EP2612101B1 - Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke - Google Patents

Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke Download PDF

Info

Publication number
EP2612101B1
EP2612101B1 EP11745935.4A EP11745935A EP2612101B1 EP 2612101 B1 EP2612101 B1 EP 2612101B1 EP 11745935 A EP11745935 A EP 11745935A EP 2612101 B1 EP2612101 B1 EP 2612101B1
Authority
EP
European Patent Office
Prior art keywords
smoke
image
infrared
cloud
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11745935.4A
Other languages
English (en)
French (fr)
Other versions
EP2612101A1 (de
Inventor
Heinz Bannasch
Martin Fegg
Wolfgang Kittl
Johannes Maltan
Christian Wallner
Rudolf Salzeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Waffe Munition GmbH
Original Assignee
Rheinmetall Waffe Munition GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010036026A external-priority patent/DE102010036026A1/de
Priority claimed from DE201110106201 external-priority patent/DE102011106201A1/de
Application filed by Rheinmetall Waffe Munition GmbH filed Critical Rheinmetall Waffe Munition GmbH
Publication of EP2612101A1 publication Critical patent/EP2612101A1/de
Application granted granted Critical
Publication of EP2612101B1 publication Critical patent/EP2612101B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H9/00Equipment for attack or defence by spreading flame, gas or smoke or leurres; Chemical warfare equipment
    • F41H9/06Apparatus for generating artificial fog or smoke screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/46Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances
    • F42B12/48Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing gases, vapours, powders or chemically-reactive substances smoke-producing, e.g. infrared clouds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/70Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies for dispensing radar chaff or infrared material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/145Cartridges, i.e. cases with charge and missile for dispensing gases, vapours, powders, particles or chemically-reactive substances
    • F42B5/15Cartridges, i.e. cases with charge and missile for dispensing gases, vapours, powders, particles or chemically-reactive substances for creating a screening or decoy effect, e.g. using radar chaff or infrared material
    • F42B5/155Smoke-pot projectors, e.g. arranged on vehicles

