WO2007143978A2 - Verfahren zur induktion der insulinsynthese in chorionzellen - Google Patents

Verfahren zur induktion der insulinsynthese in chorionzellen Download PDF

Info

Publication number
WO2007143978A2
WO2007143978A2 PCT/DE2007/001032 DE2007001032W WO2007143978A2 WO 2007143978 A2 WO2007143978 A2 WO 2007143978A2 DE 2007001032 W DE2007001032 W DE 2007001032W WO 2007143978 A2 WO2007143978 A2 WO 2007143978A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
insulin
gastrin
induction
chorionic
Prior art date
Application number
PCT/DE2007/001032
Other languages
English (en)
French (fr)
Other versions
WO2007143978A3 (de
Inventor
Kerstin Reisinger
Marek Zygmunt
Henning Jahr
Nelli Baal
Original Assignee
Justus Liebig Universität Giessen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Justus Liebig Universität Giessen filed Critical Justus Liebig Universität Giessen
Publication of WO2007143978A2 publication Critical patent/WO2007143978A2/de
Publication of WO2007143978A3 publication Critical patent/WO2007143978A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/335Glucagon; Glucagon-like peptide [GLP]; Exendin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/345Gastrin; Cholecystokinins [CCK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for inducing insulin synthesis in isolated chorionic cells and their use for transplantation and in the preparation of an agent for the treatment of diabetes mellitus.
  • the placenta as a transient transient organ, has a number of pluripotent cells that can be harvested in high numbers and without stress for mother and child without ethical problems. These include stem cells from the umbilical cord blood and amniotic and chorionic cells. They are eminently suitable for transplantation because, in addition to their strain-like phenotype, they exhibit immunological immaturity and thus cause a significantly lower rejection response during transplantation than adult cells.
  • pancreatic or islet cells provide physiologically regulated insulin release in diabetic patients. After all, compared to conventional insulin therapy, this leads to a prevention or at least delay of diabetes-specific secondary complications.
  • pancreatic or islet cell transplantation can be used only in a few patients due to the limited donor volume.
  • the method is characterized by a special culture method of isolated chorionic cells and the targeted addition of a combination of special substances that promote the differentiation of chorionic cells to insulin-producing cells.
  • enterohormones such as gastrin and its derivatives and glucagon-like polypeptides 1 (GLP-1) and its derivatives, including exendin-4, or growth and differentiation factors such as hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), nerve growth factor- ⁇ (NGF- ⁇ ), beta-cellulin, epidermal growth factor (EGF) receptors, and / or substances that increase the intracellular cAMP concentration.
  • HGF hepatocyte growth factor
  • VEGF-A vascular endothelial growth factor-A
  • NGF- ⁇ nerve growth factor- ⁇
  • beta-cellulin epidermal growth factor (EGF) receptors
  • EGF epidermal growth factor
  • stem cells from the placenta are used as cells to induce insulin synthesis.
  • These chorion cells are derived exclusively from the egg skin and have no contamination by amniotic cells or chorion cells from other parts of the placenta. However, these cells are so far differentiated that tumor formation after injection can almost be ruled out. Thus, these cells are more suitable for the process of inducing insulin synthesis than previously known in the art cells that cause possible teratoma formation and / or are capable of producing insulin only by viral transfection.
  • the chorion cells according to the invention express endodermal markers such as ⁇ -fetoprotein (AFP) (FIG.
  • AFP ⁇ -fetoprotein
  • the process for inducing insulin in isolated chorionic cells comprises the following steps:
  • Chorionic cells are obtained from chorionic tissue of a mammal, preferably a human, by separating the entire egg skin from the remaining placenta and discarding the amnion.
  • the chorionic tissue is minced and subjected to collagenase treatment to produce single chorionic cells.
  • the cultivation of the individual chorionic cells is carried out in medium, the adherent cultivation of the individual chorionic cells preferably taking place in serum-free or in fetal calf serum-containing culture medium.
  • Non-adherent cell culture materials are, for example, cell culture bottles for suspension culture of plastic.
  • the cultivation of the chorionic cells on Matrigel is made into adherent chorionic cell spheroids in serum-free medium or medium containing fetal calf serum.
  • induction of insulin synthesis by the addition of enterohormone is carried out by culturing the chorionic cell spheroids in serum-free medium or medium containing fetal calf serum on non-adherent cell culture materials and targeted addition of enterohormonene such as gastrin or a gastrin derivative and GLP-1 or a GLP-1 Derivative, eg exendin-4.
  • enterohormonene such as gastrin or a gastrin derivative and GLP-1 or a GLP-1 Derivative, eg exendin-4.
  • the induction of insulin synthesis of the Matrigel adherent chorionic cell spheroids is accomplished by culture in serum-free or medium containing fetal calf serum with enterohormones such as gastrin or a
  • Gastrin derivative and GLP-1 or a GLP-1 derivative e.g. Exendin-fourth
  • GLP-1 and / or its derivatives include exendin-4, also include hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), nerve growth factor- ⁇ ( NGF- ⁇ ), betacellulin, epidermal growth factor (EGF) receptors, and / or substances that inhibit intracellular cAMP.
  • HGF hepatocyte growth factor
  • VEGF-A vascular endothelial growth factor-A
  • NGF- ⁇ nerve growth factor- ⁇
  • betacellulin betacellulin
  • EGF epidermal growth factor
  • Substances which increase the intracellular cAMP concentration are, for example, db-cAMP, 8-Br-cAMP, or isobutyl-methyl-xanthine.
  • the method according to the invention for inducing insulin synthesis in isolated chorionic cells is easy to carry out and produces high amounts of insulin.
  • these cells are suitable for the preparation of an agent for the treatment of diabetes in patients.
  • the invention further relates to an agent for the treatment of diabetes in patients, which contains chorion cells, which are stimulated by the addition of enterohormones for insulin synthesis.
  • the term patient refers equally to humans and vertebrates.
  • the agent for the treatment of diabetes in human and veterinary medicine can be used.
  • the diabetic treatment agent of the present invention is administered to the patient as part of a pharmaceutically acceptable composition either orally, rectally, parenterally, intravenously, intramuscularly or subcutaneously, intracisternally, intravaginally, intraperitoneally, intravascularly, locally (powder, ointment or drops) or administered in spray form.
