EP2865854B1 - Device and method for reliable starting of ORC systems - Google Patents

Device and method for reliable starting of ORC systems Download PDF

Info

Publication number
EP2865854B1
EP2865854B1 EP13189918.9A EP13189918A EP2865854B1 EP 2865854 B1 EP2865854 B1 EP 2865854B1 EP 13189918 A EP13189918 A EP 13189918A EP 2865854 B1 EP2865854 B1 EP 2865854B1
Authority
EP
European Patent Office
Prior art keywords
pump
working medium
condenser
evaporator
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13189918.9A
Other languages
German (de)
French (fr)
Other versions
EP2865854A1 (en
Inventor
Richard Aumann
Asim Celik
Andreas Grill
Jens-Patrick Springer
Daniela Walter
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP13189918.9A priority Critical patent/EP2865854B1/en
Priority to US15/030,862 priority patent/US10247046B2/en
Priority to CN201480058736.2A priority patent/CN105849371B/en
Priority to RU2016112366A priority patent/RU2661998C2/en
Priority to PCT/EP2014/072393 priority patent/WO2015059069A1/en
Publication of EP2865854A1 publication Critical patent/EP2865854A1/en
Application granted granted Critical
Publication of EP2865854B1 publication Critical patent/EP2865854B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • thermodynamic cycle device in particular an organic Rankine cycle device, comprising: a working medium; an evaporator for evaporating the working medium; an expansion machine for generating mechanical energy with expansion of the evaporated working medium; a condenser for condensing and possibly subcooling the working medium, in particular the working medium expanded in the expansion machine; and a pump for pumping the condensed working medium to the evaporator when the thermodynamic cycle device is in operation.
  • the invention also relates to a method for starting such a thermodynamic cycle device.
  • An ORC system consists of the following main components: a feed pump that conveys the liquid working medium to the evaporator with a high pressure increase, an evaporator in which the working medium is evaporated, an expansion machine in which the high-pressure steam is expanded and thereby generates mechanical energy which can be converted into electrical energy via a generator, and a condenser in which the low-pressure steam from the expansion machine is liquefied.
  • the liquid working medium is returned to the system's feed pump from the condenser via a possible storage tank (feed tank) and a suction line.
  • the working medium should be present in sufficient quantities in the suction line of the pump or in the feed tank, so that the pump has sufficient medium available during the entire start-up.
  • a second condition for the trouble-free delivery of working medium by the pump is a sufficient flow height of the fluid (working medium) applied to the pump.
  • the flow height (NPSH) is a parameter which, in addition to the geodetic flow height, is also influenced by the thermodynamic state of the working medium, which can be explained as follows. If the subcooling (the distance to the boiling point) of the fluid at the pump inlet is not sufficiently high, the fluid can briefly evaporate at the pump inlet. This phenomenon can damage the pump and lead to partial or complete stoppage of the flow. One speaks of cavitation. The distance to the boiling pressure of the fluid at the inlet of the pump is referred to as the flow height.
  • One parameter for quantifying this is the NPSH value (Net Positive Suction Head).
  • NPSH r required, pump-specific
  • NPSH a adjacent flow height
  • the applied NPSH a value is dependent on several system and operation-specific parameters (temperature, pressure due to geodetic flow height, saturation pressure, inert gas partial pressure, whereby the inert gas partial pressure is a additional partial pressure of a non-condensing gas, which can also be present in the circuit) is dependent.
  • the applied NPSH a value must always be above the required NPSH r value.
  • Cavitation is a challenge especially for circulatory systems such as an ORC.
  • liquid condensate has to be pumped with little or no distance to the boiling point and consequently a low NPSH a value. Since the required NPSH r value is determined by the pump design, it can only be influenced to a limited extent and it must be ensured in terms of process technology at every point of operation that the applied NPSH a value does not fall below the required value.
  • an ORC system is shut down, e.g. by eliminating / switching off the heat source or by an emergency shutdown of the system, there may be an uncontrolled distribution of the working medium in the system (e.g. in an expansion machine, horizontal pipes or liquid bags), whereby the working medium does not flow to the feed tank.
  • the start-up process includes filling the evaporator, evaporating the working medium and thereby building up pressure, starting the expansion machine and starting the condensation and thus backflow of working medium to the feed pump.
  • the pump can at times have a higher temperature than the condenser, even if the ambient temperatures of the pump and condenser are the same.
  • NPSH a the flow head at the pump inlet
  • the flow height NPSH a then applied can be lower than the necessary flow height NPSH r , which in turn results in cavitation.
  • the document FR 2 985 767 A1 discloses a controller for a Rankine cycle system.
  • WO 2011/057724 A2 discloses a thermodynamic machine and a method of operating it.
  • WO 2008/031716 A2 discloses a steam cycle with improved energy efficiency.
  • WO 2012/021881 A1 discloses the pressure control of a capacitor in a Rankine cycle, particularly in an ORC.
  • WO 2006/131759 A2 discloses the lubrication of an expander wherein the liquid phase of the working fluid contains a lubricant.
  • WO 2010/029905 A1 discloses a device for utilizing waste heat using a Rankine cycle.
  • a cold system state can also prevent the system from starting up.
  • the viscosity of the working medium or another medium present in the circuit, such as a lubricant can increase, which can impair the delivery of the medium through the feed pump.
  • the object of the invention is to at least partially overcome the disadvantages described above.
  • thermodynamic cycle device is started up.
  • the closed circuit (with shut-off devices that could prevent the circulation not being closed when the system is at a standstill) is constructed in such a way that the fluid in the circuit flows through gravitational forces to the evaporator without additional drive.
  • heat is applied to the evaporator so that it is the warmest component in the system.
  • the working medium contained therein is evaporated and possibly also overheated and the resulting steam heats all parts of the system located above the evaporator. If liquid medium has accumulated in other parts of the system (e.g.
  • the coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be controlled as the coldest point by regulating the heat sink can be set (e.g. start of cooling on the condenser).