Definitions

  • the invention relates to an apparatus and method for creating an effective fog cloud to protect a platform or target from a threat.
  • Environmental factors such as wind strength, wind direction etc. as well as the fact of a moving platform / target are considered.
  • this information / parameter need not be extra measured and not known. Rather, the entirety of this information is determined / derived in or out of the cloud of fog itself. Considered are the quality and quantity, that is, the density and homogeneity of the smoke screen. In evaluation of this information, then this wall or cloud can be stabilized or expanded accordingly by targeted Verschuß other fog generating means.
  • DE 199 51 767 A1 a method of providing a decoy and decoys.
  • DE 196 17 701 C2 discloses such a stored method.
  • a launching device for the shooting of a plurality of active bodies of the DE 199 10 074 B4 be removed.
  • the device deals with a device for protecting ships from end-phase guided missiles DE 103 46 001 B4 , Among other things, this is characterized by the fact that some environmental data are taken into account, which are taken into account when designing the cloud of protection.
  • An object protection system is also the subject of DE 10 2004 005 105 A1 , A light ammunition magazine is with the DE 10 2006 004 954 A1 published while the DE 10 2005 054 275 A1 another self-protection system shows.
  • a missile for generating a smoke screen is further from the DE 296 06 669 U1 known.
  • mist pots contain mist-active substances which cause a sortllnienunterbrechung by scattering and / or reflection and / or absorption and / or emission (overexposure).
  • mist-active substances which cause a sortllnienunterbrechung by scattering and / or reflection and / or absorption and / or emission (overexposure).
  • pyrotechnic substances such as hetachloroethane, red phosphorus and carbon and metal dusts, such as brass dust, are used.
  • metal dusts such as brass dust
  • EP 0 588 015 B is also a one-sided transparent infrared nebulas known, which is formed by a curtain of infrared emitting particles, the own thermal imaging device is not or only slightly disturbed while maintaining a sufficient camouflage effect. This is achieved by a special composition of the particles. In order to minimize the influence of this wall on the own thermal imaging device, the device optics are strongly dimmed, whereby a large depth of focus is achieved.
  • a method for generating a one-sided in the infrared spectral transparent camouflage gives the DE 199 14 033 A1 at.
  • a known pyrotechnic Tarnnebel is spread with pyrotechnic scattering particles and irradiated this two-component mist from the side of the applicator with an IR radiation source.
  • the EP 0 597 233 A1 discloses a method of providing a three-dimensional dummy body.
  • a computer-controlled, essentially continuous monitoring of the three-dimensional false cell to be built effective masses are spatially or temporally offset at the location of the dummy target body to be decomposed so that the target signature of the object to be protected is simulated in deceptive similarity to imaging target-seeking heads.
  • the control of the output is carried out by a computer system in conjunction with the digital evaluation of a thermal imager.
  • the computer independently checks the original fidelity and compensates for defects in the pattern (by wind drift or extinguishment of the active masses) by purposeful continuous approaching of the decoy target.
  • the thermal image is monitored pixel by pixel over the entire thermal image, with each pixel acting as a quasi-point radiometer.
  • the associated pixel index (brightness value), which is proportional to the radiation density, is obtained for each pixel. From the image coordinates, the computer can determine the firing coordinates as well as the type of ammunition for the next firing sequence.
  • Imaging agents disclosed therein may be, for example, explosive substance, flammable substance, incandescent or luminescent material, or other materials that provide a good visible temporary image, radar image, and / or a thermal imitation of a target.
  • the firing of the projectiles may preferably be controlled by a microprocessor to allow accurate firing of the projectiles at the selected speed.
  • the object of the invention is to provide a device and an optimized method for producing a one-sided transparent mist, whereby an optimal privacy of an object is realized.
  • the effectiveness of a fog system or fog cloud is dependent on the environmental parameters on site, such as wind speed. Wind direction and relative humidity, etc. Such parameters are disregarded due to the non-predeterminable values.
  • the fog is often driven by the action of the wind not only from the line of sight, but also the fog cloud accordingly defibrated, so that gaps. Also, the proper motion and the spontaneous use of the fog system in 360 ° are not considered. Similar influences arise in calm weather, however, driving the vehicle. Again, it may happen that the line of sight is briefly interrupted by the fog.
  • the effectiveness of, for example, an infrared nebula is dependent on the density of the infrared emitting particles. Due to environmental and systemic effects temporal and spatial inhomogeneities of the wall arise, which leads to a restriction or to a loss of effectiveness.
  • the invention is therefore based on the idea to create multi-spectral fog walls, in which the threat direction, threat distance, wind direction, wind speed, direction of travel and speed in the temporal and spatial application of the visual and infrared line-of-sight are taken into account.
  • the charm of the idea lies in the fact that these information / parameters are not measured separately or even need to be known. Rather, quality and quantity, that is, the density and homogeneity of the cloud of fog (s) are determined.
  • friend-side transparent smoke walls can be generated that do not disturb a private thermal imaging device while maintaining a sufficient camouflage effect. This ensures that the platform, such as a vehicle, by the homogeneously distributed infrared radiating particles and a one-sided transparent infrared effectiveness is created, but these are protected against wind attack and vehicle independent of an enemy attack.
  • the measurement of the cloud of fog for density and homogeneity and thus the effectiveness of the fog wall in the vicinity of the line of sight is accomplished in the visible range, for example by a TV camera.
  • a thermal imaging device is used for the infrared areas. With the aid of digital image processing, the recorded image in the visual area is examined as to whether it has the white reflection typical of the red phosphorus fog in the vicinity of the line of sight.
  • the image of the heating device is analyzed for a homogeneous, one-sided infrared-effective particle density.
  • the device or the system consists at least of a combination of sensors and digital image and data processing and at least one fog-thrower, which can be linked to a TV camera, a thermal imaging device and at least one UV sensor.
