EP2534044B1 - Verfahren zum manövrieren einer yacht - Google Patents

Verfahren zum manövrieren einer yacht Download PDF

Info

Publication number
EP2534044B1
EP2534044B1 EP11701229.4A EP11701229A EP2534044B1 EP 2534044 B1 EP2534044 B1 EP 2534044B1 EP 11701229 A EP11701229 A EP 11701229A EP 2534044 B1 EP2534044 B1 EP 2534044B1
Authority
EP
European Patent Office
Prior art keywords
joystick
yacht
thrust
bow thruster
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11701229.4A
Other languages
English (en)
French (fr)
Other versions
EP2534044A1 (de
Inventor
Adriano Zanfei
Andrea Pellegrinetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP2534044A1 publication Critical patent/EP2534044A1/de
Application granted granted Critical
Publication of EP2534044B1 publication Critical patent/EP2534044B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H2025/026Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring using multi-axis control levers, or the like, e.g. joysticks, wherein at least one degree of freedom is employed for steering, slowing down, or dynamic anchoring

Definitions

  • the invention relates to a method for maneuvering a yacht and to an apparatus for carrying out the method.
  • a motor yacht was known with a propulsion plant, which has two each driving a propeller drive units.
  • the motor yacht on a bow thruster and a stern thruster, ie acting transversely to the longitudinal direction of the yacht thrusters.
  • the propellers and the thrusters are controlled together by a control device via a control lever designed as a joystick.
  • the joystick can be tilted within a full 360 ° circle in eight different directions, each differing by 45 °.
  • either the propulsion or the thruster or propulsion and thrusters are activated.
  • WO 2005/005249 A1 was a swivel propeller drive for a boat known, hereinafter also referred to briefly as a pivot drive.
  • the known rotary actuator is used as a single drive for boats, which can be dispensed with due to the pivoting of the thrust vector generated by the propeller on a rudder blade.
  • the pivoting drive also called rudder propeller, comprises a propulsion device, in particular with a ship's propeller, which is pivotable about a high or control axis and thus allows a different thrust direction relative to the ship's hull.
  • the bow thruster is firmly in the forefront arranged the trunk, generates a thrust across the longitudinal direction of the ship and thus accelerates a rotational movement.
  • the maneuvering can be carried out advantageously, ie it is a sensitive, intuitive, quickly responsive maneuverability of the yacht achieved.
  • lateral or lateral movements of the yacht can be represented by the transverse position of the pivoting drive and the use of the bow thruster. This is a significant advantage in maneuvering, especially for sailing yachts.
  • the pivot drive can be controlled by tilting and / or rotating the joystick.
  • the tilting direction which takes place preferably in Mitschiffscardi or transversely to the midships direction
  • the direction of the thrust vector, d. H. the control angle of the rotary actuator determined.
  • the tilt angle from 0 ° to approx. 45 ° determines the strength of the thrust.
  • the pivot drive and the bow thruster can be controlled simultaneously by tilting the joystick in the transverse direction.
  • pure lateral movements of the yacht, so a Querverish with the same course orientation possible.
  • the thrust of the bow thruster and the pivot drive act in the same direction, the thrust is controlled so that no rotational movement of the hull occurs.
  • the bow thruster and the pivot drive by turning the joystick in a vertical position, ie not tilted, are controlled.
  • a turning of the yacht can be achieved on the spot, ie it requires a minimum maneuvering space for the ship's turn.
  • a sailing yacht which is generally equipped with only a motor drive.
  • the application of the appropriate method on a sailing yacht means a large increase in comfort and safety during maneuvering.
  • Fig. 1 shows a schematic representation of a hull 1 of a not fully illustrated sailing yacht with a keel 2, a prime mover 3, a bow thruster 4 and a rudder blade 5.
  • the prime mover 3 drives a propeller drive 6, which is designed as a pivot drive 6, ie about the vertical axis is pivotable.
  • a rotary actuator is also referred to as a rudder propeller, because it replaces the function of a conventional rudder.
  • the prime mover 3 may be an internal combustion engine or a hybrid drive consisting of an electric motor and an internal combustion engine.
  • Fig. 2 shows a joystick formed as a joystick control lever 7 for controlling the drive machine 3, the pivot drive 6 and the bow thruster 4.
  • the joystick 7 has a handle 7a and formed as a hinge pivot point 7b, through which the longitudinal axis z j of the joystick 7 extends. Further, the joystick 7, the axes x j and y j assigned.
  • the joystick 7 can be tilted in the direction of the axes x j and y j and rotated about its longitudinal axis z j .
  • FIG. 2 3 On the right side of Fig. 2 3 is a schematic plan view of the yacht 1 (the reference numeral 1 is used for both the hull and the yacht) with three axes x, y, z, where y represents the longitudinal axis of the yacht 1, x its transverse axis and z the vertical axis.
  • the axes x j , y j . z j are arranged parallel to the stationary shafts x, y, z.
  • Fig. 3 shows a schematic representation of a control system 8 with the components joystick 7, pivot drive 6, bow thruster 4 and engine 3. All components 3, 4, 6, 7 are connected to an electronic control unit 9 by control lines 9a, 9b, 9c, 9d.
  • the movements of the joystick 7, tilting and / or turning, are introduced via the control line 9a as input signals to the electronic control unit 9 and passed as control commands to the drive machine 3, the pivot drive 6 and / or the bow thruster 4.
  • the sailing yacht can thus be controlled solely by the movements of the joystick 7 - which will be explained in more detail below, in particular maneuvered at low boat speeds.
  • the speed of the prime mover 3, the control or pivot angle of the pivot drive 6 and / or the thrust direction of the bow thruster 4 are driven.
  • Fig. 4 shows the joystick 7, represented by a circle with center M in a first tilted position.
