EP2529000A2 - Composition pour la prévention ou l'élimination de dépôts de sels insolubles - Google Patents

Composition pour la prévention ou l'élimination de dépôts de sels insolubles

Info

Publication number
EP2529000A2
EP2529000A2 EP11701665A EP11701665A EP2529000A2 EP 2529000 A2 EP2529000 A2 EP 2529000A2 EP 11701665 A EP11701665 A EP 11701665A EP 11701665 A EP11701665 A EP 11701665A EP 2529000 A2 EP2529000 A2 EP 2529000A2
Authority
EP
European Patent Office
Prior art keywords
acid
composition
compound
itaconic
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11701665A
Other languages
German (de)
English (en)
Inventor
Dirk Willem Godfried Develter
Luc Marc Leonie Lauryssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecover Coordination Center NV
Original Assignee
ECOLIFE BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECOLIFE BV filed Critical ECOLIFE BV
Priority to EP11701665A priority Critical patent/EP2529000A2/fr
Publication of EP2529000A2 publication Critical patent/EP2529000A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0056Lavatory cleansing blocks
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2096Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/12Carbonates bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/267Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/40Products in which the composition is not well defined

Definitions

  • composition for the prevention or removal of insoluble salt deposits
  • the present invention relates to compositions for the prevention or removal of insoluble salt deposits.
  • the present invention further relates to use of compositions for the prevention or removal of insoluble salt deposits.
  • the present invention further provides a method for the manufacturing of compositions for the prevention or removal of insoluble salt deposits and to a method to prevent or remove insoluble salt deposits using compositions according to the invention.
  • the present invention relates to the use of a composition comprising itaconic acid, its anhydride, succinic acid, its anhydride, and or lactide and combinations thereof for the prevention or removal of insoluble salt deposits.
  • the present invention further relates to a toilet block, comprising a composition comprising itaconic acid, its anhydride, succinic acid, its anhydride, and or lactide and combinations thereof.
  • the present invention further relates to an effervescent tablet comprising a composition comprising itaconic acid, its anhydride, succinic acid, its anhydride, and or lactide and combinations thereof.
  • the present invention further relates to an acid gel comprising a composition comprising itaconic acid and or succinic acid combined with a rheology modifier.
  • this invention relates to a composition
  • a composition comprising itaconic acid, its anhydride, succinic acid, its anhydride, and or lactide and combinations thereof for the prevention or removal of insoluble salt deposits
  • Water insoluble salts such as calcium and magnesium carbonates or silicates or sulfates commonly referred to as limescale, but also barium sulfate, calcium oxalate, calcium phosphate, iron oxide and the like are readily formed in watery solutions when the conditions are right and may each represent particular challenges in relation to their removal.
  • Limescale or limestone is the hard, off-white, chalky deposit found in kettles, hot-water boilers and the inside of inadequately maintained hot-water central heating systems. It is also often found as a similar deposit on the inner surface of old pipes and other surfaces where "hard water” has evaporated.
  • limescale differ slightly due to their origins.
  • the type found deposited on the heating elements of water heaters, laundry machines, etc. has a main component of calcium carbonate, precipitated out of the (hot) water.
  • Hard water contains calcium (and often magnesium) bicarbonate and/or similar salts.
  • Calcium bicarbonate is soluble in water, however at temperatures above 70 °C the soluble bicarbonate is converted to poorly-soluble carbonate, leading to deposits in places where water is heated. Local boiling "hot spots” can also occur when water is heated, resulting in the concentration and deposition of salts from the water.
  • calcium sulfate is a common component of fouling deposits in industrial heat exchangers, due to its decreased solubility with increasing temperature. Silicate containing laundry and automatic dishwashing products may cause a calcium or magnesium silicate deposit, which is especially difficult to remove (in contrast to calcium carbonate) from glassware.
  • the type found on air-dried cooking utensils, dripping taps and bathroom tiling consists of calcium carbonate mixed with all the other salts that had been dissolved in the water, prior to evaporation. It can also be found on taps and water reservoirs (such as in the toilet) where hard water has been continually running through and has deposited calcium carbonate.
  • limescale can impair the operation of various components or damage them.
  • limescale acts as an insulator, impairing heat transfer. Additionally, it can damage the heating element, which overheats due to accruing limescale.
  • Limescale can build up inside tubing, thus reducing water flow and necessitating higher electrical consumption for the circulation pumps, and eventually blocking the tubing.
  • Expresso machine manufacturers recommend to descale the machine (depending on the water hardness) every month or trimester in order to avoid bitter taste development, machine malfunction and slowing down.
  • Calcium oxalate forms a major component of beerstone, a brownish precipitate that tends to accumulate within vats, barrels and other containers used in the brewing of beer.
  • Beerstone is composed of calcium and magnesium salts and various organic compounds left over from the brewing process; it promotes the growth of unwanted microorganisms that can adversely affect or even ruin the flavor of a batch of beer.
  • Calcium oxalate is also formed during carbonation of raw sugar beet juice before it undergoes crystallization. First, the juice is mixed with hot milk of lime (a suspension of calcium hydroxide in water).
  • This treatment precipitates a number of impurities, including multivalent anions such as sulfate, phosphate, citrate and oxalate, which precipitate as their calcium salts and large organic molecules such as proteins, saponins and pectins, which aggregate in the presence of multivalent cations.
  • multivalent anions such as sulfate, phosphate, citrate and oxalate
  • large organic molecules such as proteins, saponins and pectins, which aggregate in the presence of multivalent cations.