  • the images of both devices are evaluated in an image and data processing, wherein in evaluation of this information, the fog wall is stabilized or extended, if certain criteria such as density and / or homogeneity are exceeded.
  • One or the Nebel Rush determined in evaluation of the fog wall or cloud of fog further spreading fog media through the at least one launcher.
  • a wind sensor can be integrated, its information for better alignment of the projector and thus the formation of the smoke screen can be used. This creates a good smoke screen for the viewing area as well as a sufficient infrared effect in the fog wall.
  • the method for generating a line of sight interruption is now independent of wind and travel. It is created in the visible wavelength range opaque in the infrared areas but a residual transmission fog cloud. This is achieved (manipulated) by a clever choice or selection and coordination of the fog substance itself, the fog concentration and the thickness of the fog wall, as well as the infrared particles during fog burn. Disturbance variables are largely eliminated by the digital image processing of a thermal image and the thermal image is thus "friend-friendly" optimized.
  • Fig. 1 is a system or a device, comprising at least one Nebelwerfer 2, a computer 3 and at least one thermal imaging device 5, shown. Further assemblies are a camera 4 and / or UV sensors 6 and preferably a wind sensor 7.
  • a so-called Nebel doctorrechner takes place a digital image and data processing of the images of the camera 4 and / or the thermal imaging device 5, wherein
  • a separate module can be integrated.
  • the image and data processing are deposited algorithms for the analysis of the fog effectiveness (quality, quantity). With the help of the wind sensor 7, the wind direction and the wind force can be determined.
  • the system 1 further comprises a monitor 8 for imaging the sensor image of the TV camera 4 and preferably a further monitor 9 for imaging the sensor image of the thermal imaging device 5 for a viewer.
  • the integration of the monitors 8, 9 is optional, the method for determining an optimal fog wall 11 + 13 thereof independently.
  • All modules of the system 1 are functionally connected to each other electrically.
  • a sensor 12 observing the environment, for example a laser detector, and the camera 4, the thermal imaging device 5 and the UV sensor 6 are installed directly on the projector 2.
  • the fog cloud 11 in the visible range and 13 jets (throwing equipment) 2 producing transparent infrared fog and the sensors 4 - 6 are always aligned in the same direction.
  • a smoke screen 11 + 13 is established upon detection of a threat.
  • This is done conventionally by Verschuß of preferably in the air separable cartridges with an active mass, consisting of preferably red phosphorus and other infrared active particles / substances / platelets - means - etc. (not shown in detail).
  • the large-scale visual cloud of fog 11 is applied to interrupt the line of sight of the enemy in no time.
  • the launcher 2 has a sufficient number of fog cartridges, which he can deploy simultaneously and / or sequentially in any timing.
  • the particle cloud 13 necessary for the unilaterally transparent infrared mist is simultaneously generated with a corresponding configuration.
  • the efficiency of the smoke screen 11 + 13 in the vicinity of the line of sight is monitored by means of the intelligent sensor systems 4 - 6, the density and homogeneity are measured.
  • the image in the visual area is obtained by means of TV camera 4 and given to the image and data unit in the computer 3. With the aid of the algorithms stored in this unit, this image is analyzed to determine whether the visual field in the vicinity of the line of sight has the white reflection typical for the red phosphorus fog. In the infrared range, the field of view is scanned in the vicinity of the line of sight 10 by means of thermal imaging device 4 and this analyzed in the image and data processing unit to a homogeneous, one-sided infrared effective particle density.
  • the method can also be started manually, for example if an observer detects a weakening of the smoke screen 11, 13. If density and homogeneity are given, no further measures are instructed.
  • a situation like in Fig. 3 determined determined by the computer 3 other measures. This can be the targeted firing of additional fog cartridges through the fog lamp 2 in the determined no longer interrupted line of sight area 10 (FIG. Fig. 4 ) and / or increasing the concentration in the entire cloud of fog 11 + 13 in general ( Fig. 5 ) be.
  • the instructing can also be done by a, the monitors 8, 9 viewing person 12, ie manually.
  • the data of the wind sensor 7 are included in the evaluation.
  • the computer 3 is supplied with additional information, so that the extent, position and drift of the cloud of fog 13 can be calculated and this is taken into account in the alignment of the launcher 2.
  • the optimized particle density of the infrared mist wall 13 ensures that the line of sight 10 for enemy thermal imaging devices is completely interrupted. With the help of your own thermal imaging device 5, from the viewpoint of the platform to be protected, there is a residual information of the generic page. Although this is significantly disturbed by the infrared particles ( Fig. 6a ), but can be improved by means of complex image-optimizing methods and algorithms. Thus it is possible to eliminate the disturbing particles as far as possible and thus to produce an almost interference-free enemy image on the monitor 9 ( Fig. 6b ).
  • the processing of the image can be realized for example by a histogram optimization filter, a median filter and / or a mask filter.
  • Fig. 7 shows the device 1 for generating the one-sided transparent mist consisting of the fog generator or the throwing machine 2 for the purpose of bringing fog generating active bodies, the thermal imaging device 5 and the computer or computer 3 with the digital image processing.
  • Another component of the device 1 may be an additional weapon station 20.
  • the litter 2 is used to create or create the specific fog wall or the mist-the cloud of mist 11, 13 - with wavelength-dependent transmission properties.
  • the thermal imaging device 5 has the specific filtering, wherein the spectral sensitivity of the thermal imaging device 3 is highest where the transmission properties of the mist also has a maximum.
  • This residual transmission may be subject to temporal and spatial fluctuations and be additionally disturbed by disturbances such as Sprintstrahlungs binen the fog burn.
  • This can be corrected by the digital image processing of the thermal image of the thermal imaging camera 5 in the computer 3 by optimizing the image, so that the parasitic effects are eliminated "friendly”.
  • the sensitivity of the thermal image is adjusted by digital adaptation of range and level to the transmission and emission properties and the elimination of temporal and spatial variations in the transmission by measuring stable reference targets within the thermal image.
  • the "friend-side" elimination of over-radiation effects caused by the infrared particles by applying specific algorithms such as masking filters, cloning filters, median filters, Poisson Hole Filing etc.

