EP2576771A2 - Isolierung von mesenchymalen stammzellen - Google Patents

Isolierung von mesenchymalen stammzellen

Info

Publication number
EP2576771A2
EP2576771A2 EP11725901.0A EP11725901A EP2576771A2 EP 2576771 A2 EP2576771 A2 EP 2576771A2 EP 11725901 A EP11725901 A EP 11725901A EP 2576771 A2 EP2576771 A2 EP 2576771A2
Authority
EP
European Patent Office
Prior art keywords
peptide
collagen
msc
stem cells
mesenchymal stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11725901.0A
Other languages
English (en)
French (fr)
Inventor
Wilhelm Aicher
Brigitte Angres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberhard Karls Universitaet Tuebingen
Baden Wuerttemberg Stiftung gGmbH
Universitaetsklinikum Tuebingen
Original Assignee
Eberhard Karls Universitaet Tuebingen
Baden Wuerttemberg Stiftung gGmbH
Universitaetsklinikum Tuebingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberhard Karls Universitaet Tuebingen, Baden Wuerttemberg Stiftung gGmbH, Universitaetsklinikum Tuebingen filed Critical Eberhard Karls Universitaet Tuebingen
Publication of EP2576771A2 publication Critical patent/EP2576771A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/1008Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to the isolation, identification and / or activation of mesenchymal stem cells with proteins or peptides derived therefrom.
  • MSCs Mesenchymal stem cells
  • Mesenchymal stem cells are pluripotent cells and can differentiate into various mesenchymal tissues under appropriate in vitro and vzvo conditions, such as bone, adipose tissue, muscle, cartilage.
  • MSCs have the property of adhering stably and quickly to plastic or glass surfaces. ren, and have a fibroblastoid phenotype.
  • MSCs are well distinguishable from hematopoietic stem cells because they do not express specific hematopoietic surface markers.
  • no specific surface antigen is known in the art for MSCs; The surface molecules they express are also found on surfaces of endothelial, mesenchymal and epithelial cells, as well as muscle cells.
  • MSC meenchymal stem cells
  • primary tissue eg, bone marrow, adipose tissue, placenta
  • cells that are being cultured and differentiate into fibroblastoid cells adherent in culture from these primary cells where they express cell surface markers such as CD29, CD44, CD73, CD90, CD105, CD166 but are negative for the hematopoietic stem cell marker CD34 and the pan-leukocyte marker CD45.
  • the cells generated in culture are referred to as mesenchymal stem cells, since they themselves still possess a multipotent differentiation capacity according to this method.
  • differentiated MSCs isolated from placenta, bone marrow and adipose tissue can be expanded in vitro, differentiated into osteoblasts, chondrocytes and myocytes, and then reused in vivo, for example for the regeneration of bones, cartilage, tendons, muscles, adipose tissue and stroma ,
  • bone marrow mesenchymal stem cells can be isolated by means of antibodies which are directed against the low-affinity receptor for the low-affinity nerve growth factor receptor (CD271) (Quirici et al. "Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies", Exp. Hematol., 2002, 30 (7): 783-791).
  • CD271 low-affinity nerve growth factor receptor
  • MSC can be isolated via antibodies against SH2 (CD105), SH3 (CD73) and SH4 (CD73) (see Barry F, et al., "The SH-3 and SH-4 antibodies recognize distinct epitopes on CD 73 from human mesenchymal stem cells ", Biochem Biophys Res Commun. 2001; 289: 519-24; and Pittenger MF, et al.," Multilinear potential of adult human mesenchymal stem cells ", Science 1999; 284: 143-7).
  • the disadvantage of the previous markers is that they are all not specific for MSC, but recognize other cell populations in the bone marrow.
  • the cell surface marker CD271 is the most specific cell surface marker for the isolation of mesenchymal stem cells, which is commercially available. Thus, for example, monoclonal antibodies to this marker are marketed by the companies BD PharMingen, San Diego, USA, and Miltenyi Biotech, Bergisch Gladbach, Germany. However, it has been found that this marker is not selective for MSC but is also expressed on other CD45-positive hematopoietic cells. Thus, not only mesenchymal cells but also hematopoietic cells are isolated in an isolation procedure with anti-CD271 antibodies.
  • MSC mesenchymal stem cells
  • fibroblasts express the inclusion and exclusion criteria defined by Dominici and colleagues (Cytotherapy, 2006; 8: 315-7), they can not be distinguished microscopically from MSC. But they are by no means differentiation competent. Therefore, separation of MSC from fibroblasts is very important.
  • this object is achieved in that a protein or a peptide derived therefrom is used for the isolation and / or identification of mesenchymal stem cells, which is selected from the group comprising lami- nin-1, collagen-1, collagen-3, collagen 4, tenascin, thrombospondin-1, osteopontin, fibronectin, vitronectin, or fragments thereof capable of binding to MSC, or mixtures thereof.
  • the protein has a sequence selected from SEQ ID Nos. 1 to 7, and more preferably, when the peptide derived therefrom has any one of SEQ ID NOS: 8 to 32 of the attached sequence listing.
  • proteins provided or the peptides derived therefrom bind specifically and preferentially to mesenchymal stem cells, which makes it possible to isolate mesenchymal stem cells from contaminating cells such as fibroblasts and to use them for further applications.
  • the proteins and peptide fragments listed herein can also be used for culturing and / or activating MSC.
  • derived peptides or “peptide derived therefrom” or “peptide fragment” herein is meant any peptide contained in the listed proteins, and therefore having a sequence of contiguous amino acids, as such, ie, having the same sequence the amino acid containing protein, the sequence has binding properties to MSC, preferably the same or similar to the total protein
  • protein is a gene identified as such. meant with certain functions and structures, and with “peptide” a part, or a partial sequence thereof.
  • Laminin is a glycoprotein found mainly in the basal lamina of epithelia and endothelia with a 14% carbohydrate content.
  • the laminin molecule consists of an a-, a ß- and a ⁇ -protein chain, which are assembled in heterotrimeric form to the respective laminin molecule.
  • At present 15 different laminin isoforms are known.
  • Collagen is an extracellular matrix protein that is a water-insoluble, fibrous structure of skieroproteins. It is particularly involved in the formation of connective tissues such as the skin, blood vessels, ligaments, tendons and cartilage, as well as the formation of bones and teeth (dentin).
  • connective tissues such as the skin, blood vessels, ligaments, tendons and cartilage, as well as the formation of bones and teeth (dentin).
  • types I to XXVIII all of which have the structure of three polypeptide chains in common, referred to as collagen helices, which are wound around each other in the form of a triple helix.
  • Collagen-1 and collagen-3 together with collagen-2, -9 and -11, are among the fibrillar collagens.
  • Collagen-1, a trimer consists of [al (I) 2 a2 (I)] (alpha-1 type I collagen) or 3 [al (I)] chains;
  • Collagen-3 is a homotrimer of 3 [al (III)] chains.
  • tenascin is an oligomeric extracellular matrix glycoprotein involved in interactions between epithelial and mesenchymal cells.
  • three different types of tenascin have been described so far (tenascin-R, -C and -X), which are inter alia expressed in the number of specific domains, namely the EGF (epidermal growth factor) and fibronectin type III-like domains, differ.
  • Tenascin is involved in the regeneration of nervous tissue in the adult organism. In adult skin, tenascin is induced during wound healing. Tenascin directs the migration of cells in these processes, while it can stimulate or inhibit cell adhesion across different protein domains.
  • Osteopopntin is a glycoprotein in all higher mammals involved in the maintenance of bone tissue and some immune processes. It binds hydroxyapatite and forms the basic structure for bones. Synonymous names of the protein are sialoprotein I and 44K BPP (bone phosphoprotein).
  • Thrombospondin-1 belongs to a family of proteins involved in different biological processes.
  • the protein family consists of thrombospondin-1 to -5, distinguishing subgroups: Subgroup A consists of TSP1 and TSP2, which are homotrimers; Subgroup B consists of TSP3, TSP4 and TSP5.
  • TSP1 is involved in many different biological processes such as angiogenesis, apoptosis, activation of tissue hormone TGF and immune regulation.
  • Fibronectin (from Latin: fibra for "fiber", nexus for "linkage”) is an extracellular glycoprotein that plays an important role in many physiological processes. It is a heterodimer of two rod-shaped polypeptide chains held together close to the C-terminal end by disulfide bridges. So far, more than 20 different isoforms have been found that are generated by alternative splicing of the mRNA of a single gene.
