
DE102013009860A1 (de) 2013-06-13 2014-12-18 Audi Ag Verfahren zur Koordination des Betriebs von Kraftfahrzeugen
US9424607B2 (en) * 2013-09-20 2016-08-23 Elwha Llc Systems and methods for insurance based upon status of vehicle software
US10169821B2 (en) 2013-09-20 2019-01-01 Elwha Llc Systems and methods for insurance based upon status of vehicle software
DE102013223367A1 (de) 2013-11-15 2015-05-21 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands mittels eines Fahrzeugkamerasystems
KR101519287B1 (ko) * 2014-02-14 2015-05-11 현대자동차주식회사 차량 충돌 방지 장치 및 그 방법
JP6128059B2 (ja) * 2014-05-30 2017-05-17 株式会社デンソー 退避走行支援装置
DE102014210966A1 (de) * 2014-06-06 2015-12-17 Continental Teves Ag & Co. Ohg Lenkvorrichtung für Kraftfahrzeuge
JP6103716B2 (ja) * 2014-06-17 2017-03-29 富士重工業株式会社 車両の走行制御装置
CN104210489B (zh) * 2014-09-16 2017-06-13 武汉理工大学 车路协同环境下车辆与行人碰撞规避方法与系统
EP3001272B1 (de) * 2014-09-26 2017-04-12 Volvo Car Corporation Verfahren zur Bahnplanung bei Fließmanövern
US10457327B2 (en) * 2014-09-26 2019-10-29 Nissan North America, Inc. Method and system of assisting a driver of a vehicle
DE102014220184B4 (de) * 2014-10-06 2022-01-27 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung des Reibwertes einer Fahrbahnoberfläche
DE102014225085A1 (de) 2014-12-08 2016-06-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung des Reibwertes einer Fahrbahnoberfläche
FR3031406B1 (fr) * 2015-01-05 2017-07-28 Valeo Schalter & Sensoren Gmbh Architecture pour systeme d'aide a la conduite a automatisation conditionnelle
KR102286541B1 (ko) * 2015-01-22 2021-08-09 주식회사 만도 차량 제어 장치 및 방법
WO2016192806A1 (en) * 2015-06-01 2016-12-08 Volvo Truck Corporation A driver assistance system
EP3173306B1 (de) * 2015-11-27 2019-10-30 Continental Automotive GmbH Verfahren und vorrichtung zur bestimmung einer strassenart, auf der ein kraftfahrzeug fährt
US10120385B2 (en) * 2016-03-30 2018-11-06 Intel Corporation Comfort ride vehicle control system
DE102016208703A1 (de) * 2016-05-20 2017-11-23 Ford Global Technologies, Llc Kraftfahrzeug und Verfahren zum Betreiben eines Kraftfahrzeugs
DE102016109856A1 (de) * 2016-05-30 2017-11-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt auf Grundlage eines maximal vorgebbaren Radlenkwinkels, Fahrerassistenzsystem sowie Kraftfahrzeug
US9988046B2 (en) * 2016-07-26 2018-06-05 Ford Global Technologies, Llc Enhanced collision avoidance
DE102016219757A1 (de) * 2016-10-11 2018-04-12 Volkswagen Aktiengesellschaft Ausweichunterstützung für ein Fahrzeug
US11231714B2 (en) 2016-12-22 2022-01-25 Macdonald, Dettwiler And Assoiciates Inc. Unobtrusive driving assistance method and system for a vehicle to avoid hazards
CN108569282B (zh) * 2017-03-15 2021-11-19 奥迪股份公司 用于车辆的辅助驾驶设备和方法
JP6803285B2 (ja) * 2017-03-30 2020-12-23 株式会社Subaru 車両の走行制御装置
EP3389026A1 (de) * 2017-04-12 2018-10-17 Volvo Car Corporation Vorrichtung und verfahren zur fahrzeugfahrassistenz
EP3536574A1 (de) * 2018-03-06 2019-09-11 Pablo Alvarez Troncoso Fahrzeugsteuerungssystem
JP6626523B2 (ja) * 2018-03-28 2019-12-25 株式会社Subaru 車両の制御装置及び車両の制御方法