Description

  • Die Erfindung beschäftigt sich mit einer Vorrichtung und einem Verfahren für das Erzeugen einer wirksamen Nebelwand bzw. Nebelwolke zum Schutz einer Plattform oder eines Zieles vor einer Bedrohung. Dabei werden Umwelteinflüsse wie Windstärke, Windrichtung etc. als auch die Tatsache einer sich bewegenden Plattform / Ziels berücksichtigt. Diese Informationen / Parameter müssen jedoch nicht extra gemessen werden und auch nicht bekannt sein. Vielmehr wird die Gesamtheit dieser Informationen in bzw. aus der Nebelwolke selbst bestimmt / hergeleitet. Berücksichtigt werden die Qualität und Quantität, d.h., die Dichte und Homogenität der Nebelwand. In Auswertung dieser Informationen kann dann diese Wand oder Wolke durch gezielten Verschuss weiterer Nebel erzeugender Mittel entsprechend stabilisiert bzw. erweitert werden.
  • Nebelsysteme zum Schutz von speziell militärischen Plattformen, insbesondere von Landfahrzeugen sind schon lange im Einsatz. Mit Hilfe derartiger Nebelsysteme soll die Sichtlinie des Feindes zum Ziel unterbrochen werden, um dadurch die gegnerische Zielerfassung, Zielverfolgung und Waffenlenkung zu beeinträchtigen.
  • So beschreibt die DE 199 51 767 A1 ein Verfahren zur Bereitstellung eines Scheinzieles sowie Täuschkörper. Auch die DE 196 17 701 C2 offenbart ein derartig gelagertes Verfahren. Eine Abschussvorrichtung für das Verschießen einer Mehrzahl von Wirkkörpern kann der DE 199 10 074 B4 entnommen werden. Mit einer Vorrichtung zum Schützen von Schiffen vor endphasengelenkten Flugkörpern beschäftigt sich die DE 103 46 001 B4 . Diese zeichnet sich unter anderem dadurch aus, dass hier einige Umweltdaten berücksichtigt werden, die beim Auslegen der Schutzwolke berücksichtigt werden. Ein Objektschutzsystem ist zudem Gegenstand der DE 10 2004 005 105 A1 . Ein leichtes Munitionsmagazin wird mit der DE 10 2006 004 954 A1 publiziert, während die DE 10 2005 054 275 A1 eine weitere Selbstschutzanlage aufzeigt. Ein Flugkörper zur Erzeugung einer Nebelwand ist des Weiteren aus der DE 296 06 669 U1 bekannt.
  • Neben Nabelgeneratoren kommen vor allem Mörser -Systeme zum Einsatz, wobei aus Wurfbechern simultan mehrere Nebeltöpfe verschossen werden. Diese Nebeltöpfe enthalten nebelwirksame Substanzen, welche eine Sichtllnienunterbrechung durch Streuung und / oder Reflexion und / oder Absorption und / oder Emission (Überstrahlung) bewirken. Als Nebeimittel kommen vorwiegend pyrotechnische Substanzen wie Hetachlorethan, Rotphosphor und Kohlenstoff sowie Metallstäube, beispielsweise Messingstaub, zum Einsatz. Je nach Nebelmittel erfolgt die Sichtlinienunterbrechung im sichtbaren und /oder auch In den infrarotbereichen.
  • Aus der EP 0 588 015 B ist darüber hinaus ein einseitig transparenter Infrarot- Nebel bekannt, der durch einen Vorhang aus infrarot emittierenden Partikeln gebildet wird, wobei das eigene Wärmebildgerät unter Beibehaltung einer ausreichenden Tarnwirkung nicht oder nur unwesentlich gestört wird. Dies wird durch eine spezielle Zusammensetzung der Partikel erreicht. Für die Minimierung des Einflusses dieser Wand auf das eigene Wärmebildgerät wird die Geräteoptik stark abgeblendet, womit eine große Tiefenschärfe erreicht wird.
  • Ein Verfahren zur Erzeugung eines im infraroten Spektralbereich einseitig transparenten Tarnnebels gibt die DE 199 14 033 A1 an. Hier wird ein an sich bekannter pyrotechnischer Tarnnebel mit pyrotechnischen Streuteilchen ausgebracht und dieser Zweikomponentennebel von der Seite des Ausbringers mit einer IR-Strahlungsquelle bestrahlt.
  • Die EP 0 597 233 A1 offenbart ein Verfahren zum Bereitstellen eines dreidimensionalen Scheinzielköpers. Durch eine rechnergesteuerte unter im Wesentlichen kontinulerlicher Überwachung des dreidimensional aufzubauenden Scheinzlelkörpers werden Wirkmassen derart räumlich bzw. zeitlich versetzt am Ort des aufzubauenden Scheinzielkörpers zur Zerlegung gebracht, dass die Zielsignatur des zu schützenden Objekts in täuschender Ähnlichkeit für abbildende Zielsuchköpfe simuliert wird. Die Steuerung der Ausbringung (Schussfolge, Schussrichtung) übernimmt eine Rechneranlage in Verbindung mit der digitalen Auswertung eines Wärmebildgerätes. Anhand des Wärmebildes kontrolliert der Rechner selbständig die Originaltreue und gleicht Fehlstellen im Muster (durch Windabdrift oder Verlöschen der Wirkmassen) durch gezieltes ständiges Nachnähern des Scheinzieles aus. Die Kontrolle des Wärmebildes erfolgt pixelweise über das ganze Wärmebild, wobei jedes Pixel als quasi punktuelles Radiometer wirkt. Über die digitale Bildverarbeitung erhält man für Jedes Pixel den dazugehörenden Pixelindex (Helligkeitswert), der proportional zur Strahiendichte ist. Aus den Bildkoordinaten kann der Rechner die Abschusskoordinaten als auch die Munitionsart für die nächste Schusstolgen bestimmen.
  • Die US 6,782,826 B1 beschäftigt sich mit einem Scheinziel. Darin offenbarte bildgebende Mittel können zum Beispiel explosive Substanz, entzündliche Substanz, Glühkörper oder Leuchtmasse oder andere Materiallen sein, die ein gutes sichtbares temporäres Bild, Radarbild und / oder ein Wärmebild zur Nachahmung einer Ziels liefern. Das Abfeuern der Projektile kann vorzugsweise durch einen Mikroprozessor gesteuert werden, um die genaue Abfeuern der Projektile bei der gewählten Geschwindigkeit zu ermöglichen. Ein Bildschirm zeigt in einer Vorschau das zu bildende Bild, so dass dem Bedlener die Möglichkelt geboten wird, das gewünschte oder zufällige Muster In der Luft zu "drucken".
  • Die Erfindung stellt sich die Aufgabe, eine Vorrichtung und ein optimiertes Verfahren zur Erzeugung eines einseitig transparenten Nebels aufzuzeigen, wodurch ein optimaler Sichtschutz eines Objektes realisiert wird.
  • Gelöst wird die Aufgabe durch die Merkmale des Anspruchs 1 das System und des Patentanspruchs 6 das Verfahren betreffend. Vorteilhafte Ausführungen sind in den jeweiligen Unteransprüchen aufgeführt.
  • Die Wirksamkeit eines Nebelsystems bzw. einer ausgebrachen Nebelwolke Ist abhängig von den Umweltparametern vor Ort, wie beispielsweise Windgeschwindigkeit. Windrichtung und relative Luftfeuchte etc. Derartige Parameter bleiben aufgrund der nicht vorbestimmbaren Werte unberücksichtigt. Der Nebel wird häufig durch die Windeinwirkung nicht nur aus der Sichtlinie getrieben, sondern die Nebelwolke auch entsprechend zerfasert, sodass Lücken entstehen. Auch werden die Eigenbewegung und der spontane Einsetz des Nebelsystems in 360° nicht berücksichtigt. Ähnliche Einflüsse entstehen bei Windstille jedoch Fahrt des Fahrzeuges. Auch hier kann es passieren, dass die Sichtlinie kurzzeitig durch den Nebel unterbrochen wird. Zudem ist die Wirksamkeit beispielsweise eines Infrarotnebels abhängig von der Dichte der das Infrarot emittierenden Partikel. Durch Umwelt- und systembedingte Effekte entstehen zeitliche und räumliche Inhomogenitäten der Wand, was zu einer Einschränkung bzw. zu einem Wirksamkeitsverlust führt.