  • Pharmaceutically acceptable compositions may include the modifications as salts, esters, amides, and prodrugs, provided that they do not cause excessive toxicity, irritation, or allergic reactions to the patient upon reliable medical judgment.
  • prodrug refers to compounds that are transformed to enhance uptake, such as by hydrolysis in the blood.
  • Dosage forms for topical administration of the vaccine of this invention include ointments, powders, sprays or inhalants.
  • the active component is mixed under sterile conditions with a physiologically acceptable carrier and possible preservatives, buffers or propellants as needed.
  • Exemplary Embodiments a) Provision and Cultivation of Chorionic Cells i) Isolation of Chorionic Cells From a placenta obtained, for example, by cesarean section after normal pregnancy, the chorion laevi, including the remnants of the outer capsule decidua attached thereto, is separated. The remaining placenta, including the amnion, will be discontinued.
  • the chorion tissue is freed of blood residue in phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • about 50 cm 2 of the chorionic tissue is broken up into fragments of about 1 cm 2 and then incubated in a collagenase solution, for example 200 mg / 70 ml PBS, preferably for 60 minutes at 37 ° C.
  • the tissue is divided into single cells and connective tissue fragments ,
  • the reaction is terminated by addition of 10% fetal calf serum-containing culture medium and the suspension is filtered through a 70 ⁇ m pore size filter.
  • the cells are then separated from the enzyme solution, for example, by centrifuging twice 634 g for 10 min, and cultured in epithelial cell medium, eg Quantum 286 (PAA, Cölbe), preferably at a concentration of 0.5 x 10 6 cells / ml at 37 0 C. ,
  • epithelial cell medium eg Quantum 286 (PAA, Cölbe
  • the culture medium is renewed and non-adherent cells are removed.
  • the cells are cultured for one to three more days.
  • the adherently grown cells are detached from the bottom of the culture bottles and transferred into those cell culture bottles, which largely prevent adherence, for example cell culture bottles for suspension culture of plastic, so that in serum-free Opti-MEM (Invitrogen, Düsseldorf) free floating cell spheroids of about 0, 1 - make 0.2 mm diameter.
  • the serum-free medium is added to substances that promote the differentiation of chorionic cells into insulin-producing cells.
  • this is a mixture of L-gastrin (final concentration 100 ng / ml) and the incretinal hormone GLP-1 (7-36) (final concentration 50 ng / ml) or an analog of the incretin hormone such as exendin-4 (final concentration 50 ng / ml).
  • L-gastrin or GLP-1 or exendin-4 also promotes differentiation into insulin-producing cells, but much less effectively than with combined administration.
  • HGF Hepatocyte Growth Factor
  • VEGF-A Vascular Endothelial Growth Factor-A
  • NGF- ⁇ Nerve Growth Factor- ⁇
  • Betacellulin a substance that increase the intracellular cAMP concentration (for example, db-cAMP, 8-Br-cAMP, or isobutyl-methyl-xanthine).
  • the Chorionzell-Sppur ⁇ be as Suspen sion culture ⁇ 7-21 days in serum-free medium with L-gastrin and exendin-4 at 37 ° C or with the substances incubated promote the differentiation of chorion cells into insulin producing cells, wherein the medium is changed regularly becomes.
  • the culture is carried out under otherwise identical conditions, following adherence of the chorionic cell spheroids to Matrigel-coated plastic material, for example on BioCoat thin-layer Matrigel Matrix 6-WeII cell culture plates from BD-Biosciences Discovery Labware (Heidelberg).
  • aliquots of the chorionic cell spheroids from the suspension cultures are collected by centrifugation as a pellet.
  • the Matrigel is dissolved with dispase (according to a manufacturer's instructions) and defined aliquots of the cells are also pelleted by centrifugation.
  • the expression of insulin gene at the level of mRNA by RT-PCR is checked. This is done by isolating the RNA according to a standard method known to those skilled in the art, e.g. in the following way:
  • RNA is extracted using "Perfect RNA TM, Eukaryotic, Mini Kit” (Eppendorf, Hamburg) according to the manufacturer's instructions and then reverse transcribed using the Cloned AMV First Strand cDNA Synthesis Kit (Invitrogen, Düsseldorf) according to the manufacturer's instructions.
  • the complementary DNA is then amplified with HotMasterMix (Eppendorf) under the following conditions:
  • the mRNA bands are related to beta-actin.
  • the following primers are used: insulin, 5 N -CTC ACA CCT GGT GGA AGC TC-3 ⁇ and 5 X- AGA GGG AGC AGA TGC TGG TA-3-beta-actin, 5 * -TTC CAG CCT TCC TTC CTG G-3 ⁇ and 5-TTG CGC TCA GGA GGA GCA AT-3 ⁇
  • the PCR product is 245 bp in length. See Figure 2. Determination of cellular insulin content
  • the pellets obtained from the aliquots are sonicated after suspension in albumin-containing phosphate buffer and the content of insulin C-peptide is determined by enzyme immunoassay e.g. Mercodia (Uppsala, Sweden) according to manufacturer's instructions. Insulin C-peptide is measured because the Opti-MEM medium also contains insulin and thus the results would be falsified. The C-peptide assay used shows no cross-reaction with insulin.
  • the cellular C-peptide contents of choriocellular spheroids cultured without one of the additives mentioned in the exemplary embodiment is 0.8 ⁇ 0.5 ng / mg cell protein for suspension cultures and 12 ⁇ 3 ng / mg cell protein for Matrigel-adhered chorionic cell spheroids ,
  • Pellets obtained from the aliquots are ultrasonically digested after suspension in aqua dest and the protein content of the homogenate is determined with a coorimetric kit, eg the Total Protein Kit, Micro Lowry from Sigma (St. Louis, Mo, USA) according to the manufacturer's instructions
  • FIG. 1 shows the expression of AFP in chorion tissue. Staining of human placental tissue cryosections is shown, with expression of the endodermal marker AFP incubated with goat anti-AFP primary antibody (Santa Cruz Biotechnoiogy, Inc., Santa Cruz, CA) followed by 1: 400 dilution Fluorescein isothiocyanate-coupled donkey anti-goat immunoglobulin (Dianova, Hamburg) is illustrated. AFP expression is mainly found in chorionmesenchyme. Nuclei are evident by staining with Bisbenzimide (Höchst 33342). The magnification is 1: 100.
  • FIG. 2 shows the induced insulin mRNA from chorion cells
  • Choriocellular spheroids obtained from chorionic cells are incubated for one week either without enterohormones (shown as minus sign "-") or with a combination of 100 ng / ml gastrin and 50 ng / ml GLP-1 (shown as plus sign "+”).
  • Total RNA is extracted and transcribed into cDNA
  • insulin mRNA and as a positive control beta-actin mRNA are PCR amplified An insulin mRNA amplification product is only in the sample with a combination of 100ng / ml gastrin and 50 ng / ml GLP-1 (shown as a plus sign "+”) detectable.
  • FIG. 3 shows the insulin C-peptide content after induction in chorion cells
  • Choriocellular spheroids obtained from chorionic cells are treated for one week without enterohormones (shown as minus sign "-") or with a combination of