DE102018111980A1 (de) * 2018-05-18 2019-11-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kollisionsvermeidungssystem für ein Fahrzeug sowie Verfahren hierzu
KR102587244B1 (ko) * 2018-08-27 2023-10-06 현대자동차주식회사 자율주행 차량의 충돌 위험상황 판단 방법
US11472413B2 (en) 2019-02-20 2022-10-18 Steering Solutions Ip Holding Corporation Mu confidence estimation and blending
JP7456442B2 (ja) * 2019-06-14 2024-03-27 ソニーグループ株式会社 情報処理装置、および情報処理方法、並びにプログラム
DE102019210935A1 (de) * 2019-07-24 2021-01-28 Zf Friedrichshafen Ag Erkennen und Bewerten einer Wasseransammlung auf einer Fahrbahn
JP7226238B2 (ja) * 2019-10-15 2023-02-21 トヨタ自動車株式会社 車両制御システム
CN110834645B (zh) * 2019-10-30 2021-06-29 中国第一汽车股份有限公司 车辆的自由空间确定方法、装置、存储介质及车辆
US11783178B2 (en) 2020-07-30 2023-10-10 Toyota Research Institute, Inc. Systems and methods for corridor intent prediction

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549800B4 (de) 1994-11-25 2017-03-09 Continental Teves Ag & Co. Ohg Fahrstabilitätseinrichtung für ein Fahrzeug
US5694321A (en) 1994-11-25 1997-12-02 Itt Automotive Europe Gmbh System for integrated driving stability control
JP3784436B2 (ja) 1995-11-20 2006-06-14 本田技研工業株式会社 車両の制動力制御装置
DE19738690C2 (de) 1997-09-04 2002-05-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
US6272418B1 (en) 1997-12-12 2001-08-07 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
US6289281B1 (en) 1997-12-12 2001-09-11 Honda Giken Kogyo Kabushiki Kaisha Integrated control system of vehicle
JP3751142B2 (ja) 1998-02-18 2006-03-01 本田技研工業株式会社 車両の制動制御装置
JP4647055B2 (ja) 2000-03-03 2011-03-09 富士重工業株式会社 車両の運動制御装置
DE10012737B4 (de) 2000-03-16 2007-09-06 Daimlerchrysler Ag Vorrichtung zur Durchführung eines Fahrspurwechsels durch ein Kraftfahrzeug
DE10060498A1 (de) 2000-03-27 2001-10-11 Continental Teves Ag & Co Ohg Verfahren zum Erkennen einer Notbremssituation oder eines Verdachts einer Notbremssituation eines Fahrzeugs
JP3866479B2 (ja) 2000-04-07 2007-01-10 株式会社デンソー 車間制御装置、記録媒体
DE10036276A1 (de) 2000-07-26 2002-02-07 Daimler Chrysler Ag Automatisches Brems- und Lenksystem für ein Fahrzeug
GB0106925D0 (en) 2001-03-20 2001-05-09 Lucas Industries Ltd Steering control during ABS split MU operation
JP2002316633A (ja) 2001-04-20 2002-10-29 Fuji Heavy Ind Ltd 車両運動制御装置
DE10130663A1 (de) 2001-06-28 2003-01-23 Continental Teves Ag & Co Ohg Verfahren zum Modifizieren einer Fahrstabilitätsregelung eines Fahrzeugs
EP1409313B1 (de) 2001-07-11 2006-08-23 Robert Bosch Gmbh Verfahren und vorrichtung zum automatischen auslösen einer verzögerung eines fahrzeugs
EP1409312B2 (de) 2001-07-11 2013-08-14 Robert Bosch Gmbh Verfahren und vorrichtung zur automatischen steuerung der verzögerungseinrichtung eines fahrzeugs
WO2003006288A1 (de) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zur prädiktion von bewegungstrajektorien eines kraftahrzeugs
WO2003007271A2 (de) 2001-07-11 2003-01-23 Robert Bosch Gmbh Verfahren und vorrichtung zum selbsttätigen auslösen einer verzögerung eines fahrzeugs
JP2003341501A (ja) 2002-05-23 2003-12-03 Masato Abe 運転支援制御システム
US20060100766A1 (en) * 2002-07-05 2006-05-11 Continental Teves Ag & Co. Ohg Method for increasing the stability of a motor vehicle