  • Der Erfindung liegt daher die Idee zugrunde, multispektrale Nebelwände zu schaffen, bei denen die Bedrohungsrichtung, Bedrohungsentfernung, Windrichtung, Windgeschwindigkeit, Fahrtrichtung und Fahrtgeschwindigkeit in der zeitlichen und räumlichen Ausbringung der visuellen und infraroten Sichtlinienunterbrechung berücksichtigt werden. Der Charme der Idee liegt unter anderem darin, dass diese Informationen / Parameter nicht extra gemessen werden oder gar bekannt sein müssen. Vielmehr werden Qualität und Quantität, d.h., die Dichte und Homogenität der Nebelwolke(n) bestimmt. Darüber hinaus können auch freundseitige transparente Nebelwände erzeugt werden, die ein eigenes Wärmebildgerät unter Beibehaltung einer ausreichenden Tarnwirkung nicht stören. Dadurch wird erreicht, dass für die Plattform, beispielsweise ein Fahrzeug, durch die homogen verteilten Infrarot strahlenden Partikel auch eine einseitig transparente Infrarotwirksamkeit geschaffen wird, diese aber vor einem feindlichen Angriff wind- und fahrzeugunabhängig geschützt werden.
  • Das Messen der Nebelwolke auf Dichte und Homogenität und damit die Wirksamkeit der Nebelwand im Umfeld der Sichtlinie wird im sichtbaren Bereich beispielsweise durch eine TV- Kamera bewerkstelligt. Für die Infrarotbereiche wird ein Wärmebildgerät verwendet. Mit Hilfe der digitalen Bildverarbeitung wird im visuellen Bereich das aufgenommene Bild dahingehend untersucht, ob es im Umfeld der Sichtlinie die für den Rotphosphornebel typische weiße Reflexion aufweist. Im Infratorbereich wird das Bild des Wärmegerätes auf eine homogene, einseitig infrarotwirksame Partikeldichte analysiert.
  • Dazu besteht die Vorrichtung bzw. das System zumindest aus einer Kombination von Sensoren und digitaler Bild- und Datenverarbeitung und wenigstens einem Nebel- Werfer, der mit einer TV- Kamera, einem Wärmebildgerät sowie wenigstens einem UV- Sensor verknüpft werden kann. Die Bilder beider Geräte werden in einer Bild- und Datenverarbeitung ausgewertet, wobei in Auswertung dieser Informationen die Nebelwand stabilisiert bzw. erweitert wird, wenn gewisse Kriterien wie beispielsweise Dichte und / oder Homogenität unterschritten werden. Ein oder der Nebeleinsatzrechner bestimmt in Auswertung der Nebelwand bzw. Nebelwolke das weitere Ausbringen von Nebelmitteln durch den wenigstens einen Werfer. Zur Erweiterung der Systemfunktionalität kann ein Windsensor eingebunden werden, dessen Informationen zur besseren Ausrichtung des Werfers und damit der Ausbildung der Nebelwand herangezogen werden können. Damit wird eine gute Nebelwand für den Sichtbereich als auch einer ausreichenden Infrarotwirkung in der Nebelwand geschaffen.
  • Mit Hilfe des Systems und des Verfahrens ist es nunmehr grundsätzlich möglich, dass auch während der Fahrt der Plattform / Ziel / Objekt - beispielsweise bei Erkundungs- und / oder Konvoifahrten - eine Nebelmaßnahme extrem schnell wirkend ausgebracht und diese spontane, dichte Nebelwand aus der Freundsicht mit Hilfe eines Wärmebildgerätes durchdrungen werden kann. Durch hinterlegte Algorithmen können diese Bilder des Wärmebildgerätes soweit optimiert werden, dass sie eine ausreichend gute Freundsicht schaffen ohne die Geräteoptik zu verändern. Somit wird durch das System ein Vorteil auch in unübersichtlichen Gefechtsfeldsituationen geschaffen. Durch eine entsprechende Sensor -System Rückkopplung ist es zudem möglich, diese Wirkung der einseitigen Transparenz stabil und dauerhaft aufrecht zu erhalten. Das schnelle Einleiten von geeigneten Gegenmaßnahmen unter Schutz ist ein weiterer Vorteil.
  • Das Verfahren zur Erzeugung einer Sichtlinienunterbrechung ist nunmehr wind- und fahrtunabhängig. Es wird eine im sichtbaren Wellenlängenbereich undurchsichtige in den Infrarotbereichen jedoch eine Resttransmission aufweisende Nebelwolke geschaffen. Dieses wird durch eine geschickte Wahl bzw. Auswahl und Abstimmung der Nebelsubstanz selbst, der Nebelkonzentration und der Dicke der Nebelwand, sowie der Infrarot- Partikel beim Nebelabbrand erreicht (manipuliert). Störgrößen werden durch die digitale Bildverarbeitung eines Wärmebildes weitestgehend eliminiert und das Wärmebild somit "freundseitig" optimiert.
  • Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden. Es zeigt:
  • Fig. 1
    eine schematische Darstellung der wesentlichen Baugruppen des Systems,
    Fig. 2
    eine Darstellung einer Sichtlinienunterbrechung durch visuellen Nebel und Infrarot strahlende Partikel,
    Fig. 3
    eine Darstellung des teilweisen Verlustes der Sichtlinienunterbrechung des visuellen Nebels,
    Fig. 4
    eine Darstellung der Wiederherstellung der visuellen Nebelwirkung,
    Fig. 5
    eine Darstellung der Analyse und Optimierung der Infrarotpartikel,
    Fig. 6a/b
    eine Darstellung des durch Infrarot-Partikel gestörten Wärmebildes aus Sicht "Freundseite" sowie nach deren Optimierung,
    Fig. 7.
    eine Prinzipdarstellung einer Vorrichtung zum Ausbringen von Wirkmitteln,
    Fig. 8
    eine Darstellung der Abhängigkeit des Massen-Absorptionskoeffizienten von der Wellenlänge,
    Fig. 9
    eine Darstellung der Abhängigkeit der Transemission von der Nebelkonzentration und von der Nebeldicke.
  • In Fig. 1 ist ein System bzw. eine Vorrichtung, bestehend aus wenigstens einem Nebelwerfer 2, einem Rechner 3 sowie zumindest einem Wärmebildgerät 5, dargestellt. Weitere Baugruppen sind eine Kamera 4 und / oder UV- Sensoren 6 sowie bevorzugt ein Windsensor 7. Vorzugsweise im Rechner 3, hier ein so genannter Nebeleinsatzrechner, erfolgt eine digitale Bild- und Datenverarbeitung der Bilder der Kamera 4 und / oder des Wärmebildgerätes 5, wobei hierzu auch eine separate Baugruppe eingebunden sein kann. In der Bild- und Datenverarbeitung hinterlegt sind Algorithmen zur Analyse der Nebelwirksamkeit (Qualität, Quantität). Mit Hilfe des Windsensors 7 lassen sich die Windrichtung als auch die Windstärke bestimmen.
  • Das System 1 umfasst des Weiteren einen Monitor 8 zur Abbildung des Sensorbildes der TV- Kamera 4 und bevorzugt einen weiteren Monitor 9 zur Abbildung des Sensorbildes des Wärmebildgerätes 5 für einen Betrachter. - Die Einbindung der Monitore 8, 9 ist optional, das Verfahren zur Bestimmung einer optimalen Nebelwand 11 + 13 davon selbst unabhängig. - Alle Baugruppen des Systems 1 sind funktional miteinander elektrisch verbunden.
  • In einer bevorzugten Ausführung sind ein die Umgebung beobachtender Sensor 12, beispielsweise ein Laserwarner, sowie die Kamera 4, das Wärmebildgerät 5 und der UV- Sensor 6 am Werfer 2 direkt installiert. Dadurch sind der, die Nebelwolke 11 im sichtbaren Bereich und 13 als transparenter Infrarotnebel erzeugende Werfer (Wurfanlage) 2 und die Sensoren 4 - 6 bereits immer in gleicher Richtung ausgerichtet.
