EP2587146B1 - Four à lit fluidisé et procédé de traitement des déchets - Google Patents

Four à lit fluidisé et procédé de traitement des déchets Download PDF

Info

Publication number
EP2587146B1
EP2587146B1 EP11797836.1A EP11797836A EP2587146B1 EP 2587146 B1 EP2587146 B1 EP 2587146B1 EP 11797836 A EP11797836 A EP 11797836A EP 2587146 B1 EP2587146 B1 EP 2587146B1
Authority
EP
European Patent Office
Prior art keywords
waste
fluidized bed
fluidization region
fluidization
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11797836.1A
Other languages
German (de)
English (en)
Other versions
EP2587146A1 (fr
EP2587146A4 (fr
Inventor
Takuya Kawai
Hiroyuki Hosoda
Tadashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to PL11797836T priority Critical patent/PL2587146T3/pl
Publication of EP2587146A1 publication Critical patent/EP2587146A1/fr
Publication of EP2587146A4 publication Critical patent/EP2587146A4/fr
Application granted granted Critical
Publication of EP2587146B1 publication Critical patent/EP2587146B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • F23C10/26Devices for removal of material from the bed combined with devices for partial reintroduction of material into the bed, e.g. after separation of agglomerated parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/10Waste feed arrangements using ram or pusher
    • F23G2205/101Waste feed arrangements using ram or pusher sequentially operated