  • Milkstone is a layer of scale mainly formed by cations like calcium and magnesium originating from both milk and hard water. Besides giving the equipment an unclean appearance, milkstone could harbour and protect micro organisms always present in raw milk and ready to multiply at a high rate. Since milk products are some of the most perishable major foods, cleaning and sanitization in that industry generally require the highest standards. The main part of milk residu is easily removed by rinsing with water. However, the last part comprising the milkstone is often harder to get rid of.
  • Descaling agents are either acids or complexing agents or both in one (e.g. carboxylic acids). They remove insoluble deposits such as limescale by respectively dissolving the limescale and or complexing its cationic constituents.
  • Acids used as descaling agents can be either mineral acids or organic acids. Below in table 1 , the properties of some organic and mineral acids that are used or can be potentially useful for descaling are shown.
  • Lactide 3 Insol. 3 a Powder Ferm / + + + + + Xi
  • Properties listed include the solubility in water (pH7, 20°C), the solubility of the calcium salt (mono, di, tri-salts, ( b ) as % anhydrous at 25°C), their physical form, descaling effectiveness (Purac data), pKa value(s), smell, overall material compatibility (Purac data) and labeling according to EU legislation.
  • Table 1 documents among other characteristics the water solubility of di- and tri-salts of polybasic carboxylic acids which tends to be (very) limited as compared to that of monocarboxylic acids, with maleic and glutaric acids as an exception to this apparent rule. No literature data were found regarding the calcium salt of itaconic acid. Whereas the monocalcium salt of citric acid is water soluble (5%), the disalt and trisalts are only sparingly or practically insoluble (0.09 g/l).
  • Organic acids have one, two or three carboxyl groups (note the pKa values in table 1) and are usually less aggressive which is why acetic, citric and formic and more recently glycolic and lactic acid found their way to the market.
  • Organic acids can be sourced from fermentation or from petrochemical synthesis.
  • Citric and lactic acid for example are obtained by fermentation from renewable feedstock (typically molasses).
  • renewable feedstock typically molasses
  • the fact that many of these organic acids suitable for descaling action are renewable is increasingly considered an environmental advantage as illustrated in life cycle analyses.
  • some of these organic acids still show disadvantages.
  • the iron and calcium salts of citric acid are said to be less soluble than those of glycolic acid, so they may precipitate onto the treated surfaces, diminishing cleaning effectiveness of citric acid.
  • Acetic and formic acid have a pungent smell that is hard to cover with fragrance, which is a serious disadvantage.
  • Acetic acid which may be sourced from fermentation or from petrochemical synthesis, is renowned for its corrosivity to copper which leads to the formation of toxic copper acetate (a fungicide) thus rendering acetic and vinegar unsuited for descaling coffee and expresso machines which often have a copper mounting tube for hot water or steam. Acetic acids will thus also be unsuited for all other surfaces comprising cupper.
  • the sodium salt of LAS in dry form is available as a very hygroscopic powder, which means that precaution has to be taken in terms of handling and storage, but it is also this product characteristic that makes it an excellent main ingredient in formulating solid extrude toilet blocks.
  • the hygroscopic nature of LAS ensures that once the final product is exposed to water in the toilet bowl or in the cistern it will create an outer layer or membrane that slows down the overall solubility of the block thereby imparting a controlled release of all the active ingredients in the block (source : Toilet block introductory Leaflet by Unger, 2008).
  • Formulating rim and in-cistern blocks among others implies selecting solubility retarding or "matrix" ingredients with a melting point at or just above the extrusion temperature, which upon cooling will form a homogenous solid block that will gradually and evenly set free its actives over time, typically during several weeks for 50 to several hundreds of flushes, more typically up to 500-800 flushes.
  • Such formulas contain 25- 50% LAS (typically 40%), 0-8% fatty alcohol sulfate (mainly d 2- i 4 , some Ci6 in cistern blocks) or 0-5% highly ethoxylated fatty alcohol (e.g.
  • Ci 6- i8 with up to 50 mol ethylene oxide Ci 6- i8 with up to 50 mol ethylene oxide
  • 0-3.5% coconut monoethanolamide
  • foam enhancing fatty alcohol ether sulfate 0.05% paraffin oil
  • 5-6% fragrance and dyes and sodium sulfate as a filler.
  • Low amounts of acids e.g. 2% lactic acid or 10-20% citric acid anhydrate
  • US2007191245A1 for example describes the use in toilet blocks of polysuccinimide for preventing or dispersing urine scale.
  • Effervescent toilet descaling tablets form an alternative approach for descaling, targeting fast tablet disintegration (as opposed to toilet blocks) but long contact times (e.g. overnight). They are produced by tabletting and always contain an acid (usually sulfamic or citric acid) for dissolution of the immersed limescale and a carbonate source for the effervescent system (sodium carbonate, bicarbonate, percarbonate,). Formulating such tablets is all about finding the balance between fast dissolution on one hand and tablet strength and stability on the other. Low moisture content is of paramount importance, especially when the formula contains percarbonate bleach.
  • a typical formula contains 1-2 % lauryl sulfoacetate or FAS, 1% FAEO Ci 6 -i 8 8EO, 40-50% citric or sulfamic acid, 20-30% sodium carbonate, some polyethylene glycols, fragrance, dye, and sulfate as a filler. Some formulations additionally contain about 2% percarbonate bleach.
  • Products dedicated to periodical cleaning and descaling of automatic dishwashing machines usually are based on citric acid and a small amounts of FAEO (e.g. C 9- n, 4EO), and additionally may contain some corrosion inhibitor, solvents, PEG, phosponates, fragrance and dye.
  • FAEO e.g. C 9- n, 4EO
  • the present invention aims to provide a solution for at least one of the problems mentioned.
  • composition of claim 1 provides a composition for the prevention or removal of insoluble salt deposits comprising : a) an organic acid with two carboxylic acid functional groups obtainable by fermentation, selected from the list of itaconic acid, itaconic acid anhydride, succinic acid, succinic anhydride and combinations thereof, and
  • an acid as described under a) could be combined with compounds acting as acid release regulating means as described under b).
  • This is advantageous as it allows the manufacturing of compositions for both fast and slow release based an acid of renewable resources, in particular itaconic acid and/or succinic acid.
  • the anhydride form is used.