Abstract

Die vorliegende Erfindung bietet ein einfaches, leicht durchführbares Verfahren zur Induktion der Insulinsynthese in isolierten Chorionzellen, die aus der Eihaut gewonnen wurden. Die Zellen werden durch Zugabe von L-Gastrin und GLP-1 bzw. Exendin-4 zur Insulinsynthese angeregt, wobei eine große Insulinmenge freigesetzt wird. Damit sind die Zellen und das Verfahren zur Induktion der Insulinsynthese zur Herstellung eines Mittels zur Behandlung von Diabetes mellitus geeignet.

Description

Patentanmeldung
Verfahren zur Induktion der Insulinsynthese in Chorionzellen
Die vorliegende Erfindung betrifft ein Verfahren zur Induktion der Insulinsynthese in isolierten Chorionzellen und ihre Verwendung zur Transplantation und bei der Herstellung eines Mittels zur Behandlung des Diabetes mellitus.
Beschreibung und Einleitung des allgemeinen Gebietes der Erfindung
Die Plazenta als ein kurzlebiges transientes Organ verfügt über eine Reihe von pluripotenten Zellen, welche ohne ethische Probleme in hoher Zahl und ohne Belastung für Mutter und Kind entnommen werden können. Hierzu zählen Stammzellen aus dem Nabelschnurblut sowie Amnion- und Chorionzellen. Für die Trans- plantation sind sie hervorragend geeignet, da sie neben ihrem Stammzeil- ähnlichen Phänotyp eine immunologische Unreife aufweisen und damit eine wesentlich geringere Abstoßungsreaktion bei Transplantation hervorrufen, als adulte Zellen.
Stand der Technik
Zahlreiche wissenschaftliche Arbeitsgruppen beschäftigen sich damit, Stammzellen auch zur Therapie von Diabetes im speziellen Diabetes Typ-1 einzusetzen. Die Differenzierung von embryonalen Stammzellen führte dabei bisher nur zu geringer Insulinproduktion, die durch ein hohes Risiko, Teratome zu bilden, begleitet wird, so dass die Anwendung neben ethischen auch gesundheitliche Probleme aufwirft. Die Differenzierung mesenchymaler Zellen wie Zellen des Knochenmarks oder Zellen aus dem Nabenschnurblut sind bisher in Ansätzen verfolgt worden. Am effektivsten waren Ansätze, bei denen die Zellen durch virale Transfektion von Differenzierungsgenen zur Insulinsynthese und -sezernierung angeregt worden waren, wodurch die spätere potentielle Transplantation in Menschen erschwert wird. Dies trifft ebenso auf die Differenzierung endodermaler Zellen wie Leber- oder Dünndarmzellen zu, dem bisher erfolgreichsten Ansatz. Die Induktion der Insulinsynthese bis zu einem Drittel der Produktion in authentischen Inselzellen war allerdings nur nach retroviraler- bzw. adenoviraler Transfektion von Differenzie- rungsgenen bzw. des Telomerasegens möglich. Ausgehend von plazentaren Zellen wurde bisher nur eine Arbeit zur induzierten Insulinsynthese veröffentlicht, in der Amnionzellen in diabetische Mäuse injiziert wurden. Da Insulin nur auf der mRNA Ebene detektiert wurde, ist der tatsächliche Erfolg dieses Ansatzes nur schwer abzuschätzen.
Zurzeit gewährleisten lediglich Transplantationen von Pankreas- bzw. Inselzellen eine physiologisch regulierte Insulinfreisetzung in Diabetespatienten. Im Vergleich zur konventionellen Insulin-Therapie führt dies immerhin zu einer Verhinderung oder zumindest Verzögerung der Diabetes-spezifischen Sekundärkomplikationen. Die Pankreas- bzw. Inselzelltransplantation ist jedoch durch das begrenzte Spenderaufkommen nur bei wenigen Patienten einsetzbar.
Daher besteht der dringende Bedarf an geeigneten Zellen, in denen die Insulinsynthese induziert werden kann und ein entsprechendes Verfahren zur Induktion der Insulinsynthese in diesen Zellen.
Aufgabe Aufgabe der vorliegenden Erfindung ist es, ein einfaches, leicht durchführbares Verfahren zur Induktion der Insulinsynthese in isolierten Chorionzellen bereit zu stellen, wobei die Chorionzellen und die Kultivierungsbedingungen so optimiert sind, dass eine hohe Insulinmenge erzeugt wird und die Nachteile im Stand der Technik überwunden werden. Lösung der Aufgabe
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
Das Verfahren zeichnet sich aus durch eine besondere Kultivierungsmethode der isolierten Chorionzellen und dem gezielten Zusatz einer Kombination von speziellen Substanzen, die die Differenzierung von Chorionzellen zu Insulinproduzierenden Zellen fördern. Diese Substanzen entstammen der Gruppe der Enterohormo- ne, wie Gastrin sowie dessen Derivate und Glucagon-like Polypeptide 1 (GLP-1) sowie dessen Derivate einschließlich Exendin-4, oder es sind Wachstums-und Differenzierungsfaktoren wie Hepatocyte growth factor (HGF), Vascular endothelial growth factor-A (VEGF-A), Nerve growth factor-α (NGF-α), Betacellulin, Epidermal growth factor (EGF)-Rezeptoren bindende Substanzen und/oder Substanzen, die die intrazelluläre cAMP-Konzentration erhöhen.