Definitions

  • the present invention relates to a fluidized bed furnace designed to heat waste in a fluidized bed formed by fluidizing fluidizable particles to thereby extract a combustible gas from the waste, and a waste treatment method.
  • this fluidized bed furnace comprises a furnace body 104 having fluidizable sand (fluidizable particles) 102 in a furnace bottom section, and an air supply section 106 for supplying air into the fluidizable sand 102 in the furnace bottom section so as to fluidize the fluidizable sand 102 to form a fluidized bed.
  • the furnace body 104 has a sidewall. The sidewall is provided with an input section 108 for inputting waste onto the fluidized bed therefrom.
  • the air supply section 106 is adapted to supply air into high-temperature fluidizable sand 102. Consequently, the fluidizable sand 102 is fluidized in a levitated or suspended state to form a fluidized bed.
  • the air supply section 106 is adapted to supply air in such a manner that a fluidized state of the fluidizable sand 102 becomes approximately equalized in the entire region of the fluidized bed so as to allow waste input from the input section 108 onto the fluidized bed to be entrapped inside the fluidized bed and efficiently combusted.
  • Waste input into the fluidized bed furnace 100 is entrapped in the active fluidized bed and combusted or gasified.
  • waste is intermittently input, combustible substances in the waste are rapidly combusted, so that a rapid fluctuation in amount, concentration, etc., of a generated combustible gas will repeatedly occur.
  • a change in the gasification reaction is largely dependent on a quantitative characteristic in supply of waste.
  • it is impossible to stably generate a combustible gas.
  • a large amount of easily combustible trash such as paper or sheet-shaped plastic is comprised in waste, a fluctuation of generation of a combustible gas becomes larger, and therefore there is a need for stabilizing the gas generation.
  • a fluidized bed furnace is designed to heat waste by high-temperature fluidizable particles, to extract a combustible gas from the waste.
  • the fluidized bed furnace comprises fluidizable particles 12, a furnace body 20, a gas supply section 30, a waste supply section 40 and a sand circulation device 50.
  • the fluidizable particles 12 are particles make up a fluidized bed 14 to heat waste 18, inside the furnace body 20. More specifically, the fluidizable particles 12 are mixed with waste 18 while being heated up to a high temperature by combustion of a part of waste components, so that the waste 18 is gasified to generate a combustible gas.
  • the fluidizable particles 12 may be silica sand.
  • the furnace body 20 is configured to internally have the fluidizable particles 12 and extract a combustible gas from waste 18 by means of the fluidizable particles 12 in a high temperature state.
  • the furnace body 20 has a bottom wall 21 supporting the fluidizable particles 12 from therebelow, a sidewall 22 standing upwardly from the bottom wall 21, and a combustible gas outlet portion 23 provided at an upper end of the sidewall 22.
  • the sidewall 22 has a rectangular tubular shape extending in an up-down (vertical) direction. Specifically, as also illustrated in FIG. 2 , the sidewall 22 has a front wall (supply-side sidewall portion) 24 and a rear wall 25 which are disposed in opposed and spaced-apart relation to each other in a front-rear direction (in FIG. 2 , in a right-left direction), and a pair of lateral walls 26, 26 each connecting corresponding ends of the front wall 24 and the rear wall 25.
  • the lateral walls 26, 26 are disposed parallel to each other.
  • the furnace body 20 has a shape in plan view, in which a dimension in a width direction (widthwise dimension) as a distance between the lateral walls 26, 26 is equalized in the front-rear direction.
  • a portion (front wall) 24 of the sidewall 22 located on a side opposite to an aftermentioned non-combustible substance discharge port 29 across a center position of the bottom wall 21 has a sand introduction section 27 and a waste introduction port 28.
  • the sand introduction section 27 is adapted to introduce fluidizable particles 12 into the furnace body 20, and the waste introduction port 28 is adapted to introduce waste 18 into the furnace body 20.
  • the sand introduction section 27 is provided at each of widthwise opposite ends of a lower portion of the front wall 24 to allow fluidizable particles to be introduced to widthwise opposite end areas of an inside of the furnace body 20 (see FIG. 2 ).
  • the sand introduction section 27 is provided at a height position where fluidizable particles 12 can be input from above the fluidizable particles 12 supported by the bottom wall 21 (fluidized bed 14), toward the fluidized bed 14. It is to be noted that an input area of fluidizable particles 12 is not limited to the widthwise opposite end areas.
  • the input area of fluidizable particles 12 may be one of the widthwise opposite end areas.
  • the input area of fluidizable particles 12 may be an upper surface of the introduced waste 18 (a central area adjacent to the front wall 24 in FIG. 2 ).
  • the fluidizable particles 12 serve as an ignition source to allow only easily combustible trash to be stably combusted (gasified) initially.
  • the waste introduction port 28 is provided in approximately the entire region of the lower portion of the front wall 24 in the width direction.
  • the waste introduction port 28 is provided at a height position where waste 18 can be pushed generally horizontally onto an upper surface of the fluidized bed 14 made up of the fluidizable particles 12 supported by the bottom end 21.
  • the waste introduction port 28 is provided in such a manner that a lower end thereof is located at a position slightly higher than the upper surface of the fluidized bed 14.
  • the combustible gas outlet portion 23 is designed to discharge a combustible gas generated inside the furnace body 20.
  • the combustible gas outlet portion 23 has an outer diameter squeezed more than the sidewall 22, so that a duct or the like for supplying the combustible gas obtained in the furnace body 20 to a subsequent stage, for example, a gas engine for electric power generation processes, can be connected thereto.
  • the bottom wall 21 has a non-combustible substance discharge port 29 provided at a position offset from the center position thereof in a specific direction to discharge non-combustible substances in waste 18 together with a part of the fluidizable particles 12.
  • the non-combustible substance discharge port 29 has an opening extending over the widthwise entire region of the bottom wall 21.
  • the bottom wall 21 has an upper surface 21a is inclined to become lower toward the non-combustible substance discharge port 29 so as to cause the non-combustible substances to fall on the upper surface 21a.
  • the bottom wall 21 in this embodiment has a non-combustible substance discharge port 29 at a position offset rearwardly, and an upper surface 21a of the bottom wall 21 extends rearwardly (in FIG. 1 , in a left-to-right direction) at a constant downward inclination.
  • the upper surface 21a of the bottom wall 21 has an inclination angle of 15 degrees to 25 degrees with respect to a horizontal plane.
  • the gas supply section 30 is designed to blow a fluidizing gas from the bottom wall 21 toward the fluidizable particles 12 to fluidize the fluidizable particles 12.
  • the gas supply section 30 comprises a plurality of nozzles 31 for blowing the fluidizing gas, a gas box 32 for supplying the fluidizing gas to the nozzles 31, and a gas feeding unit 33 for feeding the fluidizing gas to the gas box 32.
  • the plurality of nozzles 31 are installed to the bottom wall 21 in spaced-apart relation to each other in the width direction and the front-rear direction, i.e., in a lattice arrangement. Each of the nozzles 31 is attached to the bottom wall 21 to penetrate through the bottom wall 21.
  • the bottom wall 21 is divided into a front region 21b and a rear region 21c. Then, the plurality of nozzles 31 are installed to the front and rear regions 21b, 21c in such a manner that the number of nozzles 31 provided in the front region 21b becomes greater than the number of nozzles 31 provided in the rear region 21c.
  • a relationship between the respective numbers of nozzles 31 in the front and rear regions 21b, 21c is not particularly limited.
  • the number of nozzles 31 in the front region 21b may be equal to the number of nozzles 31 in the rear region 21c.
  • the number of nozzles 31 in the rear region 21c may be greater than the number of nozzles 31 in the front region 21b.
  • the gas box 32 has a box shape extending in the width direction.
  • the gas box 32 serves as a header for distributing the fluidizing gas to an array of the nozzles 31 arranged side-by-side in the width direction in the bottom wall 21.
  • the gas box 32 has a function of equalizing respective flow volumes of the fluidizing gas to be blown from the array of nozzles 31 arranged in the width direction.
  • a plurality of the gas boxes 32 are provided on the side of a lower surface of the bottom wall 21 and arranged side-by-side in the front-rear direction.
  • the flow volume of the fluidizing gas to be blown from the array of nozzles 31 can be changed.
  • five gas boxes 32a, 32b, 32c, 32d, 32e are arranged side-by-side in the front-rear direction. Specifically, four gas boxes 32a, 32b, 32c, 32d are disposed on the side of the front wall 24 with respect to the non-combustible substance discharge port 29, and one gas box 32e is disposed on the side of the rear wall 25 with respect to the non-combustible substance discharge port 29.