DE10237714A1 (de) 2002-08-17 2004-02-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur automatischen Einleitung eines Notbremsvorgangs bei Kraftfahrzeugen
WO2004031009A1 (ja) 2002-10-04 2004-04-15 Advics Co., Ltd. 車両用緊急制動装置
JP3870911B2 (ja) 2003-02-10 2007-01-24 日産自動車株式会社 車線逸脱防止装置
JP2006525174A (ja) 2003-03-26 2006-11-09 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 車両用の電子制御システム及び車両システムで運転者に依存しない少なくとも1つの介入を算出する方法
US7016783B2 (en) 2003-03-28 2006-03-21 Delphi Technologies, Inc. Collision avoidance with active steering and braking
DE10316413B4 (de) 2003-04-10 2011-02-03 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Spurführung eines Fahrzeugs, insbesondere Nutzfahrzeugs
DE10323846A1 (de) 2003-05-23 2004-12-16 Continental Teves Ag & Co. Ohg Verfahren zur Lenkungsregelung
DE10334203A1 (de) 2003-07-26 2005-03-10 Volkswagen Ag Verfahren zum Betrieb eines interaktiven Verkehrsabwicklungssystemes und interaktives Verkehrsabwicklungssystem selbst
EP1687183B1 (de) * 2003-11-14 2008-06-25 Continental Teves AG & Co. oHG Verfahren und einrichtung zur verringerung von unfallschäden
DE102004060053A1 (de) 2003-12-24 2005-12-22 Continental Teves Ag & Co. Ohg Servolenkung und Verfahren zur Fahrerunterstützung bei seiner Lenktätigkeit
DE102005002760B4 (de) 2004-01-20 2018-05-24 Volkswagen Ag Vorrichtung und Verfahren zur Unfallvermeidung bei Kraftfahrzeugen
DE102004008894A1 (de) 2004-02-24 2005-09-08 Robert Bosch Gmbh Sicherheitssystem für ein Fortbewegungsmittel sowie hierauf bezogenes Verfahren
US6959970B2 (en) 2004-03-18 2005-11-01 Ford Global Technologies, Llc Method and apparatus for controlling a trailer and an automotive vehicle with a yaw stability control system
JP4042980B2 (ja) 2004-05-14 2008-02-06 本田技研工業株式会社 車両操作支援装置
JP4042979B2 (ja) 2004-05-14 2008-02-06 本田技研工業株式会社 車両操作支援装置
JP4720107B2 (ja) 2004-05-27 2011-07-13 日産自動車株式会社 ドライバモデルおよび同モデルを備えた車両挙動制御システムのアシスト機能評価装置
DE102005031854A1 (de) 2004-07-06 2006-02-16 Continental Teves Ag & Co. Ohg Vorrichtung und Verfahren zur automatischen Geschwindigkeitsregelung eines Kraftfahrzeuges
DE502005010775D1 (de) 2004-10-29 2011-02-10 Continental Teves Ag & Co Ohg Verfahren zur erhöhung der fahrsicherheit und/oder des komforts eines kraftfahrzeugs
DE102004056120A1 (de) 2004-11-20 2006-05-24 Daimlerchrysler Ag Verfahren zur Kollisionsvermeidung oder Kollisionsfolgenminderung und Vorrichtung zur Durchführung des Verfahrens
DE102004057604B4 (de) 2004-11-29 2014-04-30 Daimler Ag Verfahren für ein Sicherheitssystem in einem Fahrzeug
DE102004059002A1 (de) 2004-12-08 2006-06-14 Daimlerchrysler Ag Verfahren zur Anpassung von Eingriffsparametern eines Assistenzsystems eines Fahrzeuges
DE102005003177B4 (de) 2005-01-19 2022-02-03 Volkswagen Ag Vorrichtung und Verfahren zur Verhinderung von Abkommenunfällen von Fahrzeugen
DE102005003274A1 (de) 2005-01-25 2006-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Vermeidung und/oder Minderung der Folgen von Kollisionen beim Ausweichen vor Hindernissen
DE102005004394B4 (de) 2005-01-31 2012-09-06 Continental Automotive Gmbh Rückfahrtassistent