Vorteilhafterweise werden als Zellen zur Induktion der Insulinsysnthese Stammzellen aus der Plazenta insbesondere dem Chorion verwendet. Diese Chorionzellen entstammen ausschließlich der Eihaut und weisen keine Verunreinigungen durch Amnionzellen oder Chorionzellen aus anderen Teilen der Plazenta auf. Diese Zellen sind aber soweit differenziert, dass eine Tumorbildung nach Injektion nahezu ausgeschlossen werden kann. Damit sind diese Zellen für das Verfahren zur Induktion der Insulinsynthese besser geeignet, als bisher im Stand der Technik bekannte Zellen, die eine mögliche Teratombildung bedingen und/ oder nur durch eine virale Transfektion zur Insulinproduktion fähig sind. Im Unterschied zu Zellen aus dem Amnion und Zellen aus anderen Teilen der Plazenta exprimieren die erfindungsgemäßen Chorionzellen endodermale Marker wie z.B. α-Fetoprotein (AFP) (Figur 1) in vivo und werden nicht mit Differenzierungsgenen wie PDX-1 , MAF1 oder NeuroD mittels retro- bzw. adenoviraler Vektoren transfiziert. Endodermale Marker wie z.B. α-Fetoprotein (AFP) zeigen an, dass die erfin- dungsgemäßen Chorionzellen zu endodermalen Zellen wie Dünndarm- oder Leberzellen differenzieren können. Das Verfahren zur Induktion von Insulin in isolierten Chorionzellen weist folgende Schritte auf:
a) Bereitstellung und Kultivierung von Chorionzellen b) Erzeugung und Kultivierung von Chorionzell-Sphäroiden b) Induktion der Insulinsynthese
a) Bereitstellung und Kultivierung von Chorionzellen
Chorionzellen werden aus Choriongewebe eines Säugetieres, bevorzugt eines Menschen durch Abtrennung der gesamten Eihaut von der restlichen Plazenta und Verwerfen des Amnions erhalten. Das Choriongewebe wird zerkleinert und einer Kollagenasebehandlung unterzogen, so dass Chorioneinzelzellen entstehen. Die Kultivierung der Chorioneinzelzellen erfolgt in Medium, wobei die adhärente Kultivierung der Chorioneinzelzellen vorzugsweise in serumfreiem oder in fötales Kälberserum enthaltendem Kulturmedium erfolgt.
b) Erzeugung und Kultivierung von Chorionzell-Sphäroiden
Die Erzeugung von Chorionzell-Sphäroiden erfolgt durch Kultur der mechanisch oder enzymatisch abgelösten Zellen in serumfreiem oder Medium, das fötales Kälberserum enthält, auf nicht-adhärenten Zellkulturmaterialien, so dass die Zellen als frei flotierende Aggregate in dreidimensionaler Form (=Sphäroide) vorliegen. Nicht-adhärente Zellkulturmaterialien sind beispielsweise Zellkulturflaschen für Suspensionskultur aus Plastik.
Alternativ erfolgt die Kultivierung der Chorionzellen auf Matrigel zu adhärenten Chorionzell-Sphäroiden in serumfreien Medium oder Medium, das fötales Kälberserum enthält.
c) Induktion der Insulinsynthese durch Zugabe von Enterohormon Die Induktion der Insulinsynthese erfolgt durch Kultivierung der Chorionzell- Sphäroide in serumfreien Medium oder Medium, das fötales Kälberserum enthält auf nicht-adhärenten Zellkulturmaterialien und gezielter Zugabe von Enterohor- monen wie Gastrin oder einem Gastrin-Derivat und GLP-1 bzw. einem GLP-1- Derivat, z.B Exendin-4. In den Chorionzell-Sphäroiden wird auf diese Weise die Bildung sowohl von lnsulin-mRNA als auch von Insulin-Protein induziert. Der Gehalt an zellulärem Insulinprotein (gemessen als Insulin-C-Peptid) liegt dabei im Durchschnitt bei 37 ± 7 ng (MW ± SEM, n=6) pro mg Gewebeprotein. Dies ent- spricht bei einem molekularen 1 :1 Verhältnis einer Insulinmenge von 58 ng bis 77 ng Insulin.
Alternativ erfolgt die Induktion der Insulinsynthese der auf Matrigel adhärenten Chorionzell-Sphäroide durch Kultivierung in serumfreien Medium oder Medium, das fötales Kälberserum enthält, mit Enterohormonen wie Gastrin oder einem
Gastrin-Derivat und GLP-1 bzw. einem GLP-1 -Derivat, z.B. Exendin-4. Der Gehalt an zellulärem Insuiinprotein (gemessen als Insulin-C-Peptid) liegt hierbei im Durchschnitt bei 73 ± 7 ng (MW ± SEM, n =3) pro mg Gewebeprotein. Dies entspricht bei einem molekularen 1 :1 Verhältnis einer Insulinmenge von 135 ng bis 154 ng Insulin.
Alternativ werden neben den Enterohormonen Gastrin und/oder dessen Derivate, GLP-1 und/oder dessen Derivate einschließlich Exendin-4 auch Hepatocyte growth factor (HGF), Vascular endothelial growth factor-A (VEGF-A), Nerve growth factor-α (NGF-α), Betacellulin, Epidermal growth factor (EGF)-Rezeptoren bindende Substanzen und/oder Substanzen, die die intrazelluläre cAMP-
Konzentration erhöhen, verwendet, um die Insulinsynthese zu induzieren. Substanzen, die die intrazelluläre cAMP-Konzentration erhöhen sind beispielsweise db-cAMP, 8-Br-cAMP, oder Isobutyl-Methyl-Xanthin.
Das erfindungsgemäße Verfahren zur Induktion der Insulinsynthese in isolierten Chorionzellen ist einfach durchführbar und erzeugt hohe Insulinmengen. Damit sind diese Zellen zur Herstellung eines Mittels zur Behandlung von Diabetes bei Patienten geeignet.