  • the coordinates x j , y j assigned to the joystick 7 are represented as a coordinate system with the center O in a circle k, which marks the pivot range of the joystick 7.
  • the joystick 7 with the longitudinal axis z j is tiltable about the origin of coordinates and center O in the direction of the axes +/- x j and +/- y j .
  • the position of the joystick 7 shown in the drawing corresponds to a forward tilt, ie in the direction of the longitudinal axis y of the yacht or in the direction of forward travel.
  • the tilt angle measured from the vertical (vertical axis), is decisive for the rotational speed of the engine 3, ie the strength of the propeller thrust.
  • the rotational speed of the rotary actuator 6 is denoted by n and plotted on a graph on the axis y j. It can be seen that the rotational speed n increases in proportion to the deflection of the joystick 7 in the direction of the axis y j .
  • Fig. 4a shows - in addition to Fig. 4 - the joystick 7 (left picture) in forward tilted position.
  • the associated position of the pivot drive 6 is shown in the right image: the pivot drive 6 is amidships and drives the yacht 1 in the direction of arrow V forward and straight.
  • Fig. 4b shows the joystick 7 in the same tilt position as in Fig. 4a , but by the positive rotation angle ⁇ zj , that is rotated in a clockwise direction.
  • the right image shows the yacht 1 with the pivot drive 6, which is pivoted in the counterclockwise direction by the control angle - ⁇ .
  • the thrust vector generated by the pivot drive 6 thus exerts a clockwise rotating yaw moment on the yacht 1, which rotates according to the arrow StB to starboard.
  • Fig. 5 shows the joystick 7 in a second position, ie tilted to the rear or to the rear, ie in the direction -y j
  • the pivot drive 6 is in the same, ie unchanged position as in Fig. 4
  • the direction of rotation of the propeller is reversed, so that the thrust direction is directed backwards, the yacht moves aft.
  • the speed n of the pivot drive 6 is plotted in the quadrant -n / -y j .
  • the control angle ⁇ of the pivot drive 6 is plotted in the diagram as a function of the rotation angle ⁇ zj . It can be seen that the joystick 7 and the pivot drive 6 rotate in the same direction.
  • Fig. 5a shows - in addition to Fig. 5 - the joystick 7 in the tilted backward position (left picture), ie straightforward for reversing.
  • the right image shows the yacht 1 with the midship swivel drive 6, whose propeller, however, runs in the opposite direction as in forward driving.
  • the yacht 1 runs - as indicated by the arrow R - straight backwards.
  • Fig. 5b shows the joystick 7 in the same tilt position as in Fig. 5a , but rotated clockwise by the angle + ⁇ zj .
  • the pivot drive 6 is thereby also rotated in a clockwise direction, as indicated by the arrow + ⁇ . Due to the control angle + ⁇ , the thrust vector of the pivot drive 6 generates a clockwise rotating yaw moment. This has the consequence that the stern of the yacht 1 rotates according to the arrow BB to port.
  • Fig. 6 shows the joystick 7 in the same position as in Fig. 5 , namely to the rear, ie in the direction -y j , tilted.
  • the pivot drive 6 is 180 ° relative to the position in Fig. 4 pivoted so that it causes a positive thrust n thrust towards the stern and thus a reverse of the yacht.
  • During the reverse movement of the joystick 7 can be rotated about its longitudinal axis z j by the rotation angle ⁇ zj , which causes a pivoting of the pivot drive 6 by the control angle +/- ⁇ and yaw movement of the yacht.
  • Fig. 6a shows - in addition to Fig. 6 -
  • the joystick 7 in the rear tilted position, ie for driving straight ahead.
  • the pivot drive 6 is amidships and pushes the yacht 1 just astern, which is indicated by the arrow R.
  • Fig. 6b shows the joystick 7 in the same position as in Fig. 6a , but rotated by the angle + ⁇ zj clockwise.
  • This causes - as the right picture shows a pivoting of the pivot drive 6 also in a clockwise direction, ie by the control angle + ⁇ .
  • a yaw moment that rotates in a clockwise direction acts on the yacht 1, so that its stern turns to port, as indicated by the arrow BB.
  • Fig. 7 shows the joystick 7 in a third position in the coordinate origin, ie in a vertical position, ie the tilt angle is equal to zero.
  • the propeller thrust ie the propeller speed n is, as the corresponding diagram shows, proportional to the rotational angle ⁇ zf of the joystick 7.
  • the pivot drive 6 is preferably pivoted in this maneuver by 90 ° so that it is transverse to SchiffslCodesrichfung and thus a yaw moment on the Yacht exercises.
  • the control angle ⁇ of the pivot drive 6 remains, as the diagram shows, during the Drehanövers constant.
  • the bow thruster 4 can be activated in order to support the yaw movement become, so that a pair of forces results with oppositely acting thrust vectors.
  • Fig. 7a shows - for further explanation of Fig. 7 - the joystick 7 in a central vertical position to initiate the maneuver "turning on the spot".
  • the joystick 7 is rotated clockwise, as indicated by the arrow + ⁇ zj .
  • the rotation of the joystick 7 and the pivoting of the pivot drive 6 are thus in opposite directions.
  • the asked at 90 ° pivot drive 6 exerts a clockwise acting yaw moment on the yacht 1, so that it rotates clockwise according to the arrow D.
  • the bow thruster 4 can be switched on, which operates with opposite thrust direction as the pivot drive 6.
  • the rotation of the yacht 1 is thus obvious, ie in the same direction as the rotation of the joystick 7.
  • the corresponding maneuver is performed with opposite direction of rotation, which is not shown.
  • Fig. 8 shows the joystick 7 in a fourth position, namely in the direction of the positive x j- axis tilted, ie to the starboard side.
  • a transverse or sideways movement also called lateral movement
  • the pivot drive 6 are pivoted by + 90 ° and the bow thruster 4 is activated with the same thrust direction.
  • On the yacht then act two thrust vectors, which are aligned parallel and transverse to the longitudinal direction of the ship. To avoid yawing the ship, both thrust vectors are balanced against each other via the electronic control unit.
  • the constant speed n b of the bow thruster 4 is slightly higher.
  • n f ( ⁇ zj )