  • the working medium flows from the condenser as a template to the feed pump.
  • the geometric arrangement is chosen (difference in height) so that the condensate can flow to the evaporator by gravity (difference in density between vapor and liquid).
  • a natural circulation is created, which sets an independent order of the liquid working medium. This means that liquid working medium is collected in the low-lying part of the system (including in front of the pump) and that before the pump is started, there is sufficient working medium with a sufficient flow height in front of the pump.
  • An evaporator located lower than the condenser and possibly also lower-lying pipelines represent a possibility for the fluid in the circuit to flow to the evaporator due to gravitational forces without additional drive.
  • a further development consists in that the closed circuit between the condenser and the evaporator also includes the non-started pump and / or wherein the closed circuit between the evaporator and the condenser also includes the expansion machine.
  • the pump is of a design that is permeable to fluid when the pump is at a standstill, the working medium can also flow in the circuit through the pump without the pump having started.
  • the pump can be located at a lower height than the evaporator.
  • the lead height can be increased further.
  • thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the expansion machine in the circuit.
  • thermodynamic cycle device can furthermore comprise a feed container for collecting the condensed working medium, the feed container being arranged in the closed circuit between the condenser and the evaporator, in particular between the condenser and the pump.
  • At least one sensor for measuring the flow height of the working medium upstream of the pump in particular a sensor for measuring the pressure of the working medium and / or a sensor for measuring the temperature of the working medium, can also be provided.
  • thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the pump in the circuit.
  • thermodynamic cycle device can furthermore comprise a recuperator for transferring thermal energy from the expanded working medium to the working medium pumped between pump and evaporator during operation of the thermodynamic cycle device, the recuperator being arranged between expansion machine and condenser; and a bypass valve for bypassing the recuperator in the circuit, wherein the bypass valve for bypassing the recuperator can in particular also be the bypass valve for bypassing the pump.
  • a bypass valve for bypassing the recuperator can be provided because otherwise no natural circulation can occur through the recuperator, which is arranged higher than the evaporator.
  • the method according to the invention for starting a thermodynamic cycle device according to the invention or one of its developments comprises the following steps: applying heat to the evaporator and evaporating the working medium in the evaporator, optionally also superheating the working medium in the evaporator, whereby working medium flows to the condenser; Condensation of the working medium in the condenser; Starting the pump when a predetermined Net Positive Suction Head flow height of the working medium at the pump is reached or exceeded.
  • the method according to the invention has the advantages that have already been described in connection with the device according to the invention.
  • the method according to the invention can be developed in such a way that the pump is started after reaching or exceeding a measured flow height or after a predetermined time after the start of the application of heat to the evaporator.
  • the method can include the following further steps: setting the condensation temperature to a first temperature value; and setting the condensation temperature to a second temperature value after the condensed working medium with the first temperature value has reached the pump; wherein the second temperature value is greater than the first temperature value.
  • the coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be set as the coldest point in this way, e.g. by regulating the heat sink (e.g. starting cooling on the condenser).
  • the condensation temperature can be set to a second temperature value by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser.
  • further measures such as the Closing the blinds or flaps of the condenser lead to an increase in the condensation temperature.
  • Another development is that the further steps of opening the expansion machine bypass valve before or at the same time as applying heat to the evaporator or opening the expansion machine bypass valve a predetermined first time period after applying heat to the evaporator or after reaching a predetermined first pressure the expansion machine; and closing the expansion machine bypass valve after or simultaneously with the start of the pump or closing the expansion machine bypass valve a predetermined second time period before the start of the pump or after reaching a predetermined second pressure on the expansion machine can be provided.
  • the following further steps can be provided: opening the pump bypass valve and / or recuperator bypass valve before, during or for a predetermined third period of time after the evaporator is subjected to heat; and closing the pump bypass valve and / or recuperator bypass valve after, during or a predetermined fourth time period before the start of the pump.
  • FIG. 1 shows a thermodynamic cyclic process device, in particular an ORC system and the vertical arrangement of the main components.
  • the system comprises a feed pump 1, which conveys the liquid working medium with a large increase in pressure to an evaporator 2 in which the working medium is evaporated, an expansion machine 3 in which the high pressure steam is expanded and mechanical energy is generated in the process. This can be converted into electrical energy via a generator G, for example.
  • the condenser 4 in which the low-pressure steam from the expansion machine 3 is liquefied, the liquid working medium is returned to the feed pump 1 of the system via a possible (optional) storage container (feed container) and a suction line.
  • the system should start up from a standstill. First of all, the evaporator is exposed to heat (if the heat is not applied to the evaporator in an uncontrolled manner, e.g. through a permanent flow of a heat transfer medium, this must be switched on). In the evaporator, steam forms, which heats the system components, in others System parts (e.g. in expansion machines, horizontal pipes or bags of liquid), the liquid-bearing working medium evaporates and flows together with these to the condenser, where it is liquefied after a while. There is thus a shift in fluid from the evaporator to the condenser.
  • connection described (without closed shut-off devices) creates a flow that allows the medium to flow from the condenser to the evaporator via the pump.
  • the route must be designed in such a way that the flow is established solely by gravity. For this, the pressure losses of the built-in components or the opening pressures of built-in valves must be taken into account.