EP1858745B1 (de) 2005-03-03 2013-05-08 Continental Teves AG & Co. oHG Verfahren und vorrichtung zum vermeiden einer kollision bei einem spurwechsel eines fahrzeugs
US7734418B2 (en) 2005-06-28 2010-06-08 Honda Motor Co., Ltd. Vehicle operation assisting system
JP4446935B2 (ja) 2005-07-14 2010-04-07 本田技研工業株式会社 車両操作支援装置
DE102005035624B4 (de) 2005-07-29 2008-06-19 Daimler Ag Verfahren und Vorrichtung zur Bereitstellung von fahrstreckenabhängigen Fahranweisungen
DE102006036921A1 (de) 2005-08-05 2007-04-12 Continental Teves Ag & Co. Ohg Verfahren zum Stabilisieren eines Kraftfahrzeugs und Fahrdynamikregelsystem
DE102005037479B4 (de) 2005-08-09 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Fahrdynamik-Steuerungssystem für ein zweispuriges Kraftfahrzeug
EP1926647B1 (de) * 2005-09-15 2011-04-20 Continental Teves AG & Co. oHG Verfahren und vorrichtung zum prädizieren einer bewegungstrajektorie
JP2007145152A (ja) 2005-11-28 2007-06-14 Mitsubishi Electric Corp 車両用自動制動装置
DE102005062275A1 (de) 2005-12-24 2007-06-28 Daimlerchrysler Ag Verfahren zur Erkennung eines drohenden Heckaufpralls
JP2008018923A (ja) 2006-06-16 2008-01-31 Nissan Motor Co Ltd 車両用制動制御装置及び車両制動制御方法
US20080046145A1 (en) 2006-08-17 2008-02-21 Weaver Richard A Collision prediction and mitigation method for a vehicle
DE102007043419A1 (de) 2006-09-12 2008-03-27 Continental Teves Ag & Co. Ohg Verfahren zum Erkennen einer Fahrtrichtung in einem Kraftfahrzeug
DE102006057744A1 (de) 2006-12-07 2008-07-10 Siemens Ag Dynamischer Geschwindigkeitsassistent für ein Fahrerassistenzsystem
DE102007015879A1 (de) 2007-04-02 2008-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung für die Steuerung eines Fahrerassistenzsystems
JP5309582B2 (ja) 2007-05-11 2013-10-09 日産自動車株式会社 車両の走行制御方法及び走行制御装置
JP2009061878A (ja) 2007-09-05 2009-03-26 Toyota Motor Corp 走行制御装置
DE102008003205A1 (de) 2008-01-04 2009-07-09 Wabco Gmbh Vorrichtung, Verfahren und Computerprogramm zur Kollisionsvermeidung oder zur Verminderung der Kollisionsschwere infolge einer Kollision für Fahrzeuge, insbesondere Nutzfahrzeuge
US8126626B2 (en) 2008-01-30 2012-02-28 GM Global Technology Operations LLC Vehicle path control for autonomous braking system
DE102008061649A1 (de) 2008-06-11 2009-12-17 Volkswagen Ag Fahrerassistenzsystem und Verfahren zur Unterstützung eines Kraftfahrzeugführers
DE102008040241A1 (de) 2008-07-08 2010-01-14 Robert Bosch Gmbh Ausweichfunktion zur Vermeidung von Kollisionen
EP2323890B1 (de) 2008-09-10 2012-09-05 Continental Teves AG & Co. oHG Verfahren zur lenkunterstützung bei notmanöver
FR2941537B1 (fr) 2009-01-29 2016-02-05 Valeo Vision Sas Procede de surveillance de l'environnement d'un vehicule automobile
DE102010028384A1 (de) 2009-05-07 2010-11-11 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Regelung bzw. Steuerung der Fahrstabilität eines Fahrzeugs
DE102009020649A1 (de) 2009-05-08 2010-11-18 Daimler Ag Verfahren und Vorrichtung zur Kollisionsvermeidung für ein Fahrzeug durch Ausweichen vor einem Hindernis
US8255121B2 (en) 2009-07-07 2012-08-28 GM Global Technology Operations LLC Autonomous control for vehicle pedal mis-apply situations