Die Erfindung betrifft weiterhin ein Mittel zur Behandlung von Diabetes bei Patienten, das Chorionzellen beinhaltet, die durch Zugabe von Enterohormonen zur In- sulinsysnthese angeregt werden. Der Begriff Patient bezieht sich dabei gleichermaßen auf Menschen und Wirbeltiere. Damit kann das Mittel zur Behandlung von Diabetes in der Human- und Veterinärmedizin verwendet werden.
Das Mittel zur Behandlung von Diabetes der vorliegenden Erfindung wird den Pa- tienten, als Teil einer pharmazeutisch akzeptablen Komposition entweder oral, rektal, parenteral intravenös, intramuskulär oder subkutan, intracisternal, intravaginal, intraperitoneal, intravasculär, lokal (Puder, Salbe oder Tropfen) oder in Sprayform verabreicht. Pharmazeutisch akzeptable Kompositionen können die Modifikationen als Salze, Ester, Amide und "Prodrugs" beinhalten, sofern sie nach zuverlässiger medizinischer Beurteilung keine übermäßige Toxizität, Irritationen oder allergische Reaktionen am Patienten auslösen.
Der Terminus "Prodrug" bezieht sich auf Verbindungen, die zur Verbesserung der Aufnahme transformiert werden, wie beispielsweise durch Hydrolyse im Blut. Dosierungsformen für die örtliche Administration des Impfstoffes dieser Erfindung schließen Salben, Puder, Sprays oder Inhalationsmittel ein. Die aktive Komponente wird unter sterilen Bedingungen, mit einem physiologisch akzeptablen Trägerstoff und möglichen Preservativen, Puffern oder Treibmitteln, je nach Bedarf, vermischt.
Ausführungsbeispiele a) Bereitstellung und Kultivierung von Chorionzellen i) Isolierung von Chorionzellen Von einer Plazenta, die beispielsweise durch Kaiserschnitt nach normaler Schwangerschaft erhalten wird, wird das Chorion laevi einschließlich der daran befindlichen Reste der äußeren Capsula decidua abgetrennt. Die restliche Plazenta, einschließlich des Amnions, wird nicht weiter verwendet. Das Choriongewebe wird in Phosphat-gepufferter Kochsalzlösung (PBS) von Blutresten befreit. Bei- spielsweise werden etwa 50 cm2 des Choriongewebes in etwa 1 cm2 große Fragmente zerkleinert und anschließend in einer Kollagenaselösung beispielsweise 200 mg/70 ml PBS inkubiert, vorzugsweise 60 Minuten bei 370C. Dabei erfolgt die Zerlegung des Gewebes in Einzelzellen und Bindegewebsfragmente. Die Reaktion wird durch Zugabe von 10% fötalem Kälberserum-haltigem Kulturmedium beendet und die Suspension durch einen Filter mit Porengröße von 70 μm gefiltert. Die Zellen werden anschließend von der Enzymlösung getrennt, z.B. durch zweimalige Zentrifugation 634 g 10 min, und in Epithelzellmedium, z.B. Quantum 286 (PAA, Cölbe) kultiviert, vorzugsweise in einer Konzentration von 0,5 x 106 Zellen/ml bei 370C.
ii) Adhärente Zellkultur
Nach etwa 24h wird das Kulturmedium erneuert und dabei nicht adhärente Zellen entfernt. Die Zellen werden für ein bis drei weitere Tage kultiviert.
b) Erzeugung und Kultivierung von Chorionzellen Suspensions-Zellkultur
Die adhärent gewachsenen Zellen werden vom Boden der Kulturflaschen abgelöst und in solche Zellkulturflaschen überführt, die eine Adhärenz weitgehend verhindern, beispielsweise Zellkulturflaschen für Suspensionskultur aus Plastik, so dass sich in serumfreien Opti-MEM (Invitrogen, Karlsruhe) frei flotierende Zellsphäroide von ca. 0,1 - 0,2 mm Durchmesser bilden.
c) Induktion der Insulinsynthese
Dem serumfreien Medium werden Substanzen zugegeben, die die Differenzierung von Chorionzellen zu insulinproduzierenden Zellen fördern. Im Besonderen ist dies eine Mischung aus L-Gastrin (Endkonzentration 100 ng/ml) und dem Inkre- tinhormon GLP-1 (7-36) (Endkonzentration 50 ng/ml) oder einem Analogon des Inkretinhormons wie beispielsweise Exendin-4 (Endkonzentration 50 ng/ml). Alleiniger Zusatz von L-Gastrin oder GLP-1 (bzw. Exendin-4) fördert ebenfalls die Differenzierung zu insulinproduzierenden Zellen, jedoch wesentlich weniger wirksam, als bei kombinierter Gabe. Eine Induktion der Insulinproduktion wird auch durch Zugabe anderer Peptide induziert, wie beispielsweise durch Hepatocyte growth factor (HGF), Vascular endothelial growth factor-A (VEGF-A), Nerve growth factor- α (NGF-α), Betacellulin, Epidermal growth factor (EGF), oder durch Substanzen die die intrazelluläre cAMP-Konzentration erhöhen (beispielsweise db-cAMP, 8-Br- cAMP, oder Isobutyl-Methyl-Xanthin). Die Chorionzell-Sphäroidθ werden 7-21 Tage in serumfreien Medium als Suspen¬ sionskultur mit L-Gastrin und Exendin-4 bei 37°C bzw. mit den Substanzen, die die Differenzierung von Chorionzellen zu insulinproduzierenden Zellen fördern inkubiert, wobei das Medium regelmäßig gewechselt wird. Alternativ erfolgt die Kultur, unter ansonsten gleichen Bedingungen, nach Adhärenz der Chorionzell-Sphäroide auf Matrigel-beschichteten Plastikmaterial, bspw. auf BioCoat Thin-Layer Matrigel Matrix 6-WeII Zellkulturplatten von BD- Biosciences Discovery Labware (Heidelberg).
Analyse der Insulinsynthese in den als Sphäroide kultivierten Zellen
