EP2865854B1 - Dispositif et procédé de démarrage fiable de systèmes ORC - Google Patents

Dispositif et procédé de démarrage fiable de systèmes ORC Download PDF

Info

Publication number
EP2865854B1
EP2865854B1 EP13189918.9A EP13189918A EP2865854B1 EP 2865854 B1 EP2865854 B1 EP 2865854B1 EP 13189918 A EP13189918 A EP 13189918A EP 2865854 B1 EP2865854 B1 EP 2865854B1
Authority
EP
European Patent Office
Prior art keywords
pump
working medium
condenser
evaporator
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13189918.9A
Other languages
German (de)
English (en)
Other versions
EP2865854A1 (fr
Inventor
Richard Aumann
Asim Celik
Andreas Grill
Jens-Patrick Springer
Daniela Walter
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP13189918.9A priority Critical patent/EP2865854B1/fr
Priority to RU2016112366A priority patent/RU2661998C2/ru
Priority to PCT/EP2014/072393 priority patent/WO2015059069A1/fr
Priority to US15/030,862 priority patent/US10247046B2/en
Priority to CN201480058736.2A priority patent/CN105849371B/zh
Publication of EP2865854A1 publication Critical patent/EP2865854A1/fr
Application granted granted Critical
Publication of EP2865854B1 publication Critical patent/EP2865854B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • thermodynamic cycle device in particular an organic Rankine cycle device, comprising: a working medium; an evaporator for evaporating the working medium; an expansion machine for generating mechanical energy with expansion of the evaporated working medium; a condenser for condensing and possibly subcooling the working medium, in particular the working medium expanded in the expansion machine; and a pump for pumping the condensed working medium to the evaporator when the thermodynamic cycle device is in operation.
  • the invention also relates to a method for starting such a thermodynamic cycle device.
  • An ORC system consists of the following main components: a feed pump that conveys the liquid working medium to the evaporator with a high pressure increase, an evaporator in which the working medium is evaporated, an expansion machine in which the high-pressure steam is expanded and thereby generates mechanical energy which can be converted into electrical energy via a generator, and a condenser in which the low-pressure steam from the expansion machine is liquefied.
  • the liquid working medium is returned to the system's feed pump from the condenser via a possible storage tank (feed tank) and a suction line.
  • the working medium should be present in sufficient quantities in the suction line of the pump or in the feed tank, so that the pump has sufficient medium available during the entire start-up.
  • a second condition for the trouble-free delivery of working medium by the pump is a sufficient flow height of the fluid (working medium) applied to the pump.
  • the flow height (NPSH) is a parameter which, in addition to the geodetic flow height, is also influenced by the thermodynamic state of the working medium, which can be explained as follows. If the subcooling (the distance to the boiling point) of the fluid at the pump inlet is not sufficiently high, the fluid can briefly evaporate at the pump inlet. This phenomenon can damage the pump and lead to partial or complete stoppage of the flow. One speaks of cavitation. The distance to the boiling pressure of the fluid at the inlet of the pump is referred to as the flow height.
  • One parameter for quantifying this is the NPSH value (Net Positive Suction Head).
  • NPSH r required, pump-specific
  • NPSH a adjacent flow height
  • the applied NPSH a value is dependent on several system and operation-specific parameters (temperature, pressure due to geodetic flow height, saturation pressure, inert gas partial pressure, whereby the inert gas partial pressure is a additional partial pressure of a non-condensing gas, which can also be present in the circuit) is dependent.
  • the applied NPSH a value must always be above the required NPSH r value.
  • Cavitation is a challenge especially for circulatory systems such as an ORC.
  • liquid condensate has to be pumped with little or no distance to the boiling point and consequently a low NPSH a value. Since the required NPSH r value is determined by the pump design, it can only be influenced to a limited extent and it must be ensured in terms of process technology at every point of operation that the applied NPSH a value does not fall below the required value.
  • an ORC system is shut down, e.g. by eliminating / switching off the heat source or by an emergency shutdown of the system, there may be an uncontrolled distribution of the working medium in the system (e.g. in an expansion machine, horizontal pipes or liquid bags), whereby the working medium does not flow to the feed tank.
  • the start-up process includes filling the evaporator, evaporating the working medium and thereby building up pressure, starting the expansion machine and starting the condensation and thus backflow of working medium to the feed pump.
  • the pump can at times have a higher temperature than the condenser, even if the ambient temperatures of the pump and condenser are the same.
  • NPSH a the flow head at the pump inlet
  • the flow height NPSH a then applied can be lower than the necessary flow height NPSH r , which in turn results in cavitation.
