EP2551057B1 - Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels - Google Patents
Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels Download PDFInfo
- Publication number
- EP2551057B1 EP2551057B1 EP11175222.6A EP11175222A EP2551057B1 EP 2551057 B1 EP2551057 B1 EP 2551057B1 EP 11175222 A EP11175222 A EP 11175222A EP 2551057 B1 EP2551057 B1 EP 2551057B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- abrasive
- additive
- abrasive grains
- particles
- grinding aid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000006061 abrasive grain Substances 0.000 claims description 66
- 239000002245 particle Substances 0.000 claims description 49
- 238000000227 grinding Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 13
- 239000002775 capsule Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910000601 superalloy Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000000654 additive Substances 0.000 description 98
- 230000000996 additive effect Effects 0.000 description 96
- 239000011230 binding agent Substances 0.000 description 38
- 239000007788 liquid Substances 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 21
- -1 potassium tetrafluoroborate Chemical compound 0.000 description 16
- 229910052593 corundum Inorganic materials 0.000 description 14
- 239000003082 abrasive agent Substances 0.000 description 13
- 239000010431 corundum Substances 0.000 description 13
- 239000002585 base Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 5
- 229910001610 cryolite Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 4
- 239000001095 magnesium carbonate Substances 0.000 description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 229910020261 KBF4 Inorganic materials 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 3
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 3
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 3
- 229910001623 magnesium bromide Inorganic materials 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- OZHJEQVYCBTHJT-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-methylbenzene Chemical compound CC1=C(Br)C(Br)=C(Br)C(Br)=C1Br OZHJEQVYCBTHJT-UHFFFAOYSA-N 0.000 description 2
- NAQWICRLNQSPPW-UHFFFAOYSA-N 1,2,3,4-tetrachloronaphthalene Chemical compound C1=CC=CC2=C(Cl)C(Cl)=C(Cl)C(Cl)=C21 NAQWICRLNQSPPW-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- QKUNKVYPGIOQNP-UHFFFAOYSA-N 4,8,11,14,17,21-hexachlorotetracosane Chemical compound CCCC(Cl)CCCC(Cl)CCC(Cl)CCC(Cl)CCC(Cl)CCCC(Cl)CCC QKUNKVYPGIOQNP-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 2
- 235000019289 ammonium phosphates Nutrition 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 229910001620 barium bromide Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910001622 calcium bromide Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- UGQQAJOWXNCOPY-UHFFFAOYSA-N dechlorane plus Chemical compound C12CCC3C(C4(Cl)Cl)(Cl)C(Cl)=C(Cl)C4(Cl)C3CCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl UGQQAJOWXNCOPY-UHFFFAOYSA-N 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 229910052683 pyrite Inorganic materials 0.000 description 2
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 229910020027 (NH4)3AlF6 Inorganic materials 0.000 description 1
- SHRRVNVEOIKVSG-UHFFFAOYSA-N 1,1,2,2,3,3-hexabromocyclododecane Chemical compound BrC1(Br)CCCCCCCCCC(Br)(Br)C1(Br)Br SHRRVNVEOIKVSG-UHFFFAOYSA-N 0.000 description 1
- DEIGXXQKDWULML-UHFFFAOYSA-N 1,2,5,6,9,10-hexabromocyclododecane Chemical compound BrC1CCC(Br)C(Br)CCC(Br)C(Br)CCC1Br DEIGXXQKDWULML-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 241001289141 Babr Species 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005569 Iron sulphate Substances 0.000 description 1
- 229910020491 K2TiF6 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229940059251 calcium bromide Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 1
- 229910052960 marcasite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- BXNHTSHTPBPRFX-UHFFFAOYSA-M potassium nitrite Chemical compound [K+].[O-]N=O BXNHTSHTPBPRFX-UHFFFAOYSA-M 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 1
- YIVJSMIYMAOVSJ-UHFFFAOYSA-N sodium;phosphono dihydrogen phosphate Chemical compound [Na+].OP(O)(=O)OP(O)(O)=O YIVJSMIYMAOVSJ-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 229910001247 waspaloy Inorganic materials 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/001—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as supporting member
- B24D3/002—Flexible supporting members, e.g. paper, woven, plastic materials
- B24D3/004—Flexible supporting members, e.g. paper, woven, plastic materials with special coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
- B24D11/005—Making abrasive webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
Definitions
- the present invention relates to a process for producing a coated abrasive, a coated abrasive and the use of a coated abrasive.