  • Ausgehend von der Beobachtung der Umgebung (Fig. 2) einer zu schützenden, sich möglicherweise auch bewegenden Plattform 14 wird bei Feststellung einer Bedrohung eine Nebelwand 11 + 13 aufgebaut. Dies erfolgt herkömmlich durch Verschuss von vorzugsweise in der Luft zerlegbaren Kartuschen mit einer Wirkmasse, bestehend aus vorzugsweise rotphosphor- und andern infrarotaktiven Teilchen / Substanzen/ Plättchen - Mittel - etc. (nicht näher dargestellt). Dadurch wird in kürzester Zeit die großflächige visuelle Nebelwolke 11 zur Unterbrechung der Sichtlinie des Gegners ausgebracht. Der Werfer 2 besitzt eine hinreichende Anzahl von Nebelkartuschen, die er simultan und / oder sequentiell in beliebiger Taktung ausbringen kann. Durch die infrarotaktiven Mittel wird bei entsprechender Konfiguration simultan die für den einseitig transparenten Infrarotnebel notwendige Partikelwolke 13 erzeugt.
  • Nach Ausbringen der Nebelwolke 11 + 13 wird nun mittels der intelligenten Sensorsysteme 4 - 6 die Wirksamkeit der Nebelwand 11 + 13 im Umfeld der Sichtlinie überwacht, die Dichte und Homogenität gemessen. Das Bild im visuellen Bereich wird mittels TV- Kamera 4 gewonnen und an die Bild- und Dateneinheit im Rechner 3 gegeben. Mit Hilfe der in dieser Einheit hinterlegten Algorithmen wird dieses Bild dahingehend analysiert, ob das Gesichtsfeld im Umfeld der Sichtlinie die für den Rotphosphornebel typische weiße Reflexion aufweist. Im Infrarotbereich wird das Gesichtsfeld im Umfeld der Sichtlinie 10 mittels Wärmebildgerät 4 aufgescannt und dieses in der Bild- und Datenverarbeitungseinheit auf eine homogene, einseitig infrarotwirksame Partikeldichte analysiert. Das Verfahren kann aber auch manuell gestartet werden, beispielsweise wenn ein Beobachter eine Schwächung der Nebelwand 11, 13 erkennt. Sind Dichte und Homogenität gegeben, werden keine weiteren Maßnahmen angewiesen.
  • Wird hingegen eine Situation wie in Fig. 3 dargestellt ermittelt, werden vom Rechner 3 weitere Maßnahmen angewiesen. Dieses kann das zielgerichtete Verschießen von weiteren Nebelkartuschen durch den Nebelwerfer 2 in den ermittelten nicht mehr unterbrochenen Sichtlinienbereich 10 (Fig. 4) und / oder das Erhöhen der Konzentration in der gesamten Nebelwolke 11 + 13 allgemein (Fig. 5) sein. Das Anweisen kann auch durch eine, die Monitore 8, 9 betrachtende Person 12, also manuell erfolgen.
  • Alternativ aber auch ergänzend werden die Daten des Windsensors 7 mit in die Auswertung eingebunden. Durch die Messung des relativen Windes, auch als Vektor aus Fahrtwind und absolutem Wind, wird der Rechner 3 mit weiteren Informationen versorgt, sodass die Ausdehnung, Lage und Drift der Nebelwolke 13 berechnet werden kann und dieses bei der Ausrichtung der Werfers 2 Berücksichtigung findet.
  • Die optimierte Partikeldichte der Infrarotnebelwand 13 gewährleistet, dass die Sichtlinie 10 für gegnerische Wärmebildgeräte komplett unterbrochen ist. Mit Hilfe des eigenen Wärmebildgerätes 5 ist aus Sicht der zu schützenden Plattform eine Restinformation der generischen Seite vorhanden. Dieses ist zwar durch die Infrarotpartikel erheblich gestört (Fig. 6a), kann aber mittels komplexer Bild optimierender Verfahren und Algorithmen verbessert werden. So besteht die Möglichkeit, die störenden Partikel weitestgehend zu eliminieren und so ein nahezu störungsfreies Feindbild auf dem Monitor 9 zu erzeugen (Fig. 6b). Die Aufbereitung des Bildes kann beispielsweise durch einen Histogramm- Optimierungsfilter, einen Medianfilter und / oder einen Maskenfilter realisiert werden.
  • Fig. 7 zeigt die Vorrichtung 1 zur Erzeugung des einseitig transparenten Nebels bestehend aus dem Nebelgenerator bzw. der Wurfanlage 2 für das Verbringen von nebelerzeugenden Wirkkörpern, dem Wärmebildgerät 5 sowie dem Computer oder Rechner 3 mit der digitaler Bildverarbeitung. Ein weiterer Bestandteil der Vorrichtung 1 kann eine zusätzliche Waffenstation 20 sein.
  • Die Wurfanlage 2 dient zur Erzeugung bzw. Schaffung der spezifischen Nebelwand bzw. des Nebels -der Nebelwolke 11, 13 - mit wellenlängenabhängigen Transmissionseigenschaften. Das Wärmebildgerät 5 weist die spezifische Filterung auf, wobei die spektrale Empfindlichkeit des Wärmebildgerätes 3 dort am höchsten ist, wo die Transmissionseigenschaften des Nebels ebenfalls ein Maximum aufweist.
  • Durch die Wurfanlage 2 bzw. die ausgebrachten Wirkkörper wird die selektive Nebelwand 11, 13 erzeugt, deren Eigenschaften im Wesentlichen durch folgende Parameter definiert sind:
    • Selektive Transmissionseigenschaften (wird beispielhaft am Beispiel eines Rotphosphornebels dargestellt) = RP-Nebel weist einen selektiven Massenextinktionskoeffizienten auf. Dieser Koeffizient ist für den sichtbaren Bereich deutlich höher als für die Infrarot- Bereiche. Gemäß Lambert-Beer-Gesetz ist somit die Transmission dieses Nebels in den Infrarotbereichen deutlich höher als im sichtbaren Bereich. τ λ = e α * c * d
      Figure imgb0001
      wobei
      • α - Massenextinktionskoeffizient [m2/g]
      • c - Nebelkonzentration
      • d - Dicke der Nebelwand
      sind. Fig. 8 zeigt die Zusammenhänge dieser Größen.
    • Konzentration und Dicke der Nebelwand = Durch Erhöhung der Nebelkonzentration c lässt sich, ebenso wir durch Erhöhung der Dicke der Nebelwand d die Transmissionseigenschaft der Nebelwand steuern. Hierbei ist zu berücksichtigen, dass durch die Umwelteffekte wie Luftfeuchte, Wind etc. die Transmissionseigenschaften der Nebelwolke 6 häufig starken zeitlichen Schwankungen unterliegen.
    • Clutter- und Überstrahlungseffekte = Bei der Generierung der Nebelwand entstehen zusätzlich durch Nebelzerlegung und Nebelabbrand gezielt Wärmeeffekte, die zu zeitlich und / oder räumlich inhomogenen Strahlungseffekten führen, welche das Wärmebild sowohl feind- als auch freundseitig stören.
  • Nunmehr ist es anhand dieser Überlegungen und über die Wahl der Nebelsubstanz, der Nebelkonzentration (c1, c2, c3), der Dicke der Nebelwand (d1, d2, d3) und der Erzeugung von Infrarot-Partikeln möglich einen Nebel zu generieren, welcher im sichtbaren Wellenlängenbereich undurchsichtig ist, in den Infrarotbereichen jedoch eine Resttransmission aufweist (z.B. c3*d3), siehe Fig. 9.
  • Diese Resttransmission kann zeitlichen und räumlichen Schwankungen unterworfen sein und zusätzlich durch Störgrößen wie Überstrahlungseffekten beim Nebelabbrand gestört werden. Dieses kann durch die digitale Bildverarbeitung des Wärmebildes der Wärmebildkamera 5 im Rechner 3 durch Optimierung des Bildes behoben werden, sodass die Störeffekte "freundseitig" eliminiert werden. Insbesondere werden mittels der digitalen Bildverarbeitung im Rechner 3 die Einstellung der Empfindlichkeit des Wärmebildes durch digitale Anpassung von Range und Level an die Transmissions- und Emissionseigenschaften sowie die Eliminierung von zeitlichen und räumlichen Schwankungen der Transmission durch Vermessung von stabilen Referenzzielpunkten innerhalb des Wärmebildes vorgenommen. Weiterhin erfolgt die "freundseitige" Eliminierung von Überstrahlungseffekten hervorgerufen durch die Infrarot-Partikel durch Anwendung spezifischer Algorithmen wie Masking Filter, Cloning Filter, Median Filter, Poisson Hole Filing etc.