  • the acids and anhydrides prescribed are interesting from an ecological point of view as they are readily degradable and obtainable from renewable resources.
  • the acids are remarkably compatible with the functional compounds under b).
  • the combination of a) and b) provides a synergistic effect.
  • the acids under a) do not impact the functionality of compounds under b). This has for effect that they can be used as mixing partners. Selections of a compound from the list under b) will provide access to compositions with either slow or fast release of the acid under b). Both fast and slow release compositions for itaconic acid, itaconic acid anhydride, succinic acid, succinic acid anhydride have become available.
  • the organic acid is itaconic acid.
  • 97-65-4 also called Methylene Succinic Acid, Butanedioic acid, Methylene Butanedioic acid, Propylenedicarboxylic acid; 2-Propene-l,2-dicarboxylic acid;
  • Methylene Succinic Acid Butanedioic acid
  • Methylene Butanedioic acid Propylenedicarboxylic acid
  • 2-Propene-l,2-dicarboxylic acid is a white anhydrous ( ⁇ 0.3%) hygroscopic crystalline dicarboxylic acid with a melting point of 166°C. It is soluble in water, ethanol and acetone. Its chemical structure is similar to that of succinic acid but with a methylene group substituted onto the carbon chain, the unsaturated double bond forming a conjugated system with the carbonyl group.
  • Itaconic can be converted into its anhydride as described in US5260456.
  • Itaconic anhydride (CAS 2170-03-8, 2-Methylenesuccinic anhydride) white crystals have a slightly acidic odor and a melting point of 67-69°C. In contact with water the anhydride will hydrolyze back to itaconic acid.
  • Itaconic acids primary application is in the polymer industry where it is employed as a co-monomer at a level of 1-5% in styrene butadiene resins and in acrylic latexes for textile, paper, and paint applications. It is furthermore used to prepare acrylic fibers and rubbers, reinforced glass fiber, artificial diamonds and lens.
  • the inventors have surprisingly found that itaconic acid in a composition according to an embodiment of the invention shows excellent descaling activity and an overall excellent activity in the removal and prevention of insoluble salt deposits.
  • itaconic acid in a composition according to an embodiment of the invention is a very strong descaling agent in both fast descaling as well as descaling upon prolonged contact. Furthermore, It can be produced through fermentation, and it is a fully renewable descaling agent. Furthermore, it is non-corrosive and has a neutral smell.
  • itaconic acid can be used as a solid state, stabile, low moisture ingredient for descaling activities, allowing polyvalent use.
  • itaconic anhydride can be used as an agent releasing the above itaconic acid upon contact with water, a property especially useful in toilet blocks.
  • the compound selected from list b) is the hygroscopic compound. More preferably, the hygroscopic compound is lactide, an anionic surfactant, or combinations thereof. In a preferred embodiment the hygroscopic compound is lactide. An example of a hygroscopic anionic surfactant is alkyl benzene sulfonate. In a preferred form, itaconic acid is in substantially dry form, i.e. with a water content of at most 5%, preferably at most 3%, more preferably at most 1%, most preferably at most 0.5%.
  • Lactide (CAS 4511-42-6 and 95-96-5, also called cyclic dimer of lactic acid, Dilactide, L-Lactide, DL-Lactide, 3,6- Dimethyl-l,4-dioxane-2,5-dione) on the other hand contains two molecules of natural L(+)-lactic acid in the form of a ring. While mixed with water, the ring is hydrolyzed back into two free L(+)-lactic acid molecules that allow a delayed acidification of the medium, the pH drop to pH2 being completed after two hours. The inventor observed complete dissolution at room temperature to require at least 3 hours while stirring.
  • lactide The strong acidity released by lactide is due to the low pKa of lactic acid and to the release of two acidic functions per mole. It is a white, almost odorless, virtually water- free ( ⁇ 30ppm) very hygroscopic powder with a melting point of 94-99°C.
  • Lactide is produced by double condensation of L(+)-lactic acid molecules obtained by fermentation of natural sugar. After several solvent-free purification steps, small white flakes of pure 3,6- dimethyl-l,4-dioxane-2,5-dione are obtained (solid lactic acid). There are several methods to prepare lactic acid. Among the biological routes is a process employing R. oryzae. The organism imports glucose and exports lactate, an acid that is not a component or by-product of the citric acid cycle. Lactate is produced by the organism aerobically, and the commercial process requires agitation and aeration just as the other fungal organic acid processes do. The substrate for the R.
  • Lactic acid is recovered by the technologies used for the other organic acids, including precipitation from an alcoholic extract. In aqueous solution, lactic acid dimerizes to form lactide, an intermediate for the biodegradable plastic, polylactic acid (PLA).
  • PLA polylactic acid
  • lactide shows excellent descaling activity and an overall excellent activity in the removal and prevention of insoluble salt deposits.
  • a composition according to the invention comprises 1-20% lactide, preferably 1-20% slow-release lactide as measurable by the pH-development of a 0.1 w/v % solution of the slow-release lactide in demineralized water at 25°C and the curve depicting the pH versus time displaying a pH of 3.7 after 5 minutes, 3.2 after 10 and 2.5 after 120 minutes.
  • Lactide and Itaconic acid or its anhydride can be used separately as a descaling agent but they also show a highly efficient descaling activity when used in combination with each other.
  • the insoluble salts deposits are selected from a group consisting of lime scale, beer stone, milk stone, barium sulfate, calcium oxalate and combination thereof.
  • itaconic acid, its anhydride and or lactide and combinations there is present in the composition in a concentration of 5-60% m/m, preferably 20-40% m/m.
  • the composition of the present invention is most effective.
  • the composition further comprises one or more other acids.
  • composition comprising lactide, itaconic acid and/or anhydride can be even more efficient.
  • the compound selected from list b) is the carbonate source. More preferably, the carbonate source is sodium carbonate, bicarbonate or percarbonate.
  • the compound selected from list b) is the acid solubility retarding compound. More preferably, the acid solubility retarding compound is an ethoxylated surfactant with C16-C22 carbon chain length and an ethoxylation degree of 30-40 ethylene oxide groups, a thickener, or combinations thereof.
  • Suitable thickeners for use in the above described invention may be of synthetic or biobased, preferably biobased.