- abrasives such as abrasive belts or fiber discs
- Some surfaces such as stainless steel, require additional coating of the abrasive with so-called "grinding aids".
- KF 4 potassium tetrafluoroborate
- the additional coating is applied as a liquid mixture which, in addition to the actual abrasive additive, may also contain a binder, a solvent (such as water) and optionally paints, rheology additives, wetting agents, defoamers or fillers.
- This liquid mixture is applied to an abrasive precursor comprising a backing, a plurality of abrasive grains, and at least one cured first size coat.
- the liquid applied additional coating is cured, for example by heating, so that there is a second coat layer.
- the additive coating may also be applied to an abrasive precursor containing only a backing, a base binder, and abrasive grains, however no cape. The cured additional coating then forms the only covering binder.
- EP 1 493 535 A1 Although it discloses that the abrasive additive is applied in powder form. However, this powder is applied exclusively to a cured cap binder.
- the abrasive additive is applied in step b) in dry form, in particular scattered.
- the abrasive precursor may contain one or more layers of a capping agent.
- the bottom coat binder is usually referred to as a "top coat 1" or “size coat” and the top coat binder as a “top coat 2" or “supersize coat”.
- the top coat binder is uncured, ie the top binder, which forms the outermost layer and faces away from the base of the abrasive precursor.
- the dry-applied abrasive additive does not penetrate into deeper layers of the capping, but remains in a concentrated amount on its surface.
- the abrasive additive is distributed relatively parallel to the surface of the abrasive and thus much more homogeneous. It thus accumulates less in the areas between the individual abrasive grains. Consequently, a larger proportion of the applied abrasive additive can come into contact with a surface to be processed, as is the case with the usual liquid application. Therefore, in the dry application of this invention, in most embodiments, less abrasive additive per area is needed than is required to achieve the same total stock removal with a conventional liquid coating.
- the result is a higher one Intelabtragsmenge.
- the application amount of the abrasive grains can be reduced compared to conventional abrasives; the resulting reduction in the total amount of material removed can be compensated for by the dry application of the grinding additive according to the invention.
- the production process according to the invention is therefore significantly more economical. Since only comparatively little abrasive additive is present between the abrasive grains, more chip space remains there, in which abrasion arising during grinding can be absorbed; This also leads to an increase in the service life.
- a dry applied abrasive additive can be firmly bonded to it solely by curing the cap binder.
- the abrasive additive is fixed by the still uncured binder, as this can migrate by capillary forces in the dry grinding additive.
- This type of production also eliminates the need to first prepare a liquid additional coating and then to cure this again by an additional process step.
- a dry-applied abrasive additive results in much better fixation of the abrasive grains than is the case with wet-applied abrasive additive.
- the abrasive grains therefore break out less easily when machining a surface. This effect is particularly pronounced at high application rates of the grinding additive.
- the abrasive additive is relatively homogeneously distributed in a direction perpendicular to the backing so that a relatively high proportion is in the vicinity or even in direct contact with the abrasive grains. The binding force between abrasive grains and cap binder is thereby reduced.
- dry is understood to mean that the abrasive additive is not applied as a dispersed or suspended constituent of a liquid dispersion or suspension. It is not excluded that the abrasive additive has liquid adhesions on its outer surface, which may be caused, for example, by atmospheric moisture. Overall, however, any liquid content of the material applied in step b) should be less than 5% by weight and preferably less than 1% by weight in the context of the invention. In many embodiments, such a low liquid content allows the grinding additive to flow freely and therefore can be easily applied.
- a “grinding additive” is understood here and below as meaning a substance which has at least one, preferably more of the following properties: reduction of the temperature occurring during the grinding, in particular due to a lubricating effect; Reducing the temperature by melting and recrystallizing the abrasive additive; Prevention of metal plating (so-called “vitrification”); Preventing the oxidation of the machined surface (oxides are often harder and therefore harder to machine than metal); and / or preventing a transformation of the structure of the abrasive grains, for example from alpha corundum to the more brittle spinel.
- the abrasive additive can be applied in step b) in the form of a powder, in the form of flakes, in the form of fibers, in the form of agglomerates and / or in the form of capsules, in particular sprinkled.