Definierte Aliqots der Chorionzell-Sphäroide aus den Suspensionskulturen werden durch Zentrifugation als Pellet gesammelt. Bei den auf Matrigel adhärierten Sphä- roiden wird das Matrigel mit Dispase aufgelöst (entsprechend einer Vorschrift des Herstellers) und definierte Aliquots der Zellen werden ebenfalls durch Zentrifugati- on pelletiert.
Expression des Insulingens
In einem Aliquot wird die Expression des Insulingens auf der Ebene der mRNA durch RT-PCR überprüft. Dazu erfolgt eine Isolierung der RNA nach einem, dem Fachmann bekannten Standardverfahren z.B. auf folgende Weise:
Die RNA wird mittels "Perfect RNA™, Eukaryotic, Mini Kit" (Eppendorf, Hamburg) entsprechend den Herstellerangaben extrahiert und dann mit dem Cloned AMV First Strand cDNA Synthesis Kit (Invitrogen, Karlsruhe) ebenfalls entsprechend den Herstellerangaben revers transkribiert. Die komplementäre DNA wird dann mit HotMasterMix (Eppendorf) unter folgenden Bedingungen amplifiziert:
35 PCR-Zyklen (95 0C für 45 sec, 58 0C für 30 sec, 68 0C für 45 sec) und 68 0C für 5 min nach dem initialen Denaturierungsschritt (95 0C für 2 min). Die mRNA- Banden werden auf beta-Actin bezogen. Für die Amplifizierung werden beispielsweise die folgenden Primer verwendet: Insulin, 5N-CTC ACA CCT GGT GGA AGC TC-3^ und 5X-AGA GGG AGC AGA TGC TGG TA-3\- beta-Actin, 5*-TTC CAG CCT TCC TTC CTG G-3^ und 5-TTG CGC TCA GGA GGA GCA AT-3\ Das PCR-Produkt entspricht einer Länge von 245 bp. Siehe Figur 2. Bestimmung des zellulären Insulingehaltes
Die aus den Aliquoten erhaltenen Pellets werden nach Suspension in Albumin- haltigem Phosphatpuffer mit Ultraschall aufgeschlossen und der Gehalt an Insulin- C-Peptid wird mittels Enzymimmunoassay z.B. Mercodia (Uppsala, Schweden) nach Herstellerangaben bestimmt. Insulin-C-Peptid wird gemessen, da auch das Opti-MEM Medium Insulin enthält und so die Ergebnisse verfälscht werden würden. Der verwendete C-Peptid-Assay zeigt keinerlei Kreuzreaktion mit Insulin.
Ergebnis: Beim Zusatz von L-Gastrin + GLP-1 bzw. Exendin-4 werden zelluläre Insulin-C-Peptid-Werte von 37 ± 7 ng/mg Zellprotein für Suspensionskulturen von Zellspäroiden (dies entspricht bei einem molekularen 1 :1 Verhältnis einer Insulinmenge von 58 ng bis 77 ng Insulin) und 73 ± ng/mg Zellprotein für Matrigel- Kulturen von Zellsphäroiden erhalten (dies entspricht bei einem molekularen 1 :1 Verhältnis einer Insulinmenge von 135 ng bis 154 ng Insulin) (Figur 3). Die zellulä- ren C-Peptid-Gehalte von Chorionzell-Sphäroiden kultiviert ohne eines der im Ausführungsbeispiel genannten Zusätze liegt bei 0.8 ± 0.5 ng/mg Zellprotein für Suspensionskulturen und bei 12 ± 3 ng/mg Zellprotein für Matrigel-adhärierte Cho- rionzell-Sphäroide.
Bestimmung des Gesamtproteingehaltes
Aus den Aliquoten erhaltene Pellets werden nach Suspension in aqua dest mit Ultraschall aufgeschlossen und der Proteingehalt des Homogenats mit einem ko- lorimetrischen Kit z.B. dem Total Protein Kit, Micro Lowry von Sigma (St. Louis, Mo, USA) nach Herstellerangaben bestimmt
Abbildungslegenden
Figur 1 zeigt die Expression von AFP im Choriongewebe. Dargestellt ist eine Anfärbung von Kryoschnitten aus humanem Plazentagewebe, wobei die Expres- sion des endodermalen Markers AFP durch Inkubation mit Ziegen-anti-AFP- Primärantikörper (Santa Cruz Biotechnoiogy, Inc.; Santa Cruz, CA) und nachfolgende Darstellung mit 1 :400 verdünntem Fluorescein-lsothiocyanat-gekoppeltem Esel-anti-Ziege Immunglobulin (Dianova, Hamburg) verdeutlicht wird. AFP- Expression ist vor allem im Chorionmesenchym zu finden. Zellkerne werden durch Anfärbung mit Bisbenzimide (Höchst 33342) deutlich. Die Vergrößerung beträgt 1 :100.
Figur 2 zeigt die induzierte Insulin mRNA aus Chorionzellen
Aus Chorionzellen gewonnene Chorionzell-Sphäroide werden eine Woche entwe- der ohne Enterohormone (als Minuszeichen dargestellt „-„) oder mit einer Kombination von 100 ng/ml Gastrin und 50 ng/ml GLP-1 (als Pluszeichen dargestellt „+") inkubiert. Gesamt RNA wird extrahiert und in cDNA umgeschrieben. Abschließend werden Insulin mRNA und als positive Kontrolle beta-Aktin mRNA mittels PCR amplifiziert. Ein Insulin mRNA Amplifikationsprodukt ist nur in der Probe mit einer Kombination von 100ng/ml Gastrin und 50 ng/ml GLP-1 (als Pluszeichen dargestellt „+") nachweisbar.
Figur 3 zeigt den Insulin C-Peptid Gehalt nach Induktion in Chorionzellen
Aus Chorionzellen gewonnene Chorionzell-Sphäroide werden eine Woche ohne Enterohormone (als Minuszeichen dargestellt „-„) oder mit einer Kombination von
100 ng/ml Gastrin und 50 ng/ml GLP-1 (als Pluszeichen dargestellt „+") inkubiert. Dabei liegt der Gehalt an zellulärem Insulin-C-Peptid bei den frei flotierenden Cho- rionzell-Sphäroiden im Durchschnitt bei 37 ± 7 ng (MW ± SEM, n=6), bei den auf Matrigel adhärenten Chorionzell-Sphäroiden im Durchschnitt bei 73 ± 7 ng (MW ± SEM, n =3).