US8577550B2 (en) 2009-10-05 2013-11-05 Ford Global Technologies, Llc System for vehicle control to mitigate intersection collisions and method of using the same
EP2681085B1 (de) 2011-03-01 2017-05-10 Continental Teves AG & Co. oHG Verfahren und vorrichtung zur prädiktion und adaption von bewegungstrajektorien von kraftfahrzeugen
WO2012117057A1 (de) 2011-03-01 2012-09-07 Continental Teves Ag & Co. Ohg Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012120076A1 *

Also Published As

Publication number Publication date
WO2012120076A1 (de) 2012-09-13
US9174641B2 (en) 2015-11-03
US20130338878A1 (en) 2013-12-19
DE102012203673A1 (de) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2012120076A1 (de) Sicherheitsvorrichtung für ein kraftfahrzeug und verfahren zum betrieb eines kraftfahrzeugs
EP1926646B1 (de) Verfahren und vorrichtung zum durchführen eines ausweichmanövers
EP2681085B1 (de) Verfahren und vorrichtung zur prädiktion und adaption von bewegungstrajektorien von kraftfahrzeugen
DE112013007674B4 (de) Vorwarnung bei Überschreiten eines Grenzwertes für ein Lenkdrehmoment eines LCC
EP3079957B1 (de) Verfahren zur regelung der fahrstabilität
EP2427356B1 (de) Verfahren und vorrichtung zur regelung bzw. steuerung der fahrstabilität eines fahrzeugs
DE102012203182A1 (de) Sicherheitsvorrichtung für ein Kraftfahrzeug und Verfahren zum Betrieb eines Kraftfahrzeugs
DE102019100178A1 (de) Fahrsteuerungsvorrichtung für ein fahrzeug
DE102007061900B4 (de) Spurhalteassistenzsystem und -verfahren für ein Kraftfahrzeug
DE102012203228B4 (de) Verfahren zur Vermeidung oder zur Abschwächung von Folgen bei Kollisionen eines Kraftfahrzeugs mit einem Hindernis in einem seitlichen Nahbereich des Kraftfahrzeugs und Fahrassistenzsystem
WO2010089240A1 (de) Verfahren und vorrichtung zum durchführen eines ausweichmanövers
DE102006034254A1 (de) Verfahren und Vorrichtung zum Durchführen eines Ausweichmanövers
DE102009020649A1 (de) Verfahren und Vorrichtung zur Kollisionsvermeidung für ein Fahrzeug durch Ausweichen vor einem Hindernis
EP2734425A1 (de) Verfahren zur verbesserung der fahrstabilität
WO1999010193A1 (de) Verfahren und anordnung zur bestimmung eines regelobjektes
DE102008013988B4 (de) Verfahren und Vorrichtung zum Durchführen eines Ausweichmanövers
DE102014210174B4 (de) Bestimmen eines kritischen Fahrzeugzustands und einer Fahrzeugmindestentfernung
DE102012218361A1 (de) Verfahren zum sicheren Betrieb eines Kraftfahrzeugs
DE102014206341A1 (de) Ausweichassistent
DE102013019202B4 (de) Fahrerassistenzsystem mit intuitiver Fahrerführung
DE102006060456A1 (de) Verfahren und System zum Lenken eines Fahrzeugs in eine Parklücke
DE102014206344A1 (de) Ausweichassistent
DE102014206343B4 (de) Ausweichassistent
WO2014037245A1 (de) Verfahren zur steuerung eines fahrzeugs und fahrerassistenzsystem
DE102013205877B4 (de) Verfahren und Sicherheitsvorrichtung zum sicheren Betrieb eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170922

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL TEVES AG & CO. OHG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191001