EP2520771B1 - Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées - Google Patents

Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées Download PDF

Info

Publication number
EP2520771B1
EP2520771B1 EP11003615.9A EP11003615A EP2520771B1 EP 2520771 B1 EP2520771 B1 EP 2520771B1 EP 11003615 A EP11003615 A EP 11003615A EP 2520771 B1 EP2520771 B1 EP 2520771B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
evaporator
separator
cycle device
expansion machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11003615.9A
Other languages
German (de)
English (en)
Other versions
EP2520771A1 (fr
Inventor
Richard Aumann
Andreas Schuster
Andreas Sichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP11003615.9A priority Critical patent/EP2520771B1/fr
Priority to US14/112,860 priority patent/US10202872B2/en
Priority to PCT/EP2012/001597 priority patent/WO2012149998A1/fr
Priority to CN201280021769.0A priority patent/CN103562504B/zh
Publication of EP2520771A1 publication Critical patent/EP2520771A1/fr
Application granted granted Critical
Publication of EP2520771B1 publication Critical patent/EP2520771B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • F01C21/045Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/20Lubricating arrangements using lubrication pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Definitions

  • the present invention relates to a method and apparatus for rapid oil heating for volumetric expansion machines in a thermodynamic cycle.
  • ORC Organic Rankine Cycle
  • the working medium is brought to operating pressure by a feed pump, and it is supplied to it in an evaporator energy in the form of heat, which is provided by a combustion or a waste heat flow available.
  • the working fluid flows via a pressure tube to an expansion machine in which it is expanded to a lower pressure.
  • the expanded working medium vapor flows through a condenser, in which a heat exchange between the vaporous working medium and a cooling medium takes place, after which the condensed working medium is returned by a feed pump to the evaporator in a cyclic process.
  • volumetric expansion machines also referred to as positive displacement expansion machines, which include a working chamber and perform work during an increase in volume of that working chamber during expansion of the working medium.
  • expansion machines are realized, for example, in the form of piston expansion machines, screw expansion machines or scroller expander.
  • volumetric expansion machines are particularly used in small power class ORC systems (e.g., 1 to 500kW of electrical power).
  • ORC systems e.g., 1 to 500kW of electrical power.
  • volumetric expansion machines require lubrication by a lubricant in particular the piston or the successive rolling profiles of the expansion space and the bearings and the sliding walls of the working chamber. So it requires a lubrication of the bearings and the touching flanks.
  • a lubricant advantageously also results in a sealing of the working space of the expansion machine, whereby less steam is lost through overflow within the expansion machine and thus the efficiency is increased.
  • Lubrication with oil is advantageous, with oil and live steam passing through the expansion machine together, which necessitates a subsequent separation of oil and steam.
  • This lubrication system is in FIG. 1 shown schematically. It comprises, according to an example, a lubricant separator (exemplified by an oil separator) 10 which is interposed between an evaporator 20 which supplies a completely or partially vaporized working medium and an expansion machine 30 which cooperates with an electric energy generator 40. In this case, at least a portion of the lubricant from the expansion machine 30 supplied live steam of the offset with the lubricant working fluid is deposited.
  • a lubricant separator illustrated by an oil separator
  • the oil separator 10 corresponding Abscheidebleche may be provided such that in the arriving at the expansion machine 30 working fluid still a sufficient amount of lubricant (lubricating oil) is present, so that a reliable lubrication of successive rolling or sliding parts of the working chamber of the volumetric expansion machine 30 can be achieved.
  • the deposition of the lubricant in the oil separator 10 could be substantially complete and a suitable amount of lubricant to the live steam of the working medium before entering the expansion machine 30 are fed back.
  • the separated lubricating oil collects.
  • the lubricant in the working medium when supplied to the evaporator 20 by the feed pump 50, is in dissolved form.
  • the lubricating oil will have a significantly higher boiling temperature than the working medium, so that after passing through the evaporator 20 it will be liquid in droplet form in the working vapor of the working medium.
  • the lubricating oil separated in the oil separator 10 is under high pressure so as to freely flow to the expansion machine 30 due to the pressure, there is no need for providing another pumping means for the lubricant.
  • a smaller volume of steam per time flows through the oil separator 10, so that it can be made relatively compact, resulting in a space savings and cost savings.