  • a suitable synthetic thickener is for example a polyacrylate.
  • Suitable biobased thickeners are for instance hydrocolloids such as pectin, agar, carrageenan, alginate, starch, locust bean gum, gelatin, guar gum, gum Arabic, xanthan gum, 12-hydroxy stearic acid. Derivatives of the previously listed compounds may also be used. They include carboxymethylcellulose, carboxymethyl guar gum. Evidently, combinations of the thickeners listed above may also be used.
  • the compound selected from list b) is the compound with melting point between 60°C- 95°C; preferably between 60°-90°C, more preferably between 60°-80°C, most preferably between 60°-75°C.
  • the compound iv) is a nonionic sucrose ester with melting point between 60°C-75°C.
  • compound iv) is a lactide with melting point of approximately 95°C, or combinations thereof.
  • a composition of the invention has a reduced level of alkyl benzene sulfonate. More preferably, the composition is free of alkyl benzene sulfonate.
  • fatty alcohol sulfate is a good substitute for at least part or all of the alkyl benzene sulfonate.
  • at least part or all of the alkyl benzene sulfonate in the composition is replaced by fatty alcohol sulfate.
  • alkyl benzene sulfonate is a petrochemical which upon aerobic biodegradation leaves stable metabolites and is not degradable in anaerobic conditions.
  • the use of fatty alcohol sulfate in a composition of the invention is advantageous as it has a better ecological profile than alkyl benzene sulfonate. It provides good foam. Foam functions as an indicator to a consumer that the composition is working.
  • the inventors also found that the extrudability of a composition according to the invention comprising a fatty alcohol sulfate is improved.
  • a composition of the invention comprises lactide, preferably slow-release lactide.
  • the lactide will liberate lactic acid which will further enhance the lime scale removal claimed in/subject to this invention.
  • Lactic acid is released from a slow- release lactide as follows.
  • a 0.1 w/v % solution of the slow-release lactide in demineralized water at 25°C is characterized by a curve depicting pH versus time, wherein the pH is 3.7 after 5 minutes, the pH is 3.2 after 10 minutes, and the pH is 2.5 after 120 minutes.
  • Slow-release lactide is commercially available from the company Galactic, Belgium. Use of slow- release lactide is advantageous as it has the effect that the release of acid from a composition, i.e. lactide and other acids present, for the prevention or removal of insoluble salt deposits can be tuned further.
  • the composition is formulated as a virtually water-free powder, tablet or block.
  • the solid state acids used in the present invention allow prolonged exposure either due to the product form or through delayed acidification. This makes the composition very suitable for applications such as toilet blocks.
  • the invention further provides several type compositions for use in the prevention or removal of insoluble salt deposits, including toilet rim, cistern or urinal block; tablets and gels.
  • the composition is a toilet rim, cistern or urinal block, comprising : 3-30 weight% itaconic acid, itaconic anhydride, succinic acid, succinic anhydride or a combination thereof, 20-50 weight% linear alkyl benzene sulfonate and/or fatty alcohol sulfate, and the remainder formulation auxiliaries.
  • the formulation auxiliaries comprise or consist of a perfume or fragrance.
  • the toilet rim, cistern or urinal block as previously described comprises an acid solubility retarding sucrose derivative.
  • the solubility retarding sucrose derivative is a sucrose behenate, sucrose stearate and/or a fatty acid derived sucrose ester with melting point between 60°C-75°C.
  • the latter is commercially available from P&G, under the trade name Sefose.
  • Use of a sugar based compound in a formulation according to the invention has for effect that the amount of compounds derived from renewable resources is increased further.
  • Sugar based molecules provide an improve degradability. The degree of biobased materials used is increased even further.
  • the blocks as described above have a life expectancy of at least 50 flushes, preferably at least 100 flushes, most preferably at least 200 flushes.
  • test can be carried out as follows: A product is weighed . It is set in a toilet near the water supply means, at a precisely defined place. The toilet is fed with 35° THF hard water reproducing unfavorable but realistic conditions. The toilet is flushed at irregular time intervals. The test is carried out until the product is completely consumed. From the number of flushes required to consume the product, the product life expectancy is obtained. The life expectancy can be expressed in number of flushes, number of days or number of weeks.
  • the composition as previously described is provided in the form of an effervescent tablet.
  • the effervescent tablet comprises: 7-75% itaconic acid, itaconic anhydride, succinic acid, succinic anhydride or a combination thereof, 5-25% of a carbonate source, selected from the list of sodium carbonate, bicarbonate, percarbonate and combinations thereof, and the remainder formulation auxiliaries.
  • the formulation auxiliaries comprise or consist of a perfume or fragrance.
  • a 20 gram tablet dissolves in one liter of water in under 15 minutes and the pH of the resulting water comprising the dissolved table is at most 4.5, preferably at most 4.0, more preferably at most 3.5.
  • the pH- development provided by the tablet does not go below 2.0.
  • the composition as previously described is p rovided in the form of a toilet gel.
  • the toilet gel comprises: 1-30% itaconic acid, succinic acid, or a combination thereof, 2-40% an ethoxylated nonionic surfactant with an ethoxylation degree of 30-40 ethylene oxide units, a thickener such as a polyacrylate, a hydrocolloid, a derivative of a hydrocolloid, or a combination thereof, and the remainder formulation auxiliaries.
  • the formulation auxiliaries comprise or consist of a perfume or fragrance.
  • compositions of the invention are provided.
  • a composition according to an embodiment of the invention is used for the prevention or removal of lime scale, beer stone, milk stone, barium sulfate, calcium oxalate and combinations thereof.
  • the used described previously is one wherein the prevention or removal is directed to a toilet, a laundry machine, a dishwashing machine, a boiler, a kettle, a coffee-maker, an espresso machine, a dairy equipment, a food processing equipment, a beverage processing equipment, an industrial water system, or a well.
  • the composition described here above is used the removal of insoluble salt deposits upon prolonged exposure of the insoluble salts to the composition.
  • the invention is however not limited to prolonged exposure of the composition, all other types of exposure known by the person skilled in the art, can also be used.