  • the document FR 2 985 767 A1 discloses a controller for a Rankine cycle system.
  • WO 2011/057724 A2 discloses a thermodynamic machine and a method of operating it.
  • WO 2008/031716 A2 discloses a steam cycle with improved energy efficiency.
  • WO 2012/021881 A1 discloses the pressure control of a capacitor in a Rankine cycle, particularly in an ORC.
  • WO 2006/131759 A2 discloses the lubrication of an expander wherein the liquid phase of the working fluid contains a lubricant.
  • WO 2010/029905 A1 discloses a device for utilizing waste heat using a Rankine cycle.
  • a cold system state can also prevent the system from starting up.
  • the viscosity of the working medium or another medium present in the circuit, such as a lubricant can increase, which can impair the delivery of the medium through the feed pump.
  • the object of the invention is to at least partially overcome the disadvantages described above.
  • thermodynamic cycle device is started up.
  • the closed circuit (with shut-off devices that could prevent the circulation not being closed when the system is at a standstill) is constructed in such a way that the fluid in the circuit flows through gravitational forces to the evaporator without additional drive.
  • heat is applied to the evaporator so that it is the warmest component in the system.
  • the working medium contained therein is evaporated and possibly also overheated and the resulting steam heats all parts of the system located above the evaporator. If liquid medium has accumulated in other parts of the system (e.g.
  • the coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be controlled as the coldest point by regulating the heat sink can be set (e.g. start of cooling on the condenser).
  • the working medium flows from the condenser as a template to the feed pump.
  • the geometric arrangement is chosen (difference in height) so that the condensate can flow to the evaporator by gravity (difference in density between vapor and liquid).
  • a natural circulation is created, which sets an independent order of the liquid working medium. This means that liquid working medium is collected in the low-lying part of the system (including in front of the pump) and that before the pump is started, there is sufficient working medium with a sufficient flow height in front of the pump.
  • An evaporator located lower than the condenser and possibly also lower-lying pipelines represent a possibility for the fluid in the circuit to flow to the evaporator due to gravitational forces without additional drive.
  • a further development consists in that the closed circuit between the condenser and the evaporator also includes the non-started pump and / or wherein the closed circuit between the evaporator and the condenser also includes the expansion machine.
  • the pump is of a design that is permeable to fluid when the pump is at a standstill, the working medium can also flow in the circuit through the pump without the pump having started.
  • the pump can be located at a lower height than the evaporator.
  • the lead height can be increased further.
  • thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the expansion machine in the circuit.
  • thermodynamic cycle device can furthermore comprise a feed container for collecting the condensed working medium, the feed container being arranged in the closed circuit between the condenser and the evaporator, in particular between the condenser and the pump.
  • At least one sensor for measuring the flow height of the working medium upstream of the pump in particular a sensor for measuring the pressure of the working medium and / or a sensor for measuring the temperature of the working medium, can also be provided.
  • thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the pump in the circuit.
  • thermodynamic cycle device can furthermore comprise a recuperator for transferring thermal energy from the expanded working medium to the working medium pumped between pump and evaporator during operation of the thermodynamic cycle device, the recuperator being arranged between expansion machine and condenser; and a bypass valve for bypassing the recuperator in the circuit, wherein the bypass valve for bypassing the recuperator can in particular also be the bypass valve for bypassing the pump.
  • a bypass valve for bypassing the recuperator can be provided because otherwise no natural circulation can occur through the recuperator, which is arranged higher than the evaporator.
  • the method according to the invention for starting a thermodynamic cycle device according to the invention or one of its developments comprises the following steps: applying heat to the evaporator and evaporating the working medium in the evaporator, optionally also superheating the working medium in the evaporator, whereby working medium flows to the condenser; Condensation of the working medium in the condenser; Starting the pump when a predetermined Net Positive Suction Head flow height of the working medium at the pump is reached or exceeded.
  • the method according to the invention has the advantages that have already been described in connection with the device according to the invention.
  • the method according to the invention can be developed in such a way that the pump is started after reaching or exceeding a measured flow height or after a predetermined time after the start of the application of heat to the evaporator.