  • a single fibronectin polypeptide chain ( ⁇ 230 kDa) consists of a large number of domains (about 40-90 amino acids) which, due to their homology, are classified into structural types I, II, and III.
  • Vitronectin is a glycoprotein present in the serum and the extracellular matrix and provides a secreted protein which is either in the form of a single chain or a double chain linked by a di-sulphide bridge.
  • NCBI National Center for Biotechnology Information
  • the protein or the peptide derived therefrom has a sequence which is selected from SEQ ID Nos. 1 to 32 of the attached sequence listing, or that contained therein, a binding-relevant sequence.
  • Figure 1 illustrates the sequence of the human laminin-1 alpha-1 chain and is listed, for example, in the GenBank® of the National Center for Biotechnology Information under the number NP_005550; the sequence with the ID no.
  • Figure 2 is the sequence of the beta-l-chain of human laminin-1 (GenBank® # NP_002282), the sequence with the ID-No.
  • Figure 3 shows the sequence of the human laminin-1 gamma 1 chain (GenBank® # NP_00284).
  • the SEQ ID NO. 4 represents the sequence of the human collagen alpha (I) chain (GenBank® No. P02452), the sequence with the ID no.
  • FIG. 5 shows the sequence of the human collagen alpha-2 (I) chain (GenBank® No. P08123), and the sequence with the ID no.
  • Figure 6 shows the sequence of the human collagen alpha (III) chain (GenBank® # P02461).
  • the three sequences with the SEQ ID Nos. 4, 5 and 6 therefore represent sequences for the trimer collagen 1.
  • the sequence with the SEQ ID NO. 6 is also part of the homotrimer collagen-3.
  • Figure 7 depicts the sequence of human tenascin-C and has the identification CAA55309 in GenBank®.
  • one of the following binding-specific peptide fragments is used: a) a peptide having one of the SEQ ID numbers SEQ ID Nos. 8 to 32 listed in the sequence listing, or b) fragments of the sequences according to a) having substantially the same biological activity of the peptide according to a) in a test for the binding of mesenchymal stem cells, c) a peptide fragment having a sequence which is at least 80%, preferably at least 80% to 99%, identical to one of the sequences listed in a) and b).
  • the sequences having SEQ ID NOS: 8 to 32 are preferred peptides with which mesenchymal stem cells can be specifically bound.
  • the peptides having SEQ ID Nos. 8 (GF-Orn-GER containing ornithine at position 3) and 9 (GEFYFDLRLKGDK) are derived from collagen-1 and -4, SEQ ID Nos.10 to 13 of laminin (LRE Laminin; AASIKAVAVSADR, laminin alpha chain; LAIKNDNLVYVY, DVISLYNFKHIY (SEQ ID NO: 23), each laminin alpha4 chain; RYVVLPRPVLFEK, laminin betal chain), SEQ ID Nos.
  • thrombospondin EHTGAARKGSGRRLVKGPD, thrombospondin l) KKTRGTLLALERKDHS, thrombospondin-1
  • SEQ ID NO: 16 of osteopontin SEQ ID NOS: 17 to 20 and 32 of fibronectin (YIIR; GSKS; TYSSPEDGIHE; WQPPRARITGY; DELPQLVTLPHPNLHGPEILDVPST).
  • proteins / peptides can also be used for the purposes of the inventive use, which, for example, are functionally identical to the disclosed peptides because of sequence homologies, so that, for example, proteins can also be used , which may be possible in comparison to the mentioned proteins / peptides deletions, substitutions, insertions, etc., but which nevertheless have the same function as the mentioned proteins / peptides.
  • proteins can also be used , which may be possible in comparison to the mentioned proteins / peptides deletions, substitutions, insertions, etc., but which nevertheless have the same function as the mentioned proteins / peptides.
  • binding-relevant fragments of said proteins / peptides can be used.
  • a substantially identical biological activity (of a peptide) in a test concerning the binding of mesenchymal stem cells means that variants or derivatives of the peptides with SEQ ID Nos. 8 to 32 in the context of the present invention for the In this context, it is understood that by “substantially” an activity is meant that is nearly the same with the values for the peptides specifically disclosed with their sequences. The person skilled in the art will be aware of this or it will be apparent from the disclosed sequences by reasonable, simple experiments which sequence variants are still possible in order to achieve such a similar binding specificity and effectiveness.
  • hybridization under stringent conditions in the context of this invention means that the hybridization is performed in vitro under conditions that are stringent enough to ensure specific hybridization.
  • specific hybridization refers to the fact that a molecule preferentially binds under stringent conditions to a particular nucleic acid sequence, the target sequence, if this is part of a complex mixture of e.g. DNA or RNA molecules is, but not or at least substantially reduced to other sequences.
  • the exact conditions for stringency depend on appropriate circumstances, for example with regard to the material used.
  • stringent conditions are those in which hybridization between said nucleotide sequences occurs under conventional conditions, especially at 20 ° C below the melting point of said nucleotide sequences.
  • Preferred hybridization conditions are, for example, those in which a solution of 5 ⁇ or 6 ⁇ SSPE (or SSC), 1% or 0.5% SDS, 1 ⁇ Denhardts solution is used, and the hybridization temperatures between 35 ° C. and 70 ° C., preferably at 65 ° C. After hybridization, washing is preferably carried out first with 2 ⁇ SSC, 1% SDS and then with 0.2 ⁇ 10 ⁇ SSC at temperatures between 35 ° C. and 70 ° C., preferably at 65 ° C. (for the definition of SSPE, SSC and Denhardts See Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)).
  • sequence homology or “sequence identity” denotes the proportion of the bases that match two nucleic acid sequences or the proportion of the amino acids that match two amino acid sequences. If the sequence homology is expressed as a percentage, e.g. B. 90%, called the Percent the proportion of matches over the length of the sequence compared to another sequence.
  • proteins / peptides derived therefrom of human origin can be used, but on the other hand also functionally and structurally similar / identical proteins from other mammals can be used, as well as artificially synthesized or recombinantly produced peptides / proteins the sequence of said proteins / peptides - or parts thereof - have.
  • proteins or the peptides derived therefrom for the direct isolation of MSC from primary tissue, such as bone marrow, umbilical cord blood, etc.
  • proteins or the peptides derived therefrom can be used to modify or stabilize the specific differentiation of the mesenchymal stem cells into the mature mesenchymal cell types, such as chonrocytes, osteoblasts, adipocytes, myocytes.
  • proteins or the peptides derived therefrom are also suitable for use in sztw applications:
  • support structures such as implants or stents or the like can be used.
  • the MSCs bind to the carrier structures via these peptides, as a result of which the MSC concentrates locally on the carrier materials. be rung.
  • the peptides are of human origin, so that no immune reactions occur.
  • proteins or the peptides derived therefrom are used for the selection of MSC from a sample containing MSC and other cell types.
  • MSC can be isolated directly from a primary culture by means of the use of the disclosed proteins or the peptides derived therefrom, or else from an already cultivated cell population.
  • the peptide can be used to label MSC.
  • the protein to be used or the peptide derived therefrom can be modified or labeled, for example by fluorescent groups, so that after binding of the protein / peptide to the MSC they can be easily and quickly identified on the basis of the label.
  • the protein or the peptide derived therefrom is used for enrichment of MSC.
  • an enrichment can be achieved in vitro or in situ, for example by coating suitable materials / structures with the peptides, as mentioned above.
  • the protein or peptide derived therefrom be used to induce the proliferation or differentiation of MSC.
  • the proteins or the peptides derived therefrom can be used specifically to modify the differentiation of the MSC, for example into osteoblasts, chondrocytes, adipocytes, etc.
  • the protein or peptide derived therefrom is selected from the group consisting of laminin-1, collagen-1, collagen-3, collagen-4, tenascin, thrombospondin-1, osteopontin, fibronectin , or binding-specific fragments or mixtures thereof, for the treatment of wounds, injuries and / or degenerated tissue.
  • This measure has the advantage that it is possible to resort to protein / peptide structures which are of human origin and therefore cause little or no immune reactions when, for example in connection with a carrier structure on which they are immobilized, they enter the body a patient are introduced.