  • the temperature in the condenser is raised, which also increases the pressure in the condenser.
  • This can be done, for example, by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser.
  • the device according to Figure 2 includes to improve the in Figure 1 arrangement shown additional components. These and their function are described below with reference to.
  • Component 5 designates a bypass valve on the expansion machine 3.
  • This bypass valve 5 via the expansion machine enables, e.g. in volumetric expansion machines, that a sufficient amount of the vapor generated in the evaporator can flow to the condenser 4.
  • the bypass valve can also serve as an emergency shutdown valve, which in the event of danger enables the high-pressure steam to be rapidly released in front of the expansion machine.
  • the bypass valve can, for example, be designed as a normally open solenoid valve. When starting up with the described arrangement of the components, the valve remains open and thus enables the natural circulation of the working medium. The valve is required for the function described if the amount of working medium via a stationary (or rotating) expansion machine is not sufficient for the desired natural circulation of the fluid.
  • the component 6 denotes a feed container.
  • the feed tank can be required in order to provide sufficient working medium in contact with the feed pump in every operating state. It buffers the total amount of working medium and thus prevents the system from coming to a standstill in the event of loss of working medium, uneven distribution of working medium, different steam densities and thus steam masses during operation and standstill or inaccurate filling of the system.
  • the container In connection with the use with inert gas, the container has a further function. It increases the volume of gas in the system. This means that the advance height can be kept relatively constant across all operating states (see also the disclosure in DE 10 2009 053 390 B3 ). When using inert gas to prevent cavitation, there is a further advantage due to the described arrangement in natural circulation.
  • the inert gas in the circuit is automatically collected in the condenser and feed tank.
  • the inert gas that is present in the feed tank increases the flow height to the pump due to its concentration-dependent partial pressure. Since the inert gas is distributed throughout the entire system by diffusion during standstill and thus the partial pressure in the feed tank drops, a cavitation-free start-up of the pump from standstill cannot always be guaranteed without a concentration of the inert gas in the feed tank through the natural circulation described, for example.
  • the component 7 designates sensors for measuring the applied flow height (NPSH a ). By attaching sensors (here for example pressure P and temperature T), the flow height (NPSH a ) can be determined. This can serve as a start criterion for starting the pump during the described start-up process of the system.
  • Component 8 denotes a bypass valve around the feed pump.
  • This valve 8 for bypassing the feed pump can be used in the case described in order to ensure a sufficient flow of liquid working medium from the condenser to the evaporator. This is necessary, for example, if the feed pump is impermeable to the medium due to its design (e.g. positive displacement pump) when it is at a standstill. Another reason could be the large height difference to be overcome in the pump (e.g. in vertical multistage centrifugal pumps), which prevents a natural flow.
  • the bypass valve can be designed to be switchable or controllable. It can also be designed as a spring-loaded valve with adjustable or fixed opening and closing pressures.
  • the valve therefore only opens when there is a certain pressure difference between the suction and pressure side of the pump and remains closed during operation of the system or the valve is up to a certain pressure difference between the pressure and suction side opens and closes automatically when operating from this certain pressure difference between pressure and suction side.
  • the pressure difference for opening the valve must be so small that natural circulation is possible.
  • the valve can serve as a safety valve in the event of danger. By opening the valve quickly in the event of danger, medium can flow out of the evaporator in the direction of the condenser. This prevents an excessive increase in pressure in the evaporator due to further evaporation of the working medium.
  • a check valve (not shown in the drawing) can also be used downstream of the pump.
  • thermodynamic cycle device with a recuperator 9 is shown.
  • the recuperator 9 is used to transfer thermal energy from the expanded working medium to the working medium pumped between pump 1 and evaporator 2 during operation of the thermodynamic cycle device, the recuperator 9 being arranged between expansion machine 3 and condenser 4.
  • a bypass valve 8 is provided for bypassing the recuperator 9 in the circuit, the bypass valve 8 for bypassing the recuperator 9 here also being the bypass valve 8 for bypassing the pump 1.
  • recuperator 9 If the pipeline between pump 1 and evaporator 2 runs over recuperator 9 in order to preheat the working medium pumped therein in normal operation of the thermodynamic cycle device with heat from the expanded vaporized working medium between expansion machine 3 and condenser 4, then the cycle device must be started according to the invention
  • Bypass valve 8 for bridging the recuperator 9 must be open, because otherwise no natural circulation of the working medium can occur through the recuperator 9, which is arranged higher than the evaporator 2.
  • the method according to the invention and the device according to the invention ensure that the ORC can be started reliably and quickly.
  • the method does not require any sensors or actuators (eg valves) for a safe start.
  • the total amount of working medium in the system can be reduced, since there is always sufficient fluid in the suction line of the pump due to the non-drive arrangement of the liquid working medium.
  • the automatic heating of the system through the natural circulation when heat is supplied ensures that the components are preheated.
  • the safe, cavitation-free start-up of the system prevents possible damage to the pump that can occur as a result of (partial) cavitation on the pump.
  • the method can ensure a sufficient flow height for the feed pump in the start-up process. This means that other methods that would otherwise be necessary to generate a flow height can be omitted or their effect on the efficiency of the system can be reduced. Since other methods (e.g. undercooling of the condensate or the addition of inert gas) reduce the performance, the method described leads to an increase in the overall efficiency of the ORC system. The filling amount of working medium can be saved by the method described.