Claims

Ansprüche
1. Verfahren zur Induktion von Insulin in isolierten Chorionzellen bestehend aus den Schritten a) Bereitstellung und Kultivierung von Chorionzellen b) Erzeugung und Kultivierung von Chorionzell-Sphäroiden c) Induktion der Insulinsynthese
2. Verfahren gemäß Anspruch 1 dadurch gekennzeichnet dass die isolierten Cho- rionzellen aus der Eihaut eines Säugetieres entnommen wurden.
3. Verfahren gemäß der vorangegangenen Ansprüche dadurch gekennzeichnet dass die Chorionzellen in Medium kultiviert werden.
4. Verfahren gemäß der vorangegangenen Ansprüche dadurch gekennzeichnet dass das Medium serumfreies oder fötales Kälberserum enthaltenes Kulturmedium ist.
5. Verfahren gemäß der vorangegangenen Ansprüche dadurch gekennzeichnet dass die Induktion durch Zugabe von Enterohormon erfolgt.
6. Verfahren gemäß Anspruch 6 dadurch gekennzeichnet dass Enterohormon ausgewählt sind aus der Gruppe Gastrin und dessen Derivate, Exendin-4 und dessen Derivate, Glucagon-like Polypeptide 1 (GLP-1) sowie dessen Derivate einschließlich Exendin-4, Hepatocyte growth factor (HGF), Vascular endothelial growth factor-A (VEGF-A), Nerve growth factor-α (NGF-α), Betacellulin, Epidermal growth factor (EGF)-Rezeptoren bindende Substanzen und Substanzen, die die intrazelluläre cAMP-Konzentration erhöhen.
7. Verfahren gemäß Anspruch 7 dadurch gekennzeichnet dass Substanzen, die die intrazelluläre cAMP-Konzentration erhöhen ausgewählt sind aus der Gruppe db-cAMP, 8-Br-cAMP, Isobutyl-Methyl-Xanthin.
8. Verfahren gemäß Anspruch 5 bis 7 dadurch gekennzeichnet dass die Induktion durch Zugabe von L-Gastrin und GLP-1 erfolgt.
9. Verfahren gemäß Anspruch 5 bis 7 dadurch gekennzeichnet dass die Induktion durch Zugabe von L-Gastrin und Exendin-4 erfolgt.
10. Verfahren gemäß Anspruch 5 bis 9 dadurch gekennzeichnet dass die Induktion durch Zugabe von 100 ng/ml L-Gastrin und 50 ng/ml Exendin-4 erfolgt.
11. Verfahren gemäß Anspruch 5 bis 9 dadurch gekennzeichnet dass die Induktion durch Zugabe von 100ng/ml L-Gastrin und 50 ng/ml GLP-1 erfolgt.
12. Verfahren gemäß der vorangegangenen Ansprüche dadurch gekennzeichnet dass die Kultivierung der Chorionzellen nicht-adhärent erfolgt.
13. Verfahren gemäß Anspruch 12 dadurch gekennzeichnet dass 30ng bis 40 ng zelluläres Insulin-C-Peptid pro mg Gewebeprotein entstehen.
14. Verfahren gemäß der Ansprüche 1 bis 11 dadurch gekennzeichnet dass die Kultivierung der Chorionzellen auf Matrigel erfolgt.
15. Verfahren gemäß Anspruch 14 dadurch gekennzeichnet dass 70 ng bis 80 ng zelluläres Insulin-C-Peptid pro mg Gewebeprotein entstehen.
16. Chorionzellen zur Induktion von Insulin aus Choriongewebe der Eihaut dadurch gekennzeichnet dass in ihnen die Insulinsynthese durch Zugabe von En- terohormonen ausgewählt aus der Gruppe Gastrin und dessen Derivate, GIu- cagon-like Polypeptide 1 (GLP-1) sowie dessen Derivate einschließlich Exen- din-4, Hepatocyte growth factor (HGF), Vascular endothelial growth factor-A (VEGF-A), Nerve growth factor-α (NGF-α), Betacellulin, Epidermal growth factor (EGF)-Rezeptoren bindende Substanzen, Substanzen, die die intrazelluläre cAMP-Konzentration erhöhen, induziert wird.
17. Chorionzellen gemäß Anspruch 16 dadurch gekennzeichnet dass die Induktion der Insulinsynthese durch Zugabe von L-Gastrin und GLP-1 erfolgt.
18. Chorionzellen gemäß Anspruch 17 dadurch gekennzeichnet dass die In- duktion der Insulinsynthese durch Zugabe von 100ng/ml L-Gastrin und 50 ng/ml
GLP-1 erfolgt.
19. Chorionzellen gemäß Anspruch 16 dadurch gekennzeichnet dass die Induktion der Insulinsynthese durch Zugabe von L-Gastrin und Exendin-4 erfolgt.
20. Chorionzellen gemäß Anspruch 19 dadurch gekennzeichnet dass die Induktion der Insulinsynthese durch Zugabe von 100ng/ml L-Gastrin und 50 ng/ml Exendin-4 erfolgt.
21. Chorionzellen gemäß der vorangegangenen Ansprüche 16 bis 20 zur Herstellung eines Arzneimittels zur Behandlung von Diabetes.
22. Mittel zur Behandlung von Diabetes mellitus, dadurch gekennzeichnet dass es Chorionzellen gemäß Anspruch 16 bis 21 enthält.
PCT/DE2007/001032 2006-06-12 2007-06-12 Verfahren zur induktion der insulinsynthese in chorionzellen WO2007143978A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027450.4 2006-06-12
DE102006027450A DE102006027450A1 (de) 2006-06-12 2006-06-12 Verfahren zur Induktion der Insulinsynthese in Chorionzellen