  • the composition according to the present invention is for example also very effective in fast descaling. If however the composition is applied during prolonged exposure, it is very effective for heavy duty removal of thick deposits of insolubles, which is an advantage.
  • a method for the manufacturing of compositions according to the invention comprises the step of: -selecting an organic acid with two carboxylic acid functional groups obtainable by fermentation and available in substantially dry powder form, from itaconic acid, itaconic acid anhydride, succinic acid, succinic anhydride or a combination thereof,
  • said compound is selected from a list comprising : i) a hygroscopic compound, ii) a carbonate source, iii) an acid solubility retarding compound, iv) a compound with melting point situated between 60°C-95°C, and combinations thereof, -extruding or melt casting the mixture obtained at a temperature between 60°C-95°C, - obtaining the composition for the prevention or removal of insoluble salt deposits in a desirable form such as a block, tablet or gel.
  • the invention provides a method for the prevention or removal of insoluble salt deposits comprising the step of:
  • the pH is below 4.5; preferably below 4.0; more preferably below 3.5; and not below pH 2.
  • the composition according to the present invention is used for the prevention or removal of insoluble salts in toilet, sanitary, bathroom, laundry and automatic dishwashing machine, boiler, kettle, coffee-maker, dairy equipment, food and beverage processing equipment, industrial water systems and wells, concrete removers and the like.
  • the composition is also suitable for other descaling activities known by the person skilled in the art.
  • the second object is achieved by a toilet block a composition comprising itaconic acid, its anhydride and or lactide and combinations thereof.
  • Such a product shows a higher descaling activity than the products known in the state of the art.
  • the invention further relates to an effervescent tablet comprising a composition comprising itaconic acid, its anhydride and or lactide and combinations thereof.
  • Such an effervescent tablet can be used for descaling in several applications, such as a toilet or a dishwashing machine, or any other application known by the person skilled in the art.
  • the solid character of lactide and itaconic acid offers a substantial advantage in the formulation of these tablets. However, these tablets will still be able to dissolve quickly upon contact with water. Also, the fact that the acids used in the composition according to the present invention are so efficient upon prolonged contact, offers a huge advantage for the different applications making use of this effervescent tablet.
  • This invention also relates to a composition comprising itaconic acid, its anhydride and or lactide and combinations thereof for the prevention or removal of insoluble salt deposits.
  • the present invention uses a composition comprising itaconic acid, its anhydride, succinic acid or its anhydride and or lactide and combinations thereof, for the prevention or removal of insoluble salt deposits.
  • non-corrosive acids with a non-pungent or even neutral smell offers clear advantages in the production and use phase, but this fact reduces table 1 to 10, respectively 7 potential candidates.
  • Selecting non-corrosive, non-pungent smell acids obtained from fermentation narrows the selection down to 6, 5 of which are solid state acids, which allows more flexibility in formulating either a liquid end product, a powder or a tablet.
  • This selection is as follows; tartaric, citric, lactic, succinic and itaconic acid as well as lactide, succinic acid and itaconic acid being the subject of the present invention and offering clear advantages over all other acids as illustrated in the description of the invention.
  • citric, gluconic and lactic acid itaconic acid is used exclusively in non-food applications.
  • the recently increased commercial availability of itaconic acid and lactide make this invention all the more attractive.
  • glycolic acid is very efficient in fast descaling but is far less efficient in prolonged descaling (in example 4, even more or less failing in example 2). This is attributed to the observed formation of a greasy layer (as is the case with tartaric and citric acid), but is in contradiction to what one would expect from the high water solubility of the calcium salt (table 1) and in contradiction to what its manufacturer claims. Lactic acid does a mediocre job in fast descaling, but is second best upon prolonged contact. Succinic acid performs reasonably well in both fast and prolonged descaling, although its calcium salts are insoluble.
  • the inventors furthermore surprisingly found itaconic acid, although not as yet described as such in patent literature, to be the best solid acid in fast descaling as well as upon prolonged contact.
  • lactide known to fully hydrolyze into lactic acid, was shown to be very effective against limescale, which was never described before.
  • non-corrosive neutral-smell ingredients which moreover are fully renewable and are solid state ingredients, allowing polyvalent use; itaconic acid, its anhydride and lactide can be used as such in waterless solid compositions or, in case of itaconic acid, used as a liquid compositions, either alone or in combination with other acids.
  • itaconic acid, its anhydride and lactide can be used as such in waterless solid compositions or, in case of itaconic acid, used as a liquid compositions, either alone or in combination with other acids.
  • These products are particularly well suited for heavy duty removal for insoluble salt deposits, i.e. requiring prolonged exposure for complete removal.
  • Stable effervescent toilet descaling tablets containing substantial amounts of itaconic acid were formulated and shown to be very effective.
  • Preliminary tests showed lactide-itaconic based tablets to be even more effective, but present the challenge of gelling due to the high hygroscopy of lactide.
  • this property is very beneficial in formulating toilet rim blocks by extrusion where it will cause an outer layer or membrane that slows down the overall solubility of the block thereby imparting a controlled release of the fragrance and the surfactant in the block.
  • the melting point of lactide is anticipated to assist in the extrusion process and cause it to function as a solubility retarder.
  • the present invention entails solid and liquid toilet rim blocks.
  • Other products for removing insoluble salt deposits according to the present invention include solid in- cistern blocks, urinal blocks, effervescent toilet tablets, toilet gels, bathroom cleaners, liquids removing limescale from hard surfaces, periodic cleaners for automatic dishwashing and laundry machines, boiler cleaners, treatment products for water wells, boiler systems and tubing, cleaners for dairy and food equipment, concrete cleaners and removers.