  • the pressure loss after the expansion machine 30 is reduced and thus the pressure drop across the expansion machine 30 can be increased as compared with the conventional configuration with an oil separator 10 downstream of the expansion machine 30, so that the efficiency of the expansion machine 30 can be increased.
  • lubricant remains directly in the main steam of the working medium or it is supplied to this at live steam temperature, so that in contrast to the prior art, the use of a lubricant does not lead to a reduction in the steam temperature and enthalpy.
  • thermodynamic cycle differs significantly from the standstill temperature.
  • the oil has a temperature equal to the live steam temperature of about 100 ° C.
  • the oil temperature may drop to ambient temperature, such as 10 ° C to 25 ° C, but may also go down to negative Celsius levels, for example. Since at such low temperatures, the viscosity of the oil increases by several orders of magnitude, commissioning of the cycle device is problematic.
  • an electric heater could solve this problem, it entails additional investment and operating costs.
  • an electrical heating of the oil takes a long time. Accordingly, it is an object of the present invention to provide a method and a device for rapid heating of the oil after a standstill of the described cycle device available.
  • the cycle device comprises a working medium with a working fluid and a lubricant, an evaporator for evaporating the working fluid, a lubricant separator for separating at least a portion of the lubricant from that supplied by the evaporator Working medium, an expansion machine to be lubricated with the lubricant, and a condenser device comprising a condenser
  • the method comprises the steps of: supplying lubricant from the lubricant separator to the condenser device and / or to the evaporator during shutdown of the cycle device, whereby in the condenser device and / or or providing a lubricant enriched working medium in the evaporator; and heating the lubricant-enriched working fluid in the evaporator during startup of the cycle device.
  • the viscosity of the working fluid with working fluid and lubricant is reduced compared to the viscosity of the separate lubricant.
  • the heat supply takes place, the cold working fluid is heated and the working fluid completely or partially evaporated, the lubricant remains liquid and is deposited in the lubricant.
  • the supply of lubricant from the lubricant separator during the shutdown of the cycle device can comprise a lowering of the pressure in the lubricant separator.
  • the pressure in the lubricant separator may for example be within a period of 1 to 1000 milliseconds, preferably within a period of 1 to 500 milliseconds, most preferably within a period of 1 to 100 milliseconds by 10% to 95%, preferably by 20% to 95%. , most preferably lowered by 50% to 95%.
  • the pressure in the lubricant separator is lowered rapidly according to this development. This is preferably carried out for a period of 1 to 1000 milliseconds and 10% to 95% of the present at the beginning of lowering in the lubricant separator This means that, for example, within 0.1 seconds an initially existing pressure of 3 bar is lowered to 1.2 - 2 bar (condenser pressure), ie by approx. 33-60%. This rapid pressure reduction causes the solvent dissolved in the lubricant to evaporate.
  • the lowering of the pressure in the lubricant separator can take place after a standstill of the expansion machine. In this way, even the work done by the expansion machine can be exploited.
  • the cycle device can further comprise a bypass line between the lubricant separator and the condenser device for bypassing the expansion machine, and the bypass tube can be opened and closed by a valve, in particular a solenoid valve, and wherein the step of delivering from lubricant from the lubricant separator to the condenser device may include opening the valve.
  • the foaming of the lubricant can be carried out by opening the valve, which closes a pipeline between lubricant and condenser in the operating state of the system, whereby a rapid pressure reduction takes place in the lubricant.
  • the method may comprise the further step of stopping a supply of working medium to the evaporator during shutdown of the cycle device before supplying lubricant from the lubricant separator to the condenser device and / or to the evaporator.
  • a supply of working medium to the evaporator during shutdown of the cycle device before supplying lubricant from the lubricant separator to the condenser device and / or to the evaporator.
  • the condenser device may further comprise a food container in which condensed working fluid is collected, and wherein the cycle processing device may further comprise a feed pump; and wherein the step of providing lubricant from the lubricant separator to the condenser device upon shutdown of the cycle device may include supplying lubricant from the lubricant separator to the food container; and wherein the step of heating the lubricant-enriched working fluid in the evaporator during start-up of the cycle device may include pumping lubricant-enriched working fluid from the supply vessel to the evaporator by means of the feed pump.
  • lubricant is absorbed when the system is shut down in the food container and transported directly to the evaporator when starting the system by the feed pump from the food container, whereby a larger amount of lubricant can be heated when starting.