  • the method can include the following further steps: setting the condensation temperature to a first temperature value; and setting the condensation temperature to a second temperature value after the condensed working medium with the first temperature value has reached the pump; wherein the second temperature value is greater than the first temperature value.
  • the coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be set as the coldest point in this way, e.g. by regulating the heat sink (e.g. starting cooling on the condenser).
  • the condensation temperature can be set to a second temperature value by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser.
  • further measures such as the Closing the blinds or flaps of the condenser lead to an increase in the condensation temperature.
  • Another development is that the further steps of opening the expansion machine bypass valve before or at the same time as applying heat to the evaporator or opening the expansion machine bypass valve a predetermined first time period after applying heat to the evaporator or after reaching a predetermined first pressure the expansion machine; and closing the expansion machine bypass valve after or simultaneously with the start of the pump or closing the expansion machine bypass valve a predetermined second time period before the start of the pump or after reaching a predetermined second pressure on the expansion machine can be provided.
  • the following further steps can be provided: opening the pump bypass valve and / or recuperator bypass valve before, during or for a predetermined third period of time after the evaporator is subjected to heat; and closing the pump bypass valve and / or recuperator bypass valve after, during or a predetermined fourth time period before the start of the pump.
  • FIG. 1 shows a thermodynamic cyclic process device, in particular an ORC system and the vertical arrangement of the main components.
  • the system comprises a feed pump 1, which conveys the liquid working medium with a large increase in pressure to an evaporator 2 in which the working medium is evaporated, an expansion machine 3 in which the high pressure steam is expanded and mechanical energy is generated in the process. This can be converted into electrical energy via a generator G, for example.
  • the condenser 4 in which the low-pressure steam from the expansion machine 3 is liquefied, the liquid working medium is returned to the feed pump 1 of the system via a possible (optional) storage container (feed container) and a suction line.
  • the system should start up from a standstill. First of all, the evaporator is exposed to heat (if the heat is not applied to the evaporator in an uncontrolled manner, e.g. through a permanent flow of a heat transfer medium, this must be switched on). In the evaporator, steam forms, which heats the system components, in others System parts (e.g. in expansion machines, horizontal pipes or bags of liquid), the liquid-bearing working medium evaporates and flows together with these to the condenser, where it is liquefied after a while. There is thus a shift in fluid from the evaporator to the condenser.
  • connection described (without closed shut-off devices) creates a flow that allows the medium to flow from the condenser to the evaporator via the pump.
  • the route must be designed in such a way that the flow is established solely by gravity. For this, the pressure losses of the built-in components or the opening pressures of built-in valves must be taken into account.
  • the temperature in the condenser is raised, which also increases the pressure in the condenser.
  • This can be done, for example, by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser.
  • the device according to Figure 2 includes to improve the in Figure 1 arrangement shown additional components. These and their function are described below with reference to.
  • Component 5 designates a bypass valve on the expansion machine 3.
  • This bypass valve 5 via the expansion machine enables, e.g. in volumetric expansion machines, that a sufficient amount of the vapor generated in the evaporator can flow to the condenser 4.
  • the bypass valve can also serve as an emergency shutdown valve, which in the event of danger enables the high-pressure steam to be rapidly released in front of the expansion machine.
  • the bypass valve can, for example, be designed as a normally open solenoid valve. When starting up with the described arrangement of the components, the valve remains open and thus enables the natural circulation of the working medium. The valve is required for the function described if the amount of working medium via a stationary (or rotating) expansion machine is not sufficient for the desired natural circulation of the fluid.
  • the component 6 denotes a feed container.
  • the feed tank can be required in order to provide sufficient working medium in contact with the feed pump in every operating state. It buffers the total amount of working medium and thus prevents the system from coming to a standstill in the event of loss of working medium, uneven distribution of working medium, different steam densities and thus steam masses during operation and standstill or inaccurate filling of the system.