  • Fig. 8a shows - for further explanation of Fig. 8 move the joystick 7 to starboard tilted position, causing the yacht 1 (right image) to move in the direction of the arrow L.
  • the yacht 1 moves sideways and makes a pure lateral movement, ie without yaw.
  • the bow thruster 4 is switched on and also pushes to starboard.
  • the sum of the yaw moments from the thrust vector of the bow thruster 4 and the thrust vector of the pivot drive 6 is equal to zero - there is torque balance.
  • Fig. 8b shows a change of the maneuver according to Fig. 8a in that the joystick 7 is rotated clockwise according to the arrow + ⁇ zj .
  • the torque balance is canceled by either the thrust of the pivot drive 6 is reduced, so that the yaw moment dominated due to the bow thruster 4, or the thrust of the bow thruster 4 is amplified so that its yaw moment over the yaw moment dominated by the pivot drive 6.
  • the yacht 1 is rotated in the same direction, ie the lateral movement L according to Fig. 8 is a rotational movement to the starboard side, indicated by the arrow StB, superimposed.
  • Fig. 9 shows the joystick 7 in a fifth position, namely in the direction of the negative x j -axis, ie tilted to the port side.
  • a lateral movement of the yacht can be carried out to port side - analogous to the previous embodiment according to Fig. 8 to the starboard side.
  • the bow thruster 4 is activated so that both thrust directions are directed towards the port side. Both thrust vectors are in turn balanced, so that no yaw movement of the ship occurs, but a pure lateral movement with the same longitudinal alignment.
  • Fig. 9a shows - in further explanation of Fig. 9 -
  • the joystick 7 in port tilted position, causing a lateral movement of the yacht, according to the arrow L to the port side.
  • the bow thruster 4 is activated and also pushes to port.
  • Fig. 9b shows a modification of the maneuver according to Fig. 9a , by turning the joystick 7 counterclockwise according to arrow - ⁇ zj .
  • the previous moment balance is canceled, so that a resulting left-turning yaw moment is generated, which initiates a yaw movement of the yacht 1 to port corresponding to the arrow BB.
  • a swivel drive 6 also called rudder propeller
  • a swivel drive 6 can be dispensed with a stern thruster and a conventional rudder with rudder blade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Position Input By Displaying (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Manövrieren einer Yacht sowie eine Vorrichtung zur Durchführung des Verfahrens.
  • Durch die WO 02/085702 A1 wurde eine Motoryacht mit einer Vortriebsanlage bekannt, welche zwei jeweils eine Schiffsschraube antreibende Antriebsaggregate aufweist. Zusätzlich zu der Vortriebsanlage weist die Motoryacht ein Bugstrahlruder und ein Heckstrahlruder auf, d. h. quer zur Längsrichtung der Yacht wirkende Schubeinrichtungen. Die Schiffsschrauben und die Strahlruder werden gemeinsam von einer Steuereinrichtung über einen als Joystick ausgebildeten Steuerhebel gesteuert. Der Joystick kann innerhalb eines Vollkreises von 360° in acht verschiedene Richtungen gekippt werden, die sich jeweils um 45° unterscheiden. Je nachdem, welches Manöver mit der Yacht gefahren werden soll, werden entweder der Vortrieb oder die Strahlruder oder Vortrieb und Strahlruder aktiviert.
  • Durch die US 7,234,983 B2 wurde eine Motoryacht bekannt, welche zwei um eine Hochachse schwenkbare Propellerantriebe, kurz Schwenkantriebe genannt, aufweist. Durch die Schwenkung des von den Propellern erzeugten Schubvektors werden Giermomente in den Schiffsrumpf eingeleitet, welche den Kurs des Bootes bestimmen. Eine Lateralbewegung, d. h. ein Manövrieren der Yacht quer zur Längsrichtung ist mit diesem Antrieb nicht möglich.
  • Durch die US 7,267,068 B2 wurde eine Motoryacht mit zwei Schwenkantrieben bekannt, welche je nach Ausrichtung der beiden Schubvektoren beliebige Manövrierbewegungen wie vorwärts, rückwärts, seitwärts und drehend erlauben. Eine reine Lateralbewegung, d. h. eine seitliche Versetzung der Yacht ist aufgrund der beiden nebeneinander im Heckbereich angeordneten Schwenkantriebe jedoch nicht möglich. Die Steuerung der Motoryacht erfolgt über eine als Joystick ausgebildete Steuereinrichtung, wobei der Joystick in jede beliebige Richtung innerhalb eines Vollkreises gekippt und um seine Längsachse gedreht werden kann. Durch Kippen oder Drehen des Joysticks werden sinnfällige Manövrierbewegungen des Bootes eingeleitet. Nachteilig bei dem bekannten Manövrierverfahren ist es, dass zwei Schwenkantriebe zur Erzeugung eines Kräftepaares aus Schubvektoren erforderlich sind. Eine solche Doppelantriebsanlage ist für kleinere Yachten, insbesondere Segelyachten aus Kosten-, Gewichts- und Bauraumgründen nicht sinnvoll.
  • Durch die WO 2005/005249 A1 wurde ein schwenkbarer Propellerantrieb für ein Boot bekannt, im Folgenden auch kurz als Schwenkantrieb bezeichnet. Der bekannte Schwenkantrieb wird als Einzelantrieb für Boote verwendet, wobei aufgrund der Schwenkbarkeit des vom Propeller erzeugten Schubvektors auf ein Ruderblatt verzichtet werden kann.
  • Aus der WO 2007/089177 A1 ist ferner ein Verfahren nach dem Oberbegriff von Anspruch 1 bekannt.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Manövrieren einer Yacht anzugeben, welches auch für kleinere Yachten brauchbar ist.
  • Die Aufgabe der Erfindung wird durch Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Erfindungsgemäß wird das bekannte Manövrierverfahren mittels Joystick, der von Hand kipp- und drehbar ist, auf eine Yacht übertragen, welche nur einen Schwenkantrieb und auch ein Bugstrahlruder aufweist. Damit wird der Vorteil erreicht, dass die Steuerung mittels Joystick auch für kleinere Yachten mit einer weniger aufwändigen Antriebsanlage angewendet werden kann.
  • Der Schwenkantrieb, auch Ruderpropeller genannt, umfassf eine Vortriebseinrichtung, insbesondere mit Schiffsschraube, welche um eine Hoch- oder Steuerachse schwenkbar ist und somit eine unterschiedliche Schubrichtung relativ zum Schiffsrumpf ermöglicht. Das Bugstrahlruder ist fest im vordersten Bereich des Rumpfes angeordnet, erzeugt einen Schub quer zur Längsrichtung des Schiffes und beschleunigt somit eine Drehbewegung. Mittels des Schwenkantriebes und des Bugstrahlruders kann das Manövrierverfahren vorteilhaft durchgeführt werden, d. h. es wird eine feinfühlige, intuitive, schnell ansprechende Manövrierbarkeit der Yacht erreicht. Beispielsweise lassen sich Quer- oder Lateralbewegungen der Yacht durch Querstellung des Schwenkantriebes und Einsatz des Bugstrahlruders darstellen. Dies ist ein erheblicher Vorteil beim Manövrieren, insbesondere für Segelyachten.