- Below an agglomerate is here and below an accumulation of previously loose individual particles to a solidified Composite understood.
- the solidification can take place, for example, by means of an additional substance and, for example, by pressing, hardening, drying and / or irradiation.
- the abrasive additive is surrounded by a shell, which may contain, for example, waxes, fats and / or polymer solutions. The preparation of such capsules per se is known to the person skilled in the art.
- the capsules may also contain liquid ingredients in addition to the abrasive additive. However, if these liquid ingredients are surrounded by the shell and can not escape from this, so these capsules are still considered within the scope of the invention as "dry" and streubar.
- At least a major part of the particles of the abrasive additive has a size which is in the range from 0.1 ⁇ m to 2 mm, preferably from 0.1 ⁇ m to 0.5 mm, particularly preferably from 0.1 ⁇ m to 0.1 mm.
- the d s90 value of the particle size distribution of the abrasive additive may range from 1 ⁇ m to 5 ⁇ m; the d.sub.50 value can be in the range of 10 .mu.m and 40 .mu.m ; the d s10 value can be in the range of 20 ⁇ m to 100 ⁇ m.
- a d s90 value of 3 ⁇ m means that 90% by weight of the particles of the abrasive additive have a size of 3 ⁇ m or more.
- the average size of the particles of the abrasive additive is less than the mean size of the abrasive grains. This allows the particles of the abrasive additive to evenly cover both the surfaces of the abrasive grains and the spaces therebetween.
- the abrasive additive is in the form of agglomerates or capsules.
- the ratio of the average diameter of the agglomerates to the mean diameter of the abrasive grains is preferably less than 5, more preferably less than 3 and even more preferably less than 2.
- the average diameter of the agglomerates is smaller than the average diameter of the abrasive grains.
- the size of the agglomerates is smaller than the ds3 value of the abrasive grains.
- the grinding additive can be applied in an application amount ranging from 10 g / m 2 to 500 g / m 2 , preferably from 20 g / m 2 to 400 g / m 2 , particularly preferably from 25 g / m 2 to 250 g / m 2 lies.
- application quantities in the range from 30 g / m 2 to 35 g / m 2 have proved particularly favorable at a particle size of # 400, with a particle size of # 36 in the range from 160 g / m 2 to 180 g / m 2 .
- any substance which has also been used in the previously customary liquid application process can be used as the grinding additive.
- the abrasive additive may for example contain or consist of a salt, which in particular contains boron and / or fluorine, in particular potassium tetrafluoroborate and / or cryolite.
- the abrasive additive may also include mica, sand, pigments, fumed silica, carbon, glass, talc, corundum and / or contain or consist of other mineral substances.
- the pad of the abrasive precursor may be any pad customary in the abrasive industry, particularly a flexible pad such as a textile pad, a paper, a film, vulcanized fiber, or a combination thereof.
- the invention is also not limited to particular abrasive grains;
- the abrasive grain may be, for example, corundum (in various variants, in particular white corundum, semi-precious corundum, blue corundum, zirconium corundum, and ceramic corundum and / or brown corundum), silicon carbide, cubic boron nitride, diamond or mixtures thereof.
- the size of the abrasive grains is not essential to the invention.
- the abrasive may be in various forms of manufacture, for example as a grinding wheel or abrasive belt.
- the abrasive grains can be bonded to the substrate by means of a known basic binder.
- a known basic binder This may be, for example, a synthetic resin known per se.
- a known per se binder can be used, for example, also made of synthetic resin.
- the capping agent may also contain other conventional active ingredients and / or fillers.
- the capping agent may be a phenolic resin, an epoxy, a urea resin, a melamine resin or an unsaturated polyester resin. Particularly preferably, the capping agent is a phenolic resin or an epoxide.
- the uncured size coat binder to which the abrasive additive is applied in step b) may have a viscosity which is conventional for abrasives without a further supercoat and without abrasive additive. The viscosity adjustment for a capping agent is known to the person skilled in the art.
- the size coat binder can be applied in an amount ranging from 40 g / m 2 to 700 g / m 2 , preferably from 50 g / m 2 to 600 g / m 2 , particularly preferably from 60 g / m 2 to 500 g / m 2 be applied.
- the solids content may be about in the range of 40 wt .-% to 95 wt .-%, preferably from 45 wt .-% to 93 wt .-%, particularly preferably from 50 wt .-% to 90 wt .-%.