  • the tissue to be treated can be any bone, cartilage and / or muscle tissue, preferably of humans.
  • the drug is an implant coated with at least one peptide, in particular a stent.
  • a stent is an endoprosthesis, various materials that generally serve to hold bodily vessels open, and that are tubular and / or meshed with or without a sheath. Stents are introduced in compressed form via a suitable delivery system in the vessels and deployed at the destination for local whereabouts.
  • the stent to be used is coated with the protein or the peptide derived therefrom and subsequently introduced into the vessel to be treated.
  • implants for example for skin, cartilage or bone replacement or regeneration, can be coated with the peptides and implanted in the body region to be treated.
  • implants for the treatment of knee and disc damage should be mentioned here, it being clear to the person skilled in the art that any other implant which is implanted in a body for the purpose of regeneration or replacement of tissue can be correspondingly coated.
  • the MSC are concentrated there via the peptides present on the carrier, thereby creating a type of "wound plaster".
  • the invention also relates to the use of a protein or a peptide derived therefrom which is selected from the group comprising laminin-1, collagen-1, collagen-3, collagen-4, tenascin, thrombospondin-1, osteopontin, fibronectin , or binding-specific fragments or mixtures thereof, for the manufacture of an implant.
  • the invention further relates to a method for isolating, identifying, culturing and activating mesenchymal stem cells, comprising the step of selecting the stem cells from a sample containing stem cells with a protein or derived peptide selected from laminin-1, collagen-1 , Collagen-3, collagen-4, tenascin, thrombospondin-1, osteopontin, fibronectin, or binding-specific fragments or mixtures thereof, in particular with a peptide of SEQ . ID Nos. 1 to 32.
  • stem cells obtained by this method according to the invention which are likewise encompassed by the invention, can in turn, as mentioned above, be used for the treatment of, for example, degenerated or injured tissue, for example for the treatment of bones, cartilage and / or muscles.
  • the present invention therefore also relates to the use of mesenchymal stem cells which have been isolated, identified, cultured or activated according to one of the methods according to the invention or which have been prepared according to the method according to the invention. have been enriched for the manufacture of a medicament for treating wounds, injuries and / or degenerated tissue, in particular cartilage, bones, muscles, vessels, or for immunotherapeutic purposes, as trophic cells, which then need not necessarily be detectable in repair tissue , or as a vehicle for recombinant (gene) therapy.
  • the invention further relates to a synthetic, isolated or recombinant peptide comprising an amino acid sequence selected from the group consisting of: a) the amino acid sequence according to SEQ ID Nos. 8 to 32, b) fragments of the sequences according to a), the biological activity of the peptide c) fragments having a sequence which is at least 80%, preferably at least 80% to 99%, identical to one of the sequences listed in a) and b) ,
  • peptides specifically bind mesenchymal stem cells, as the experiments of the inventors have shown. Thus, the peptides provide a means to isolate and / or enrich mesenchymal stem cells.
  • the peptides can also be expressed by genetic engineering methods and expressed as structures both membrane-bound on cells, as well as in dissolved form and in combination with other proteins. (e.g., as peptide + collagen-1 fiber for augmented biomaterial)
  • the peptides according to the invention can thus also be used directly for the treatment of wounds, injuries and / or degenerated tissue. Therefore, the invention also relates to pharmaceutical compositions comprising at least one of the peptides of the invention and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active substance in the composition.
  • the pharmaceutical composition contains further therapeutically and / or pharmaceutically active substances, which is additionally administered in the pharmaceutical composition depending on the disease (s) to be treated.
  • the disease to be treated is preferably a human disease.
  • the pharmaceutical composition may be administered systemically, i. for example, orally, subcutaneously, intravenously, rectally, parenterally, intramuscularly, interperitoneally, transdermally, or topically, the mode of administration depending on the nature of the disease, the clinical picture, as well as the condition of the patients.
  • the administration can take place repeatedly or once, wherein the administration in the former case can take place once or several times a day, and / or over a longer period of time.
  • the pharmaceutical composition may also contain buffers, diluents and / or additives.
  • buffers include, for example, Tris-HCl, glycine and phosphate, and suitable diluents, for example, aqueous NaCl solutions, lactose or mannitol.
  • suitable additives include, for example, detergents, solvents, antioxidants and preservatives.
  • Fig. 1 is a comparative analysis of the adherence of human mesenchymal stem cells (MSC; Samples 5, 6, red / blue columns, right) compared to human fibroblasts (Samples 1 to 4, green / yellow columns, left center).
  • FIG. 2 Measurement examples of laminin, collagen-1 and collagen-4 (A), FIG.
  • MSC were enriched from bone marrow by density gradient centrifugation, cultured in MSC expansion medium as an adherent population and harvested. The differentiation potential was tested on an aliquot and adipogenic, chondrogenic and osteogenic differentiation confirmed. Thus, the cells fulfill the physiological requirements for MSC (Dominici M. et al., 2006, Cytotherapy, 8: 315 ff). It is understood that MSC can also be used from other tissues, such as fatty tissue or any other tissue in which MSC is present.
  • Fibroblasts were isolated from the synovial membrane and expanded as described (Aicher et al 1994 J Immunol 152: 5940 et seq.). The cells were harvested, washed, counted, and each 20,000 / assay chamber was assayed for adherence to proteins using MSA TM chip technology. Briefly, the cells were each incubated on a microarray of 12 different proteins in a chamber initially for uniform distribution with shaking (two hours), then without shaking (two hours) under standard culture conditions. Non-adherent cells were washed off by rinsing the arrays after this incubation. Cells adhering to the proteins were chemically fixed and their nuclei labeled with dye to quantify the number of adherent cells per microsphere protein. Instead of the fibroblasts used here, for example. Skin fibroblasts, chondrocytes, osteoblasts, meniscal cells, o.a. Cells are used.
  • Fig. 1 The results of this experiment are shown in Fig. 1, wherein adherence to the proteins laminin-1 (LN EHS), collagen-3 (CHI) and collagen-1 (CI) and tenascin-C (TN) with the eighth, tenth , eleventh and twelfth protein in the diagram in Fig. 1 is shown.
  • the other proteins tested were: fibronectin (FN hulps), collagen-6 (CVI), vitronectin (VN), collagen-4 (CIV EHS), and laminin-10 (LN huplc).
  • FN hulps fibronectin
  • CVI collagen-6
  • VN vitronectin
  • VN vitronectin
  • CIV EHS collagen-4
  • laminin-10 LN huplc
  • PLL protein poly-L-lysine
  • BSA bovine serum albumin
  • the adhesion of cells to peptides was also measured by MSA TM technology (see Kuschel et al., 2006) as in Example 1 above.
  • MSA TM technology see Kuschel et al., 2006
  • peptides coupled to bovine serum albumin were printed on the nitrocellulose layer in the form of microarrays (8 x 8 microspots), and then the remaining surface was sealed.
  • small silicone chambers were placed on the coated slide and incubated with MSC or fibroblasts. After two hours of incubation, the cells that did not attach were rinsed off.
  • Adherent cells were visualized by Coomassie blue staining on the white nitrocellulose film and evaluated in a motorized photomicroscope: the number of blue cells or the color intensity per spot is measured and transferred to tables for evaluation
  • Figure 2 shows the results obtained with different peptides and MSC.
  • the results shown in FIG. 2 show that laminin-derived peptides No. 9, # 9-COOH (SEQ ID No. 10), No. 15 and No. 16, collagen-derived peptides No. 1 and No. 5 (SEQ ID Nos. 8 and 9), vitronectin-derived peptide No. 37b , and the fibronectin-derived peptides No. 11, No. 20, No. 21, NR. 21-COOH, # 22, # 22-COOH, # 34, # 34-COOH, and # 30 allow adhesion of MSC ( Figure 2) but not fibroblasts ( Figure 3).
  • the sequences of the MSC-binding peptides are shown in Table 1:

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Peptides Or Proteins (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung eines Peptids, das ausgewählt ist aus der Gruppe umfassend Laminin-1, Kollagen-1, Kollagen-3, Kollagen-4, Tenascin, Thrombospondin-1, Osteopontin, Fibronectin, Vitronectin, oder Fragmente oder Mischungen davon, zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen (MSC), insbesondere von Peptid-Fragmenten dieser Peptide. Ferner betrifft die Erfindung die Verwendung dieser Peptide/Peptid-Fragmente in der Behandlung von Wunden, Verletzungen und/oder degeneriertem Gewebe.

Description

Isolierung von mesenchymalen Stammzellen
Die vorliegende Erfindung betrifft die Isolierung, Identifizierung und/oder Aktivierung von mesenchymalen Stammzellen mit Proteinen bzw. daraus abgeleiteten Peptiden.
Mesenchymale Stammzellen (MSCs) sind pluripotente Zellen und können sich unter geeigneten in vitro- und in vzvo-Bedingungen in verschiedene mesenchymale Gewebe differenzieren, wie bspw. in Knochengewebe, Fettgewebe, Muskeln, Knorpel. MSCs haben die Eigenschaft, stabil und schnell auf Plasitk-oder Glasoberflächen zu adhärie- ren, und weisen einen fibroblastoiden Phänotyp auf. MSCs lassen sich zwar gut von hämatopoetischen Stammzellen unterscheiden, da sie keine spezifischen hämatopoe- tischen Oberflächenmarker exprimieren. Allerdings ist im Stand der Technik für MSCs noch kein spezifisches Oberflächenantigen bekannt; die von ihnen exprimier- ten Oberflächenmoleküle sind auch auf Oberflächen von endothelialen, mesenchymalen und epithelialen Zellen, sowie Muskelzellen zu finden.
Der Begriff „mesenchymale Stammzellen" (MSC) ist in der Literatur nicht ganz einheitlich definiert. Grundsätzlich können zwei Zelltypen unterschieden werden: MSC, die direkt aus nicht-hämatopoetischem Primärgewebe isoliert werden (z.B. Knochenmark, Fettgewebe, Plazenta) und Zellen, die kultiviert werden, und die sich aus in Kultur aus diesen Primärzellen zu adhärenten, fibroblastoiden Zellen differenzieren. Dort exprimieren sie Zelloberflächenmarker wie CD29, CD 44, CD73, CD90, CD105, CD166, sind jedoch negativ für den hämatopoetischen Stammzellmarker CD34 und den Pan-Leukozytenmarker CD45. Im Allgemeinen werden die in Kultur generierten Zellen als mesenchymale Stammzellen bezeichnet, da sie selbst nach diesem Verfahren noch eine multipotente Differenzierungskapazität besitzen.
Aufgrund ihrer Multipotenz, d.h. ihrer Eigenschaft, unter geeigneten in vitro- und in vz'vo-Bedingungen in verschiedene mesenchymale Gewebe (wie bspw. Knochen, Fett, Muskel, Knorpel, etc.) differenzieren zu können, werden mesenchymale Stammzellen bereits für den therapeutischen Einsatz verwendet. So können bspw. aus Plazenta, Knochenmark und Fettgewebe isolierte differenzierungsfähige MSCs in vitro expandiert, zu Osteoblasten, Chondrozyten und Myozyten differenziert werden, und anschließend in vivo wieder eingesetzt werden, bspw. zur Regeneration von Knochen, Knorpel, Sehnen, Muskeln, Fettgewebe sowie Stroma.
Stand der Technik ist einerseits, dass mesenchymale Stammzellen aus Knochenmark mittels Antikörpern, die gegen den niedrig-affinen Rezeptor für den Nervenwachs- tumsfaktor („low affinity nerve growth factor receptor" = CD271) gerichtet sind, isoliert werden können (Quirici et al.,„Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies", Exp. Hematol., 2002, 30(7):783-791). Weiterhin wurde beschrieben, dass MSC über Antikörper gegen SH2 (CD105), SH3 (CD73) und SH4 (CD73) isoliert werden können (siehe Barry F, et al., „The SH-3 and SH-4 antibodies recognize distinct epitopes on CD 73 from human mesenchymal stem cells", Biochem Biophys Res Commun. 2001; 289:519-24; und Pittenger MF, et al., "Multilineage potential of adult human mesenchymal stem cells", Science. 1999; 284:143-7). Der Nachteil der bisherigen Marker ist jedoch, dass sie alle nicht spezifisch für MSC sind, sondern noch weitere Zellpopulationen im Knochenmark erkennen.
Der Zelloberflächenmarker CD271 ist der bisher spezifischste Zelloberflächenmarker für die Isolierung von mesenchymalen Stammzellen, der kommerziell erhältlich ist. So werden bspw. monoklonale Antikörper gegen diesen Marker von den Firmen BD PharMingen, San Diego, USA, und Miltenyi Biotech, Bergisch Gladbach, Deutschland, vertrieben. Allerdings hat sich herausgestellt, dass dieser Marker nicht selektiv für MSC ist, sondern auch auf weiteren CD45-positiven hämatopoetischen Zellen exprimiert wird. Dadurch werden bei einem Isolationsverfahren mit anti-CD271- Antikörpern nicht nur mesenchymale Zellen, sondern auch hämatopoetische Zellen isoliert.
Darüber hinaus ist die Herstellung von monoklonalen Antikörpern sehr zeit- und kostenaufwändig.
Vor dem Hintergrund der aus dem Stand der Technik bekannten Nachteile, ist es Aufgabe der vorliegenden Erfindung, neue Möglichkeiten bereitzustellen, um mesenchymale Stammzellen (MSC) möglichst rein zu isolieren, und von kontaminierenden Zellen, wie beispielsweise Fibroblasten abzutrennen. Fibroblasten exprimieren zwar die von Dominici und Kollegen definierten Einschluss- und Ausschlusskriterien (Cytotherapy, 2006; 8: 315 -7), und lassen sich mikroskopisch von MSC nicht unterscheiden. Sie sind aber keinesfalls Differenzierungskompetent. Daher ist eine Separation der MSC von Fibroblasten sehr wichtig. Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass für die Isolierung und/oder Identifizierung von mesenchymalen Stammzellen ein Protein oder ein daraus abgeleitetes Peptid eingesetzt wird, das ausgewählt ist aus der Gruppe umfassend Lami- nin-1, Kollagen-1, Kollagen-3, Kollagen-4, Tenascin, Thrombospondin-1, Osteopon- tin, Fibronectin, Vitronectin, oder Fragmente davon, die an MSC binden können, oder Mischungen davon.
Insbesondere ist bevorzugt, wenn das Protein eine Sequenz aufweist, die ausgewählt ist aus den SEQ ID Nr. 1 bis 7, und noch bevorzugter, wenn das daraus abgeleitete Peptid eine der SEQ ID Nrn. 8 bis 32 des beigefügten Sequenzprotokolls besitzt.
Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst.
Die bereitgestellten Proteine bzw. die daraus abgeleiteten Peptide binden spezifisch und präferentiell an mesenchymale Stammzellen, wodurch es möglich ist mesenchymale Stammzellen von kontaminierenden Zellen wie beispielsweise Fibroblasten zu isolieren und für weitere Anwendungen einzusetzen. Erfindungsgemäß können die hierin aufgeführten Proteine und Peptid-Fragmente auch zur Kultivierung und/oder Aktivierung von MSC eingesetzt werden.
Der Einsatz der offenbarten Proteine bzw. daraus abgeleiteten Peptide für die Isolierung und/oder Identifizierung von mesenchymalen Stammzellen ist bisher im Stand der Technik nicht beschrieben oder nahe gelegt worden.
Unter„daraus abgeleitete Peptide" oder„daraus abgeleitetes Peptid" oder„Peptid- Fragment" wird vorliegend jedes Peptid verstanden, das in den aufgeführten Proteinen enthalten ist, und das daher eine Folge zusammenhängender Aminosäuren aufweist, die als solche, d.h. mit der gleichen Abfolge der Aminosäuren, in dem Protein enthalten ist; die Sequenz weist dabei Bindungseigenschaften an MSC auf, vorzugsweise die gleichen oder ähnliche wie das Gesamt-Protein. In diesem Zusammenhang versteht sich, dass mit„Protein" jeweils ein als solches identifizierte Ge- samt-Protein mit bestimmten Funktionen und Strukturen gemeint ist, und mit „Peptid" ein Teil, bzw. eine Teilsequenz daraus.
Laminin ist ein vor allem in der Basallamina von Epithelien und Endothelien vorkommendes Glykoprotein mit einem 14%igen Kohlenhydratanteil. Das Lamininmo- lekül besteht aus einer a-, einer ß- und einer γ-Proteinkette, die sich in heterotrimerer Form zum jeweiligen Lamininmolekül zusammensetzen. Gegenwärtig sind 15 verschiedene Lamininisoformen bekannt.
Kollagen ist ein zu den Skieroproteinen zählendes, wasserunlösliches, faserig aufgebautes, Protein der extrazellulären Matrix, das besonders am Aufbau von Bindegeweben, z.B. der Haut, Blutgefäße, Bänder, Sehnen und Knorpel, sowie am Aufbau von Knochen und Zähnen (Dentin) beteiligt ist. Zurzeit sind ca. 28 verschiedene Kollagentypen bekannt (Typ I bis XXVIII), die sämtlich den Aufbau aus drei Polypeptidketten gemein haben, die man als Kollagen-Helices bezeichnet und die in Form einer Tripelhelix umeinander gewunden sind. Dabei zählen Kollagen- 1 und Kollagen-3, neben Kollagen-2, -9 und -11, zu den fibrillären Kollagenen. Kollagen-1, ein Trimer, besteht dabei aus [al(I)2a2(I)] (Alpha-1 Typ I Kollagen) oder 3 [al(I)] Ketten; Kollagen-3 ist ein Homotrimer aus 3 [al(III)] Ketten.