  • the step of supplying lubricant from the lubricant separator to the condenser device may consist only of supplying lubricant from the lubricant separator to the food container of the condenser device, that is, no lubricant is supplied to the condenser of the condenser device.
  • the bypass line between the lubricant separator and the condenser device in this case is a line between the lubricant separator and the feed container, instead of a line between the lubricant separator and the condenser.
  • the conduit between the lubricant separator and the condenser device may comprise both a conduit to the condenser and a conduit to the food container.
  • the step of supplying lubricant from the lubricant separator to the condenser device includes both supplying lubricant from the lubricant separator to the condenser and to the food container.
  • the method may comprise the following further steps: passing vaporized working fluid to the condenser, for example via the bypass pipeline, during startup of the cycle processing device; Detecting a level of lubricant in the lubricant separator; and directing the vaporized working fluid to the expansion machine upon detection of a predetermined level, for example by closing the valve of the bypass pipeline.
  • a further development of the last further development can comprise the further step of opening a valve, in particular a solenoid valve, in a lubricant pipeline from the lubricant separator to the expansion machine when the cycle process device starts up.
  • a valve in particular a solenoid valve
  • the initially closed valve in the lubricant pipeline prevents cold lubricant from being transported to the expansion machine.
  • this valve can be opened in the lubricant pipeline and the valve in the bypass line closed.
  • thermodynamic cycle apparatus comprising: a working medium having a working fluid and a lubricant; an evaporator for evaporating the working fluid; a lubricant separator for separating at least a portion of the lubricant from the working fluid supplied from the evaporator; an expansion machine to be lubricated with the lubricant; a capacitor device with a capacitor; and means for providing lubricant from the lubricant separator to the condenser device and / or to the evaporator when the cycle process device is shut down, whereby a lubricant-enriched working medium can be provided in the condenser device and / or in the evaporator.
  • the means for supplying lubricant from the lubricant separator to the condenser device may comprise a bypass pipe provided with a valve, in particular a solenoid valve, between the lubricant separator and the condenser device for bypassing the expansion machine and / or the means for supplying lubricant from the lubricant separator Evaporator include a lubricant pipe between the evaporator and the lubricant separator.
  • the condenser device may further comprise a food container in which condensed working fluid and lubricant can be collected from the lubricant separator, and wherein the cycle processing device may further comprise a feed pump for pumping lubricant-enriched working fluid from the supply container to the evaporator.
  • means for detecting a level of lubricant may be provided in the lubricant separator.
  • a lubricant line with a valve in particular a solenoid valve, can be provided between the lubricant separator and the expansion machine, wherein in the lubricant line the lubricant deposited in the lubricant separator can be routed to lubrication points of the expansion machine, in particular to a bearing of the expansion machine can be.
  • the cycle device can be an organic Rankine cycle device and / or in which the expansion machine can be selected from the group consisting of a piston expansion machine, Screw expansion machine, a Scrollexpander, a vane machine and a Rootsexpander consists.
  • a steam power plant according to the invention comprises a cycle device according to the invention or at least one of its developments.
  • FIG. 2 a first embodiment of the cycle device according to the invention (according to the prior art cycle device according to the prior art) is shown in FIG. 1 ) an evaporator 20, an oil separator 10, an expansion machine 30, a generator 40, a condenser 60 and a feed pump 50, as well as an oil line 11 between the oil separator 10 and the expander 30, wherein in this line 11 in particular oil for bearing lubrication in the expander is directed.
  • the first embodiment of the present invention also includes a bypass pipe 80 between the oil separator 10 and the condenser 60, and the bypass pipe 80 is to be closed and opened by a valve 81.
  • FIG. 3 a second embodiment of the circuit processing apparatus according to the invention is shown, which corresponds to the first embodiment, and wherein identical reference numerals designate corresponding components.
  • a feed tank 70 is additionally provided, wherein condensed working medium is collected from the condenser and collected. From the food container is then sucked by the feed pump 50, the working fluid and conveyed to the evaporator 20.
  • the valve 81 is formed here as a solenoid valve 81.
  • a throttle valve 12 is provided in the oil passage 11 and a solenoid valve 13.