- the quantities applied and the solids content may depend on the size of the abrasive grains. For example, with a grain size of P400, an application rate of 67 g / m 2 and a solids content may be suitable, while with a grain size of P24 an application rate of 430 g / m 2 and a solids content of 88% may be more advantageous.
- Another aspect of the invention is a coated abrasive obtainable by a process as described above wherein the average size of the particles of the abrasive additive is less than the average size of the abrasive grains.
- an abrasive comprises a backing, a plurality of abrasive grains bonded to the backing, a size coat binder which at least partially covers the abrasive grains, and at least one abrasive additive which has been dry applied and bound by the size coat.
- the abrasive additive is distributed more homogeneously parallel to the surface of the abrasive than in conventional wet application.
- a large part of the particles of the abrasive additive is in the vicinity of the surface of the top coat.
- the average application rate of abrasive additive particles above the abrasive grains is less than 60%, preferably less than 50%, most preferably less than 40%, of the average abrasive particle particle size between the abrasive grains.
- Order volume is understood to mean the mass occupancy per area, which can be expressed in g / m 2 .
- the particles of the abrasive additive are thus not particularly enriched between the abrasive grains nor above the abrasive grains and thus visibly more homogeneous than distributed with roller application over the entire surface.
- “Above the abrasive grains” means the particles of the abrasive additive are arranged on the side of the abrasive grains facing away from the backing.
- the ratio of the layer thickness of the abrasive additive above the abrasive grains to the layer thickness of the abrasive additive between the abrasive grains is preferably at least 30%, preferably at least 50%, particularly preferably at least 70%. Such a ratio means that above the abrasive grains is a larger relative proportion of the abrasive additive than is the case with conventional liquid coated abrasives.
- the layer thickness of the abrasive additive at the tips of the abrasive grains is very low, so that uncoated grain tips are visible from the eye.
- the layer thickness can be determined by measuring a photograph of a sectional view of the abrasive. The photo can be taken by a microscope.
- FIG. 1a schematically illustrated conventional coated abrasive comprises a base 1, abrasive grains 3, which are bonded by means of a base binder 2 to the pad 1, and a cap binder 4, which covers the abrasive grains 3.
- a liquid additive coating 6 was applied by means of rollers containing a multiplicity of particles 5 of a grinding additive.
- the particles 5 were substantially enriched between the individual abrasive grains 3. In this way, a large part of the particles 5 when processing a surface does not come into contact with this.
- FIG. 1b As can be seen, a portion of the abrasive grains 3 has been removed. However, many particles 5 of the abrasive additive have remained unused until then, which is economically very ineffective.
- FIG. 2a shows an abrasive according to the invention in which the abrasive additive has been applied dry as explained in more detail below.
- the particles 5 of the abrasive additive are arranged in the vicinity of the outer surface of the cap binder 4. In addition, they are distributed more homogeneously over this surface and not enriched in the areas between the abrasive grains 3. In this way, a larger proportion of the particles 5 of the abrasive additive comes into contact with a surface to be processed and can unfold its desired effect there. This larger share is in the in FIG. 2b shown used state of the abrasive 1 removed.
- abrasive precursors were first prepared. These contained a pad 1 of vulcanized fiber of thickness 0.8 mm. Abrasive grains 3 of two different corundum variants of sizes # 36 and # 50 were bonded to the base 1 in an amount of 800 g / m 2 (particle size # 36) or 570 g / m 2 (particle size # 50) by means of a base binder 2.
- the basic binder 2 of phenol resin and chalk was applied in an amount of 178 g / m 2 (particle size # 36) or 175 g / m 2 (particle size # 50).
- the potassium tetrafluoroborate powder was purchased from Solvay Fluor GmbH, 30173 Hannover, Germany.
- the size distribution of the particles of the powder is determined by the cumulative distribution in FIG. 3 given.
- the abrasive additive was applied in the form of a liquid additive coating.
- This liquid additional coating had the following composition: Phenolic resin 75% 12% by weight KBF 4 50% by weight cryolite 10% by weight water 17% by weight Dye, wetting agent, TiO2, plasticizer, thickener 11% by weight
- the potassium tetrafluoroborate particles in each of the examples each had an average size of 25 ⁇ m.
- Table 1 documents for the abrasives according to Examples 1 to 7 the total abrasion which could be achieved with these abrasives with abrasive grains of grain size # 36.