Publications (2)

Publication Number Publication Date
WO2007143978A2 true WO2007143978A2 (de) 2007-12-21
WO2007143978A3 WO2007143978A3 (de) 2008-03-27

Family

ID=38624361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001032 WO2007143978A2 (de) 2006-06-12 2007-06-12 Verfahren zur induktion der insulinsynthese in chorionzellen

Country Status (2)

Country Link
DE (1) DE102006027450A1 (de)
WO (1) WO2007143978A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049181A1 (en) * 2008-10-29 2010-05-06 Oslo University Hospital Storage of conjuctival cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235563A1 (en) * 2002-04-19 2003-12-25 Strom Stephen C. Placental derived stem cells and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235563A1 (en) * 2002-04-19 2003-12-25 Strom Stephen C. Placental derived stem cells and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BATTULA VENKATA LOKESH ET AL: "Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation." DIFFERENTIATION; RESEARCH IN BIOLOGICAL DIVERSITY APR 2007, Bd. 75, Nr. 4, April 2007 (2007-04), Seiten 279-291, XP002457620 ISSN: 0301-4681 *
CHANG CHIA-MING ET AL: "Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 1 JUN 2007, Bd. 357, Nr. 2, 3. April 2007 (2007-04-03), Seiten 414-420, XP002457619 ISSN: 0006-291X *
IGURA K ET AL: "ISOLATION AND CHARACTERIZATION OF MESENCHYMAL PROGENITOR CELLS FROM CHORIONIC VILLI OF HUMAN PLACENTA" CYTOTHERAPY, ISIS MEDICAL MEDIA, OXFORD,, GB, Bd. 6, Nr. 6, 2004, Seiten 543-553, XP009072873 ISSN: 1465-3249 *
SANTANA A ET AL: "Insulin-producing cells derived from stem cells: recent progress and future directions." JOURNAL OF CELLULAR AND MOLECULAR MEDICINE 2006 OCT-DEC, Bd. 10, Nr. 4, Oktober 2006 (2006-10), Seiten 866-883, XP002457618 ISSN: 1582-1838 *
WULF G G ET AL: "MESENGENIC PROGENITOR CELLS DERIVED FROM HUMAN PLACENTA" TISSUE ENGINEERING, LARCHMONT, NY, US, Bd. 10, Nr. 7/8, Juli 2004 (2004-07), Seiten 1136-1147, XP001206075 ISSN: 1076-3279 *
ZHAO YONG ET AL: "Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics." EXPERIMENTAL CELL RESEARCH 1 AUG 2006, Bd. 312, Nr. 13, 26. April 2006 (2006-04-26), Seiten 2454-2464, XP002457617 ISSN: 0014-4827 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049181A1 (en) * 2008-10-29 2010-05-06 Oslo University Hospital Storage of conjuctival cells

Also Published As

Publication number Publication date
DE102006027450A1 (de) 2007-12-13
WO2007143978A3 (de) 2008-03-27

Similar Documents

Publication Publication Date Title
DE60132429T2 (de) Pluripotente aus von fettgewebe stammenden stromazellen erzeugte stammzellen und deren verwendung
DE60129007T2 (de) Vermehrung des weich- sowie des knochengewebes anhand von aus muskeln stammenden vorläuferzellen, sowie damit verbundene zusammensetzungen und behandlungsformen
US20230313143A1 (en) Multifunctional immature dental pulp stem cells and therapeutic applications
JP5649786B2 (ja) ヒト胚性幹細胞およびそれらの誘導体を含む組成物、使用方法、ならびに調製方法
CN103356709B (zh) 制备用以治疗急性伤口的药物的方法
DE69533223T2 (de) Zusammensetzungen und Verfahren zur Stimulation der Proliferation und Differenzierung von humanen fötalen und adulten Pankreaszellen ex vivo
EP2446892B1 (de) Isolierte adulte pluripotente Stammzellen
US20060247195A1 (en) Method of altering cell properties by administering rna
BE1024781B1 (de) Von adipösem gewebe stammende stromale stammzellen zur verwendung bei der behandlung behandlungsresistenter komplexer perianalfisteln bei morbus crohn
DE69531712T2 (de) Hybridgel, das eine biologisch aktive Substanz sekretiert
DE60300681T2 (de) Dedifferenzierte, programmierbare stammzellen monozytären ursprungs, sowie deren herstellung und verwendung
WO1997023611A2 (de) Nukleinsäuresequenzen von genen der high mobility group proteine sowie verwendungen derselben
DE69832880T2 (de) Frazzled nukleotidsequenzen, expressionsprodukte, zusammensetzungen und verwendungen
WO2007143978A2 (de) Verfahren zur induktion der insulinsynthese in chorionzellen
CA3168330A1 (en) Method for treating chronic graft versus host disease
KR102513507B1 (ko) 장기 섬유증의 예방 또는 치료제
KR101971557B1 (ko) Lin28의 발현을 이용한 재생능 및 분화능이 우수한 줄기세포의 제조방법
EP1440085A2 (de) Transiente immortalisierung von zellen durch onkogenproteine oder telomerproteine
EP2576771A2 (de) Isolierung von mesenchymalen stammzellen
WO2004035774A2 (de) Expressionsvektoren zur selektion aus stammzellen differenzierter cardiomyocyten
Colletti Human mesenchymal stem cell engraftment in the chimeric sheep model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785533

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07785533

Country of ref document: EP

Kind code of ref document: A2