  • the gas feeding unit 33 is designed to feed (supply) the fluidizing gas to the respective gas boxes 32.
  • the gas feeding unit 33 is capable of feeding the fluidizing gas to each of the gas boxes 32 in a different flow volume.
  • the gas feeding unit 33 in this embodiment is configured to feed the fluidizing gas to two of the gas boxes 32 adjacent to each other in the front-rear direction, in such a manner that a flow volume of the fluidizing gas to be fed to a rear one of the adjacent gas boxes 32 becomes greater than a flow volume of the fluidizing gas to be fed to a front one of the adjacent gas boxes 32.
  • the gas feeding unit 33 is adapted to feed only air to the respective gas boxes 32 to serve as the fluidizing gas. Alternatively, an inert gas such as nitrogen may be fed in combination with the air.
  • the gas feeding unit 33 is operable to cause the fluidizing gas to be blown from around the non-combustible substance discharge port 29.
  • the gas feeding unit 33 is operable to form a first fluidization region 15 where the fluidizable particles 12 are moved in a convection-like pattern and mixed with the introduced waste 18 to gasify the waste 18.
  • the gas feeding unit 33 is operable to blow the fluidizing gas between the first fluidization region 15 and the front wall 24 at a flow velocity less than that of the fluidizing gas to be blown in the first fluidization region 15, to form a second fluidization region 16 having a degree of fluidization of the fluidizable particles 12 lower than that in the first fluidization region 15. More specifically, as mentioned above, the gas feeding unit 33 is configured such that a flow volume of the fluidizing gas to be fed to a rear one (e.g., the gas box 32c) of the gas boxes 32 adjacent to each other in the front-rear direction becomes greater than a flow volume of the fluidizing gas to be fed to a front one (e.g., the gas box 32b) of the adjacent gas boxes 32.
  • a rear one e.g., the gas box 32c
  • the gas feeding unit 33 is operable to, in the fluidized bed 14, form a first fluidization region 15 actively fluidized, around the non-combustible substance discharge port 29, while forming a second fluidization region 16 restrained in fluidization, between the first fluidization region 15 and the front wall 24.
  • the gas feeding unit 33 may be configured such that a flow volume of the fluidizing gas to be fed to each of the gas boxes 32c, 32d, 32e on the side of the rear wall 25 becomes greater than a flow volume of the fluidizing gas to be fed to each of the gas boxes 32a, 32b on the side of the front wall 24.
  • the gas feeding unit 33 is operable to, in the fluidized bed 14, form a second fluidization region 16 restrained in fluidization, in a region corresponding to the gas boxes 32a, 32b on the side of the front wall 24, while forming a first fluidization region 15 actively fluidized, in a region corresponding to the gas boxes 32c, 32d, 32e on the side of the rear wall 25.
  • the gas feeding unit 33 is adapted to cause the fluidizing gas to be blown in the second fluidization region 16 at the flow velocity satisfying a condition that U o /U mf ranges from 1 to less than 2, and blown in the first fluidization region 15 at the flow velocity satisfying a condition that U o /U mf ranges from 2 to less than 5.
  • U mf is a minimum fluidization velocity which is a minimum flow velocity of the fluidizing gas to be blown so as to fluidize the fluidizable particles 12.
  • U o is a cross-sectional average flow velocity of the fluidizing gas.
  • the gas feeding unit 33 is operable to feed a mixture formed by mixing an inert gas with air, as the fluidizing gas to be supplied to the respective gas boxes 32. Then, the gas feeding unit 33 is operable to gradually increase the inert gas in a ratio between air and the inert gas in the fluidizing gas. Consequently, the gas feeding unit 33 can suppress violent or rapid combustion of the waste 18 remaining in the furnace body 20, thereby restraining a rise in internal temperature of the furnace body 20.
  • the oxygen concentration in the furnace body 20 reaches a value suitable for combustion of the waste 18 remaining in the furnace body 20, the waste 18 is violently or rapidly combusted, so that the internal temperature of the furnace body 20 becomes higher than that during the normal operation.
  • the fluidizable particles 12 forming the fluidized bed 14 are agglomerated due to the heat. Once the fluidizable particles 12 are agglomerated, even if the fluidizing gas is subsequently blown into the agglomerated fluidizable particles 12 in order to form the fluidized bed 14, the agglomerated fluidizable particles 12 will never be fluidized.
  • the gas feeding unit 33 is operable, when the introduction of waste 18 into the furnace body 20 is stopped, to mix an inert gas with air to be blown into the furnace body 20, and gradually increase the ratio of the inert gas. This allows the oxygen concentration in the furnace body 20 to be kept at a value less than that suitable for combustion of the waste 18. Consequently, it becomes possible to suppress violent or rapid combustion of the waste 18 remaining in the furnace body 20.
  • the gas feeding unit 33 is adapted to be capable of adjusting a temperature of the fluidizing gas to be fed to the gas boxes 32.
  • the gas feeding unit 33 is operable, upon start of the operation of the fluidized bed furnace 10, to blow the fluidizing gas in a high-temperature state from around the non-combustible substance discharge port 29 toward the fluidizable particles 12.
  • the gas feeding unit 33 is operable to heat the fluidizable particles 12 until the fluidizable particles 12 reach a temperature capable of performing combustion and gasification of the waste 18.
  • the gas feeding unit 33 may be configured to lower the temperature of the fluidizing gas to be fed to the gas boxes 32 just after start of the combustion.
  • the waste supply section 40 is designed to supply waste 18 from the front wall 24 to a region on the fluidized bed 14 adjacent to the front wall 24.
  • the waste supply section 40 in this embodiment is configured to push waste 18 generally horizontally from the front wall 24 (specifically, the waste introduction port 28 of the front wall 24) onto the fluidized bed 14, thereby causing the waste 18 to be moved toward the non-combustible substance discharge port 29.
  • the waste supply section 40 is adapted to push waste 18 to cause the waste 18 to be accumulated on the second fluidization region 16 while causing the accumulated waste 18 to be moved into the first fluidization region 15 step-by-step.
  • the waste supply section 40 comprises a pusher 41 and a drive unit (illustration is omitted) for driving the pusher 41.
  • the pusher 41 has a pushing surface 42 extending in the width direction.
  • the pushing surface 42 has a widthwise length equal to a width of the waste introduction port 28 of the front wall 24. Further, the pushing surface 42 has a vertical length which is approximately a half of a height dimension of an opening of the waste introduction port 28.
  • the pusher 41 is installed to be movable in the front-rear direction, at the same height position as that of the waste introduction port 28.
  • the drive unit comprises a driving power source such as a motor or a cylinder, and is adapted to reciprocatingly move the pusher 41 in the front-rear direction by the driving power. It is to be noted that the waste supply section 40 is not limited to a specific configuration.
  • the waste supply section 40 in this embodiment is configured such that the pusher 41 is employed to push waste 18 into the furnace body.
  • the waste supply section may be configured such that a screw extruder or the like is employed to push waste 18 into the furnace body. Based on employing the pusher 41 or the screw extruder, it becomes possible to supply trash which is likely to be scattered due to its small bulk specific gravity, such as paper or plastic sheet, into the furnace body 20 while keeping a massive form. This makes it possible to suppress scattering of trash inside the furnace body 20, as compared to a conventional furnace in which trash is input from an upper portion thereof.
  • the sand circulation device 50 is designed to return the fluidizable particles 12 discharged from the non-combustible substance discharge port 29, to the fluidized bed 14 at a position on the side of the waste supply section 40 to circulate the fluidizable particles 12.
  • the sand circulation device 50 operates to return the fluidizable particles 12 discharged from the non-combustible substance discharge port 29, to the fluidized bed 14 at a position on the side of the front wall 24, in the above manner, a flow of the fluidizable particles 12 directed from the front wall 24 to the non-combustible substance discharge port 29 is formed inside the fluidized bed 14.
  • the second fluidization region 16 is maintained at a high temperature to some extent.
  • the sand circulation device 50 comprises a non-combustible substance discharge section 51, a separation section 52, and a conveyance section 53.
  • the non-combustible substance discharge section 51 is provided just below the non-combustible substance discharge port 29 of the bottom wall 21, and adapted to move a mixture of non-combustible substances and a part of the fluidizable particles 12 dropping from the non-combustible substance discharge port 29, to the separation section 52.