Claims (15)

  1. Vorrichtung (1) zum Schutz einer Plattform, mit
    - wenigstens einem Werfer (2) zur Erzeugung einer wirksamen Nebelwand bzw. Nebelwolke (11, 13), wobei der Werfer (2) dazu ausgelegt ist, sowohl einen sichtbaren Nebel und wie auch einen einseitig transparenten Infrarotnebel zu erzeugen,
    - einem die Dichte und Homogenität der einseitig transparenten infraroten Nebelwand bzw. Nebelwolke (13) abbildenden Wärmebildgerät (5),
    - einer die Dichte und Homogenität der sichtbaren Nebelwand bzw. Nebelwolke (11) abbildenden Kamera (4),
    - einem Rechner (3) zur Bild- und Datenverarbeitung,
    wobei
    - der Rechner (3) mit dem wenigstens einen Werfer (2), dem Wärmebildgerät (5) und der Kamera (4) elektrisch verbunden ist,
    - der Rechner (3) dazu ausgelegt ist, die Bilder der Kamera (4) und des Wärmebildgerätes (5) auszuwerten,
    - im Rechner (3) Algorithmen zur Analyse der Wirksamkeit der Nebelwand bzw. Nebelwolke (11, 13) hinterlegt sind, und
    - die Vorrichtung dazu ausgelegt ist, in Auswertung dieser Informationen die Nebelwand oder Nebelwolke (11, 13) im Sichtbereich und im Infrarotbereich durch gezielten Verschuss weiterer Nebel erzeugender Mittel aus dem wenigstens einen Werfer (2) entsprechend zu stabilisieren und / oder zu erweitern.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Windssensor (7) elngebunden ist, der mit dem Rechner (3) verbunden ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein UV-Sensor (6) eingebunden Ist, der mit dem Rechner (3) verbunden Ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass ein die Umgebung beobachtender Sensor (12), beispielsweise ein Laserwarner, eingebunden ist, der wie die Kamera (4), das Wärmebildgerät (5) und der UV-Sensor (6) am Werfer (2) direkt installiert ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Monitore (8, 9) mit dem Rechner (3) verbunden sind.
  6. Verfahren zur Erzeugung einer wirksamen Nebelwand bzw. Nebelwolke (11, 13) mit den Schritten:
    - Erzeugen eines sichtbaren Nebels und eines einseitig transparenten Infrarotnebels mittels wenigstens einem Werfer (2);
    - Abbilden der Dichte und Homogenität der einseitig transparenten infraroten Nebelwand bzw. Nebelwolke (13) insbesondere im Umfeld einer Sichtlinie (10) in einem Bild mittels eines Wärmebildgerätes (5),
    - Analyse des Bildes mit Hilfe von im Rechner (3) hinterlegten Algorithmen, wobei die Intrarotnebelwand (13) auf eine homogene, einseitig Infrarotwirksame Partikeldichte hin analysiert wird,
    - Messung einer sichtbaren Nebelwand (11) und Abbilden der Dichte und Homogenität der sichtbaren Nebelwand bzw. Nebelwolke (11) insbesondere im Umfeld einer Sichtlinie (10) in einem Bild mittels einer Kamera (4),
    - Analyse des Bildes mit Hilfe von in einem Rechner (3) hinterlegten Algorithmen, wobei überprüft wird, ob das Gesichtsfeld im Umfeld der Sichtlinie (10) die für den Rotphosphornebel typische weiße Reflexion aufweist und
    - Stabilisieren und / oder Erweitern der Nebelwand oder Nebelwolke (11, 13) im Sichtbereich und im Infrarotbereich durch gezielten Verschuss weiterer Nebel erzeugender Mittel aus dem wenigstens einen Werfer (2) in Auswertung dieser Analysen.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass eine Bedrohungsrichtung, Bedrohungsentfernung, Windrichtung, Windgeschwindigkeit, Fahrtrichtung und Fahrtgeschwindigkelt In der zeitlichen und räumlichen Ausbringung der visuellen und infraroten Sichtlinienunterbrechung berücksichtigt werden.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass durch die Messung des relativen Windes, auch als Vektor aus Fahrtwind und absolutem Wind durch den Windsensor (7), der Rechner (3) die Ausdehnung, Lage und Drift der Nebelwolke (13) unter Berücksichtigung dieser Information ermittelt und diese bei der Ausrichtung der Werfer (2) Berücksichtigung findet.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Maßnahmen nur dann angewiesen werden, wenn Dichte und Homogenität in der Nebelwand (11, 13) nicht gegeben sind.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass störende Infrarotpartikel Im Bild auf dem Monitor (8, 9) mittels komplexer Bildverarbeitung weitestgehend durch Aufbereitung des Bildes beispielsweise durch einen Histogramm-Optimierungsfilter, einen Medianfilter und / oder einen Maskenfilter eliminieren werden, um so ein nahezu störungsfreies Bild auf dem Monitor (8, 9) zu erzeugen.
  11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass eine im sichtbaren Wellenlängenbereich undurchsichtige in den Infrarotbereichen jedoch eine Resttransmission aufweisende Nebeiwolke (11, 13) geschaffen wird durch eine gezielte Auswahl der Nebelsubstanz (α), der Nebelkonzentration (c1, c2, c3) und der Dicke der Nebelwand (d1, d2, d3) sowie der Infrarot-Partikel beim Nebelabbrand.
  12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekenntzeichnet, dass Störgrößen der Nebelwolke (11, 13) durch die digitale Bildverarbeitung des Wärmebildes der Wärmekamera (5) in einem Rechner (5) "freundseitig" weitestgehend eliminiert werden, wobei dieses über die Einstellung der Empfindlichkeit des Wärmebildes erfolgt.
  13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass eine Eliminierung von zeitlichen und räumlichen Schwankungen der Transmission durch Vermessung von stabilen Referenzzielpunkten Innerhalb des Wärmebildes erfolgt.
  14. Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass eine Eliminierung von Überstrahlungseffekten, insbesondere hervorgerufen durch Infrarot-Partikel, "freundseitig" durch Anwendung spezifischer Algorithmen wie Masking Filter, Cloning Filter, Median Filter, Poisson Hole Flllng etc. erfolgt.
  15. Verfahren nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, dass das Wärmebildgerät (5) eine spezifische Filterung aufweist, wobei die spektrale Empfindlichkeit der Wärmebildkamera (5) dort am höchsten ist, wo die Transmissionseigenschaften des Nebels ebenfalls ein Maximum aufweist.
EP11745935.4A 2010-08-31 2011-08-13 Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke Active EP2612101B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010036026A DE102010036026A1 (de) 2010-08-31 2010-08-31 Vorrichtung und Verfahren zur Bestimmung der Effektivität einer Nebelwand zur Erzeugung einer wirksamen Nebelwolke
DE201110106201 DE102011106201A1 (de) 2011-06-07 2011-06-07 Verfahren zur Erzeugung eines einseitig transparenten Nebels
PCT/EP2011/004082 WO2012028257A1 (de) 2010-08-31 2011-08-13 Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke

Publications (2)

Publication Number Publication Date
EP2612101A1 EP2612101A1 (de) 2013-07-10
EP2612101B1 true EP2612101B1 (de) 2017-01-11

Family

ID=45772184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11745935.4A Active EP2612101B1 (de) 2010-08-31 2011-08-13 Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke

Country Status (2)

Country Link
EP (1) EP2612101B1 (de)
WO (1) WO2012028257A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206485A2 (de) 2018-04-27 2019-10-31 Rheinmetall Waffe Munition Gmbh Verfahren und vorrichtung zum schutz eines fahrzeugs vor einer bedrohung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX342212B (es) * 2011-02-17 2016-09-20 Theravance Inc Inhibidores de neprilisina.
CN104111006B (zh) * 2014-05-21 2016-03-09 黄建 一种运输车的气喷式烟幕伪装装置
DE102015002737B4 (de) 2015-03-05 2023-05-25 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtung zum Bereitstellen eines Scheinzieles zum Schutz eines Fahrzeuges und/oder Objektes vor radargelenkten Suchköpfen
DE202015003966U1 (de) 2015-06-08 2015-07-24 Rheinmetall Waffe Munition Gmbh Nebelmunition
CN106284461B (zh) * 2016-08-31 2018-03-13 威斯塔技术(北京)有限公司 一种滑移装载机反恐液压冲击装置
DE102018131524A1 (de) 2018-12-10 2020-06-10 Rheinmetall Waffe Munition Gmbh Verfahren zum Schutz von beweglichen oder unbeweglichen Objekten vor sich nähernden lasergelenkten Bedrohungen
DE102020103249B4 (de) 2020-02-10 2022-02-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Schützen eines Helikopters durch Nebelwurf und Helikopter mit Nebelschutzsystem
CN111964532A (zh) * 2020-06-02 2020-11-20 天津蓝马博达科技有限公司 一种人防智能型烟幕发射系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115384C2 (de) * 1991-05-10 1994-07-07 Buck Chem Tech Werke Verfahren zum Schützen von eine IR-Strahlung abgebenden Objekten
DE4230826C1 (de) 1992-09-15 1994-03-03 Buck Chem Tech Werke Tarnverfahren zum Schützen eines militärischen Objekts und Tarnpartikel zu seiner Durchführung
DE4238038C1 (de) * 1992-11-11 1994-06-16 Buck Chem Tech Werke Verfahren zum Bereitstellen eines Scheinzielkörpers
DE19601506C2 (de) * 1996-01-17 2000-05-18 Rheinmetall W & M Gmbh Verfahren und Vorrichtung zur Erzeugung einer Sichtsperre mit Hilfe eines künstlichen Nebels
DE29606669U1 (de) 1996-04-12 1996-08-01 Buck Chem Tech Werke Flugkörper zur Erzeugung einer Nebelwand
DE19617701C2 (de) 1996-05-03 2000-01-13 Buck Werke Gmbh & Co I K Verfahren zum Bereitstellen eines Scheinziels
DE19910074B4 (de) 1999-03-08 2005-02-10 Buck Neue Technologien Gmbh Abschußvorrichtung für das Verschießen einer Mehrzahl von Wirkkörpern sowie diese verwendende Wurfanlage
DE19914033A1 (de) 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Verfahren zur Erzeugung eines im infraroten Spektralbereich einseitig transparenten Tarnnebels
DE19951767C2 (de) 1999-10-27 2002-06-27 Buck Neue Technologien Gmbh Dual-Mode-Täuschkörper
AUPQ413299A0 (en) * 1999-11-18 1999-12-09 Metal Storm Limited Forming temporary airborne images
DE10346001B4 (de) 2003-10-02 2006-01-26 Buck Neue Technologien Gmbh Vorrichtung zum Schützen von Schiffen vor endphasengelenkten Flugkörpern
DE102004005105A1 (de) 2004-02-02 2005-09-01 Buck Neue Technologien Gmbh Objektschutzsystem und Verfahren zum Schützen von Objekten
DE102005054275A1 (de) 2005-11-11 2007-05-16 Rheinmetall Waffe Munition Selbstschutzanlage für Gefechtsfahrzeuge oder anderer zu schützender Objekte
DE102006004954A1 (de) 2006-02-01 2007-08-02 Rheinmetall Waffe Munition Gmbh Munitionsmagazin und damit ausgebildete Selbstschutz- Werfereinrichtung
US7999720B2 (en) * 2006-02-13 2011-08-16 The Invention Science Fund I, Llc Camouflage positional elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206485A2 (de) 2018-04-27 2019-10-31 Rheinmetall Waffe Munition Gmbh Verfahren und vorrichtung zum schutz eines fahrzeugs vor einer bedrohung

Also Published As

Publication number Publication date
EP2612101A1 (de) 2013-07-10
WO2012028257A1 (de) 2012-03-08

Similar Documents

Publication Publication Date Title
EP2612101B1 (de) Vorrichtung und verfahren zur erzeugung einer wirksamen nebelwand bzw. nebelwolke
EP0597233B1 (de) Verfahren zum Bereitstellen eines Scheinzielkörpers
DE3507007C2 (de)
WO2016139295A1 (de) Verfahren und vorrichtung zum bereitstellen eines scheinzieles zum schutz eines fahrzeuges und / oder objektes vor radargelenkten suchköpfen
EP0588015B1 (de) Tarnverfahren und Tarnpartikel zu seiner Durchführung
DE4115384A1 (de) Verfahren zum schuetzen von eine ir-strahlung abgebenden objekten und wurfkoerper zur durchfuehrung des verfahrens
DE102010036026A1 (de) Vorrichtung und Verfahren zur Bestimmung der Effektivität einer Nebelwand zur Erzeugung einer wirksamen Nebelwolke
EP3118564B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
DE3707888C2 (de)
DE19704070A1 (de) Tarn- und/oder Täuscheinrichtung
EP1173393B1 (de) Verfahren zur erzeugung eines im infraroten spektralbereich einseitig transparenten tarnnebels
DE3022460C2 (de)
DE4406227C1 (de) Vorrichtung zur Tarnung von Objekten
EP3139347B1 (de) Verfahren zum bestimmen einer ausrichtung eines objekts
DE102010015045B4 (de) Verfahren und System zur Bestimmung von Trajektorien sich schnell bewegender Objekte oder Geschosse mittels eines zeitlich-wellenlängencodierten Detektionsraumes
DE19601506C2 (de) Verfahren und Vorrichtung zur Erzeugung einer Sichtsperre mit Hilfe eines künstlichen Nebels
DE102020103249B4 (de) Verfahren zum Schützen eines Helikopters durch Nebelwurf und Helikopter mit Nebelschutzsystem
DE3311075C2 (de)
EP3118563B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
EP3894779A1 (de) Verfahren zum schutz von beweglichen oder unbeweglichen objekten vor sich nähernden lasergelenkten bedrohungen
EP0913661A2 (de) Einrichtung zum Schutz von mobilen Opjekten, insbesondere gepanzerten Fahrzeugen, gegen Geschosseinwirkung
DE3635816C2 (de)
WO2018206325A1 (de) Abwehrsystem gegen leichte flugkörper, wie drohnen
DE3545831C2 (de)
DE3941391A1 (de) Verfahren zur passiven detektion von muendungsfeuer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861696

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011512

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011512

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 861696

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180621

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011512

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011512

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230811

Year of fee payment: 13

Ref country code: GB

Payment date: 20230822

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 13

Ref country code: DE

Payment date: 20230821

Year of fee payment: 13