- the cured abrasive was punched into 180 mm diameter abrasive wheels.
- the grinding wheels were mounted on a grinding machine, operated at a cutting speed of 33.6 m / s and pressed with a force of 50 N vertically successively on a plurality of juxtaposed, 4 mm thick plates made of stainless steel (X5CrNi18-10 1.4301).
- the tangential feed was 1.5 m / min, which was ground with a contact roller.
- the amount of material removed was determined individually for each plate. The processing was carried out until the removal amount per plate had fallen to approximately 35% of the removal rate of the first plate.
- Table 1 shows the total stock removal and coating loss achieved, that is, the mass of the original abrasive disc removed from it during processing.
- Example No. 3 dry application (Example No. 3) is compared to the usual, wet Application (example # 1) only needed about half the abrasive additive to achieve about the same total removal.
- Table 1 Example no. 1 2 3 4 5 6 7 order type wet (comparative example, averages of 8 samples) dry dry dry dry dry dry Order quantity KBF 4 [g / m 2 ] 172 (contained in 344 g / m 2 wet applied additional coating) 43 87 112 152 178 208 Total removal [g] 159 119 160 180 192 216 220 Covering loss [g] 3.5 2.9 3.0 3.1 3.4 3.4 4.0
- FIGS. 4 to 7 contain photographs of top views on the coated abrasives 8 to 11 according to Table 2.
- the FIGS. 4 and 5 So show abrasive with a grain size # 36, where FIG. 4 a grinding wheel according to the invention with dry applied abrasive additive shows and FIG. 5 an abrasive with wet abrasive additive.
- the FIGS. 6 and 7 show abrasives with grain size # 50.
- the particles of the abrasive additive according to the inventive, dry application ( FIGS. 4 and 6 ) on the surface of the abrasive and especially also above the individual abrasive grains available.
- the particles of the abrasive additive are distributed substantially homogeneously over the surface.
- the particles of the abrasive additive further penetrated between the abrasive grains and therefore practically no longer visible.
- Table 2 Example no. 8th 9 10 11 Figure no.
- FIG. 5 is a photograph of a sectional view through a conventional abrasive wherein the abrasive additive 5 is embedded in a liquid applied additive coating 6. As can be clearly seen here, a large part of the abrasive additive is in the areas between the abrasive grains 3, where it can not develop its intended effect, however.
- FIG. 9 shows a photograph of a sectional view through another abrasive according to the invention.
- the abrasive grains 3 are bonded by means of a base binder 2 to a substrate 1 of vulcanized fiber of 0.8 mm thickness.
- Base 1, base binder 2 and abrasive grains 3 are of a layer of cap binder. 4 covered.
- Above this layer is another layer of dry-applied abrasive additive 5.
- the layer of abrasive additive 5 has a substantially homogeneous thickness.
- the abrasive additive 5 has practically not penetrated into the layer of cap binder 4.
- the particles of the abrasive additive 5 are bound directly by the cap 4. Thus, it requires no further binder, as is required in the conventional, wet application of the additional coating.
- FIG. 10 Abbott curves of several abrasives are shown, which were determined according to DIN EN ISO 4287.
- the first curve (1) was measured on a pad to which an abrasive grain mixture of corundum was bonded. This mixture contained P120 semi-precious corundum and # 120 grade ceramic corundum.
- This pad had a height difference of 436 microns.
- the height difference is understood here and below to mean the difference between the heights of a surface of the surface farthest from the substrate and a surface closest to the substrate; the height difference is thus equal to the difference of the ordinate values of the Abbott curve at 0% and at 100%.
- the second curve (2) After application of a cap binder, the second curve (2) with a height difference of 368 ⁇ m resulted.
- the third curve (3) was determined for an inventive abrasive in which potassium tetrafluoroborate (KBF 4 ) of an average particle size of 25 microns and in an amount of about 64 g / m 2 was applied dry; the height difference here is 386 ⁇ m.
- the fourth curve (4) shows the result for a conventional abrasive in which the potassium tetrafluoroborate was applied in a dispersion; it resulted in a height difference of 288 microns. The dispersion was applied in an amount of 120 g / m 2 , which resulted in an application rate of 54 g / m 2 of potassium tetrafluoroborate.