Tenascin schließlich ist ein oligomeres Glykoprotein der extrazellulären Matrix, das an Wechselwirkungen zwischen epithelialen und mesenchymatischen Zellen beteiligt ist. In Wirbeltieren wurden bislang 3 verschiedene Typen von Tenascin beschrieben (Tenascin-R, -C und -X), die sich u.a. in der Anzahl bestimmter Domänen, nämlich der EGF- (epidermal growth factor) und Fibronektin-Typ-III-ähnlichen Domänen, unterscheiden. Tenascin ist in die Regeneration von Nervengewebe im adulten Organismus involviert. In der adulten Haut wird Tenascin während der Wundheilung induziert. Tenascin lenkt die Migration von Zellen in diesen Prozessen, wobei es die Zelladhäsion über verschiedene Proteindomänen stimulieren oder hemmen kann. Osteopopntin ist ein Glykoprotein in allen höheren Säugetieren, das an der Erhaltung der Knochensubstanz und einigen Immunprozessen beteiligt ist. Es bindet Hydroxylapatit und bildet die Grundstruktur für Knochen. Synonyme Bezeichnungen des Proteins sind Sialoprotein I und 44K BPP (bone phosphoprotein).
Thrombospondin-1 gehört zu einer Familie von Proteinen, die an unterschiedlichen biologischen Prozessen beteiligt sind. Die Protein-Familie besteht aus Thrombospondin-1 bis -5, wobei Untergruppen unterschieden werden: Die Untergruppe A besteht aus TSP1 und TSP2, die Homotrimere darstellen; die Untergruppe B besteht aus TSP3, TSP4 und TSP5. TSP1 ist an vielen unterschiedlichen biologischen Prozessen beteiligt, wie der Angiogenese, der Apoptose, der Aktivierung des Gewebshormons TGF- und der Immunregulation.
Fibronektin (von lateinisch: fibra für„Faser"; nexus für„Verknüpfung") ist ein extrazelluläres Glykoprotein, das in vielen physiologischen Abläufen eine wichtige Rolle spielt. Es ist ein Heterodimer aus zwei stabförmigen Polypeptidketten, die nahe am C- terminalen Ende durch Disulfidbrücken zusammengehalten werden. Bisher wurden mehr als 20 verschiedene Isoformen gefunden, die durch alternatives Spleißen der mRNA eines einzigen Gens erzeugt werden. Eine einzelne Fibronektin- Polypeptidkette (~ 230kDa) besteht aus einer Vielzahl von Domänen (ca. 40-90 Aminosäuren), die aufgrund ihrer Homologie in die Strukturtypen I, II, und III eingeteilt werden.
Vitronectin ist ein im Serum und der extrazellulären Matrix vorkommendes Glykoprotein, und stellt ein sekretiertes Protein da, das entweder in Form einer Einzelkette vorliegt, oder einer durch eine Di sulfidbrücke verbundene Doppelkette. Die Referenz-Nummer für dieses Protein in der NCBI (National Center for Biotechnology Information) Datenbank (GenBank®) lautet NP_000629).
Dabei ist insbesondere bevorzugt, wenn das Protein bzw. das daraus abgeleitete Peptid eine Sequenz aufweist, die ausgewählt ist aus den SEQ ID Nr. 1 bis 32 des beigefügten Sequenzprotokolls, bzw. das einer darin enthaltenen, bindungsrelevanten Sequenz .
Die Sequenz mit der ID-Nr. 1 stellt die Sequenz der alpha- 1 -Kette von humanem Laminin-1 dar und ist bspw. in der GenBank® des National Center for Biotechnology Information unter der Nummer NP_005550 aufgeführt; die Sequenz mit der ID-Nr. 2 ist die Sequenz der beta-l-Kette von humanem Laminin-1 (GenBank® Nr. NP_002282), die Sequenz mit der ID-Nr. 3 die Sequenz der gamma-l-Kette von humanem Laminin-1 (GenBank® Nr. NP_00284).
Ähnlich stellt die mit der SEQ ID-Nr. 4 dargestellte Sequenz die Sequenz der alpha- l(I)-Kette des humanen Kollagen dar (GenBank® Nr. P02452), die Sequenz mit der ID-Nr. 5 die Sequenz der alpha-2(I)-Kette des humanen Kollagens (GenBank® Nr. P08123), und die Sequenz mit der ID-Nr. 6 die Sequenz der alpha- 1-(III)-Kette des humanen Kollagens (GenBank® Nr. P02461). Die drei Sequenzen mit dem SEQ ID- Nr. 4, 5 und 6 repräsentieren daher Sequenzen für das Trimer Kollagen- 1. Die Sequenz mit der SEQ ID-Nr. 6 ist darüber hinaus auch Bestandteil des Homotrimers Kollagen-3.
Die Sequenz mit der ID-Nr. 7 stellt die Sequenz des humanen Tenascin-C dar, und besitzt in der GenBank® die Identifizierung CAA55309.
In einer bevorzugten Ausführungsform, wird bei der erfindungsgemäßen Verwendung eines der folgenden bindungsspezifischen Peptid-Fragmente eingesetzt: a) ein Peptid, das eine der in dem Sequenzprotokoll aufgeführten SEQ ID Nummern SEQ ID Nr. 8 bis 32 besitzt, oder b) Fragmente der Sequenzen gemäß a), die eine im Wesentlichen gleiche biologische Aktivität des Peptids gemäß a) in einem Test betreffend die Bindung von mesenchymalen Stammzellen besitzen, c) ein Peptid-Fragment mit einer Sequenz, die mindestens zu 80%, vorzugsweise mindestens zu zwischen 80% und 99%, identisch ist mit einer der in a) und b) aufgeführten Sequenzen.
Die Sequenzen mit den SEQ ID Nrn. 8 bis 32 stellen bevorzugte Peptide dar, mit denen mesenchymale Stammzellen spezifisch gebunden werden können. Dabei sind die Peptide mit den SEQ ID Nrn. 8 (GF-Orn-GER; enthält Ornithin an Position 3) und 9 (GEFYFDLRLKGDK) von Kollagen-1 und -4 abgeleitet, die SEQ ID Nrn. 10 bis 13 von Laminin (LRE, Laminin; AASIKAVAVSADR, Laminin alphal Kette; LAIKNDNLVYVY, DVISLYNFKHIY (SEQ ID Nr. 23), jeweils Laminin alpha4-Kette; RYVVLPRPVLFEK, Laminin betal Kette), die SEQ ID Nrn. 14 und 15 von Throm- bospondin (ELTGAARKGSGRRLVKGPD, Thrombospondin-l; KKTRGTLLALERKDHS, Thrombospondin-l), die SEQ ID Nr. 16 von Osteopontin (SVVYGLR), und die SEQ ID Nrn. 17 bis 20 und 32 von Fibronectin (YIIR; GSKS; TYSSPEDGIHE; WQPPRARITGY; DELPQLVTLPHPNLHGPEILDVPST) .
Dem Fachmann wird dabei klar sein, dass außer den genannten Proteinen/Peptiden auch Proteine/Peptide zum Zwecke der erfindungsgemäßen Verwendung eingesetzt werden können, die bspw. aufgrund von Sequenzhomologien funktionell gleich sind mit den offenbarten Peptiden, so dass bspw. auch Proteine eingesetzt werden können, die im Vergleich zu den genannten Proteinen/Peptiden Deletionen, Substitutionen, Insertionen, etc. möglich sein können, die aber dennoch die gleiche Funktion wie die genannten Proteine/Peptide aufweisen. So können bspw. auch lediglich bindungsrelevante Fragmente der genannten Proteine/Peptide eingesetzt werden.
In diesem Zusammenhang bedeutet „eine im Wesentlichen gleiche biologische Aktivität (eines Peptids) in einem Test betreffend die Bindung von mesenchymalen Stammzellen", dass auch Varianten bzw. Derivate der Peptide mit den SEQ ID Nrn. 8 bis 32 im Rahmen der vorliegenden Erfindung für die erfindungsgemäße Verwendung geeignet sind, mit denen eine ähnlich effektive und spezifische Bindung von mesenchymalen Stammzellen erreicht wird. Es versteht sich in diesem Zusammenhang, dass mit„im Wesentlichen" eine Aktivität gemeint ist, die nahezu gleich ist mit den Werten für die konkret mit Ihren Sequenzen offenbarten Peptide. Dem Fachmann wird hier klar sein bzw. ihm wird anhand der offenbarten Sequenzen durch zumutbare, einfache Versuche offenbar werden, welche Sequenz-Varianten noch möglich sind, um eine solch ähnliche Bindungsspezifität und -effektivität zu erreichen.
Der Begriff "Hybridisierung unter stringenten Bedingungen" bedeutet im Zusammenhang dieser Erfindung, dass die Hybridisierung in vitro unter Bedingungen durchgeführt wird, die stringent genug sind, um eine spezifische Hybridisierung zu gewährleisten. Der Begriff "spezifische Hybridisierung" bezieht sich auf den Umstand, dass ein Molekül unter stringenten Bedingungen präferentiell an eine bestimmte Nukleinsäuresequenz, die Zielsequenz, bindet, wenn diese Teil einer komplexen Mischung- von z.B. DNA- oder RNA-Molekülen ist, aber nicht oder zumindest wesentlich reduziert an andere Sequenzen. Die genauen Bedingungen für eine Stringenz hängen von entsprechenden Umständen, bspw. hinsichtlich des verwendeten Materials, ab. Typischerweise sind stringente Bedingungen solche, bei denen eine Hybridisierung zwischen den genannten Nukleotidsequenzen unter üblichen Bedingungen, insbesondere bei 20°C unter dem Schmelzpunkt der genannten Nukleotidsequenzen stattfindet. Bevorzugte Hybridisierungsbedingungen sind bspw. solche, bei denen eine Lösung aus 5x oder 6x SSPE (oder SSC), 1% oder 0,5 % SDS, 1 x Denhardts- Lösung verwendet wird, und die Hybridisierungstemperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C liegen. Nach der Hybridisierung wird vorzugsweise zuerst mit 2x SSC, 1% SDS und danach mit 0,2x /0,lx SSC bei Temperaturen zwischen 35°C und 70°C, vorzugsweise bei 65°C gewaschen (zur Definition von SSPE, SSC und Denhardts-Lösung siehe Sambrook et al., Molecular Cloning : A Laboratory Manual, 2. Ausgabe, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989)).