  • Nach einer Ausführungsform ist der Schwenkantrieb durch Kippen und/oder Drehen des Joysticks ansteuerbar. Durch die Kipprichtung, welche vorzugsweise in Mitschiffsrichtung oder quer zur Mittschiffsrichtung erfolgt, wird die Richtung des Schubvektors, d. h. der Steuerwinkel des Schwenkantriebes bestimmt. Durch den Kippwinkel von 0° bis ca. 45° wird die Stärke des Schubes bestimmt.
  • Durch Drehen des Joysticks um seine Längsachse wird eine Gierbewegung der Yacht eingeleitet, wobei der Schubvektor derart geschwenkt wird, dass ein Giermoment auf das Unterwasserschiff der Yacht ausgeübt wird.
  • Nach einer Ausgestaltung können der Schwenkantrieb und das Bugstrahlruder durch Kippen des Joysticks in Querrichtung gleichzeitig angesteuert werden. Dadurch sind reine Lateralbewegungen der Yacht, also eine Querversetzung bei gleicher Kursausrichtung, möglich. Der Schub des Bugstrahlruders und des Schwenkantriebes wirken dabei in die gleiche Richtung, wobei der Schub so gesteuert wird, dass keine Drehbewegung des Schiffsrumpfes auftritt.
  • Nach einer weiteren vorteilhaften Ausgestaltung können das Bugstrahlruder und der Schwenkantrieb durch Drehen des Joysticks in senkrechter Position, d. h. nicht gekippt, angesteuert werden. Durch diese Drehung des Joysticks kann ein Drehen der Yacht auf der Stelle erreicht werden, d. h. es wird ein minimaler Manövrierraum für die Schiffsdrehung benötigt.
  • Es ist als Vorrichtung zur Durchführung des Verfahrens eine Segelyacht vorgesehen, welche im Allgemeinen mit nur einem motorischen Antrieb ausgerüstet ist. Insofern bedeutet die Anwendung des ertindungsgemäßeh Verfahrens auf einer Segelyacht einen großen Komfort- und Sicherheitszuwachs beim Manövrieren.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben, wobei sich aus der Beschreibung und/oder der Zeichnung weitere Merkmale und/oder Vorteile ergeben können. Es zeigen
  • Fig. 1
    eine schematische Darstellung des Rumpfes einer Segelyacht,
    Fig. 2
    einen Joystick mit seinen drei Bezugsachsen xj, yj, zj sowie eine schematische Darstellung des Schiffsrumpfes mit seinen ortfesten Achsen x, y, z,
    Fig. 3
    eine schematische Darstellung eines Steuerungssystems der Yacht,
    Fig. 4
    eine erste Position des Joysticks mit Kippposition nach vorn,
    Fig. 4a
    den Joystick in seiner ersten Position und die Bewegung der Yacht,
    Fig. 4b
    den Joystick gedreht und die Bewegung der Yacht,
    Fig. 5
    eine zweite Position des Joysticks mit Kippposition nach hinten,
    Fig. 5a
    den Joystick in seiner zweiten Position und die Bewegung der Yacht,
    Fig. 5b
    den Joystick gedreht und die Bewegung der Yacht,
    Fig. 6
    die zweite Position des Joysticks mit um 180° geschwenktem Schwenkantrieb,
    Fig. 6a
    den Joystick in seiner zweiten Position und die Bewegung der Yacht,
    Fig. 6b
    den Joystick gedreht und die Bewegung der Yacht,
    Fig. 7
    eine dritte Position des Joysticks mit mittiger Position,
    Fig. 7a
    den Joystick in seiner dritten Position und die Bewegung der Yacht,
    Fig. 8
    eine vierte Position des Joysticks mit Kippposition nach Steuerbord,
    Fig. 8a
    den Joystick in seiner vierten Position und die Bewegung der Yacht,
    Fig. 8b
    den Joystick gedreht und die Bewegung der Yacht,
    Fig. 9
    eine fünfte Position des Joysticks mit Kippposition nach Backbord,
    Fig. 9a
    den Joystick in seiner fünften Position und die Bewegung der Yacht und
    Fig. 9b
    den Joystick gedreht und die Bewegung der Yacht.
  • Fig. 1 zeigt in schematischer Darstellung einen Rumpf 1 einer nicht vollständig dargestellten Segelyacht mit einem Kiel 2, einer Antriebsmaschine 3, einem Bugstrahlruder 4 sowie einem Ruderblatt 5. Die Antriebsmaschine 3-treibt einen Propellerantrieb 6 an, welcher als Schwenkantrieb 6 ausgebildet, d. h. um die Hochachse schwenkbar ist. Ein derartiger Schwenkantrieb wird auch als Ruderpropeller bezeichnet, weil er die Funktion eines konventionellen Ruders ersetzt. Die Antriebsmaschine 3 kann ein Verbrennungsmotor oder ein Hybridantrieb, bestehend aus Elektro- und Verbrennungsmotor, sein.
  • Fig. 2 zeigt einen als Joystick 7 ausgebildeten Steuerhebel zur Steuerung der Antriebsmaschine 3, des Schwenkantriebes 6 und des Bugstrahlruders 4. Der Joystick 7 weist einen Handgriff 7a und einen als Gelenk ausgebildeten Schwenkpunkt 7b auf, durch welchen die Längsachse zj des Joysticks 7 verläuft. Ferner sind dem Joystick 7 die Achsen xj und yj zugeordnet. Der Joystick 7 kann in Richtung der Achsen xj und yj gekippt und um seine Längsachse zj gedreht werden.
  • Auf der rechten Seite von Fig. 2 ist schematisch ein Grundriss der Yacht 1 (die Bezugsziffer 1 wird sowohl für den Rumpf als auch für die Yacht verwendet) mit drei Achsen x, y, z dargestellt, wobei y die Längsachse der Yacht 1, x deren Querachse und z die Hochachse bildet. Die Achsen xj, yj. zj sind parallel zu den ortfesten Schiffachsen x, y, z angeordnet.
  • Fig. 3 zeigt in schematischer Darstellung ein Steuerungssystem 8 mit den Komponenten Joystick 7, Schwenkantrieb 6, Bugstrahlruder 4 und Antriebsmaschine 3. Sämtliche Komponenten 3, 4, 6, 7 sind mit einer elektronischen Steuereinheit 9 durch Steuerleitungen 9a, 9b, 9c, 9d verbunden. Die Bewegungen des Joysticks 7, Kippen und/oder Drehen, werden über die Steuerleitung 9a als Eingangssignale in die elektronische Steuereinheit 9 eingeleitet und als Steuerbefehle an die Antriebsmaschine 3, den Schwenkantrieb 6 und/oder das Bugstrahlruder 4 weitergegeben. Die Segelyacht kann somit allein durch die Bewegungen des Joysticks 7 - was im Folgenden genauer erläutert wird - gesteuert, insbesondere bei niedrigen Bootsgeschwindigkeiten manövriert werden. Dabei werden die Drehzahl der Antriebsmaschine 3, der Steuer- oder Schwenkwinkel des Schwenkantriebes 6 und/oder die Schubrichtung des Bugstrahlruders 4 angesteuert.
  • Anhand der nachfolgenden Figuren 4 bis 9 werden die einzelnen vom Joystick 7 einnehmbaren Positionen und deren Wirkungen auf die Bewegung der Yacht ausführlich erläutert.