Description

Gebiet der ErfindungField of invention

Die Erfindung betrifft eine thermodynamische Kreisprozessvorrichtung, insbesondere eine Organic-Rankine-Cycle-Vorrichtung, umfassend: ein Arbeitsmedium; einen Verdampfer zum Verdampfen des Arbeitsmediums; eine Expansionsmaschine zum Erzeugen von mechanischer Energie unter Entspannung des verdampften Arbeitsmediums; einen Kondensator zum Kondensieren und möglichen Unterkühlen des Arbeitsmediums, insbesondere des in der Expansionsmaschine entspannten Arbeitsmediums; und eine Pumpe zum Pumpen des kondensierten Arbeitsmediums zum Verdampfer im Betrieb der thermodynamischen Kreisprozessvorrichtung. Die Erfindung betrifft weiterhin ein Verfahren zum Starten einer derartigen thermodynamischen Kreisprozessvorrichtung.The invention relates to a thermodynamic cycle device, in particular an organic Rankine cycle device, comprising: a working medium; an evaporator for evaporating the working medium; an expansion machine for generating mechanical energy with expansion of the evaporated working medium; a condenser for condensing and possibly subcooling the working medium, in particular the working medium expanded in the expansion machine; and a pump for pumping the condensed working medium to the evaporator when the thermodynamic cycle device is in operation. The invention also relates to a method for starting such a thermodynamic cycle device.