  • the container In connection with the use with inert gas, the container has a further function. It increases the volume of gas in the system. This means that the advance height can be kept relatively constant across all operating states (see also the disclosure in DE 10 2009 053 390 B3 ). When using inert gas to prevent cavitation, there is a further advantage due to the described arrangement in natural circulation.
  • the inert gas in the circuit is automatically collected in the condenser and feed tank.
  • the inert gas that is present in the feed tank increases the flow height to the pump due to its concentration-dependent partial pressure. Since the inert gas is distributed throughout the entire system by diffusion during standstill and thus the partial pressure in the feed tank drops, a cavitation-free start-up of the pump from standstill cannot always be guaranteed without a concentration of the inert gas in the feed tank through the natural circulation described, for example.
  • the component 7 designates sensors for measuring the applied flow height (NPSH a ). By attaching sensors (here for example pressure P and temperature T), the flow height (NPSH a ) can be determined. This can serve as a start criterion for starting the pump during the described start-up process of the system.
  • Component 8 denotes a bypass valve around the feed pump.
  • This valve 8 for bypassing the feed pump can be used in the case described in order to ensure a sufficient flow of liquid working medium from the condenser to the evaporator. This is necessary, for example, if the feed pump is impermeable to the medium due to its design (e.g. positive displacement pump) when it is at a standstill. Another reason could be the large height difference to be overcome in the pump (e.g. in vertical multistage centrifugal pumps), which prevents a natural flow.
  • the bypass valve can be designed to be switchable or controllable. It can also be designed as a spring-loaded valve with adjustable or fixed opening and closing pressures.
  • the valve therefore only opens when there is a certain pressure difference between the suction and pressure side of the pump and remains closed during operation of the system or the valve is up to a certain pressure difference between the pressure and suction side opens and closes automatically when operating from this certain pressure difference between pressure and suction side.
  • the pressure difference for opening the valve must be so small that natural circulation is possible.
  • the valve can serve as a safety valve in the event of danger. By opening the valve quickly in the event of danger, medium can flow out of the evaporator in the direction of the condenser. This prevents an excessive increase in pressure in the evaporator due to further evaporation of the working medium.
  • a check valve (not shown in the drawing) can also be used downstream of the pump.
  • thermodynamic cycle device with a recuperator 9 is shown.
  • the recuperator 9 is used to transfer thermal energy from the expanded working medium to the working medium pumped between pump 1 and evaporator 2 during operation of the thermodynamic cycle device, the recuperator 9 being arranged between expansion machine 3 and condenser 4.
  • a bypass valve 8 is provided for bypassing the recuperator 9 in the circuit, the bypass valve 8 for bypassing the recuperator 9 here also being the bypass valve 8 for bypassing the pump 1.
  • recuperator 9 If the pipeline between pump 1 and evaporator 2 runs over recuperator 9 in order to preheat the working medium pumped therein in normal operation of the thermodynamic cycle device with heat from the expanded vaporized working medium between expansion machine 3 and condenser 4, then the cycle device must be started according to the invention
  • Bypass valve 8 for bridging the recuperator 9 must be open, because otherwise no natural circulation of the working medium can occur through the recuperator 9, which is arranged higher than the evaporator 2.
  • the method according to the invention and the device according to the invention ensure that the ORC can be started reliably and quickly.
  • the method does not require any sensors or actuators (eg valves) for a safe start.
  • the total amount of working medium in the system can be reduced, since there is always sufficient fluid in the suction line of the pump due to the non-drive arrangement of the liquid working medium.
  • the automatic heating of the system through the natural circulation when heat is supplied ensures that the components are preheated.
  • the safe, cavitation-free start-up of the system prevents possible damage to the pump that can occur as a result of (partial) cavitation on the pump.
  • the method can ensure a sufficient flow height for the feed pump in the start-up process. This means that other methods that would otherwise be necessary to generate a flow height can be omitted or their effect on the efficiency of the system can be reduced. Since other methods (e.g. undercooling of the condensate or the addition of inert gas) reduce the performance, the method described leads to an increase in the overall efficiency of the ORC system. The filling amount of working medium can be saved by the method described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (14)