  • Fig. 4 zeigt den Joystick 7, dargestellt durch einen Kreis mit Mittelpunkt M in einer ersten gekippten Position. Die dem Joystick 7 zugeordneten Koordinaten xj, yj sind als Koordinatenkreuz mit dem Mittelpunkt O in einem Kreis k, der den Schwenkbereich des Joysticks 7 markiert, dargestellt. Der Joystick 7 mit der Längsachse zj ist um den Koordinatenursprung und Mittelpunkt O in Richtung der Achsen +/-xj und +/-yj kippbar. Die in der Zeichnung dargestellte Position des Joysticks 7 entspricht einer Kippung nach vorn, d. h. in Richtung der Längsachse y der Yacht bzw. in Richtung Vorwärtsfahrt. Der Kippwinkel, gemessen aus der Senkrechten (Hochachse), ist maßgebend für die Drehzahl der Antriebsmaschine 3, d. h. die Stärke des Propellerschubes. Je weiter der Joystick 7 gekippt ist, d. h. je größer der Kippwinkel ist, desto höher ist die Drehzahl der Antriebsmaschine 3 und der Schub des Schwenkantriebes 6. Die Drehzahl des Schwenkantriebes 6 ist mit n bezeichnet und in einem Diagramm über der Achse yj aufgetragen. Man erkennt, dass die Drehzahl n proportional zur Auslenkung des Joysticks 7 in Richtung der Achse yj ansteigt. Auf der rechten Seite von Fig. 4 ist der Grundriss der Yacht mit Bugstrahlruder 4 und Schwenkantrieb 6, dessen Schwenkbereich um die Hochachse durch den Winkel +/-α angedeutet ist, schematisch dargestellt. Durch Drehung des Joystickes 7 um seine Längsachse zj, dargestellt durch einen Doppelpfeil αzj, wird der Schwenkantrieb 6 um die Hochachse geschwenkt und eine Gierbewegung der Yacht bewirkt. Der Schwenk- oder Steuerwinkel des Schwenkantriebes 6 um die Hochachse ist mit α angegeben und in dem Diagramm rechts unten in Fig. 4 über dem Drehwinkel αzj des Joysticks 7 aufgetragen. Man erkennt die lineare Abhängigkeit zwischen beiden Winkeln, allerdings mit entgegengesetzten Vorzeichen. Bei einer Drehung des Joysticks 7 im Uhrzeigersinn erfolgt die Schwenkung des Schwenkantriebes 6 entgegen dem Uhrzeigersinn, damit intuitiv auch ein Giermoment im Uhrzeigersinn, d. h. ein Drehen der Yacht nach Steuerbord erreicht wird. Der Schwenkantrieb 6 dreht also proportional, aber gegensinnig zur Drehbewegung am Joystick 7. Das Bugstrahlruder 4 ist bei diesem Manöver abgeschaltet.
  • Fig. 4a zeigt - in Ergänzung zu Fig. 4 - den Joystick 7 (linkes Bild) in nach vorn gekippter Position. Die zugehörige Stellung des Schwenkantriebes 6 ist im rechten Bild dargestellt: der Schwenkantrieb 6 liegt mittschiffs und treibt die Yacht 1 in Richtung des Pfeils V nach vorn und geradeaus.
  • Fig. 4b zeigt den Joystick 7 in derselben Kippposition wie in Fig. 4a, jedoch um den positiven Drehwinkel αzj, also im Uhrzeigersinn gedreht. Das rechte Bild zeigt die Yacht 1 mit dem Schwenkantrieb 6, der entgegen dem Uhrzeigersinn um den Steuerwinkel -α geschwenkt ist. Der vom Schwenkantrieb 6 erzeugte Schubvektor übt somit ein im Uhrzeigersinn drehendes Giermoment auf die Yacht 1 aus, welche entsprechend dem Pfeil StB nach Steuerbord eindreht.
  • Fig. 5 zeigt den Joystick 7 in einer zweiten Position, d. h. nach hinten bzw. nach achtern gekippt, d. h. in Richtung -yj Der Schwenkantrieb 6 befindet sich in der gleichen, d. h. unveränderten Position wie in Fig. 4, allerdings ist die Drehrichtung des Propellers umgekehrt, sodass die Schubrichtung nach rückwärts gerichtet ist, die Yacht bewegt sich nach achtern. Die Drehzahl n des Schwenkantriebes 6 ist im Quadranten -n/-yj aufgetragen. Der Steuerwinkel α des Schwenkantriebes 6 ist im Diagramm als Funktion des Drehwinkels αzj aufgetragen. Man erkennt daraus, dass der Joystick 7 und der Schwenkantrieb 6 gleichsinnig drehen.
  • Fig. 5a zeigt - in Ergänzung zu Fig. 5 - den Joystick 7 in nach hinten gekippter Position (linkes Bild), d. h. für Rückwärtsfahrt geradeaus. Das rechte Bild zeigt die Yacht 1 mit dem mittschiffs liegenden Schwenkantrieb 6, dessen Propeller allerdings in entgegengesetzter Richtung wie bei Vorwärtsfahrt läuft. Die Yacht 1 läuft - wie durch den Pfeil R angedeutet - geradeaus rückwärts.
  • Fig. 5b zeigt den Joystick 7 in derselben Kippposition wie in Fig. 5a, jedoch im Uhrzeigersinn um den Winkel +αzj gedreht. Wie das rechte Bild zeigt, wird dadurch der Schwenkantrieb 6 ebenfalls im Uhrzeigersinn gedreht, wie durch den Pfeil +α angedeutet. Aufgrund des Steuerwinkels +α erzeugt der Schubvektor des Schwenkantriebes 6 ein im Uhrzeigersinn drehendes Giermoment. Dies hat zur Folge, dass das Heck der Yacht 1 entsprechend dem Pfeil BB nach Backbord dreht.
  • Fig. 6 zeigt den Joystick 7 in derselben Position wie in Fig. 5, nämlich nach hinten, d. h. in Richtung -yj, gekippt. Allerdings ist der Schwenkantrieb 6 um 180° gegenüber der Position in Fig. 4 geschwenkt, sodass er bei positiver Drehzahl n einen Schub in Richtung Heck und damit eine Rückwärtsfahrt der Yacht bewirkt. Während der Rückwärtsfahrt kann der Joystick 7 um seine Längsachse zj um den Drehwinkel αzj gedreht werden, was eine Schwenkung des Schwenkantriebes 6 um den Steuerwinkel +/-α und eine Gierbewegung der Yacht bewirkt. Wie das Diagramm α= f (αzj) zeigt, erfolgt die Drehbewegung am Joystick 7 gleichsinnig mit der Schwenkbewegung des Schwenkantriebes 6.
  • Fig. 6a zeigt - in Ergänzung zu Fig. 6 - den Joystick 7 in nach hinten gekippter Position, d. h. für Rückwärtsfahrt geradeaus. Der Schwenkantrieb 6 liegt mittschiffs und schiebt die Yacht 1 gerade achteraus, was durch den Pfeil R angedeutet ist.
  • Fig. 6b zeigt den Joystick 7 in der gleichen Position wie in Fig. 6a, jedoch um den Winkel +αzj im Uhrzeigersinn gedreht. Dies bewirkt - wie das rechte Bild zeigt-eine Schwenkung des Schwenkantriebes 6 ebenfalls im Uhrzeigersinn, d. h. um den Steuerwinkel +α. Dadurch wirkt ein im Uhrzeigersinn drehendes Giermoment auf die Yacht 1, sodass deren Heck nach Backbord eindreht, wie durch den Pfeil BB angedeutet.
  • Fig. 7 zeigt den Joystick 7 in einer dritten Position im Koordinatenursprung, d. h. in einer senkrechten Stellung, d. h. der Kippwinkel ist gleich Null. Durch Drehung des Joysticks 7 um seine senkrechte Längsachse zj kann eine Drehung der Yacht auf der Stelle ("auf dem Teller") durchgeführt werden. Der Propellerschub, d. h. die Propellerdrehzahl n ist dabei, wie das entsprechende Diagramm zeigt, proportional zum Drehwinkel αzf des Joysticks 7. Der Schwenkantrieb 6 wird bei diesem Manöver bevorzugt um 90° geschwenkt, sodass er quer zur Schiffslängsrichfung steht und somit ein Giermoment auf die Yacht ausübt. Der Steuerwinkel α des Schwenkantriebes 6 bleibt, wie das Diagramm zeigt, während des Drehmanövers konstant. Zusätzlich kann zur Unterstützung der Gierbewegung das Bugstrahlruder 4 zugeschaltet werden, sodass sich ein Kräftepaar mit entgegengesetzt wirkenden Schubvektoren ergibt.