  • the selected diameter of the oil line 11 and the throttle valve 12 allows the one-time adjustment of the necessary oil volume flow to be supplied to the bearings.
  • the oil separator 10 itself is designed so that sufficient oil with the live steam is supplied to the flanks (movable contact points of the working space in the expansion machine). It can be seen during operation that starting is very difficult, especially with cold oil separator 10 and oil.
  • the operating temperature of the oil differs significantly from the standstill temperature. In operation, the oil has a temperature equal The live steam temperature of about 100 ° C, but at standstill, the temperature can also drop to minus degrees. Since at low temperatures, the viscosity increases by several orders of magnitude, the commissioning is problematic: the oil passes through the throttle valve 12 is no longer in the desired extent.
  • the inventive method solves the problem of oil preheating after standstill and cooling in a novel and advantageous manner.
  • the oil is transported after stopping the system from the oil separator 10 and transported in the direction of the condenser 60 and / or evaporator 20. Both in the condenser 60 and in the evaporator 20 is at the time of shutdown of the plant still liquid working fluid in which the oil can dissolve. If the system then goes back into operation, the highly oil-containing working medium is already in the evaporator 20 or is conveyed by the feed pump 50 into the evaporator 20. Due to the solution in the extremely low-viscosity working fluid, the viscosity of the oil is reduced to an acceptable level. In the evaporator 20, the heat supply takes place, the cold working fluid is heated and completely or partially evaporated, the oil remains liquid and is deposited in the oil separator 10.
  • the rapid pressure reduction can be done by opening the bypass line 80 by means of valve / solenoid valve 81, bypassing the expansion machine 30 the Main steam line leading from the oil separator 10 to the expansion machine 30, connects to the condenser 60.
  • the control When starting, the control automatically detects existing heat and puts the feed pump 50 in operation, which can alternatively be enforced by the user. Now working medium is conveyed to the evaporator 20. When a sufficiently large volume flow of steam is generated, this vapor entrains the oil as a spray, which is then separated in the oil separator 10. In this operating state of the live steam is passed through the bypass valve 81 directly to the condenser 60, where the steam and the condensate formed there washes oil in the direction of feed tank 70 / feed pump 50.
  • the solenoid valve 13 Detects a level monitoring (not shown in the figure) in the oil separator 10, a sufficiently large oil level, the solenoid valve 13 is opened in the oil line 11 and the solenoid valve 81 in the bypass line 80 is closed. It now builds up a pressure continuously, the regulation sets feed pump speed and expansion engine speed depending on the available heat flow. A change of the throttle valve 12 does not have to be done in operation, it is used for a one-time adjustment of the volume flow and could also be replaced by a fixed throttle.
  • HFCs Partially or completely fluorinated hydrocarbons
  • ORC system thermodynamic cycle apparatus based on the Organic Rankine Cycle
  • oils from the group of synthetic esters as a product example here oils of Fuchs from the series Reniso Triton SE / SEZ be called. Compared to conventional refrigerant oils, they are very easy to mix with polar HFCs.
  • Figure 5 Shows the dependence of viscosity and dissolved working fluid on temperature and pressure. At higher pressures and constant temperature, more lubricant dissolves in the working fluid. At constant pressure, the solubility of working fluid in oil decreases with increasing temperature. During operation of the system, a certain amount of working fluid is dissolved at high pressure and high temperature in the oil, after opening the bypass valve 81 when lowering the pressure is lowered, a portion of the working fluid evaporates, resulting in a decrease in temperature. After the pressure reduction, some refrigerant dissolves again in the residual amount of oil, which is still in the oil separator 10. However, this does not lead to an increase in the viscosity.
  • the isolines for concentrations and pressures shown in Figure 5 as well as the operating points are to be regarded as exemplary.
  • the separation of oil from the high-pressure steam compared to the oil separation from the low-temperature steam is advantageous, but just the start of the cold oil circuit is a problem.
  • the inventive method allows emptying of the oil separator when running down the ORCs. By taking advantage of a solubility difference associated with a rapid pressure reduction, there is a discharge of the oil from the oil separator. The oil flows to the condenser or food container. After passing through the evaporator, it is separated as heated liquid oil in the oil separator and is the lubricating circuit available again. Monitoring the level of the oil separator allows the machine to start up after sufficient oil has been separated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Lubricants (AREA)