  1. Dispositif à cycle thermodynamique, en particulier dispositif à cycle de Rankine organique, comprenant :
    un fluide de travail ;
    un évaporateur (2) pour évaporer et éventuellement surchauffer en outre le fluide de travail ;
    une machine à expansion (3) pour générer de l'énergie mécanique lors de l'expansion du fluide de travail évaporé ;
    un condenseur (4) pour condenser et éventuellement sous-refroidir en outre le fluide de travail, en particulier le fluide de travail expansé dans la machine à expansion ; et
    une pompe (1) pour pomper le fluide de travail condensé vers l'évaporateur pendant le fonctionnement du dispositif de traitement à cycle thermodynamique ;
    l'évaporateur (2) étant situé à un niveau inférieur à celui du condenseur (4) de sorte qu'avant le démarrage de la pompe (1), le fluide de travail condensé peut s'écouler du condenseur (4) par gravité vers l'évaporateur (2) et le fluide de travail peut circuler dans un circuit fermé via l'évaporateur (2) et le condenseur (4), moyennant quoi au moins une hauteur d'écoulement minimale prédéterminée du fluide de travail liquide peut être fournie à la pompe (1) ;
    caractérisé en ce que
    le dispositif à cycle thermodynamique est en outre configuré pour fournir la hauteur d'écoulement minimale prédéterminée du fluide de travail liquide à la pompe (1) au moyen de :
    une réduction d'une pression dans le condenseur (4) par refroidissement du condenseur (4), et ensuite
    une augmentation de la pression dans le condenseur (4) par (i) abaissement d'une vitesse de rotation d'un ventilateur du condenseur (4) et/ou par (ii) abaissement d'un débit massique d'eau de refroidissement ou d'un débit massique d'air à travers le condenseur (4) et/ou par (iii) augmentation de la température du débit massique d'eau de refroidissement ou du débit massique d'air à travers le condenseur (4).
  2. Dispositif à cycle thermodynamique selon la revendication 1, le circuit fermé entre le condenseur et l'évaporateur comprenant également la pompe et/ou le circuit fermé entre l'évaporateur et le condenseur comprenant également la machine à expansion.
  3. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 2, la pompe étant située à une hauteur inférieure à celle de l'évaporateur.
  4. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 3, comprenant en outre une soupape de dérivation (5) pour contourner la machine à expansion dans le cycle.
  5. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 4, comprenant en outre un récipient d'alimentation (6) pour collecter le fluide de travail condensé, le récipient d'alimentation étant disposé dans le circuit fermé entre le condenseur et l'évaporateur, en particulier entre le condenseur et la pompe.
  6. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 5, comprenant en outre : au moins un capteur pour mesurer la hauteur d'écoulement du fluide de travail en amont de la pompe, en particulier un capteur (7, P) pour mesurer la pression du fluide de travail et/ou un capteur (7, T) pour mesurer la température du fluide de travail.
  7. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 6, comprenant en outre une soupape de dérivation (8) pour contourner la pompe dans le cycle.
  8. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 7, comprenant en outre :
    un récupérateur pour transférer l'énergie thermique du fluide de travail détendu au fluide de travail pompé entre la pompe et l'évaporateur en fonctionnement du dispositif à cycle thermodynamique, le récupérateur étant disposé entre la machine à expansion
    et le condenseur ; et
    une soupape de dérivation pour contourner le récupérateur dans le circuit, en combinaison avec la revendication 7, la soupape de dérivation pour contourner le récupérateur étant prévue en particulier aussi en tant que soupape de dérivation pour contourner la pompe.