  • the non-combustible substance discharge section 51 in this embodiment is configured to move the mixture dropping from the non-combustible substance discharge port 29, to the separation section 52 by using a screw extruder.
  • the separation section 52 is adapted to separate the fluidizable particles 12 from the mixture sent from the non-combustible substance discharge section 51.
  • the separation section 52 in this embodiment is configured to separate the fluidizable particles 12 from the mixture by using a sieve.
  • the conveyance section 53 is adapted to convey the fluidizable particles 12 separated in the separation section 52, to the sand introduction section 27, and introduce the conveyed fluidizable particles 12 into the furnace body 20 via the sand introduction section 27.
  • the sand circulation device 50 in this embodiment is configured to return the fluidizable particles 12 discharged from the non-combustible substance discharge port 29, to the fluidized bed 14 by inputting the fluidizable particles 12 from above the fluidized bed 14 toward an upper surface of the fluidized bed 14.
  • the fluidizable particles 12 discharged from the non-combustible substance discharge port 29 may be directly returned to an inside of the fluidized bed 14.
  • a sand introduction section (sand introduction opening) 27A is provided in the front wall 24 at an intermediate height position of the fluidized bed 14.
  • a screw extruder 55 is provided at an end of the conveyance section 53 of the sand circulation device 50 on the side of the furnace body 20, and the furnace body-side end of the conveyance section 53 is inserted into the sand introduction section 27.
  • the fluidizable particles 12 discharged from the non-combustible substance discharge port 29 may be returned to the fluidized bed 14 in such a manner as to be directly pushed into the fluidized bed 14.
  • the sand introduction section 27 is not limited to the intermediate height position of the fluidized bed 14, but may be located on a relatively upper or lower side in a height direction of the fluidized bed 14.
  • a combustible gas is collected from waste 18 in the following manner.
  • the fluidizing gas Upon feeding the fluidizing gas from the gas feeding unit 33 to the respective gas boxes 32, the fluidizing gas is blown from the bottom wall 21 into the furnace body 20 toward the fluidizable particles 12, so that the fluidized bed 14 is formed inside the furnace body 20.
  • the gas feeding unit 33 adjusts a flow volume of the fluidizing gas to be fed to each of the gas boxes 32. Through this adjustment, in the fluidized bed 14, the first fluidization region 15 actively fluidized is formed on the side of the non-combustible substance discharge port 29, and the second fluidization region 16 restrained in fluidization is formed between the first fluidization region 15 and the front wall 24.
  • the gas feeding unit 33 feeds the fluidizing gas in a high-temperature state to a part (e.g., in this embodiment, the gas boxes 32c, 32d, 32e) of the gas boxes 32 corresponding to the first fluidization region 15 to positively heat the fluidizable particles 12 in the first fluidization region 15.
  • the sand circulation device 50 circulates the fluidizable particles 12 to form a flow of the fluidizable particles 12 in the fluidized bed.
  • the non-combustible substance discharge section 51 sends the fluidizable particles 12 dropping from the non-combustible substance discharge port 29 of the furnace body 20, to the separation section 52.
  • the conveyance section 53 conveys the fluidizable particles 12 passing through the separation section 52, to the sand introduction section 27 of the furnace body 20.
  • the conveyed fluidizable particles 12 are returned to the fluidized bed 14 at a position on the side of the front wall 24, via the sand introduction section 27.
  • the second fluidization region 16 has a temperature less than that of the first fluidization region 15.
  • the temperature of the first fluidization region 15 is kept in the range of 600 to 800°C, whereas the temperature of the second fluidization region 16 is kept in the range of about 400 to 600°C.
  • the waste supply section 40 starts to push waste 18 into the furnace body 20 via the waste introduction port 28.
  • the pusher 41 driven by the drive unit pushes waste 18 generally horizontally toward the rear wall 25.
  • the waste 18 is pushed onto the second fluidization region 16 at a position adjacent to the front wall 24 (see FIG. 2 ).
  • the fluidization of the fluidizable particles 12 in the second fluidization region 16 is restrained.
  • the pushed waste 18 is not positively mixed with the fluidizable particles 12, so that most of the waste 18 is accumulated on the second fluidization region 16, and heavy non-combustible substances therein sink down. Consequently, in the second fluidization region 16, rapid combustion of the waste 18 is suppressed, and easily-gasifiable substances in the waste are gasified by heat radiation within the furnace body 20.
  • easily gasifiable waste 18 such as plastic or paper is gasified while being moved in a surface layer of the second fluidization region 16.
  • not-easily gasifiable waste such as a wood piece is partially gasified, but a large part thereof reaches the first fluidization region 15 without being gasified.
  • the easily gasifiable waste 18 is gasified under a mild condition in the second fluidization region 16 before it reaches the highly fluidized bed (first fluidization region 15).
  • the accumulated waste 18 is combusted by radiation heat within the furnace body 20, as mentioned above.
  • the radiation heat has a temperature of 800 to 900°C which is greater than that of the fluidizable particles 12 forming the fluidized bed 14, a contact between the waste 18 and air is not satisfactory.
  • the second fluidization region 16 has a relatively low temperature, and an amount of air (fluidizing gas) to be supplied to the second fluidization region 16 is relatively small, so that even the easily combustible trash will be gradually gasified.
  • the fluidizable particles 12 are gradually discharged through the non-combustible substance discharge port 29, so that, according to the discharge of the fluidizable particles 12 and the fluidization of the fluidizable particles 12 by the fluidizing gas, a part of the accumulated waste 18 is moved or spread step-by-step in a left-to-right direction in FIG. 1 .
  • waste 18 is input in a massive form, and easily combustible papers are comprised therein, it can be expected to promote gasification of the papers based on a phenomenon that the papers are moved toward a surface of the massive waste during the spreading.
  • rapid combustion of the waste 18 is suppressed to prevent a rapid increase of combustible gas during introduction of waste 18.
  • the first fluidization region 15 is actively fluidized and heated up to a high temperature by combustion of the waste 18, so that the waste 18 moved from a position on the second fluidization region 16 is mixed with the fluidizable particles 12 and sufficiently gasified. Consequently, a combustible gas is generated. More specifically, in the fluidized bed 14, a fluidized state gradually becomes more active in a direction from the front wall 24 to the non-combustible substance discharge port 29.
  • the waste 18 newly pushed onto the second fluidization region 16 by the pusher 41 is accumulated on the second fluidization region 16 almost without being mixed with the fluidizable particles 12 as mentioned above. Then, the accumulated waste 18 is gradually combusted under the condition that violent or rapid combustion is suppressed.
  • waste 18 is pushed in one after another by the pusher 41, which makes it possible to suppress intermittent and rapid generation of a combustible gas, thereby stabilizing the gas generation.
  • the pushing of waste 18 into the furnace body 20 by the pusher 41 is firstly stopped.
  • the gas feeding unit 33 feeds a mixture formed by mixing an inert gas with air, as the fluidizing gas to be supplied to the respective gas boxes 32.
  • the gas feeding unit 33 operates to gradually increase the inert gas in a ratio between air and the inert gas in the fluidizing gas, with time. In this manner, the gas feeding unit 33 restrains an oxygen concentration within the furnace body 20 to suppress violent or rapid combustion of the waste 18 remaining in the fluidized bed 14.
  • the fluidized bed furnace 10 is capable of suppressing intermittent and rapid generation of a combustible gas to stabilize the gas generation, even in a situation where a large amount of easily combustible trash is comprised in waste.
  • the first fluidization region 15 around the non-combustible substance discharge port 29 and the second fluidization region 16 having a fluidization degree lower than that in the first fluidization region 15 are formed.
  • new waste 18 is pushed onto the second fluidization region 16.
  • the input of the new waste 18 causes the waste 18 accumulated on the second fluidization region 16 to be moved toward the first fluidization region 15 step-by-step. The above operation will be repeated.
  • the fluidized bed furnace 10 can sufficiently gasify the waste 18, while suppressing rapid fluctuation of generation of a combustible gas. Consequently, it becomes possible to stably generate a combustible gas from the waste 18.