  • Fig. 7a zeigt - zur weiteren Erläuterung von Fig. 7 - den Joystick 7 in mittiger senkrechter Position zur Einleitung des Manövers "Drehen auf der Stelle". Dazu wird der Joystick 7 im Uhrzeigersinn gedreht, wie durch den Pfeil +αzj angedeutet. Das rechte Bild zeigt die Yacht 1 mit quergestelltem Schwenkantrieb 6, welcher um den Steuerwinkel α = -90 geschwenkt wurde. Die Drehung des Joysticks 7 und die Schwenkung des Schwenkantriebes 6 sind also gegenläufig. Der auf 90° gestellte Schwenkantrieb 6 übt ein im Uhrzeigersinn wirkendes Giermoment auf die Yacht 1 aus, sodass diese im Uhrzeigersinn entsprechend dem Pfeil D dreht. Zur Unterstützung dieses Manövers kann das Bugstrahlruder 4 zugeschaltet werden, welches mit entgegengesetzter Schubrichtung wie der Schwenkantrieb 6 arbeitet. Die Drehung der Yacht 1 erfolgt also sinnfällig, d. h. in der gleichen Drehrichtung wie die Drehung am Joystick 7. Analog wird das entsprechende Manöver mit entgegengesetzter Drehrichtung ausgeführt, was nicht dargestellt ist.
  • Fig. 8 zeigt den Joystick 7 in einer vierten Position, nämlich in Richtung der positiven xj-Achse gekippt, also zur Steuerbordseite. In dieser Position des Joysticks 7 kann eine Quer- oder Seitwärtsbewegung, auch Lateralbewegung genannt, der Yacht bewirkt werden. Dabei werden der Schwenkantrieb 6 um +90° verschwenkt und das Bugstrahlruder 4 mit der gleichen Schubrichtung aktiviert. Auf die Yacht wirken dann zwei Schubvektoren, die parallel und quer zur Längsrichtung des Schiffes ausgerichtet sind. Um keine Gierbewegung des Schiffes zu erzeugen, werden beide Schubvektoren über die elektronische Steuereinheit gegeneinander ausbalanciert. Die Drehzahl n des Schwenkantriebes 6 entspricht dabei zunächst dem Kippwinkel des Joysticks 7, wie dies im mittleren Diagramm n = f (xj) dargestellt ist. Die konstante Drehzahl nb des Bugstrahlruders 4 liegt etwas höher. Zusätzlich, d. h. nach der Kippbewegung kann der Joystick 7 um den Drehwinkel αz gedreht werden, wie dies im linken Diagramm n = f (αzj) dargestellt ist. Damit wird die bisherige Schubbalance aufgehoben und ein Giermoment auf das Schiff ausgeübt, welches zu einer Drehbewegung - nach Backbord oder Steuerbord - führt. Damit kann der reinen Lateralbewegung eine Drehbewegung des Schiffes überlagert werden, was bei bestimmten Manövern, z. B. bei Windeinfluss von Vorteil sein kann.
  • Fig. 8a zeigt - zur weiteren Erläuterung von Fig. 8 - den Joystick 7 in nach Steuerbord gekippter Position, was eine Bewegung der Yacht 1 (rechtes Bild) in Richtung des Pfeils L bewirkt. Die Yacht 1 bewegt sich seitwärts und macht eine reine Lateralbewegung, d. h. ohne Gierbewegung. Der Schwenkantrieb 6 ist um den Steuerwinkel α = +90° geschwenkt, mit Schubrichtung nach Steuerbord. Das Bugstrahlruder 4 ist zugeschaltet und schiebt ebenfalls nach Steuerbord. Die Summe der Giermomente aus dem Schubvektor des Bugstrahlruders 4 und dem Schubvektor des Schwenkantriebes 6 ist gleich Null - es herrscht Momentengleichgewicht.
  • Fig. 8b zeigt eine Änderung des Manövers gemäß Fig. 8a, indem der Joystick 7 im Uhrzeigersinn entsprechend dem Pfeil +αzj gedreht wird. Durch diese Drehung am Joystick wird das Momentengleichgewicht aufgehoben, indem entweder der Schub des Schwenkantriebes 6 reduziert wird, sodass das Giermoment aufgrund des Bugstrahlruders 4 dominiert, oder der Schub des Bugstrahlruders 4 verstärkt wird, sodass dessen Giermoment gegenüber dem Giermoment aus dem Schwenkantrieb 6 dominiert. Durch die Drehung des Joysticks 7 im Uhrzeigersinn wird die Yacht 1 gleichsinnig gedreht, d. h. der Lateralbewegung L gemäß Fig. 8 wird eine Drehbewegung zur Steuerbordseite, angedeutet durch den Pfeil StB, überlagert.
  • Fig. 9 zeigt den Joystick 7 in einer fünften Position, nämlich in Richtung der negativen xj-Achse, d. h. zur Backbordseite hin gekippt. In dieser Kippposition kann eine Lateralbewegung der Yacht zur Backbordseite hin durchgeführt werden - analog dem vorherigen Ausführungsbeispiel gemäß Fig. 8 zur Steuerbordseite. Der Schwenkantrieb 6 wird auf die Position α = -90° verschwenkt. Das Bugstrahlruder 4 wird aktiviert, sodass beide Schubrichtungen zur Beckbordseite hin gerichtet sind. Beide Schubvektoren werden wiederum ausbalanciert, damit keine Gierbewegung des Schiffes auftritt, sondern eine reine Lateralbewegung bei gleicher Längsausrichtung. Soll die Lateralbewegung des Schiffes durch eine Gierbewegung korrigiert werden, so kann der Joystick 7 im oder entgegen dem Uhrzeigersinn gedreht werden, was eine Änderung der Drehzahl des Schwenkantriebes 6 und damit eine Schubänderung bewirkt - dies ist im linken Diagramm n = f (αj) dargestellt.
  • Fig. 9a zeigt - in weiterer Erläuterung von Fig. 9 - den Joystick 7 in nach Backbord gekippter Position, was eine Lateralbewegung der Yacht, entsprechend dem Pfeil L zur Backbordseite bewirkt. Der Schwenkantrieb 6 ist dabei um α = -90° geschwenkt, steht also quer zur Schiffslängsrichtung und schiebt nach Backbord. Das Bugstrahlruder 4 ist aktiviert und schiebt ebenfalls nach Backbord.
  • Fig. 9b zeigt eine Abänderung des Manövers gemäß Fig. 9a, und zwar durch Drehen des Joysticks 7 entgegen dem Uhrzeigersinn gemäß Pfeil -αzj. Durch diese Drehung am Joystick 7 wird die vorherige Momentenbalance aufgehoben, sodass ein resultierendes links drehendes Giermoment erzeugt wird, welches eine Gierbewegung der Yacht 1 nach Backbord entsprechend dem Pfeil BB einleitet.
  • Durch die Ausrüstung der Yacht 1 mit einem Schwenkantrieb 6, auch Ruderpropeller genannt, kann auf ein Heckstrahlruder und ein konventionelles Ruder mit Ruderblatt verzichtet werden.
  • Bezugszeichen
  • 1
    Rumpf (Yacht)
    2
    Kiel
    3
    Antriebsmaschine
    4
    Bugstrahlruder
    5
    Ruderblatt
    6
    Schwenkantrieb
    7
    Joystick
    7a
    Handgriff
    7b
    Gelenkpunkt
    8
    Steuerungssystem
    9
    Steuereinheit
    9a -9d
    Steuerleitungen
    xj; yj; zj
    Achsen von Joystick
    x, y, z
    Achsen von Yacht
    n
    Drehzahl (Schwenkantrieb)
    nb
    Drehzahl (Bugstrahlruder)
    α
    Steuerwinkel (Schwenkantrieb)
    αzj
    Drehwinkel (Joystick)
    M
    Mittelpunkt Joystick
    O
    Koordinatenursprung
    k
    Kreis
    BB
    Backbord
    StB
    Steuerbord
    V
    Vorwärts
    R
    Rückwärts
    L
    Lateralbewegung
    D
    Drehen