  9. Procédé de démarrage d'un dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 8, le procédé comprenant les étapes consistant à :
    apporter de la chaleur à l'évaporateur et faire évaporer le fluide de travail dans l'évaporateur avec la pompe non démarrée, éventuellement surchauffer en outre le fluide de travail dans l'évaporateur, de sorte que le fluide de travail s'écoule vers le condenseur ;
    condenser le fluide de travail dans le condenseur, la pompe n'étant pas démarrée ; et
    démarrer la pompe lorsqu'une hauteur d'écoulement « Net Positive Suction Head » prédéterminée du fluide de travail sur la pompe est atteinte ou dépassée.
  10. Procédé selon la revendication 9, le démarrage de la pompe ayant lieu après avoir atteint ou dépassé une hauteur d'écoulement mesurée ou après un temps prédéterminé après le début de l'apport de chaleur à l'évaporateur.
  11. Procédé selon la revendication 9 ou 10, comprenant les étapes supplémentaires de :
    régler la température de condensation à une première valeur de température ; et
    régler la température de condensation à une deuxième valeur de température après que le fluide de travail condensé avec la première valeur de température a atteint la pompe ;
    la deuxième valeur de température étant supérieure à la première valeur de température.
  12. Procédé selon la revendication 11, le réglage de la température de condensation à une deuxième valeur de température étant effectué en abaissant la vitesse de rotation d'un ventilateur de condenseur et/ou en abaissant un débit massique d'eau de refroidissement ou le débit massique d'air et/ou en élevant la température du débit massique d'eau de refroidissement ou du débit massique d'air à travers le condenseur.
  13. Procédé selon l'une quelconque des revendications 9 à 12, comprenant les étapes supplémentaires de :
    ouvrir la soupape de dérivation de la machine à expansion avant ou en même temps que l'apport de chaleur à l'évaporateur ou ouvrir la soupape de dérivation de la machine à expansion un premier temps prédéterminé après l'apport de chaleur à l'évaporateur ou après avoir atteint une première pression prédéterminée à la machine à expansion ; et
    fermer la vanne de dérivation de la machine à expansion après ou en même temps que le démarrage de la pompe ou fermeture de la vanne de dérivation de la machine à expansion un deuxième temps prédéterminé avant le démarrage de la pompe ou après avoir atteint une deuxième pression prédéterminée à la machine à expansion.
  14. Procédé selon l'une quelconque des revendications 9 à 13, comprenant les étapes supplémentaires de :
    ouvrir la soupape de dérivation de pompe et/ou la soupape de dérivation de récupérateur avant, pendant ou un troisième temps prédéterminé après avoir apporté de la chaleur à l'évaporateur ; et
    fermer la soupape de dérivation de pompe et/ou la soupape de dérivation de récupérateur après, pendant ou un quatrième temps prédéterminé avant le démarrage de la pompe.
EP13189918.9A 2013-10-23 2013-10-23 Dispositif et procédé de démarrage fiable de systèmes ORC Active EP2865854B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13189918.9A EP2865854B1 (fr) 2013-10-23 2013-10-23 Dispositif et procédé de démarrage fiable de systèmes ORC
RU2016112366A RU2661998C2 (ru) 2013-10-23 2014-10-20 Устройство и способ надежного запуска систем с органическим циклом ренкина (orc)
PCT/EP2014/072393 WO2015059069A1 (fr) 2013-10-23 2014-10-20 Dispositif et procédé de démarrage fiable de systèmes orc
US15/030,862 US10247046B2 (en) 2013-10-23 2014-10-20 Device and method for reliably starting ORC systems
CN201480058736.2A CN105849371B (zh) 2013-10-23 2014-10-20 用于可靠地启动orc系统的设备与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13189918.9A EP2865854B1 (fr) 2013-10-23 2013-10-23 Dispositif et procédé de démarrage fiable de systèmes ORC