  • the waste 18 is not exposed to the highly fluidized bed (the first fluidization region 15), so that it becomes possible to suppress a situation where a large amount of lightweight trash flies up inside the furnace body 20 and undergoes rapid combustion in a free board section.
  • the upper surface 21a of the bottom wall 21 is inclined to become lower toward the non-combustible substance discharge port 29.
  • the non-combustible substances in the waste 18 sinks down to the bottom wall 21 in the fluidized bed 14, they fall on the upper surface 21a of the bottom wall 21 toward the non-combustible substance discharge port 29.
  • the non-combustible substances are discharged from the non-combustible substance discharge port 29 together with a part of the fluidizable particles 12, so that it becomes possible to easily discharge non-combustible substances from the furnace body 20.
  • the non-combustible substances discharged from the non-combustible substance discharge port 29 together with a part of the fluidizable particles 12 are separated from the fluidizable particles 12 in the separation section 52 of the sand circulation device 50.
  • the furnace body 20 has a shape in plan view, in which a dimension in the width direction thereof is equalized in a pushing direction of waste 18.
  • the pusher 41 is adapted to be reciprocatingly moved in a direction parallel to the pushing direction (front-rear direction) to allow the pushing surface 42 to push waste 18 onto the fluidized bed 14 simultaneously by the entire widthwise region of the pushing surface 42. This allows the pushing surface 42 to push waste 18 onto the fluidized bed 14 with an even force in the width direction.
  • the movement of the waste 18 from the second fluidization region 16 to the first fluidization region 15 is approximately equalized in the width direction, so that it becomes possible to prevent the waste 18 from concentrating on a certain portion inside the furnace.
  • the sidewall 22 stands upwardly and straight from the bottom wall 21 to the combustible gas outlet portion 23.
  • the sidewall may comprise a front wall 24A having a reflecting portion 224 extending toward the rear wall 25 to cover an upper side of the second fluidization region 16 at a predetermined height position.
  • the front wall 24A allows the waste 18 accumulated on the second fluidization region 16 to be heated by radiation heat from the reflecting portion 224. Consequently, it becomes possible to generate a combustible gas from the waste 18 accumulated on the second fluidization region 16. In other words, gasification of the waste 18 accumulated on the second fluidization region 16 is promoted.
  • the sidewall may comprise a rear wall 25A having a guide portion 225 extending toward the front wall 24 to cover an upper side of the first fluidization region 15 at a predetermined height position.
  • the guide portion 225 is adapted to guide a high-temperature combustible gas generated from the waste 18 in the first fluidization region 15 to allow the combustible gas to be brought into contact with the waste 18 accumulated on the second fluidization region 16.
  • the guide portion 225 allows the combustible gas to contribute to heating of the waste 18 accumulated on the second fluidization region 16. Consequently, it becomes possible to promote gasification of the waste 18 accumulated on the second fluidization region 16 without adding special heating means to the furnace body 20.
  • the sidewall may comprise a front wall 24B and a rear wall 25B having, respectively, two roof portions 324, 325 extending in a direction causing them to come closer to each other at the same height position.
  • the front wall 24B and the rear wall 25B allow the waste 18 accumulated on the second fluidization region 16 to be heated by radiation heat from the roof portion 324 of the front wall 24B, so as to promote gasification thereof.
  • a dimension of a furnace body 20B in the front-rear direction is reduced at a position lower than the combustible gas outlet portion 23 at the upper end of the furnace body 20B, so that it becomes possible to facilitate a reduction in size of the furnace body 20B.
  • the upper surface 21a of the bottom wall 21 has an inclination angle which is constant in the range from the front wall 24 to the non-combustible substance discharge port 29, the present invention is not limited thereto.
  • an inclination angle ⁇ of an upper surface 21d of a bottom wall 21A on the side of the second fluidization region 16 with respect to a horizontal surface may be greater than an inclination angle ⁇ of an upper surface 21e of the bottom wall 21A on the side of the first fluidization region 15 with respect to the horizontal surface.
  • the inclination angle ⁇ of the upper surface 21e on the side of the first fluidization region 15 with respect to the horizontal surface is in the range of 15 degrees to 25 degrees
  • the inclination angle ⁇ of the upper surface 21d on the side of the second fluidization region 16 with respect to the horizontal surface is in the range of 20 degrees to 75 degrees, preferably, in the range of 20 degrees to 30 degrees.
  • the upper surface 21a of the bottom wall 21 may be curved from the front wall 24 to the non-combustible substance discharge port 29, instead of being inclined straight.
  • thermometers T are disposed just above the second fluidization region 16, and an air supply section 60 capable of supplying air onto the second fluidization region 16 is provided.
  • an accumulated amount of the waste 18 accumulated on the second fluidization region 16 can be estimated, so that it becomes possible to control the accumulated amount.
  • the accumulated amount of the waste 18 on the second fluidization region 16 is estimated by utilizing a phenomenon that an indication value of the thermometer T embedded in the waste 18 is lowered.
  • the air supply section 60 is operable to supply air to increase an internal temperature of the furnace body 20. Accordingly, gasification of the waste 18 accumulated on the second fluidization region 16 is prompted, so that the accumulated amount of the waste 18 is reduced.
  • an amount of the air may be controlled based on determinations made as follows: when a temperature of a designated one of the thermometers T is equal to or greater than a threshold value, it is determined that there is no waste at a position of the designated thermometer T, and, when the temperature is less than the threshold value, it is determined that there is waste at the position of the designated thermometer T (the designated thermometer T is embedded in waste).
  • the gas feeding unit 33 is configured to feed air and/or an inert gas as the fluidizing gas.
  • the gas feeding unit 33 may be configured to feed water vapor and/or oxygen as the fluidizing gas, depending on a combustion state within the furnace body 20.
  • the fluidized bed furnace 10 may further comprise a second gas supply section provided in the sidewall 22 in addition to the first gas supply section 30, wherein the second gas supply section may be configured to be capable of supplying air, oxygen, water vapor or the like into the furnace body 20, depending on a combustion state in the fluidized bed 14 or of the waste 18.
  • the fluidizing gas to be supplied to the second fluidization region 16 may be a high-temperature fluidizing gas.
  • the temperature of the second fluidization region 16 can be maintained at a high value without increasing an amount of the fluidizing gas to be supplied.
  • the waste introduction port 28 is provided at a height position partially overlapping with respect to the waste 18 accumulated on the fluidized bed 14 in the up-down direction, so that waste 18 supplied from the waste introduction port 28 positively moves the waste 18 accumulated on the upper surface of the fluidized bed 14, generally horizontally (toward the first fluidization region 15).
  • the fluidized bed furnace 10 may have any configuration capable of supplying waste 18 to a region on the fluidized bed 14 adjacent to the front wall (supply-side sidewall portion) 24. For example, as illustrated in FIG. 10A and FIG.
  • the waste introduction port 28 may be provided at a height position which is located adjacent to the upper surface of the fluidized bed 14, and free of contact with waste 18 when it is newly supplied onto the waste 18 accumulated (on the second fluidization region 16) in a region of the upper surface of the fluidized bed 14 adjacent to the front wall 24.
  • the waste introduction port 28 may be provided to allow new waste to be supplied generally horizontally from a height position above the waste 18 accumulated on the fluidized bed 14.
  • the waste introduction port 28 may be provided to allow new waste to be supplied downwardly from a height position above the waste 18 accumulated on the fluidized bed 14.
  • the fluidizing gas to be supplied to the fluidized bed 14 is supplied in the second fluidization region 16 at a flow velocity satisfying the condition that U o /U mf ranges from 1 to less than 2, and supplied in the first fluidization region 15 at a flow velocity satisfying a condition that U o /U mf ranges from 2 to less than 5, as mentioned above.
  • the fluidizing gas may also be supplied in the second fluidization region 16 at a flow velocity satisfying the condition that U o /U mf ranges from 2 to less than 5, only for a certain period of time in order to discharge the accumulated non-combustible substances to the outside.
  • an amount of the fluidizing gas to be supplied to each of the gas boxes 32 is increased step-by-step in a direction from the front wall 24 (left side in FIG. 1 ) to the rear wall 25 (right side in FIG.