  • the present invention in various forms or shapes, is shown to be much more effective than the commonly used citric acid for preventing and removing insoluble salts (e.g. Ca, Mg, limescale) while having neutral odor and color, being non fuming, free of phosphorus, non corrosive to the skin, non toxic to aquatic life and obtained by fermentation as a fully renewable product. Moreover it is non corrosive to the treated surfaces among others since it's free of chlorides, thus not representing the risk of possible chloride cracking of stainless steel or embrittlement sometimes experienced in acid chloride systems, nor will it cause spallation (in case of itaconic based formulations).
  • insoluble salts e.g. Ca, Mg, limescale
  • Citric acid 0, 10496 0,013478 7,787259
  • tartaric and citric acid are not particularly well suited for fast descaling, whereas glycolic is performing best, as claimed by its manufacturer. Itaconic acid outperforms all tested solid acids and all acids obtained from fermentation.
  • Tartaric acid fails again, but this time glycolic and citric acid underperform as well.
  • the other tested acids are more or less equivalent, but again itaconic acid is performing best among the tested solid acids, in fact best of all the tested acids.
  • Lactide and itaconic acid again prove to be very efficient descaling agents as compared to citric acid both in fast and prolonged exposure conditions, 3% lactide thereby matching the performance of 5% citric acid .
  • succinic acid performs very well upon prolonged exposure, somewhat less so at short exposures.
  • a non factorial, central composite design experiment was set up, combining citric acid, succinic acid, lactic acid, itaconic acid and glycolic acid and testing the descaling efficiency of the mixtures both at short contact times (on marble plates, protocol as in ex.1) and prolonged contact (on marble blocks, as in ex.2).
  • the required volumes for filling the beakers were prepared as 3% active matter solutions, 20 hours prior to the test. Also the formation of an insoluble layer surrounding the blocks was monitored, scoring no visible layer with a score of 0 and a clearly distinctive layer with a score of 1.
  • the experimental setup and descaling results were as follows (sorted on the visual presence of an insoluble layer) :
  • Citric acid alone and 8 out of 10 of the citric acid containing combinations result in a distinctive separate layer, as opposed to 4 out of 10 for lactic acid and 5 out of 10 for the other acids. Itaconic acid on the other hand does not cause an insoluble layer to be formed and nor do succinic and lactic acid. Contrary to the claims of its manufacturer, and contrary to what one might expect from the solubility of its calcium salts, glycolic acid also caused an insoluble layer on itself and in combinations with other acids, unless it is combined with lactic acid. The model further identifies a significant negative interaction of citric and glycolic acid, which in this case implies a desirable effect, i.e. less insoluble layer when combining glycolic acid with citric acid, probably causing the significant descaling synergy described above.
  • Toilet rim block formulations "Riml” and “Rim2” are taken for reference from the Unger guideline recipes for extrusion of 40 gram rim blocks at 70-90°C.
  • the solubility retarding coconut MEA and FAEO are replaced by sucrose esters with a comparable melting point and with lactide (which has a somewhat higher mp) or itaconic anhydride (with a comparable melting point).
  • itaconic acid is formulated in Rim4 and Rim8 against limescale (similar to the best descaling effervescent tablet of the previous example).
  • polysuccinimide and persulfate bleach or calcium peroxide slow release bleach are added to Rim3 and Rim8. Itaconic Slow 20 anhydride release
  • Diameter (mm) 42 42 25 25 25 Tablets produced by extrusion of the compositions listed in Example 7 provided hard tablets of consistent composition and homogeneous and consistent appearance. These tablets lasted well above 50 flushes. Tablets made according to the above described compositions wherein the slow-release lactide was replaced by standard lactide showed needle like protrusions, probably caused by lactide crystals.
  • Formulation for dishwashing machine in analogy with a commercial dishwashing machine composition sold under the brand name Finish, comprises:
  • additives such as phosphonates and/or calcium silicate
  • Suitable surfactants for use in the above formulation are PPG-15 C12-18 and PPG-5 Laureth-5 with fatty alcohol alkoxylate
  • low foaming as described herein it is meant, producing no foam or a foam which disappears after build up within less than 5 minutes.
  • Formulation comprising itaconic acid and between 1-20% of slow-release lactide, in the form of powder or a 30% solution, for the treatment of insoluble salt deposits in expresso machines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention a pour objet des compositions, en particulier des blocs, des comprimés et des gels, pour la prévention ou l'élimination de dépôts de sels insolubles, comprenant : a) un acide organique possédant deux groupes fonctionnels acide carboxylique pouvant être obtenu par fermentation, choisi dans le groupe comprenant l'acide itaconique, l'anhydride d'acide itaconique, l'acide succinique, l'anhydride succinique et leurs combinaisons, et b) au moins un composé déterminant la libération dudit acide à partir de ladite composition, ledit composé étant choisi dans le groupe comprenant : i) un composé hygroscopique, ii) une source de carbonate, iii) un composé retardant la solubilité dans l'acide, iv) un composé possédant un point de fusion situé entre 60 °C et 95 °C, et leurs combinaisons. La présente invention concerne en outre des utilisations des compositions pour la prévention ou l'élimination de dépôts de sels insolubles. La présente invention concerne également un procédé de fabrication de telles compositions et un procédé pour la prévention ou l'élimination de dépôts de sels insolubles au moyen d'un produit selon l'invention.
EP11701665A 2010-01-29 2011-01-31 Composition pour la prévention ou l'élimination de dépôts de sels insolubles Withdrawn EP2529000A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11701665A EP2529000A2 (fr) 2010-01-29 2011-01-31 Composition pour la prévention ou l'élimination de dépôts de sels insolubles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10152175 2010-01-29
EP11701665A EP2529000A2 (fr) 2010-01-29 2011-01-31 Composition pour la prévention ou l'élimination de dépôts de sels insolubles
PCT/EP2011/051303 WO2011092325A2 (fr) 2010-01-29 2011-01-31 Composition pour la prévention ou l'élimination de dépôts de sels insolubles