Publications (2)

Publication Number Publication Date
EP2865854A1 EP2865854A1 (fr) 2015-04-29
EP2865854B1 true EP2865854B1 (fr) 2021-08-18

Family

ID=49488478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13189918.9A Active EP2865854B1 (fr) 2013-10-23 2013-10-23 Dispositif et procédé de démarrage fiable de systèmes ORC

Country Status (5)

Country Link
US (1) US10247046B2 (fr)
EP (1) EP2865854B1 (fr)
CN (1) CN105849371B (fr)
RU (1) RU2661998C2 (fr)
WO (1) WO2015059069A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023753B1 (nl) * 2015-09-08 2017-07-11 Atlas Copco Airpower Naamloze Vennootschap Orc om afvalwarmte van een warmtebron om te vormen in mechanische energie en koelsysteem dat van een dergelijke orc gebruikmaakt
CN108474272B (zh) 2015-09-08 2020-08-14 阿特拉斯·科普柯空气动力股份有限公司 将热源废热转换成机械能的orc及采用orc的冷却系统
FR3055149B1 (fr) * 2016-08-18 2020-06-26 IFP Energies Nouvelles Circuit ferme fonctionnant selon un cycle de rankine avec un dispositif pour l'arret d'urgence du circuit et procede utilisant un tel circuit
DE102016218936B4 (de) 2016-09-29 2022-10-06 Rolls-Royce Solutions GmbH Verfahren zum Betreiben eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, System zur Durchführung eines thermodynamischen Kreisprozesses und Anordnung mit einem solchen System und einer Brennkraftmaschine
EP3375990B1 (fr) * 2017-03-17 2019-12-25 Orcan Energy AG Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente
CN112240224B (zh) 2019-07-19 2023-08-15 艾默生环境优化技术(苏州)有限公司 流体循环系统及其操作方法、计算机可读介质和控制器
CN111636937B (zh) * 2020-06-22 2024-07-16 中国长江动力集团有限公司 液位自动调节的orc发电装置及其调节方法
CN111594280B (zh) * 2020-06-23 2023-09-19 南京天加能源科技有限公司 一种双透平气悬浮orc发电系统及控制方法
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US12060867B2 (en) 2021-04-02 2024-08-13 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
CN114439561A (zh) * 2021-12-20 2022-05-06 华电电力科学研究院有限公司 一种锅炉烟气余热回收发电系统及其方法
CN114483237B (zh) * 2022-01-20 2024-03-12 重庆江增船舶重工有限公司 有机工质分布式供能系统蒸发器液位平衡控制系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2053376C1 (ru) * 1993-04-09 1996-01-27 Анатолий Ефремович Булкин Электроэнергетическая установка
RU2186224C2 (ru) * 1999-04-27 2002-07-27 Самарский государственный технический университет Способ пуска и газоснабжения энергетической газотурбинной установки и устройство для его осуществления
CA2610762C (fr) * 2005-06-10 2015-02-10 City University Lubrifiant d'expansion dans de systemes a vapeur
GB0511864D0 (en) * 2005-06-10 2005-07-20 Univ City Expander lubrication in vapour power systems
DE102006043491B4 (de) * 2006-09-12 2013-05-29 Amovis Gmbh Dampfkreisprozess mit verbesserter Energieausnutzung
US20100154421A1 (en) * 2007-05-25 2010-06-24 Carrier Corporation Rankine system with gravity-driven pump
JP2010065587A (ja) * 2008-09-10 2010-03-25 Sanden Corp 廃熱利用装置
DE102009053390B3 (de) 2009-11-14 2011-06-01 Orcan Energy Gmbh Thermodynamische Maschine sowie Verfahren zu deren Betrieb
US8739535B2 (en) 2009-12-18 2014-06-03 General Electric Company Fluid feedback pump to improve cold start performance of organic rankine cycle plants
WO2012021881A2 (fr) * 2010-08-13 2012-02-16 Cummins Intellectual Property, Inc. Régulation de pression de condenseur à cycle de rankine au moyen d'une soupape de dérivation de dispositif de conversion d'énergie
US9249691B2 (en) 2012-01-06 2016-02-02 General Electric Company Systems and methods for cold startup of rankine cycle devices
FR2985767B1 (fr) * 2012-01-18 2019-03-15 IFP Energies Nouvelles Dispositif de controle d'un fluide de travail dans un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
CN102536365A (zh) * 2012-02-10 2012-07-04 中国科学技术大学 利用重力增压的有机工质热力发电循环系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10247046B2 (en) 2019-04-02
RU2661998C2 (ru) 2018-07-23
US20160251983A1 (en) 2016-09-01
CN105849371A (zh) 2016-08-10
CN105849371B (zh) 2018-07-03
WO2015059069A1 (fr) 2015-04-30
RU2016112366A (ru) 2017-11-27
EP2865854A1 (fr) 2015-04-29