  • a flow volume of the fluidizing gas to be supplied to the gas box 32a becomes greater than that of the fluidizing gas to be supplied to each of the remaining gas boxes.
  • the flow volume of the fluidizing gas to be supplied to the gas box 32a is returned to a value during a normal operation, and a flow volume of the fluidizing gas to be supplied to the adjacent gas box 32b becomes greater than that of the fluidizing gas to be supplied to each of the remaining gas boxes.
  • the flow volume of the fluidizing gas to be supplied to the gas box 32b is returned to an original value, and a flow volume of the fluidizing gas to be supplied to the adjacent gas box 32c becomes greater than that of the fluidizing gas to be supplied to each of the remaining gas boxes.
  • the fluidized bed furnace according to the above embodiment is designed to heat waste to extract a combustible gas from the waste.
  • the fluidized bed furnace comprises the features of claim 1.
  • the first fluidization region around the non-combustible substance discharge port and the second fluidization region having a fluidization degree lower than that in the first fluidization region are formed in the fluidized bed.
  • the waste supply section supplies waste to a region on the fluidized bed adjacent to the supply-side sidewall portion to cause the waste to be accumulated on the second fluidization region while causing the waste accumulated on the second fluidization region to be moved into the first fluidization region step-by-step.
  • gasification of the waste is sufficiently performed while suppressing rapid fluctuation of generation of a combustible gas to be collected from the fluidized bed furnace, so that it becomes possible to stably generate a combustible gas from the waste.
  • fluidization in the second fluidization region is restrained, so that the waste is accumulated on the second fluidization region without being mixed with the fluidizable particles, and easily combustible components of the waste are slowly gasified. Therefore, in the second fluidization region, rapid combustion of the waste is suppressed, and generation of a combustible gas caused by rapid gasification of the waste is minimized.
  • the waste accumulated on the second fluidization region is moved into the first fluidization region step-by-step.
  • the fluidizable particles are actively fluidized and heated to a high temperature by combustion of the waste, so that the waste moved from a position on the second fluidization region is sufficiently mixed with the fluidizable particles, and thereby the waste is sufficiently gasified to generate a combustible gas. Consequently, it becomes possible to suppress intermittent and rapid generation of a combustible gas, thereby stabilizing the gas generation.
  • a temperature of the second fluidization region is maintained by the sand circulation device which returns the high-temperature fluidizable particles discharged from the non-combustible substance discharge port, to the second fluidization region of the fluidized bed.
  • the upper surface of the bottom wall is inclined to become lower toward the non-combustible substance discharge port, so that, when non-combustible substances in the waste sinks down to the bottom wall in the fluidized bed, they fall on the upper surface of the bottom wall toward the non-combustible substance discharge port.
  • the non-combustible substances are discharged from the non-combustible substance discharge port together with a part of the fluidizable particles, so that it becomes possible to easily discharge non-combustible substances from the furnace body.
  • the waste supply section is adapted to push new waste generally horizontally from the supply-side sidewall portion toward the waste accumulated on the second fluidization region, thereby causing the waste accumulated on the second fluidization region to be moved into the first fluidization region step-by-step.
  • new waste is pushed generally horizontally toward the waste accumulated on the second fluidization region.
  • the waste accumulated on the second fluidization region is pushed by the new waste and reliably moved into the first fluidization region.
  • the gas supply section is adapted to blow the fluidizing gas in the second fluidization region at a flow velocity satisfying a condition that U o /U mf ranges from 1 to less than 2, and blow the fluidizing gas in the first fluidization region at a flow velocity satisfying a condition that U o /U mf ranges from 2 to less than 5, where U mf is a minimum fluidization velocity which is a minimum flow velocity of the fluidizing gas to be blown so as to fluidize the fluidizable particles, and U o is a cross-sectional average flow velocity of the fluidizing gas.
  • the first fluidization region and the second fluidization region can be desirably formed by blowing the fluidizing gas at the above flow velocities. Consequently, it becomes possible to desirably gasify the waste while suppressing rapid combustion of the waste, thereby stably obtaining a combustible gas from the waste.
  • the furnace body has a shape in plan view, in which a dimension in a width direction perpendicular to a pushing direction along which waste is pushed by the waste supply section is equalized in the pushing direction.
  • the movement of the waste is stabilized, because the dimension of the furnace body in a direction perpendicular to the waste pushing direction (width direction) is equalized.
  • the flow of the fluidizable particles formed in a direction from the second fluidization region to the first fluidization region by the sand circulation device is directionally the same as the movement of the waste, so that the flow of the fluidizable particles is also stabilized.
  • the waste supply section comprises a pusher having a pushing surface extending in the width direction, and a drive unit for reciprocatingly moving the pusher in a direction parallel to the pushing direction to allow the pushing surface of the pusher to push waste onto the fluidized bed simultaneously by the entire widthwise region of the pushing surface.
  • waste is pushed onto the fluidized bed with an even force in the width direction, so that the movement of the waste from the second fluidization region to the first fluidization region is approximately equalized in the width direction.
  • the waste treatment method according to the above embodiment is designed to heat waste to extract a combustible gas from the waste.
  • the method comprises the steps described in claim 6.
  • the first fluidization region around the non-combustible substance discharge port and the second fluidization region having a fluidization degree lower than that in the first fluidization region are formed in the fluidized bed. Then, the waste is accumulated on the second fluidization region, and the waste accumulated on the second fluidization region is moved into the first fluidization region step-by-step.
  • gasification of the waste is sufficiently performed while suppressing rapid fluctuation of generation of a combustible gas to be collected from the fluidized bed furnace, so that it becomes possible to stably generate a combustible gas from the waste.
  • the upper surface of the bottom wall is inclined to become lower toward the non-combustible substance discharge port, so that non-combustible substances in the waste fall on the upper surface of the bottom wall toward the non-combustible substance discharge port.
  • the non-combustible substances are discharged from the non-combustible substance discharge port together with a part of the fluidizable particles, so that it becomes possible to easily discharge non-combustible substances from the furnace body.
  • the gasification step includes pushing new waste generally horizontally from the supply-side sidewall portion toward the waste accumulated on the second fluidization region, thereby causing the waste accumulated on the second fluidization region to be moved into the first fluidization region step-by-step and gasified.
  • new waste is pushed generally horizontally toward the waste accumulated on the second fluidization region.
  • the waste accumulated on the second fluidization region is pushed by the new waste and reliably moved into the first fluidization region, and gasified.
  • the fluidizing gas is blown in the second fluidization region at a flow velocity satisfying a condition that U o /U mf ranges from 1 to less than 2, and blown in the first fluidization region at a flow velocity satisfying a condition that U o /U mf ranges from 2 to less than 5, where U mf is a minimum fluidization velocity which is a minimum flow velocity of the fluidizing gas to be blown so as to fluidize the fluidizable particles, and U o is a cross-sectional average flow velocity of the fluidizing gas.
  • the first fluidization region and the second fluidization region can be desirably formed by blowing the fluidizing gas at the above flow velocities. Consequently, it becomes possible to desirably gasify the waste while suppressing rapid combustion of the waste, thereby stably obtaining a combustible gas from the waste.
  • the fluidized bed furnace and the waste treatment method of the present invention are useful in heating waste in a fluidized bed formed by fluidizing fluidizable particles, to extract a combustible gas from the waste, and suitable for stably obtaining a combustible gas even from waste comprising easily combustible trash.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Claims (8)