Der Begriff "Sequenzhomologie" oder "Sequenzidentiät" bezeichnet den Anteil der zwischen zwei Nukleinsäuresequenzen übereinstimmenden Basen oder den Anteil der zwischen zwei Aminosäuresequenzen übereinstimmenden Aminosäuren. Wenn die Sequenzhomologie als Prozentsatz ausgedrückt wird, z. B. 90%, bezeichnet der Prozentsatz den Anteil der Übereinstimmungen über die Länge der Sequenz, die mit einer anderen Sequenz verglichen wird.
Es versteht sich ferner, dass einerseits Proteine/daraus abgeleitete Peptide humanen Ursprungs eingesetzt werden können, dass aber andererseits auch funktionell und strukturell ähnliche/identische Proteine aus anderen Säugetieren verwendet werden können, ebenso wie künstlich synthetisierte oder rekombinant hergestellte Pepti- de/Proteine, die die Sequenz der genannten Proteine/Peptide - oder Teile davon - aufweisen.
Mit den genannten Peptiden konnte gezeigt werden, dass eine spezifische Bindung von mesenchymalen Stammzellen möglich ist.
Mit der erfindungsgemäßen Verwendung ist es bspw. möglich, Kulturflaschenböden mit den Proteinen bzw. den daraus abgeleiteten Peptiden zu beschichten und die daran bindenden MSC im undifferenzierten Zustand zu halten, wodurch größere Chargen an differenzierungskompetenten MSC erzeugt werden können.
Auf der anderen Seite besteht die Möglichkeit, die Proteine bzw. die daraus abgeleiteten Peptide auch zur direkten Isolierung von MSC aus Primärgewebe einzusetzen, wie bspw. aus Knochenmark, Nabelschnurblut, etc.
Darüber hinaus können die Proteine bzw. die daraus abgeleiteten Peptide dazu eingesetzt werden, die spezifische Differenzierung der mesenchymalen Stammzellen in die reifen mesenchymalen Zelltypen, wie Chonrozyten, Osteoblasten, Adipozyten, Myozyten zu modifizieren oder zu stabilisieren.
Darüber hinaus sind die Proteine bzw. die daraus abgeleiteten Peptide auch für in sztw-Anwendungen geeignet: So können bspw. Trägerstrukturen wie Implantate oder Stents o.ä. mit den Peptiden beschichtet werden. Die MSC binden über diese Peptide an die Trägerstrukturen, wodurch die MSC lokal an den Trägermaterialien konzent- riert werden. Durch eine Differenzierung der so konzentrierten mesenchymalen Stammzellen in das entsprechende Gewebe kann bspw. verletztes oder geschädigtes Gewebe regeneriert oder neues Gewebe an der Stelle der Trägerstruktur gebildet werden. Vorteilhafterweise sind die Peptide humanen Ursprungs, so dass keine Immunreaktionen auftreten.
In einer weiteren Ausführungsform ist bevorzugt, wenn die Proteine bzw. die daraus abgeleiteten Peptide zur Selektion von MSC aus einer Probe eingesetzt werden, welche MSC und andere Zelltypen enthält.
So können bspw., wie bereits weiter oben erwähnt, mittels des Einsatzes der offenbarten Proteine bzw. der daraus abgeleiteten Peptide MSC direkt aus einer Primärkultur isoliert werden, oder aber aus einer bereits kultivierten Zellpopulation.
Ferner kann bei einer anderen Ausführungsform der erfindungsgemäßen Verwendung das Peptid zur Markierung von MSC eingesetzt werden.
Bei dieser Ausführungsform kann das einzusetzende Protein bzw. das daraus abgeleitete Peptid modifiziert bzw. markiert sein, bspw. durch fluoreszierende Gruppen, so dass nach Bindung des Proteins/Peptids an die MSC diese aufgrund der Markierung einfach und schnell identifiziert werden können.
Bei einer anderen Ausführungsform ist bevorzugt, wenn das Protein bzw. das daraus abgeleitete Peptid zu Anreicherung von MSC eingesetzt wird. Hierbei kann bspw. eine Anreicherung in vitro oder in situ erreicht werden, bspw. durch eine Beschichtung geeigneter Materialien/Strukturen mit den Peptiden, wie weiter oben erwähnt.
Ferner ist in einer anderen Ausführungsform bevorzugt, wenn das Protein bzw. das daraus abgeleitete Peptid zur Induktion der Proliferation oder Differenzierung von MSC eingesetzt wird. Die Proteine bzw. die daraus abgeleiteten Peptide können bei dieser Ausführungsform gezielt dazu eingesetzt werden, die Differenzierung der MSC bspw. in Osteoblasten, Chondrozyten, Adipozyten, etc. zu modifizieren.
Bei einer noch weiteren Ausführungsform ist bevorzugt, wenn das Protein bzw. das daraus abgeleitete Peptid, das ausgewählt ist aus der Gruppe umfassend Laminin-1, Kollagen-1, Kollagen-3, ollagen-4, Tenascin, Thrombospondin-1, Osteopontin, Fibronectin, oder bindungsspezifische Fragmente oder Mischungen davon, zur Behandlung von Wunden, Verletzungen und/oder von degeneriertem Gewebe eingesetzt wird.
Diese Maßnahme hat den Vorteil, dass auf Protein/Peptid-Strukturen zurückgegriffen werden kann, die humanen Ursprungs sind, und daher keine oder kaum Immunreaktionen hervorrufen, wenn sie, bspw. im Zusammenhang mit einer Trägerstruktur, auf der sie immobilisiert sind, in den Körper eines Patienten eingebracht werden.
Das zu behandelnde Gewebe kann dabei jedes Knochen-, Knorpel und/oder Muskelgewebe sein, vorzugsweise des Menschen.
Dabei ist insbesondere bevorzugt, wenn das Arzneimittel ein mit zumindest einem Peptid beschichtetes Implantat, insbesondere ein Stent ist.
Ein Stent ist eine Endoprothese, verschiedenen Materialien, die allgemein der Offenhaltung von Körpergefäßen dienen, und die röhrenartig und/oder als Maschengeflecht mit oder ohne Mantel ausgebildet sind. Stents werden in komprimierter Form über ein geeignetes Einführsystem in die Gefäße eingeführt und am Bestimmungsort zum dortigen Verbleib entfaltet. Bei der erfindungsgemäßen Verwendung ist vorgesehen, dass der einzusetzende Stent mit dem Protein bzw. dem daraus abgeleiteten Peptid beschichtet wird und anschließend in das zu behandelnde Gefäß eingeführt wird. Andererseits können auch Implantate, bspw. zum Haut-, Knorpel- oder Knochenersatz oder -regeneration, mit den Peptiden beschichtet und in die zu behandelnde Körperregion implantiert werden. Beispielhaft sollen hier Implantate zur Behandlung von Knie- und Bandscheibenschäden genannt werden, wobei dem Fachmann klar sein wird, dass auch jedes andere Implantat, das zur Regeneration oder zum Ersatz von Gewebe in einen Körper implantiert wird, entsprechend beschichtet werden kann. Nach Implantation in die zu behandelnde Stelle im Körper eines Patienten werden die MSC über die auf dem Träger vorliegenden Peptide dort konzentriert, wodurch eine Art„Wundpflaster" geschaffen wird.
Dementsprechend betrifft die Erfindung auch die Verwendung eines Proteins bzw. eines daraus abgeleiteten Peptids, das ausgewählt ist aus der Gruppe umfassend Laminin-1, Kollagen-1, Kollagen-3, Kollagen-4, Tenascin, Thrombospondin-1, Osteo- pontin, Fibronectin, oder bindungsspezifische Fragmente oder Mischungen davon, zur Herstellung eines Implantats.
Die Erfindung betrifft ferner ein Verfahren zur Isolierung, Identifizierung, Kultivierung und Aktivierung von mesenchymalen Stammzellen, umfassend den Schritt der Selektion der Stammzellen aus einer Stammzellen enthaltenden Probe mit einem Protein bzw. daraus abgeleiteten Peptid, das ausgewählt ist aus Laminin-l, Kollagen- 1, Kollagen-3, Kollagen-4, Tenascin, Thrombospondin-1, Osteopontin, Fibronectin, oder bindungsspezifische Fragmente oder Mischungen davon, insbesondere mit einem Peptid der SEQ. ID Nr. 1 bis 32.
Die mit diesem erfindungsgemäßen Verfahren gewonnenen Stammzellen, die ebenfalls von der Erfindung umfasst sind, können wiederum, wie weiter oben erwähnt, zur Behandlung von bspw. degeneriertem oder verletzten Gewebe eingesetzt werden, bspw. zur Behandlung von Knochen, Knorpeln und/oder Muskeln.
Daher betrifft die vorliegende Erfindung auch die Verwendung von mesenchymalen Stammzellen, die gemäß einem der erfindungsgemäßen Verfahren isoliert, identifiziert, kultiviert oder aktiviert wurden, oder die gemäß der erfindungsgemäßen Ver- wendung angereichert wurden, zur Herstellung eines Arzneimittels zur Behandlung von Wunden, Verletzungen und/oder von degeneriertem Gewebe, insbesondere von Knorpel, Knochen, Muskeln, Gefäßen, oder zu immuntherapeutischen Zwecken, als trophische Zellen, wobei sie dann nicht notwendigerweise im Reparaturgewebe nachweisbar sein müssen, oder als Vehikel für die rekombinante (Gen-)Therapie.
Die Erfindung betrifft ferner ein synthetisches, isoliertes oder rekombinantes Peptid, umfassend eine Aminosäuresequenz ausgewählt aus der Gruppe bestehend aus: a) der Aminosäuresequenz gemäß SEQ ID Nr. 8 bis 32, b) Fragmenten der Sequenzen gemäß a), die die biologische Aktivität des Peptids gemäß a) in einem Test betreffend die Bindung von mesenchymalen Stammzellen besitzen, c) Fragmenten mit einer Sequenz, die mindestens zu 80%, vorzugsweise mindestens zu zwischen 80% und 99%, identisch ist mit einer der in a) und b) aufgeführten Sequenzen.