Claims (15)

  1. Procédé pour le réchauffement de lubrifiant lors du démarrage d'un dispositif à cycle thermodynamique, le dispositif à cycle comprenant un fluide de travail avec une substance de travail et un lubrifiant, un évaporateur (20) pour évaporer la substance de travail, un séparateur de lubrifiant (10) pour séparer au moins une partie du lubrifiant du fluide de travail fourni à partir de l'évaporateur (20), une machine d'expansion (30) à lubrifier par le lubrifiant, et un dispositif de condensateur avec un condensateur (60), et dans lequel le procédé comprend les étapes consistant à:
    Fournir du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur et / ou à l'évaporateur (20) lors de l'arrêt du dispositif à cycle, moyennant quoi un fluide de travail enrichi en lubrifiant est fourni dans le dispositif de condensateur et / ou dans l'évaporateur (20) ; et
    Chauffer le fluide de travail enrichi en lubrifiant dans l'évaporateur (20) lors du démarrage du dispositif à cycle.
  2. Procédé selon la revendication 1, dans lequel la fourniture du lubrifiant à partir du séparateur de lubrifiant (10) lors de l'arrêt du dispositif à cycle comprend un abaissement de la pression dans le séparateur de lubrifiant (10).
  3. Procédé selon la revendication 2, dans lequel l'abaissement de la pression dans le séparateur de lubrifiant (10) est effectué après un arrêt de la machine d'expansion (30).
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le dispositif à cycle comporte en outre une conduite de dérivation (80) entre le séparateur de lubrifiant (10) et le dispositif de condensateur pour contourner la machine d'expansion (30), et dans lequel la conduite de dérivation (80) est munie d'une valve (81), notamment d'une valve magnétique (81), pour être ouverte et fermée, et dans lequel l'étape consistant à fournir du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur comprend l'ouverture de la valve (81).
  5. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'étape consistant à:
    L'arrêt d'une fourniture du fluide de travail à l'évaporateur (20) lors de l'arrêt du dispositif à cycle avant la fourniture du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur et / ou à l'évaporateur (20).
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le dispositif de condensateur comprend en outre un réservoir d'alimentation (70) dans lequel de la substance de travail condensée est collectée, et dans lequel le dispositif à cycle comporte en outre une pompe d'alimentation (50); et
    dans lequel l'étape consistant à fournir du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur lors de l'arrêt du dispositif à cycle comprend une fourniture du lubrifiant à partir du séparateur de lubrifiant (10) au réservoir d'alimentation; et
    dans lequel l'étape consistant à chauffer la substance de travail enrichie en lubrifiant dans l'évaporateur (20) lors du démarrage du dispositif à cycle comprend un pompage du fluide de travail enrichi en lubrifiant à partir du réservoir d'alimentation (70) à l'évaporateur (20) moyennant la pompe d'alimentation (50).
  7. Procédé selon l'une quelconque des revendications précédentes, comprenant les étapes supplémentaires consistant à:
    Faire passer de la substance de travail évaporée vers le condensateur (60), en combinaison avec la revendication 4 par la conduite de dérivation (80), lors du démarrage du dispositif à cycle;
    Détecter un niveau de remplissage de lubrifiant dans le séparateur de lubrifiant (10); et
    Faire passer la substance de travail évaporée vers la machine d'expansion (30) lors de la détection d'un niveau de remplissage prédéterminé, en combinaison avec la revendication 4 en fermant la valve (81) de la conduite de dérivation (80).
  8. Procédé selon la revendication 7, comprenant l'étape supplémentaire consistant à:
    Ouvrir une valve (13), notamment une valve magnétique (13), dans une conduite de lubrifiant (11) à partir du séparateur de lubrifiant (10) vers la machine d'expansion (30).