Publications (1)

Publication Number Publication Date
EP2529000A2 true EP2529000A2 (fr) 2012-12-05

Family

ID=43941073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701665A Withdrawn EP2529000A2 (fr) 2010-01-29 2011-01-31 Composition pour la prévention ou l'élimination de dépôts de sels insolubles

Country Status (3)

Country Link
US (1) US8415285B2 (fr)
EP (1) EP2529000A2 (fr)
WO (1) WO2011092325A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118113A1 (fr) * 2013-01-31 2014-08-07 Purac Biochem Bv Corps d'acide lactique gélifié à libération lente
US9486108B1 (en) * 2013-09-27 2016-11-08 Shaun Douglas Apparatus for descaling a single serve beverage filter cartridge machine with apple vinegar wetting cotton in a beverage filter cartridge
CN107963731B (zh) * 2017-11-29 2020-01-21 河北省科学院能源研究所 一种阻垢缓蚀球的制备方法
US11684557B2 (en) 2018-06-04 2023-06-27 Conopco, Inc. Preservation compositions
BR112020022295A2 (pt) 2018-06-04 2021-02-23 Unilever Nv sistema de preservação antimicrobiana, substância de preservação, sistema de preservação, composição aquosa e método de preservação de composições
WO2019233757A1 (fr) 2018-06-04 2019-12-12 Unilever Plc Compositions de conservation
CA3073093A1 (fr) 2018-08-03 2020-02-06 Biomass Oil Separation Solutions, Llc Procedes et appareil d'extraction de substances et d'extraits enrichis a partir d'une matiere vegetale
NL2021604B1 (nl) 2018-09-11 2020-06-26 Vitens N V Toepassing van een fulvinezuur bevattend uitgangsmateriaal.
WO2020109022A1 (fr) * 2018-11-30 2020-06-04 Unilever N.V. Compositions de nettoyage conservées
WO2020109026A1 (fr) * 2018-11-30 2020-06-04 Unilever N.V. Compositions de nettoyage conservées
US10799546B1 (en) 2019-07-26 2020-10-13 Biomass Oil Separation Solutions, Llc Modular, integrated process and apparatus for extracting, refining and remediating active substances from plant material
CN111364964B (zh) * 2020-02-03 2020-09-25 西南石油大学 一种固体缓速酸的注入方法
EP4157979B1 (fr) * 2020-05-28 2024-04-24 Unilever IP Holdings B.V. Comprimé