- the third curve (3) of the abrasive according to the invention is at less than about 15% of material levels above the fourth curve (4) of the conventional abrasive, while it is lower at higher material levels. This is due to the fact that with dry application a relatively large number of the particles of the abrasive additive are in the region of the highest elevations (ie in the region of a cutting chamber depth of 0 ⁇ m). With wet application according to curve (3) a larger part of the abrasive additive has sunk into the area between abrasive grains, so that here the material content is greater for larger cutting room depths.
- the height difference of the curve (3) for the inventive abrasive larger than the height difference of the curve (4) to the conventional abrasive. This is also due to the fact that a large proportion of the particles of the abrasive additive is in the region of the highest elevations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11175222.6A EP2551057B1 (de) | 2011-07-25 | 2011-07-25 | Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels |
BR112014001627-5A BR112014001627B1 (pt) | 2011-07-25 | 2012-07-23 | método para a produção de um produto abrasivo revestido e produto abrasivo revestido |
KR1020147002018A KR101949126B1 (ko) | 2011-07-25 | 2012-07-23 | 피복된 연삭 수단의 제조 방법, 피복된 연삭 수단, 및 피복된 연삭 수단의 용도 |
PCT/EP2012/064376 WO2013014116A1 (de) | 2011-07-25 | 2012-07-23 | Verfahren zur herstellung eines beschichteten schleifmittels, beschichtetes schleifmittel und verwendung eines beschichteten schleifmittels |
US14/234,917 US9555520B2 (en) | 2011-07-25 | 2012-07-23 | Method for producing a coated grinding means |
CN201280036977.8A CN103702801B (zh) | 2011-07-25 | 2012-07-23 | 用于制造涂层的磨具的方法、涂层的磨具以及涂层的磨具的应用 |
US15/376,820 US10562153B2 (en) | 2011-07-25 | 2016-12-13 | Coated grinding means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11175222.6A EP2551057B1 (de) | 2011-07-25 | 2011-07-25 | Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2551057A1 EP2551057A1 (de) | 2013-01-30 |
EP2551057B1 true EP2551057B1 (de) | 2016-01-06 |
Family
ID=46545402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11175222.6A Active EP2551057B1 (de) | 2011-07-25 | 2011-07-25 | Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels |
Country Status (6)
Country | Link |
---|---|
US (2) | US9555520B2 (pt) |
EP (1) | EP2551057B1 (pt) |
KR (1) | KR101949126B1 (pt) |
CN (1) | CN103702801B (pt) |
BR (1) | BR112014001627B1 (pt) |
WO (1) | WO2013014116A1 (pt) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015226418A1 (de) * | 2015-12-22 | 2017-09-07 | Robert Bosch Gmbh | Verfahren zur trockenen Herstellung einer Gleitschicht |
WO2017203848A1 (ja) | 2016-05-27 | 2017-11-30 | 株式会社アライドマテリアル | 超砥粒ホイール |
CA3134368A1 (en) * | 2016-12-23 | 2018-06-28 | Saint-Gobain Abrasives, Inc. | Coated abrasives having a performance enhancing composition |
DE102017216175A1 (de) * | 2017-09-13 | 2019-03-14 | Robert Bosch Gmbh | Schleifartikel |
KR102519772B1 (ko) * | 2017-12-27 | 2023-04-10 | 생-고뱅 어브레이시브즈, 인코포레이티드 | 집합체가 있는 피코팅 연마재 |
DE102019126288A1 (de) | 2019-09-30 | 2021-04-01 | Vsm Vereinigte Schmirgel- Und Maschinen-Fabriken Ag | Verfahren und Beschichtungsvorrichtung zum Beschichten eines Trägerbandes |
DE102019218560A1 (de) * | 2019-11-29 | 2021-06-02 | Robert Bosch Gmbh | Schaumschleifmittel und Verfahren zur Herstellung |
DE102020208075A1 (de) | 2020-06-30 | 2021-12-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Schleifartikel und Verfahren zur Herstellung |
CN112548882B (zh) * | 2020-12-31 | 2024-05-17 | 河南永泰磨具有限公司 | 一种砂轮及其制造方法 |
CN113649957B (zh) * | 2021-08-13 | 2024-06-04 | 广州砺风新材料科技有限公司 | 一种钢轨切割砂轮及其制备方法 |
WO2024158982A1 (en) * | 2023-01-25 | 2024-08-02 | Saint-Gobain Abrasives, Inc. | Abrasive articles and method of forming |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008079932A2 (en) * | 2006-12-21 | 2008-07-03 | Saint-Gobain Abrasives, Inc. | Abrasive article with cured backsize layer |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69123749T2 (de) * | 1990-10-09 | 1997-06-05 | Minnesota Mining & Mfg | Erodierbare agglomerate enthaltendes beschichtetes schleifmittel |