Similar Documents

Publication Publication Date Title
EP2865854B1 (fr) Dispositif et procédé de démarrage fiable de systèmes ORC
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
WO2014102027A2 (fr) Système de récupération d'énergie à partir d'un flux de chaleur perdue de moteur à combustion interne
DE69111415T2 (de) Anlage mit mitteln zur lagerschmierung.
EP2686526B1 (fr) Procédé pour faire fonctionner un processus à circuit de vapeur
EP2359058B1 (fr) Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
EP2909452B1 (fr) Appareil pour la production d'énergie électrique a l'aide d'un cycle organique de rankine
DE102008046853A1 (de) Abwärmerückgewinnungsvorrichtung
DE112013002415B4 (de) Abgaswärmerückgewinnungsvorrichtung
DE112010005419B4 (de) Rankine-Kreisprozess-System
EP3006682B1 (fr) Dispositif et procédé de fonctionnement d'une station de transmission thermique
WO2010097203A2 (fr) Procédé pour faire fonctionner une centrale
EP3141710B1 (fr) Dispositif et procédé de fonctionnement de machines d'expansion volumétriques
WO2015090648A1 (fr) Procédé de régulation sans capteur d'un condenseur permettant d'optimiser la puissance de systèmes orc
DE202012006055U1 (de) Vorrichtung zum Erzeugen von elektrischer Energie mittels eines Organic-Rankine-Kreislaufs in Verbindung mit einem Turbinengenerator
EP3375990B1 (fr) Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente
EP3015660B1 (fr) Procédé pour le fonctionnement d'un cycle thermodynamique
WO2015028366A2 (fr) Procédé permettant de faire fonctionner un générateur de vapeur à circulation forcée chauffé par l'extérieur
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
WO2012152602A1 (fr) Circuit de conduite et procédé permettant de faire fonctionner un circuit de conduite destiné à récupérer la chaleur dissipée d'un moteur à combustion interne
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
EP3922930B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression associée
DE1228623B (de) Dampfkraftanlage mit Zwanglaufdampferzeuger und Zwischenueberhitzer
EP3183436A1 (fr) Procede de réduction du processus de démarrage d'une turbine à vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

R17P Request for examination filed (corrected)

Effective date: 20151013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: GEWALD, DANIELA

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: GRILL, ANDREAS

Inventor name: CELIK, ASIM

Inventor name: AUMANN, RICHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: WALTER, DANIELA

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: GRILL, ANDREAS

Inventor name: CELIK, ASIM

Inventor name: AUMANN, RICHARD

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015885

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1421837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015885

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1421837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231030

Year of fee payment: 11

Ref country code: FR

Payment date: 20231024

Year of fee payment: 11

Ref country code: DE

Payment date: 20231026

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818