  9. Dispositif à cycle thermodynamique, comprenant:
    un fluide de travail avec une substance de travail et un lubrifiant;
    un évaporateur (20) pour évaporer la substance de travail;
    un séparateur de lubrifiant (10) pour séparer au moins une partie du lubrifiant du fluide de travail fourni à partir de l'évaporateur (20);
    une machine d'expansion (30) à lubrifier par le lubrifiant;
    un dispositif de condensateur avec un condensateur (60); et
    caractérisé en ce que le dispositif à cycle comprend:
    des moyens pour fournir du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur et / ou à l'évaporateur (20) lors de l'arrêt du dispositif à cycle, ce qui permet la fourniture d'un fluide de travail enrichi en lubrifiant dans le dispositif de condensateur et / ou dans l'évaporateur (20).
  10. Dispositif à cycle selon la revendication 9, dans lequel les moyens pour fournir du lubrifiant à partir du séparateur de lubrifiant (10) au dispositif de condensateur comprennent une conduite de dérivation (80) munie d'une valve (81), notamment d'une une valve magnétique (81), entre le séparateur de lubrifiant (10) et le dispositif de condensateur pour contourner la machine d'expansion (30) et / ou dans lequel les moyens pour fournir du lubrifiant à partir du séparateur de lubrifiant (10) à l'évaporateur (20) comprennent une conduite de lubrifiant entre l'évaporateur (20) et le séparateur de lubrifiant (10).
  11. Dispositif à cycle selon la revendication 9 ou 10, dans lequel le dispositif de condensateur comprend en outre un réservoir d'alimentation (70), dans lequel de la substance de travail condensée et du lubrifiant du séparateur de lubrifiant (10) peuvent être collectés, et dans lequel le dispositif à cycle comporte en outre une pompe d'alimentation (50) pour pomper du fluide de travail enrichi en lubrifiant à partir du réservoir d'alimentation vers l'évaporateur (20).
  12. Dispositif à cycle selon l'une quelconque des revendications 9 à 11, dans lequel des moyens pour détecter un niveau de remplissage de lubrifiant dans le séparateur de lubrifiant (10) sont prévus.
  13. Dispositif à cycle selon l'une quelconque des revendications 9 à 12, dans lequel une conduite de lubrifiant munie d'une valve (13), notamment d'une valve magnétique (13), est prévue entre le séparateur de lubrifiant (10) et la machine d'expansion (30), dans lequel le lubrifiant séparé dans le séparateur de lubrifiant (10) peut être fait passé à des points de lubrification de la machine d'expansion (30), en particulier à un palier de la machine d'expansion (30), par la conduite de lubrifiant (11).
  14. Dispositif à cycle selon l'une quelconque des revendications 9 à 13, dans lequel le dispositif à cycle est un dispositif à cycle de Rankine organique et / ou dans lequel la machine d'expansion (30) est choisie dans le groupe constitué d'une machine d'expansion à piston, d'une machine de détente à vis, d'un détendeur en spirale, d'une machine à palettes et d'un détendeur Roots.
  15. Centrale à vapeur, comprenant le dispositif selon l'une quelconque des revendications 9 à 14.
EP11003615.9A 2011-05-03 2011-05-03 Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées Active EP2520771B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11003615.9A EP2520771B1 (fr) 2011-05-03 2011-05-03 Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées
US14/112,860 US10202872B2 (en) 2011-05-03 2012-04-12 Method and device for rapid oil heating for oil-lubricated expansion machines
PCT/EP2012/001597 WO2012149998A1 (fr) 2011-05-03 2012-04-12 Procédé et dispositif pour le réchauffage rapide de l'huile pour une machine à expansion lubrifiée à l'huile
CN201280021769.0A CN103562504B (zh) 2011-05-03 2012-04-12 用于油润滑的膨胀机的快速油加热的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003615.9A EP2520771B1 (fr) 2011-05-03 2011-05-03 Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées

Publications (2)

Publication Number Publication Date
EP2520771A1 EP2520771A1 (fr) 2012-11-07
EP2520771B1 true EP2520771B1 (fr) 2016-08-10

Family

ID=44860643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003615.9A Active EP2520771B1 (fr) 2011-05-03 2011-05-03 Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées

Country Status (4)

Country Link
US (1) US10202872B2 (fr)
EP (1) EP2520771B1 (fr)
CN (1) CN103562504B (fr)
WO (1) WO2012149998A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715111B2 (ja) * 2012-12-12 2015-05-07 株式会社神戸製鋼所 発電装置及び発電システム
DE102013200413A1 (de) * 2013-01-14 2014-07-31 Magna Powertrain Ag & Co. Kg Expanderkreislauf
CN108350760B (zh) * 2015-10-05 2020-06-05 比泽尔制冷设备有限公司 膨胀设施
DE102016218935A1 (de) 2016-09-29 2018-03-29 Mtu Friedrichshafen Gmbh Verfahren und System zur Durchführung eines thermodynamischen Kreisprozesses
DE102016218936B4 (de) 2016-09-29 2022-10-06 Rolls-Royce Solutions GmbH Verfahren zum Betreiben eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, System zur Durchführung eines thermodynamischen Kreisprozesses und Anordnung mit einem solchen System und einer Brennkraftmaschine
JP6783709B2 (ja) * 2017-06-21 2020-11-11 株式会社神戸製鋼所 不純物回収方法及び油回収方法
CN107762581B (zh) * 2017-11-29 2024-04-02 山西铁峰化工有限公司 一种螺杆膨胀发电机组全自动控制系统及方法
JP6763848B2 (ja) * 2017-12-04 2020-09-30 株式会社神戸製鋼所 熱エネルギー回収装置
US20200309467A1 (en) * 2019-03-28 2020-10-01 Deere & Company Two phase oil cooling system
CN110542210A (zh) * 2019-09-12 2019-12-06 苏州奥德机械有限公司 一种带冷却控制的超高温油温机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603087A (en) * 1969-06-27 1971-09-07 Cci Aerospace Corp Dual fluid rankine cycle powerplant
US3797249A (en) * 1972-01-06 1974-03-19 Thermo Electron Corp Automatic vapor engine start-up
US5245820A (en) * 1989-12-13 1993-09-21 Alliedsignal Inc. Air turbine starter with passive hydraulic capacitor
CA2324000A1 (fr) 1999-11-12 2001-05-12 Nortel Networks Corporation Methode commerciale mise en oeuvre sur une plate-forme a prepaiement sans fil de traitement et de facturation de transactions entre entreprises
JP4071552B2 (ja) * 2001-07-10 2008-04-02 本田技研工業株式会社 ランキンサイクル装置
CA2610762C (fr) * 2005-06-10 2015-02-10 City University Lubrifiant d'expansion dans de systemes a vapeur
GB0511864D0 (en) * 2005-06-10 2005-07-20 Univ City Expander lubrication in vapour power systems
JP4864689B2 (ja) * 2006-04-17 2012-02-01 株式会社デンソー 流体機械およびランキンサイクル
DE102007008609B4 (de) * 2007-02-22 2015-10-29 Duerr Cyplan Ltd. ORC-System für Verbrennungsmotoren
DE102008037744A1 (de) * 2008-08-14 2010-02-25 Voith Patent Gmbh Betriebsflüssigkeit für eine Dampfkreisprozessvorrichtung und ein Verfahren für deren Betrieb
EP2476869B1 (fr) * 2011-01-17 2017-04-05 Orcan Energy AG Lubrification de machines d'expansion fonctionnant de manière volumétrique
EP2514933B1 (fr) * 2011-04-19 2017-03-15 Orcan Energy AG Séparation du côté haute pression de lubrifiant liquide pour la lubrification de machines d'expansion fonctionnant de manière volumétrique
EP2746543B1 (fr) * 2012-12-21 2016-09-28 Orcan Energy AG Lubrification de machines d'expansion