Diese Peptide binden, wie die Versuche der Erfinder gezeigt haben, spezifisch mesenchymale Stammzellen. Damit wird durch die Peptide ein Mittel bereitgestellt, mesenchymale Stammzellen zu isolieren und/oder anzureichern.
Die Peptide können auch über gentechnologische Verfahren zur Expression gebracht und als Strukturen sowohl membranständig auf Zellen, als auch in gelöster Form und in Kombination mit anderen proteinen zur Expression gebracht werden. (z.B. als Peptid + Kollagen- 1 Faser für augmentiertes Biomaterial)
Insbesondere können die erfindungsgemäßen Peptide damit auch direkt zur Behandlung von Wunden, Verletzungen und/oder von degeneriertem Gewebe eingesetzt werden. Daher betrifft die Erfindung auch pharmazeutische Zusammensetzungen, die zumindest eines der erfindungsgemäßen Peptide und einen pharmazeutisch akzeptierbaren Träger aufweisen.
„Pharmazeutisch akzeptierbarer Träger" bedeutet vorliegend ein nicht-toxisches Material, das die Wirksamkeit der biologischen Aktivität der aktiven Substanz in der Zusammensetzung nicht beeinträchtigt.
Es versteht sich ferner, dass die pharmazeutische Zusammensetzung in einer weiteren Ausführungsform weitere therapeutisch und/oder pharmazeutisch aktive Substanzen enthält, die in Abhängigkeit der zu behandelnden Krankheit(en) zusätzlich in der pharmazeutischen Zusammensetzung verabreicht wird.
Die zu behandelnde Krankheit ist dabei vorzugsweise eine Krankheit des Menschen.
Die pharmazeutische Zusammensetzung kann systemisch verabreicht werden, d.h. bspw. oral, subkutan, intravenös, rektal, parenteral, intramuskulär, interperitoneal, transdermal, oder topisch, wobei die Verabreichungsart von der Art der Erkrankung dem Krankheitsbild, sowie der Zustand der Patienten abhängen wird. Ebenso kann die Verabreichung wiederholt oder einmalig stattfinden, wobei die Verabreichung im ersteren Fall einmal oder mehrmals am Tag, und/oder über einen längeren Zeitraum hinweg erfolgen kann.
Zusätzlich zu den aktiven Substanzen kann die pharmazeutische Zusammensetzung auch noch Puffer, Verdünnungsmittel und/oder Additive enthalten. Geeignete Puffer schließen bspw. Tris-HCl, Glycin und Phosphat mit ein, und geeignete Verdünnungsmittel bspw. wässrige NaCl-Lösungen, Lactose oder Mannitol. Geeignete Additive schließen bspw. Detergentien, Lösungsmittel, Antioxidantien und Konservierungsstoffe mit ein. Eine Übersicht über solche zusätzlichen Inhaltsstoffe findet sich bspw. in A. Kibbe.:„Handbook of Pharmaceutical Excipients", 3rd Ed., 2000, American Pharmaceutical Association and Pharmaceutical Press. Weitere Vorteile und Merkmale ergeben sich aus der nachfolgenden Beschreibung und der beigefügten Zeichnung.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in Bezug auf diese nachstehend näher beschrieben. Es zeigt:
Fig. 1 eine vergleichende Analyse der Adhärenz von humanen mesenchymalen Stammzellen (MSC; Proben 5, 6, rote/blaue Säulen, rechts) im Vergleich zu humanen Fibroblasten (Proben 1 bis 4, grüne/gelbe Säulen, links-Mitte).
Fig. 2 Messbeispiele für die aus Laminin, Kollagen-1 und Kollagen-4 (A),
Fibro-nectin (B) oder Osteopontin (C) abgeleiteten Peptide im Vergleich zur positiven Kontrolle (PLL in A) zur negativen Kontrolle (Mal-BSA in A) oder andere Peptiden mit MSC.
Fig. 3 Messbeispiele für die aus Laminin, Kollagen-1 und Kollagen-4 (A),
Fibro-nectin (B) oder Osteopontin (C) abgeleiteten Peptide im Vergleich zur positiven Kontrolle (PLL in A) zur negativen Kontrolle (Mal-BSA in A) oder andere Peptiden mit Fibroblasten als Kontrollen.
Beispiel 1
In einem vergleichenden Versuch wurde die Adhärenz humaner mesenchymaler Stammzellen (MSC, Proben 5 und 6 in Fig. 1) und humaner Fibroblasten (Proben 1 bis 4 in Fig. 1) auf Matrixproteinen untersucht. Die Untersuchung erfolgte unter Einsatz eines Chips (Multiple Substrate Array (MSA®)), auf welchem die Proteine immobilisiert wurden. Vorgegangen wurde hierbei wie in Kuschel et ah,„Cell adhe- sion profiling using extracellular matrix protein microarrays", Biotechniques 40:523- 531 (2006).
MSC wurden aus Knochenmark durch Dichtegradientenzentrifugation angereichert, in MSC-Expansionsmedium als adhärente Population kultiviert und geerntet. Das Differenzierungspotential wurde an einem Aliquot geprüft und adipogene, chondro- gene und osteogene Differenzierung bestätigt. Damit erfüllen die Zellen die physiologischen Anforderungen an MSC (M. Dominici et al. 2006, Cytotherapy, 8:315 ff). Es versteht sich, dass auch MSC aus anderen Geweben eingesetzt werden können, wie bspw. Fettgewebe oder jedes andere Gewebe, in welchem MSC vorliegen.
Fibroblasten wurden aus der Synovialmembran isoliert und expandiert wie beschrieben (Aicher et al. 1994 J. Immunol. 152:5940 ff). Die Zellen wurden geerntet, gewaschen, ausgezählt und jeweils 20 000/ Testkammer wurden mittels MSA™- Chiptechnologie auf Adhärenz zu Proteinen untersucht. Kurz zusammengefasst wurden die Zellen je auf einem Mikroarray von 12 unterschiedlichen Proteinen in einer Kammer zunächst zur gleichmäßigen Verteilung unter Schütteln (zwei Stunden), dann ohne Schütteln (zwei Stunden) unter üblichen Kulturbedingungen inkubiert. Nicht adhärente Zellen wurden nach dieser Inkubation durch Spülen der Arrays abgewaschen. An die Proteine haftende Zellen wurden chemisch fixiert und ihre Zellkerne mit Farbstoff markiert, um die Zahl der anhaftenden Zellen pro Mikro- spot Protein quantitativ zu erfassen. Anstelle der hier verwendeten Fibroblasten können auch bspw. Hautfibroblasten, Chondrozyten, Osteoblasten, Meniskuszellen, o.a. Zellen eingesetzt werden.
Die Ergebnisse dieses Versuches sind in Fig. 1 gezeigt, wobei die Adhärenz an die Proteine Laminin-1 (LN EHS), Kollagen-3 (CHI) und Kollagen-1 (CI) sowie Tenascin-C (TN) mit dem achten, zehnten, elften bzw. zwölften Protein in dem Diagramm in Fig. 1 gezeigt ist. Die anderen getesteten Proteine waren: Fibronectin (FN hulps), Kolla- gen-6 (CVI), Vitronektin (VN), Kollagen-4 (CIV EHS), sowie Laminin-10 (LN huplc). Als Positiv- Kontrolle diente das Protein Poly-L-Lysin (PLL), als Negativ-Kontrolle Rinderserumalbumin (BSA). Beide Populationen, also MSC und Fibroblasten binden darüber hinaus nicht an Thrombospondin.
Den in Fig. 1 gezeigten Ergebnissen ist zu entnehmen, dass die Bindung der MSC an Laminin-1, Kollagen- 1 und Kollagen-3 sowie Tenascin-C fester war als die Bindung von Fibroblasten an diese Proteine. Daher sind diese Proteine für die vorliegenden erfindungsgemäßen Verwendungen besonders geeignet.
Beispiel 2
Die Haftung von Zellen an Peptide wurde ebenfalls mittels der MSA™ Technologie (siehe Kuschel et al., 2006) wie oben in Beispiel 1 gemessen. Anstelle der extrazellulären Matrixproteine wurden jedoch an Rinderserumalbumin gekoppelte Peptide in Form von Mikroarrays (8 x 8 Mikrospots) auf die Nitrozellulose-Schicht gedruckt, und danach die restliche Oberfläche versiegelt. Zur Inkubation mit Zellen wurden kleine Silikonkammern auf den beschichteten Objektträger gelegt, und mit MSC oder Fibroblasten inkubiert. Nach zwei Stunden Inkubation wurden die Zellen, die nicht anhafteten, abgespült.
Anhaftende Zellen wurden durch Coomassie-Blaufärbung auf der weißen Nitrozellulose-Folie sichtbar gemacht und in einem motorisierten Photomikroskop ausgewertet: die Anzahl blauer Zellen bzw. die Farbintensität pro Spot wird gemessen und zur Auswertung auf Tabellen übertragen
Die Auswertung solcher Arrays mittels des halbautomatischen Fotomikroskop ergab die auf PLL (auf 100 % normiert, positive Kontrolle) und BSA (auf 0% normiert, negative Kontrolle) relative Bindungsstärke für die jeweils getesteten Peptide.
Fig. 2 zeigt die mit unterschiedlichen Peptiden und MSC erzielten Ergebnisse. Die in Fig. 2 dargestellten Ergebnisse zeigen, dass aus Laminin abgeleiteten Peptide Nr. 9, #9-COOH (SEQ ID Nr. 10), Nr. 15 und Nr. 16, die aus Kollagen abgeleiteten Peptide Nr. 1 und Nr. 5 (SEQ ID Nrn. 8 und 9), das von Vitronectin abgeleitete Peptid Nr. 37b, und die von Fibronektin abgeleiteten Peptide Nr. 11, Nr. 20, Nr. 21, NR. 21- COOH, Nr. 22, Nr. 22-COOH, Nr. 34, Nr. 34-COOH, und Nr. 30 die Haftung von MSC ermöglichen (Fig. 2) nicht jedoch die von Fibroblasten (Fig. 3). Die Sequenzen der MSC-bindenden Peptide sind Tabelle 1 zu entnehmen:
Tabelle 1
Nr. Sequenz SEQ ID Nr.
I GF-Orn-GER-OH 8
5 GEFYFDLRLKGDK-OH 9
9 LRE-OH 10
9-COOH LRE-Doa-A-OH 21
I I GRGDSO-OH 22
15 LAIKNDNLVYVY-OH 12
16 DVISLYNFKHIY-OH 23
20 DRVPHSRNSIT-OH 24
21 KREDVY-OH 25
21- COOH KREDVY-COOH 26
22 EILDV-OH 27
22- COOH EILDV-COOH 28
30 WTPPRAQITGYRLTVGLTRR-OH 29
34 YIIR-OH 17
34-COOH YIIR-DOA-A-OH 30
37b KRSR-DOA-A-OH 31
41 SVVYGLR-OH 16