US5578098A (en) * | 1990-10-09 | 1996-11-26 | Minnesota Mining And Manufacturing Company | Coated abrasive containing erodible agglomerates |
US5562745A (en) * | 1994-03-16 | 1996-10-08 | Minnesota Mining And Manufacturing Company | Abrasive articles, methods of making abrasive articles, and methods of using abrasive articles |
US5498268A (en) * | 1994-03-16 | 1996-03-12 | Minnesota Mining And Manufacturing Company | Abrasive articles and method of making abrasive articles |
DE69530976D1 (de) * | 1994-03-16 | 2003-07-10 | Minnesota Mining & Mfg | Schleifgegenstände und verfahren zu ihrer herstellung |
US6475253B2 (en) * | 1996-09-11 | 2002-11-05 | 3M Innovative Properties Company | Abrasive article and method of making |
US5833724A (en) * | 1997-01-07 | 1998-11-10 | Norton Company | Structured abrasives with adhered functional powders |
US6039775A (en) * | 1997-11-03 | 2000-03-21 | 3M Innovative Properties Company | Abrasive article containing a grinding aid and method of making the same |
US6228133B1 (en) * | 1998-05-01 | 2001-05-08 | 3M Innovative Properties Company | Abrasive articles having abrasive layer bond system derived from solid, dry-coated binder precursor particles having a fusible, radiation curable component |
US20040029511A1 (en) * | 2001-03-20 | 2004-02-12 | Kincaid Don H. | Abrasive articles having a polymeric material |
GB0311803D0 (en) * | 2003-05-22 | 2003-06-25 | 3M Innovative Properties Co | Wiping articles having a scouring surface |
US7294048B2 (en) * | 2004-06-18 | 2007-11-13 | 3M Innovative Properties Company | Abrasive article |
PT2436747E (pt) * | 2007-01-23 | 2014-09-04 | Saint Gobain Abrasives Inc | Produtos abrasivos revestidos contendo agregados |
US8080072B2 (en) * | 2007-03-05 | 2011-12-20 | 3M Innovative Properties Company | Abrasive article with supersize coating, and methods |
EP2197926A1 (en) * | 2007-09-21 | 2010-06-23 | Saint-Gobain Abrasives, Inc. | Phenolic resin formulation and coatings for abrasive products |
US20100011672A1 (en) * | 2008-07-16 | 2010-01-21 | Kincaid Don H | Coated abrasive article and method of making and using the same |
JP2013500869A (ja) * | 2009-07-28 | 2013-01-10 | スリーエム イノベイティブ プロパティズ カンパニー | 被覆研磨物品及び被覆研磨物品をアブレーションする方法 |
US20130337725A1 (en) * | 2012-06-13 | 2013-12-19 | 3M Innovative Property Company | Abrasive particles, abrasive articles, and methods of making and using the same |
US9393673B2 (en) * | 2012-07-06 | 2016-07-19 | 3M Innovative Properties Company | Coated abrasive article |
TWI589406B (zh) * | 2013-06-28 | 2017-07-01 | 聖高拜磨料有限公司 | 具有浮渣脊之研磨製品及其形成方法 |
-
2011
- 2011-07-25 EP EP11175222.6A patent/EP2551057B1/de active Active
-
2012
- 2012-07-23 KR KR1020147002018A patent/KR101949126B1/ko active IP Right Grant
- 2012-07-23 WO PCT/EP2012/064376 patent/WO2013014116A1/de active Application Filing
- 2012-07-23 US US14/234,917 patent/US9555520B2/en active Active
- 2012-07-23 CN CN201280036977.8A patent/CN103702801B/zh active Active
- 2012-07-23 BR BR112014001627-5A patent/BR112014001627B1/pt active IP Right Grant
-
2016
- 2016-12-13 US US15/376,820 patent/US10562153B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008079932A2 (en) * | 2006-12-21 | 2008-07-03 | Saint-Gobain Abrasives, Inc. | Abrasive article with cured backsize layer |
Also Published As
Publication number | Publication date |
---|---|
CN103702801A (zh) | 2014-04-02 |
WO2013014116A1 (de) | 2013-01-31 |
KR20140061362A (ko) | 2014-05-21 |
BR112014001627A2 (pt) | 2017-02-21 |
US10562153B2 (en) | 2020-02-18 |
US9555520B2 (en) | 2017-01-31 |
CN103702801B (zh) | 2017-09-12 |
KR101949126B1 (ko) | 2019-02-19 |
EP2551057A1 (de) | 2013-01-30 |
US20170087692A1 (en) | 2017-03-30 |
BR112014001627B1 (pt) | 2020-11-17 |