Also Published As

Publication number Publication date
WO2012149998A1 (fr) 2012-11-08
US10202872B2 (en) 2019-02-12
CN103562504A (zh) 2014-02-05
US20180030857A1 (en) 2018-02-01
CN103562504B (zh) 2016-12-28
EP2520771A1 (fr) 2012-11-07

Similar Documents

Publication Publication Date Title
EP2520771B1 (fr) Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées
EP2476869B1 (fr) Lubrification de machines d'expansion fonctionnant de manière volumétrique
EP2514933B1 (fr) Séparation du côté haute pression de lubrifiant liquide pour la lubrification de machines d'expansion fonctionnant de manière volumétrique
EP2865854B1 (fr) Dispositif et procédé de démarrage fiable de systèmes ORC
WO2008131810A2 (fr) Fluide de travail pour processus de circuit vapeur et procédé d'exploitation correspondant
EP3118424B1 (fr) Reglages de processus orc par pulverisation d'un fluide non evapore
EP2884060B1 (fr) Dispositif et procédé de fonctionnement de machines d'expansion volumétriques
DE102010011737B4 (de) Verfahren und Vorrichtung zur Energieumwandlung
DE102008013545B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung mittels eines ORC-Prozesses
DE102009003850A1 (de) Antriebsanordnung mit Dampfkreisprozess und Verfahren zum Betrieb einer solchen Antriebsanordnung
EP2466079A1 (fr) Dispositif de processus de circuit de vapeur protégé contre le gel et son procédé de fonctionnement
EP2746543B1 (fr) Lubrification de machines d'expansion
DE102012024031B4 (de) Vorrichtung und Verfahren zum Umwandeln von thermischer Energie mit einer Expansionseinrichtung
DE102015208557B3 (de) Verfahren zur Bestimmung eines Schmierstoffanteils in einem Arbeitsfluid-Kreislauf eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, System zur Durchführung eines thermodynamischen Kreisprozesses, und Anordnung mit einer Brennkraftmaschine und einem solchen System
DE102016218937A1 (de) Verfahren zum Betreiben eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, System zur Durchführung eines thermodynamischen Kreisprozesses und Anordnung mit einem solchen System und einer Brennkraftmaschine
WO2018153981A1 (fr) Dispositif de conversion d'énergie thermique
WO2015039833A1 (fr) Procédé permettant de mettre en œuvre un processus thermodynamique
WO2011085914A2 (fr) Dispositif pour fournir de la chaleur de chauffage ou pour produire du froid de climatisation et dispositif pour fournir de l'énergie électrique, et procédé pour fournir de l'énergie de chauffage, procédé pour produire de l'énergie de réfrigération et procédé pour produire de l'énergie cinétique et/ou de l'énergie électrique
DE102013211084A1 (de) Verfahren zum Betrieb einer Wärmepumpe und Wärmepumpe
DE102006006129A1 (de) Verfahren zum Betreiben eines Schraubenmotors sowie Schraubenmotor
DE102016218935A1 (de) Verfahren und System zur Durchführung eines thermodynamischen Kreisprozesses
DE102014201116B3 (de) Vorrichtung und Verfahren für einen ORC-Kreisprozess
WO2023139167A1 (fr) Pompe à chaleur pour générer de la chaleur de traitement
DE102012024023B4 (de) Verfahren und Vorrichtung zum Umwandeln thermischer Energie aus einer Niedertemperatur-Wärmequelle
DE102012024017B4 (de) Vorrichtung zum Umwandeln von thermischer Energie mit einer Druckerhöhungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160314

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SICHERT, ANDREAS

Inventor name: SCHUSTER, ANDREAS

Inventor name: AUMANN, RICHARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 819259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010335

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161210

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010335

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 819259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230529

Year of fee payment: 13

Ref country code: FR

Payment date: 20230523

Year of fee payment: 13

Ref country code: DE

Payment date: 20230622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230526

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240522

Year of fee payment: 14