Claims (8)

  1. Verfahren zum Manövrieren einer Yacht (1) mittels eines als Joystick (7) ausgebildeten Steuerorgans, wobei der Joystick (7) in Richtung einer Längsachse (y) und einer senkrecht zur Längsachse (y) verlaufenden Querachse (x) der Yacht zur Einleitung von Vorwärts- oder Rückwärtsbewegungen und Querbewegungen der Yacht gekippt und zur Einleitung von Gierbewegungen der Yacht um einen Drehwinkel (+αzj, -αzj) um seine Längsachse (Zu) gedreht wird, wobei die Yacht (1) einen als Einzelantrieb ausgebildeten Schwenkantrieb (6) mit einem um eine Hochachse schwenkbaren Schubvektor und ein Bugstrahlruder (4) mit einem Schubvektor parallel zur Querachse (x) aufweist und wobei die Steuerbewegungen des Joysticks (7) sinnfällig auf den Schwenkantrieb (6) und das Bugstrahlruder (4) übertragen werden, dadurch gekennzeichnet, dass durch ein Kippen des Joysticks (7) in seine Querrichtung (+xj, -xj) das Bugstrahlruder (4) und der Schwenkantrieb (6) derart angesteuert werden, dass deren Schubvektoren in gleicher Schubrichtung parallel zur Querachse (x) der Yacht wirken und dass die Stärken der beiden Schubvektoren über eine elektronische Steuereinheit in Abhängigkeit von dem Drehwinkel (+αzj, -αzj) des Joysticks (7) eingestellt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einem Drehwinkel (αzj) von 0° beide Schubvektoren über eine elektronische Steuereinheit derart gegeneinander ausbalanciert werden, dass die Summe der Giermomente aus dem Schubvektor des Bugstrahlruders (4) und dem Schubvektor des Schwenkantriebs (6) gleich Null ist, bzw. ein Momentengleichgewicht besteht, und damit eine Gierbewegung der Yacht (1) vermieden wird und eine reine Lateralbewegung (L) der Yacht stattfindet.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch ein Drehen des Joysticks (7) um den Drehwinkel (+αzj,zj) um seine Längsachse (zu) vor oder nach dem Kippen das Momentengleichgewicht aufgehoben wird, indem der Schub des des Schwenkantriebes (6) reduziert wird, sodass das Giermoment aufgrund des Bugstrahlruders (4) dominiert und eine mit einer Gierbewegung überlagerte Lateralbewegung (L) auf die Yacht (1) eingeleitet wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch ein Drehen des Joysticks (7) um den Drehwinkel (+αzj, -αzj) um seine Längsachse (zu) vor oder nach dem Kippen das Momentengleichgewicht aufgehoben wird, indem der Schub des Bugstrahlruders (4) verstärkt wird, sodass dessen Giermoment gegenüber dem Giermoment aus dem Schwenkantrieb (6) dominiert und eine mit einer Gierbewegung überlagerte Lateralbewegung (L) auf die Yacht (1) eingeleitet wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Bugstrahlruder (4) und der Schwenkantrieb (6) durch Drehen des Joysticks (7) in dessen senkrechter Position um den Drehwinkel (+αzj, -αzj) derart angesteuert werden, dass sich ein Kräftepaar mit entgegengesetzt parallel zur Querachse der Yacht (1) wirkenden Schubvektoren (x) ergibt und ein Drehen der Yacht (1) auf der Stelle bewirkt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schwenkantrieb (6) bezüglich seiner Schubstärke durch Kippen des Joysticks (7) angesteuert wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Schubstärke mit zunehmendem Kippwinkel des Joysticks (7) wächst und mit abnehmendem Kippwinkel abnimmt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Schwenkantrieb (6) um einen Steuerwinkel (α) von 0° bis +/-90°, vorzugsweise von 0° bis +/-180° schwenkbar ist und dass der Steuerwinkel (α) durch Drehen des Joysticks (7) angesteuert wird.
EP11701229.4A 2010-02-09 2011-01-19 Verfahren zum manövrieren einer yacht Active EP2534044B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010001707A DE102010001707A1 (de) 2010-02-09 2010-02-09 Verfahren zum Manövrieren einer Yacht
PCT/EP2011/050661 WO2011098326A1 (de) 2010-02-09 2011-01-19 Verfahren zum manövrieren einer yacht