US20140179206A1 (en) | 2014-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2551057B1 (de) | Verfahren zur Herstellung eines beschichteten Schleifmittels, beschichtetes Schleifmittel und Verwendung eines beschichteten Schleifmittels | |
DE3687864T2 (de) | Erodierbare agglomerate und dieselben enthaltenden schleifmittel und methoden zur herstellung. | |
EP2174751B1 (de) | Schleifkornagglomerate, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Schleifmitteln | |
EP2370270B1 (de) | Verschleissschutzschicht auf basis einer kunstharzmatrix, verfahren zu ihrer herstellung sowie ihre verwendung | |
EP2050805B1 (de) | Ummantelte Schleifkörner, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Schleifmitteln | |
DE69901438T4 (de) | Schleifwerkzeuge | |
DE69302265T2 (de) | Beschichtbare gemische enthaltend erodierfähige füllstoffagglomerate, verfahren zu ihrer herstellung, schleifkörper mit gehärteten versionen davon und verfahren zur herstellung der körper | |
CH634246A5 (en) | Grinding or abrasive material and process for the production thereof | |
DE2425887C2 (de) | Schleifmaterial mit eingekapselten Schleifkörnern und dessen Verwendung zum Beschichten von Folien | |
DE69833702T2 (de) | Schleifwerkzeuge mit hydratierten Schleifhilfsmitteln | |
DE2056820A1 (de) | Schleifkörper | |
DE69016327T2 (de) | Schleifkörper und Verfahren zu seiner Herstellung. | |
DE10226358A1 (de) | Verbesserte konstruierte Schleifmittel | |
DE2224589A1 (de) | Schleifmittel und verfahren zu dessen herstellung | |
DE2511242A1 (de) | Schneidwerkzeug mit laminiertem karbideinsatz | |
DE102009055428B4 (de) | Schrupp- und /oder Trennscheibe | |
EP3322596A1 (de) | Verfahren zur herstellung eines laminates bestehend aus trägerplatte und dekorpapier | |
EP1871573A2 (de) | Schleifmittel , verwendung von alkalimetall- oder erdalkalimetallfluoraluminaten zur stabilisierung von polymeren gegen farbveränderung durch hitzeeinwirkung, sowie mischung aus kaliumtetrafluoraluminat und dikaliumpentafluoraluminat und anderen | |
DE3537225A1 (de) | Flaechiges material grosser helligkeit fuer markierungen auf dem strassenbelag | |
DE10392537T5 (de) | Anti-Zusetz-Behandlungen | |
EP1992451A1 (de) | Schleifwerkzeug mit hoher kornkonzentration | |
DE2717010C2 (pt) | ||
EP2653265B1 (de) | Schleifmittel und Schleifwerkzeug | |
DE2129640A1 (de) | Schleifpapiere oder -leinen | |
DE3441596A1 (de) | Aktiver fuellstoff fuer schleifscheiben |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130606 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAX | Requested extension states of the european patent have changed |
Extension state: ME Payment date: 20130930 Extension state: BA Payment date: 20130930 |
|
17Q | First examination report despatched |
Effective date: 20140818 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150724 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 768456 Country of ref document: AT Kind code of ref document: T Effective date: 20160215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011008612 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160407 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160506 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160506 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011008612 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
26N | No opposition filed |
Effective date: 20161007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160725 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 768456 Country of ref document: AT Kind code of ref document: T Effective date: 20160725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110725 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230731 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240719 Year of fee payment: 14 Ref country code: DE Payment date: 20240919 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240717 Year of fee payment: 14 |