Claims

Patentansprüche
1. Verwendung eines Peptids, das ausgewählt ist aus der Gruppe umfassend Laminin-1, Kollagen-1, Kollagen-3, Kollagen-4, Tenascin, Thrombospondin-1, Osteopontin, Fibronectin, Vitronectin, oder Peptid-Fragmenten davon, die dazu in der Lage sind, an mesenchymale Stammzellen zu binden, oder Mischungen davon, zur in vitro Isolierung und/oder Identifizierung von mesenchymalen Stammzellen (MSC) aus einer Probe.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass eines der folgenden Peptid-Fragmente eingesetzt wird: a) ein Peptid, das eine der in dem Sequenzprotokoll aufgeführten SEQ ID Nummern SEQ ID Nr. 8 bis 32 besitzt, oder b) Fragmente der Sequenzen gemäß a), die eine im Wesentlichen gleiche biologische Aktivität des Peptids gemäß a) in einem Test betreffend die Bindung von mesenchymalen Stammzellen besitzen, c) ein Peptid-Fragment mit einer Sequenz, die mindestens zu 80%, vorzugsweise mindestens zu zwischen 80% und 99%, identisch ist mit einer der in a) und b) aufgeführten Sequenzen.
3. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Peptid oder Peptid-Fragment zur Selektion von MSC aus einer Probe eingesetzt wird, welche MSC und andere Zelltypen enthält.
4. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Peptid oder Peptid-Fragment zur Markierung von MSC eingesetzt wird.
5. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Peptid oder Peptid-Fragment zu Anreicherung von MSC eingesetzt wird.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Anreicherung in vivo, in situ oder in vitro ist.
7. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Peptid oder Peptid-Fragment zur Differenzierung von MSC eingesetzt wird.
8. Peptid, das eine der in dem Sequenzprotokoll aufgeführten SEQ ID Nummern SEQ ID Nr. 8 bis 32 besitzt, oder Mischungen davon, zur Behandlung von Wunden, Verletzungen und/oder von degenerierten Knochen, Knorpeln oder Geweben.
9. Peptid nach Anspruch 8, dadurch gekennzeichnet, dass die Behandlung mit einem mit dem Peptid beschichteten Implantat oder Stent erfolgt.
10. Peptid, das eine der in dem Sequenzprotokoll aufgeführten SEQ ID Nummern SEQ ID Nr. 8 bis 32 besitzt, oder Mischungen davon, zur Herstellung eines Implantats.
11. Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen, umfassend den Schritt der in vitro Selektion der Stammzellen aus einer Stammzellen enthaltenden Probe mit einem Peptid, das ausgewählt ist aus Laminin-1, Kollagen- 1, Kollagen-3, Kollagen-4, Tenascin, Throm- bospondin-1, Osteopontin, Fibronectin, oder MSC-bindungsspezifische Fragmente oder Mischungen davon.
12. Mesenchymale Stammzellen, die gemäß einem Verfahren nach Anspruch 11 isoliert oder identifiziert wurden, oder die gemäß einer Verwendung nach Anspruch 5 angereichert wurden, zur Behandlung von Wunden, Verletzungen und/oder von degeneriertem Gewebe.
13. Verwendung nach Anspruch 8 oder 12, dadurch gekennzeichnet, dass das Gewebe ausgewählt ist aus Knorpel, Knochen, Muskeln.
14. Synthetisches, isoliertes oder rekombinantes Peptid, umfassend eine Aminosäuresequenz ausgewählt aus der Gruppe bestehend aus: a) der Aminosäuresequenz gemäß SEQ ID Nr. 8 bis 32, b) Fragmenten der Sequenzen gemäß a), die die biologische Aktivität des Peptids gemäß a) in einem Test betreffend die Bindung von mesenchymalen Stammzellen besitzen, c) Fragmenten mit einer Sequenz, die mindestens zu 80%, vorzugsweise mindestens zu zwischen 80% und 99%, identisch ist mit einer der in a) und b) aufgeführten Sequenzen.
15. Peptid nach Anspruch 14 zur Verwendung in der Behandlung von Wunden, Verletzungen und/oder von degeneriertem Gewebe.
16. Pharmazeutische Zusammensetzung, die zumindest ein Peptid nach Anspruch 14 oder 15 und einen pharmazeutisch akzeptierbaren Träger aufweist.
EP11725901.0A 2010-06-07 2011-06-07 Isolierung von mesenchymalen stammzellen Withdrawn EP2576771A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010023837A DE102010023837A1 (de) 2010-06-07 2010-06-07 Isolierung von mesenchymalen Stammzellen
PCT/EP2011/059393 WO2011154403A2 (de) 2010-06-07 2011-06-07 Isolierung von mesenchymalen stammzellen

Publications (1)

Publication Number Publication Date
EP2576771A2 true EP2576771A2 (de) 2013-04-10

Family

ID=44278849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725901.0A Withdrawn EP2576771A2 (de) 2010-06-07 2011-06-07 Isolierung von mesenchymalen stammzellen

Country Status (4)

Country Link
US (1) US20130156819A1 (de)
EP (1) EP2576771A2 (de)
DE (1) DE102010023837A1 (de)
WO (1) WO2011154403A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160986A1 (en) * 2016-03-16 2017-09-21 Cell Medicine, Inc. Mesenchymal stem cells with enhanced efficacy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978352A (en) * 1989-06-07 1990-12-18 Fedorov Svjatoslav N Process for producing collagen-based cross-linked biopolymer, an implant from said biopolymer, method for producing said implant, and method for hermetization of corneal or scleral wounds involved in eye injuries, using said implant
WO2006091675A2 (en) * 2005-02-23 2006-08-31 Surmodics, Inc. Implantable medical articles having laminin coatings and methods of use
DE102005021435A1 (de) * 2005-05-04 2006-11-09 Universitätsklinikum Freiburg Verfahren zur serum-/proteinfreien Kultur von Stamm- und Progenitorzellen
US8071367B2 (en) * 2005-05-04 2011-12-06 Commonwealth Scientific And Industrial Research Organisation Selecting, culturing and creating lineage committed hematopoietic stem cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011154403A2 *

Also Published As

Publication number Publication date
US20130156819A1 (en) 2013-06-20
DE102010023837A1 (de) 2011-12-08
WO2011154403A3 (de) 2012-04-12
WO2011154403A2 (de) 2011-12-15

Similar Documents

Publication Publication Date Title
DE69914463T2 (de) Therapeutische chemokine rezeptor antagonisten
US8142773B2 (en) Methods of implanting mesenchymal stem cells for tissue repair and formation
EP2313772B1 (de) Isolierung und/oder identifizierung von stammzellen mit adipozytärem, chondrozytärem und pankreatischem differenzierungspotential
DE60103052T2 (de) Verwendung von cxcr4 antagonisten zur behandlung von krebs und autoimmunkrankheiten
DE69913665T2 (de) Verwendung von follistatin zur herstellung eines arzneimittels zur behandlung von muskuläre krankheiten
EP2575831B1 (de) Skelettmuskelregenerierung unter verwendung von mesenchymalen stammzellen
US9452185B2 (en) Mesenchymal stem cells and supports for tissue regeneration, repair and reconstruction
DE10234192A1 (de) Verwendung von Erythropoetin
US8545888B2 (en) Tendon stem cells
DD297562A5 (de) Hemmung von lymphozytadhaesion an der gefaessinnenhaut unter verwendung einer neuen extrazellularen matrixrezeptorligandwechselwirkung
DE69007964T2 (de) Verwendung von Thrombospondin zur Beschleunigung der Wundheilung.
JP2004521128A (ja) Bmpによるヒト骨髄由来cd105+細胞の軟骨形成能
US20140112891A1 (en) AUTOLOGOUS HUMAN ADULT PLURIPOTENT VERY SMALL EMBRYONIC-LIKE (hVSEL) STEM CELL REGENERATION OF BONE AND CARTILAGE
WO2011154403A2 (de) Isolierung von mesenchymalen stammzellen
DE69832880T2 (de) Frazzled nukleotidsequenzen, expressionsprodukte, zusammensetzungen und verwendungen
Hung et al. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells
WO2002083160A2 (de) Mittel, die die apoptose bei an der wundheilung beteiligten zellen inhibieren
EP1267916B1 (de) Arzneimittel enthaltend tissue inhibitor of metalloproteinases-2 (timp-2) als osteoanabol wirksame substanz
WO2006067094A1 (de) Verfahren zur isolierung neuraler zellen mit tenascin-r-verbindungen
EP2928482B1 (de) Verbesserung der zielfindungskapazität von stammzellen
WO2011029877A1 (de) Separation von mesenchymalen stammzellen
JP2023049978A (ja) 神経突起伸長促進剤及び神経再生誘導用医薬組成物
WO2007143978A2 (de) Verfahren zur induktion der insulinsynthese in chorionzellen
ZA200306433B (en) Chondrogenic potential of human bone marrow-derived CD105+ cells by BMP.
AU2002252002A1 (en) Chondrogenic potential of human bone marrow-derived CD105+ cells by BMP

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121221

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140612