Publications (2)

Publication Number Publication Date
EP2534044A1 EP2534044A1 (de) 2012-12-19
EP2534044B1 true EP2534044B1 (de) 2016-08-24

Family

ID=43711372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701229.4A Active EP2534044B1 (de) 2010-02-09 2011-01-19 Verfahren zum manövrieren einer yacht

Country Status (4)

Country Link
US (1) US20130072076A1 (de)
EP (1) EP2534044B1 (de)
DE (1) DE102010001707A1 (de)
WO (1) WO2011098326A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9690295B1 (en) * 2015-08-20 2017-06-27 Brunswick Corporation Heading control on a marine vessel
USD831652S1 (en) 2015-08-20 2018-10-23 Brunswick Corporation Animated responsive display on a joystick
WO2017202458A1 (en) * 2016-05-25 2017-11-30 Volvo Penta Corporation Method and control apparatus for operating a marine vessel
JP2018079742A (ja) 2016-11-14 2018-05-24 ヤマハ発動機株式会社 船舶用推進装置およびそれを備えた船舶
JP2025025728A (ja) * 2023-08-10 2025-02-21 ヤマハ発動機株式会社 船舶推進システムおよびその制御方法、船舶

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1557632A (de) * 1967-03-29 1969-02-21
US4732104A (en) * 1985-10-08 1988-03-22 Frank Roestenberg Bow thruster
SE508314C2 (sv) * 1994-06-28 1998-09-21 Volvo Penta Ab Propellerdrevinstallation
US6347599B1 (en) * 2000-09-29 2002-02-19 Richard A. Hendrickson Stabilization/power system for windsurfing and other flotation boards
GB2374847B (en) 2001-04-20 2004-09-22 Sealine Internat Ltd Boat having primary and secondary control devices for main and auxiliary propulsion systems
DE50101008D1 (de) * 2001-10-05 2003-12-24 Peter Meyer Fahranlage für Schiffe, insbesondere für Kreuzfahrtschiffe
SE525478C2 (sv) 2003-07-11 2005-03-01 Volvo Penta Ab Vridbart propellerdrev för en båt
US7267068B2 (en) 2005-10-12 2007-09-11 Brunswick Corporation Method for maneuvering a marine vessel in response to a manually operable control device
US7234983B2 (en) 2005-10-21 2007-06-26 Brunswick Corporation Protective marine vessel and drive
EP1981757B1 (de) * 2006-02-01 2017-06-21 CPAC Systems AB Verfahren und anordnung zur steuerung einer antriebsanordnung in einem wasserfahrzeug
JP5481059B2 (ja) * 2008-11-28 2014-04-23 ヤマハ発動機株式会社 操船支援装置およびそれを備えた船舶

Also Published As

Publication number Publication date
EP2534044A1 (de) 2012-12-19
US20130072076A1 (en) 2013-03-21
DE102010001707A1 (de) 2011-08-11
WO2011098326A1 (de) 2011-08-18

Similar Documents

Publication Publication Date Title
DE3872520T2 (de) Steuerung und manövrierung von wasserfahrzeugen.
DE3222054C2 (de)
DE2718831C2 (de) Antriebs- und Steuereinrichtung für Wasserfahrzeuge
DE60308563T2 (de) Schiffsantrieb und Verfahren dazu
DE69607573T2 (de) Vorrichtung zur Steuerung eines Wasserstrahl-Antriebsgeräts für ein Wasserfahrzeug
EP2616327A1 (de) Verfahren zum betreiben eines schiffes, insbesondere eines frachtschiffes, mit wenigstens einem magnus-rotor
AT507419B1 (de) Querstrahlruder für ein wasserfahrzeug
EP2534044B1 (de) Verfahren zum manövrieren einer yacht
DE2435052A1 (de) Antrieb fuer wasserfahrzeuge
EP2161194B1 (de) Motorischer Propellerantrieb für ein Wasserfahrzeug
EP3353045B1 (de) Wassergleitfahrzeug
DE2918751C2 (de) Ruderbremsvorrichtung
DE19640481C1 (de) Vorrichtung und Verfahren zum Steuern von Schiffen
EP1008514A1 (de) Schiffsantrieb
DE566902C (de) Vorrichtung zum Antreiben und Steuern von Wasserfahrzeugen
DE558427C (de) Antriebs- und Steuervorrichtung fuer Wasserfahrzeuge
DE10244295B4 (de) Hilfsruder an einem elektrischen Ruderpropeller für schnelle seegehende Schiffe und Betriebsverfahren für das Hilfsruder
DE10018573A1 (de) Wasserfahrzeug
JPH08207880A (ja) 第1の船を第2の船に連結する装置
WO2010112480A2 (de) Verfahren zum überprüfen eines spurwinkels bei den rudern eines schiffes
DE102021107470B4 (de) Wasserfahrzeug
WO2010112391A2 (de) Verfahren zum steuern eines schiffes und steuerungsanordnung
DE10352971B4 (de) Steuereinrichtung für Schiffsantriebe mit oberflächenschneidenden Doppel-Verstellpropellern
DE202013008596U1 (de) Antriebsvorrichtung für ein Schiff
DE102005040713B4 (de) Steuereinrichtung für Schiffsantriebe mit oberflächenschneidenden Verstell-Propellern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 25/42 20060101AFI20150414BHEP

17Q First examination report despatched

Effective date: 20150601

RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 5/125 20060101AFI20151208BHEP

Ipc: B63H 25/42 20060101ALI20151208BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160629

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 822789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010497

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010497

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 822789

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241205

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241209

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241203

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241210

Year of fee payment: 15