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422255A (en) * 1944-04-14 1947-06-17 Du Pont Rinse compositions
GB1427710A (en) * 1972-10-30 1976-03-10 Maws Ltd Disinfectant compositions
JPS5159909A (en) 1974-11-20 1976-05-25 Kao Corp Ryujomataha funjosenjozaisoseibutsu
US4210550A (en) 1978-07-14 1980-07-01 Akzo N.V. Detergent composition containing an alkali carbonate
GB8609043D0 (en) * 1986-04-14 1986-05-21 Unilever Plc Detergent powders
GB8609044D0 (en) 1986-04-14 1986-05-21 Unilever Plc Detergent powders
DE3640090A1 (de) 1986-11-24 1988-06-01 Henkel Kgaa Reinigungsblock fuer den wasserkasten von spueltoiletten
US5260456A (en) 1987-11-20 1993-11-09 Rhone-Poulenc Chimie Process for producing itaconic anhydride
US5192460A (en) 1988-02-10 1993-03-09 Colgate-Palmolive Company Safe acidic hard surface cleaner
NZ248582A (en) 1992-09-24 1995-02-24 Colgate Palmolive Co Acidic, thickened cleaner containing dicarboxylic acids and aminoalkylene phosphonic acid for cleaning lime scale from acid-resistant or zirconium white enamel hard surfaces
EP0619366A1 (fr) * 1993-04-05 1994-10-12 The Procter & Gamble Company Blocs pour toilettes contenant de l'oxygène actif
JPH07126698A (ja) * 1993-11-05 1995-05-16 Nippon Soda Co Ltd 便器清浄剤
US8092613B2 (en) * 2002-05-31 2012-01-10 Ecolab Usa Inc. Methods and compositions for the removal of starch
DE202006002452U1 (de) 2006-02-16 2006-05-24 Lanxess Deutschland Gmbh Formkörper für den Sanitärbereich

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011092325A2 *

Also Published As

Publication number Publication date
US8415285B2 (en) 2013-04-09
WO2011092325A3 (fr) 2011-09-29
WO2011092325A2 (fr) 2011-08-04
US20120302484A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US8415285B2 (en) Composition for the prevention or removal of insoluble salt deposits
CN103608488B (zh) 腐蚀抑制组合物
JPH0832914B2 (ja) エチレンジアミン−n,n′−ジコハク酸を含有する洗剤組成物
EP2571971B1 (fr) Composition de nettoyage présentant un détachage amélioré
JP2006335908A (ja) 自動洗浄機用液体洗浄剤組成物
CN101081031B (zh) 杀微生物性组合物
CN103215144A (zh) 一种酸性持久挂壁型厕盆清洗剂及其制备方法
CN111788293B (zh) 包含氨基多羧酸盐和有机酸的洗涤剂固体组合物
KR20180007521A (ko) 친환경 세정제 조성물 및 이의 제조방법
EP3224336B1 (fr) Composition de nettoyage
WO2018113979A1 (fr) Composition aqueuse de détergent moussant ayant un temps de séjour de mousse plus long et une teneur en eau accrue
JP3581469B2 (ja) 洗浄剤組成物
CN1272420C (zh) 污垢清洁剂
JP2001003089A (ja) 食器洗浄機用液体洗浄剤組成物
JP3803639B2 (ja) 清浄化剤
CN105505593A (zh) 环保型洁厕剂
US20230348822A1 (en) Anti-limescale composition
CN109534520A (zh) 一种洗碗机专用除垢剂及其制备方法
CN104419573A (zh) 一种高效去油污厨衣液
JP2020105390A (ja) カートリッジ洗浄剤、洗浄方法、及び、微生物の除菌方法又は菌叢凝塊の除去方法
JPH0149251B2 (fr)
CN103666802A (zh) 洗衣机内胆除污剂
BR112019011182B1 (pt) Composição detergente de lavagem automática de louça
JP5904873B2 (ja) 水拭き用洗浄剤組成物
US11713435B2 (en) Aminocarboxylate chelating agents and detergent compositions containing them

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120829

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOVER CO-ORDINATION CENTER N.V.

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 17/00 20060101ALI20140624BHEP

Ipc: C11D 3/39 20060101ALI20140624BHEP

Ipc: C11D 3/10 20060101ALI20140624BHEP

Ipc: C11D 1/72 20060101ALI20140624BHEP

Ipc: C11D 3/20 20060101AFI20140624BHEP

Ipc: C11D 7/40 20060101ALI20140624BHEP

Ipc: C11D 1/83 20060101ALI20140624BHEP

Ipc: C11D 7/26 20060101ALI20140624BHEP

Ipc: C11D 1/14 20060101ALI20140624BHEP

Ipc: C11D 1/37 20060101ALI20140624BHEP

Ipc: C11D 1/22 20060101ALI20140624BHEP

Ipc: C11D 7/12 20060101ALI20140624BHEP

Ipc: C11D 1/66 20060101ALI20140624BHEP

Ipc: C11D 3/37 20060101ALI20140624BHEP

Ipc: C11D 3/38 20060101ALI20140624BHEP

Ipc: C11D 3/22 20060101ALI20140624BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150303