  1. Four à lit fluidisé (10) pour chauffer des déchets (18) afin d'extraire un gaz combustible des déchets (18), comprenant :
    des particules fluidisables (12) formant un lit fluidisé (14) pour chauffer les déchets (18) ;
    un corps de four (20) présentant une paroi inférieure (21) supportant les particules fluidisables (12) depuis le dessous, et une paroi latérale (22) se dressant vers le haut depuis la paroi inférieure (21), dans lequel la paroi inférieure (21) présente un orifice d'évacuation de substances non combustibles (29) prévu à une position en déport d'une position centrale de la paroi inférieure (21) dans une direction spécifique à l'évacuation des substances non combustibles dans les déchets (18) conjointement avec une partie des particules fluidisables (12), et une surface supérieure (21a) de la paroi inférieure (21) est inclinée pour s'abaisser vers l'orifice d'évacuation de substances non combustibles (29) de manière à amener les particules non combustibles à tomber sur la surface supérieure (21a) de la paroi inférieure (21) vers l'orifice d'évacuation de substances non combustibles (29) ;
    une section d'alimentation en gaz (30) pour insuffler un gaz fluidisant depuis la paroi inférieure (21) du corps de four (20) vers les particules fluidisables (12) pour fluidiser les particules fluidisables (12) ;
    une section d'alimentation en déchets (40) pour alimenter en déchets (18) à partir d'une partie côté alimentation de la paroi latérale (22) située sur un côté opposé à l'orifice d'évacuation de substances non combustibles (29) à travers la position centrale de la paroi inférieure (21), une région sur le lit fluidisé (14) adjacente à la partie de paroi latérale côté alimentation (24), amenant ainsi les déchets (18) sur le lit fluidisé (14) à être déplacés vers l'orifice d'évacuation de substances non combustibles (29) ;
    un dispositif de circulation de sable (50) pour retourner les particules fluidisables (12) évacuées de l'orifice d'évacuation de substances non combustibles (29), vers le lit fluidisé (14) depuis le côté de la section d'alimentation en déchets (40) afin de faire circuler les particules fluidisables (12), formant ainsi un flux de particules fluidisables (12) dirigées depuis la partie de paroi latérale côté alimentation (24) située sur le côté opposé à l'orifice d'évacuation de substances non combustibles (29), vers l'orifice d'évacuation de substances non combustibles (29) ;
    une pluralité de thermomètres (T) disposés au-dessus du lit fluidisé (14) ; et
    une section d'alimentation en air (60) pour alimenter en air le dessus du lit fluidisé (14),
    dans lequel :
    la section d'alimentation en gaz (30) est configurée pour insuffler le gaz fluidisant autour de l'orifice d'évacuation de substances non combustibles (29) afin de former une première région de fluidisation (15) où les particules fluidisables (12) sont déplacées dans un motif de type convection et mélangées avec les déchets (18) pour gazéifier les déchets (18), tout en insufflant le gaz fluidisant entre la première région de fluidisation (15) et la section d'alimentation en déchets (40) à une vitesse de flux inférieure à celle du gaz fluidisant à insuffler dans la première région de fluidisation (15), afin de former une seconde région de fluidisation (16) présentant un degré de fluidisation des particules fluidisables (12) inférieur à celui dans la première région de fluidisation (15) ;
    la section d'alimentation en déchets (40) est adaptée pour alimenter en déchets (18) depuis la partie de paroi latérale côté alimentation (24) le lit fluidisé (14) pour amener les déchets (18) à être accumulés sur la seconde région de fluidisation (16) tout en amenant les déchets accumulés (18) à être déplacés vers la première région de fluidisation (15) étape par étape ;
    la pluralité de thermomètres (T) est disposée à des positions différentes les unes des autres au-dessus de la seconde région de fluidisation (16) ; et
    la section d'alimentation en air (60) est configurée pour alimenter en air le dessus de la seconde région de fluidisation (16) selon une valeur d'indication de chacun de la pluralité de thermomètres (T) de manière à ce que le corps de four (20) présente une température interne prédéterminée.
  2. Four à lit fluidisé (10) selon la revendication 1, dans lequel la section d'alimentation en déchets (40) est adaptée pour pousser de nouveaux déchets (18) généralement horizontalement depuis la partie de paroi latérale côté alimentation (24) vers les déchets (18) accumulés sur la seconde région de fluidisation (16), amenant ainsi les déchets (18) accumulés sur la seconde région de fluidisation (16) à être déplacés vers la première région de fluidisation (15) étape par étape.
  3. Four à lit fluidisé (10) selon la revendication 1 ou 2, dans lequel la section d'alimentation en gaz (30) est configurée pour insuffler le gaz fluidisant dans la seconde région de fluidisation (16) à une vitesse de flux satisfaisant une condition selon laquelle Uo/Umf varie de 1 à moins de 2, et insuffler le gaz fluidisant dans la première région de fluidisation (15) à une vitesse de flux satisfaisant une condition selon laquelle Uo/Umf varie de 2 à moins de 5, où Umf est une vitesse de fluidisation minimum qui est une vitesse de flux minimum du gaz fluidisant à insuffler de manière à fluidiser les particules fluidisables (12), et Uo est une vitesse de flux moyenne de section transversale du gaz fluidisant.
  4. Four à lit fluidisé (10) selon l'une quelconque des revendications 1 à 3, dans lequel le corps de four (20) présente une forme dans une vue en plan, dans laquelle une dimension dans une direction de largeur perpendiculaire à une direction de poussée le long de laquelle des déchets (18) sont poussés par la section d'alimentation en déchets (40), est égalisée dans la direction de poussée.
  5. Four à lit fluidisé (10) selon la revendication 4, dans lequel la section d'alimentation en déchets (40) comprend un poussoir (41) présentant une surface de poussée (42) s'étendant dans la direction de la largeur, et une unité d'entraînement pour le déplacement alternatif du poussoir (41) dans une direction parallèle à la direction de poussée pour permettre à la surface de poussée (42) du poussoir (41) de pousser des déchets (18) sur le lit fluidisé (14) simultanément par toute la largeur entière de la surface de poussée (42).
  6. Procédé de traitement de déchets pour chauffer des déchets (18) afin d'extraire un gaz combustible des déchets (18), comprenant :
    une étape de préparation pour préparer un four à lit fluidisé (10) comprenant des particules fluidisables (12) formant un lit fluidisé (14) pour chauffer les déchets (18), un corps de four (20) présentant une paroi inférieure (21) supportant les particules fluidisables (12) depuis le dessous et une paroi latérale (22) se dressant vers le haut depuis la paroi inférieure (21), dans lequel la paroi inférieure (21) présente un orifice d'évacuation de substances non combustibles (29) prévu à une position en déport d'une position centrale de la paroi inférieure (21) dans une direction spécifique à l'évacuation des substances non combustibles dans les déchets (18) conjointement avec une partie des particules fluidisables (12), et une surface supérieure (21a) de la paroi inférieure (21) est inclinée pour s'abaisser vers l'orifice d'évacuation de substances non combustibles (29) de manière à amener les substances non combustibles à tomber sur la surface supérieure (21a) de la paroi inférieure (21) vers l'orifice d'évacuation de substances non combustibles (29) ;
    une étape de formation de région de fluidisation pour insuffler un gaz fluidisant depuis une région de la paroi inférieure (21) du corps de four (20) autour de l'orifice d'évacuation de substances non combustibles (29) vers les particules fluidisables (12) pour former une première région de fluidisation (15) où les particules fluidisables (12) sont déplacées dans un motif de type convection, tout en insufflant un gaz fluidisant entre la première région de fluidisation (15) et une partie côté alimentation de la paroi latérale (22) située sur un côté opposé à l'orifice d'évacuation de substances non combustibles (29) à travers la position centrale de la paroi inférieure (21), à une vitesse de flux inférieure à celle du gaz fluidisant à insuffler dans la première région de fluidisation (15), pour former une seconde région de fluidisation (16) présentant un degré de fluidisation des particules fluidisables (12) inférieur à celui dans la première région de fluidisation (15) ;
    une étape de formation de flux de particules fluidisables pour retourner les particules fluidisables (12) évacuées depuis l'orifice d'évacuation de substances non combustibles (29), vers le lit fluidisé (14) depuis le côté de la partie de paroi latérale côté alimentation (24) pour faire circuler les particules fluidisables (12), formant ainsi un flux de particules fluidisables (12) dirigées depuis la partie de paroi latérale côté alimentation (24) vers l'orifice d'évacuation de substances non combustibles (29) ;
    une étape de gazéification pour alimenter en déchets (18) depuis la partie de paroi latérale côté alimentation (24) une région sur le lit fluidisé (14) adjacente à la partie de paroi latérale côté alimentation (24), amenant ainsi les déchets (18) à être accumulés sur la seconde région de fluidisation (16), tout en amenant les déchets accumulés (18) à être déplacés vers la première région de fluidisation (15) étape par étape et gazéifiés ; et
    une étape d'alimentation en air pour alimenter en air le dessus du lit fluidisé (14) ;
    dans lequel :
    dans l'étape de préparation, le four à lit fluidisé (10) incluant en outre une pluralité de thermomètres (T) et une section d'alimentation en air (60) est préparé, la pluralité de thermomètres (T) étant disposée à des positions différentes les unes des autres au-dessus de la seconde région de fluidisation (16), et la section d'alimentation en air (60) alimentant en air le dessus de la seconde région de fluidisation (16) ; et
    dans l'étape d'alimentation en air, la section d'alimentation en air (60) alimente en air le dessus de la seconde région de fluidisation (16) selon une valeur d'indication de chacun de la pluralité de thermomètres (T) de manière à ce que le corps de four (20) présente une température interne prédéterminée.
  7. Procédé de traitement de déchets selon la revendication 6, dans lequel l'étape de gazéification inclut la poussée de nouveaux déchets (18) généralement horizontalement depuis la partie de paroi latérale côté alimentation (24) vers les déchets (18) accumulés sur la seconde région de fluidisation (16), amenant ainsi les déchets (18) accumulés sur la seconde région de fluidisation (16) à être déplacés dans la première région de fluidisation (15) étape par étape et gazéifiés.
  8. Procédé de traitement de déchets selon la revendication 6 ou 7, dans lequel le gaz fluidisant est insufflé dans la seconde région de fluidisation (16) à une vitesse de flux satisfaisant une condition selon laquelle Uo/Umf varie de 1 à moins de 2, et insufflé dans la première région de fluidisation (15) à une vitesse de flux satisfaisant une condition selon laquelle Uo/Umf varie de 2 à moins de 5, où Umf est une vitesse de fluidisation minimum qui est une vitesse de flux minimum du gaz fluidisant à insuffler de manière à fluidiser les particules fluidisables (12), et Uo est une vitesse de flux moyenne de section transversale du gaz fluidisant.
EP11797836.1A 2010-06-22 2011-06-21 Four à lit fluidisé et procédé de traitement des déchets Not-in-force EP2587146B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11797836T PL2587146T3 (pl) 2010-06-22 2011-06-21 Piec ze złożem fluidalnym oraz sposób obróbki odpadów

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010141830A JP5694690B2 (ja) 2010-06-22 2010-06-22 流動層炉及び廃棄物処理方法
PCT/JP2011/003527 WO2011161947A1 (fr) 2010-06-22 2011-06-21 Four à lit fluidisé et procédé de traitement des déchets

Publications (3)

Publication Number Publication Date
EP2587146A1 EP2587146A1 (fr) 2013-05-01
EP2587146A4 EP2587146A4 (fr) 2015-10-07
EP2587146B1 true EP2587146B1 (fr) 2017-11-29

Family

ID=45371154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11797836.1A Not-in-force EP2587146B1 (fr) 2010-06-22 2011-06-21 Four à lit fluidisé et procédé de traitement des déchets

Country Status (6)

Country Link
US (1) US20130092064A1 (fr)
EP (1) EP2587146B1 (fr)
JP (1) JP5694690B2 (fr)
CN (1) CN102947646A (fr)
PL (1) PL2587146T3 (fr)
WO (1) WO2011161947A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010746A (ja) * 2013-06-27 2015-01-19 株式会社神鋼環境ソリューション 粒子供給装置、清掃方法及び清掃装置
JP2015045422A (ja) * 2013-08-27 2015-03-12 株式会社Ihi 流動層ボイラ
JP6178352B2 (ja) * 2014-03-18 2017-08-09 株式会社神鋼環境ソリューション 流動床炉の運転方法及び流動床炉
JP2016000379A (ja) * 2014-06-11 2016-01-07 永田エンジニアリング株式会社 流動層焼却炉の異物分離装置
JP6109400B1 (ja) * 2016-12-01 2017-04-05 建十 鳥居 耐火物及び焼却炉

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318517A (ja) * 1997-05-20 1998-12-04 Nkk Corp 流動床焼却炉の燃焼制御方法および燃焼制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
JPS58108317A (ja) * 1981-12-21 1983-06-28 Fuji Electric Co Ltd 流動床焼却炉の焼却材料供給装置
JPS61205720A (ja) * 1985-03-08 1986-09-11 Kobe Steel Ltd 横型流動床焼却炉
US4777889A (en) * 1987-05-22 1988-10-18 Smith Richard D Fluidized bed mass burner for solid waste
JPH07110122A (ja) * 1993-08-17 1995-04-25 Mitsubishi Heavy Ind Ltd 流動床燃焼装置
JP2639885B2 (ja) * 1993-08-18 1997-08-13 株式会社タクマ 廃棄物焼却方法及びその装置
JP2727291B2 (ja) * 1993-11-22 1998-03-11 株式会社タクマ 流動層式焼却炉
US5401130A (en) * 1993-12-23 1995-03-28 Combustion Engineering, Inc. Internal circulation fluidized bed (ICFB) combustion system and method of operation thereof
JP2991639B2 (ja) * 1995-06-14 1999-12-20 日本碍子株式会社 廃棄物焼却装置
JP3037134B2 (ja) * 1996-04-26 2000-04-24 日立造船株式会社 流動床式焼却炉
JPH109511A (ja) * 1996-06-21 1998-01-16 Ebara Corp 流動層ガス化及び熔融燃焼方法
JP3259831B2 (ja) * 1997-12-01 2002-02-25 川崎重工業株式会社 ガス化炉における未燃分再燃焼方法及び装置
CN1239841C (zh) * 1998-02-27 2006-02-01 株式会社荏原制作所 流动床气化炉
JP3542280B2 (ja) * 1998-08-19 2004-07-14 日立造船株式会社 流動床式焼却炉
JP4295291B2 (ja) * 2006-03-31 2009-07-15 三菱重工環境エンジニアリング株式会社 流動床ガス化炉及びその流動層監視・制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318517A (ja) * 1997-05-20 1998-12-04 Nkk Corp 流動床焼却炉の燃焼制御方法および燃焼制御装置

Also Published As

Publication number Publication date
US20130092064A1 (en) 2013-04-18
EP2587146A1 (fr) 2013-05-01
PL2587146T3 (pl) 2018-04-30
WO2011161947A1 (fr) 2011-12-29
CN102947646A (zh) 2013-02-27
JP2012007763A (ja) 2012-01-12
JP5694690B2 (ja) 2015-04-01
EP2587146A4 (fr) 2015-10-07

Similar Documents

Publication Publication Date Title
EP2587147B1 (fr) Four à lit fluidisé et procédé de traitement des déchets
EP2587146B1 (fr) Four à lit fluidisé et procédé de traitement des déchets
US20130327257A1 (en) Fluidized bed furnace
EP2642200B1 (fr) Four à lit fluidisé et procédé de traitement de déchets
EP0736157B1 (fr) Systeme de combustion a lit fluidise a circulation interne
JP2004093113A5 (fr)
US20070014704A1 (en) Fluidized-bed gasification furnace
CN107109518A (zh) 烧结机和烧结方法
US4335662A (en) Solid fuel feed system for a fluidized bed
US4803973A (en) Grate for coal stove
JP2005315566A (ja) 流動床炉及びその焼却方法
JP5694700B2 (ja) 流動層炉及び廃棄物処理方法
EP0595487B1 (fr) Réacteur à lit fluidisé avec refroidisseur à gaz de strippage et procédé de sa mise en oeuvre
US8815165B2 (en) Systems and methods for distributing particulate material into a particulate vessel and FCC units including the systems
EP2754960A1 (fr) Four à lit fluidisé et procédé d'élimination de déchets utilisant un four à lit fluidisé
CN102782407B (zh) 流态化床反应器装置
JP5766516B2 (ja) 円筒形流動床炉
KR20120079845A (ko) 순환 유동층 보일러에 연료를 공급하기 위한 방법과 장치
EP3054214A1 (fr) Procédé pour alimenter en air une chaudière à lit fluidisé, une telle chaudière et moyens d'alimentation en combustible qui lui sont destinés
US20090205545A1 (en) Pellet burner
JP4221009B2 (ja) 流動床炉
KR100923109B1 (ko) 고체 연료 연소 장치 및 그 운전 제어 방법
TH51547B (th) เตาเผาแบบฟลูอิไดซ์เบด (Fluidized bed) และวิธีการบำบัดของเสีย
JPH10227425A (ja) 流動床炉

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150907

RIC1 Information provided on ipc code assigned before grant

Ipc: F23C 10/26 20060101ALI20150901BHEP

Ipc: F23G 5/30 20060101ALI20150901BHEP

Ipc: F23C 10/02 20060101ALI20150901BHEP

Ipc: F23C 10/20 20060101ALI20150901BHEP

Ipc: F23G 5/027 20060101AFI20150901BHEP

Ipc: F23C 10/22 20060101ALI20150901BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 950729

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011043825

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 950729

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011043825

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011043825

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180621

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180621

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210611

Year of fee payment: 11

Ref country code: GB

Payment date: 20210625

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220621