Stand der TechnikState of the art

Ein ORC System besteht aus den folgenden Hauptkomponenten: Eine Speisepumpe, die das flüssige Arbeitsmedium unter großer Druckerhöhung zum Verdampfer fördert, ein Verdampfer in dem das Arbeitsmedium verdampft wird, eine Expansionsmaschine, in welcher der unter hohem Druck stehende Dampf entspannt wird und dabei mechanische Energie erzeugt wird, welche über einen Generator zu elektrischer Energie gewandelt werden kann, und einem Kondensator, in dem der Niederdruckdampf aus der Expansionsmaschine verflüssigt wird. Aus dem Kondensator gelangt das flüssige Arbeitsmedium über einen möglichen Vorratsbehälter (Speisebehälter) und eine Saugleitung wieder zur Speisepumpe des Systems.An ORC system consists of the following main components: a feed pump that conveys the liquid working medium to the evaporator with a high pressure increase, an evaporator in which the working medium is evaporated, an expansion machine in which the high-pressure steam is expanded and thereby generates mechanical energy which can be converted into electrical energy via a generator, and a condenser in which the low-pressure steam from the expansion machine is liquefied. The liquid working medium is returned to the system's feed pump from the condenser via a possible storage tank (feed tank) and a suction line.

Beim Startvorgang soll das Arbeitsmedium möglichst in ausreichender Menge in der Saugleitung der Pumpe, oder auch dem Speisebehälter vorliegen, so dass während des gesamten Starts die Pumpe ausreichend Medium zur Verfügung hat.During the start-up process, the working medium should be present in sufficient quantities in the suction line of the pump or in the feed tank, so that the pump has sufficient medium available during the entire start-up.

Eine zweite Bedingung für die störungsfreie Förderung von Arbeitsmedium durch die Pumpe ist eine ausreichende Vorlaufhöhe des an der Pumpe anliegenden Fluids (Arbeitsmediums). Die Vorlaufhöhe (NPSH) ist ein Parameter, der neben der geodätischen Vorlaufhöhe auch vom thermodynamischen Zustand des Arbeitsmediums beeinflusst wird, was wie folgt erklärt werden kann. Ist die Unterkühlung (der Abstand zum Siedepunkt) des Fluids am Eintritt der Pumpe nicht ausreichend hoch, kann es zur kurzzeitigen Verdampfung des Fluids am Pumpeneintritt kommen. Dieses Phänomen kann zu Schäden an der Pumpe und zum teilweisen oder vollständigen Erliegen des Förderstromes führen. Man spricht von Kavitation. Der Abstand zum Siededruck des Fluids am Eintritt der Pumpe wird als Vorlaufhöhe bezeichnet. Ein Parameter zur Quantifizierung dafür ist der NPSH-Wert (Net Positive Suction Head). Hierbei wird zwischen benötigter, pumpenspezifischer (NPSHr) und anliegender (NPSHa) Vorlaufhöhe unterschieden, wobei der anliegende NPSHa-Wert von mehreren anlagen- und betriebsspezifischen Parametern (Temperatur, Druck aufgrund von geodätischer Vorlaufhöhe, Sättigungsdruck, Inertgaspartialdruck, wobei der Inertgaspartialdruck ein zusätzlicher Partialdruck eines nicht-kondensierenden Gases ist, das zusätzlich im Kreislauf vorliegen kann) abhängig ist. Für einen sicheren Betrieb der Pumpe muss der anliegende NPSHa-Wert immer über dem benötigten NPSHr-Wert liegen.A second condition for the trouble-free delivery of working medium by the pump is a sufficient flow height of the fluid (working medium) applied to the pump. The flow height (NPSH) is a parameter which, in addition to the geodetic flow height, is also influenced by the thermodynamic state of the working medium, which can be explained as follows. If the subcooling (the distance to the boiling point) of the fluid at the pump inlet is not sufficiently high, the fluid can briefly evaporate at the pump inlet. This phenomenon can damage the pump and lead to partial or complete stoppage of the flow. One speaks of cavitation. The distance to the boiling pressure of the fluid at the inlet of the pump is referred to as the flow height. One parameter for quantifying this is the NPSH value (Net Positive Suction Head). A distinction is made between required, pump-specific (NPSH r ) and adjacent (NPSH a ) flow height, whereby the applied NPSH a value is dependent on several system and operation-specific parameters (temperature, pressure due to geodetic flow height, saturation pressure, inert gas partial pressure, whereby the inert gas partial pressure is a additional partial pressure of a non-condensing gas, which can also be present in the circuit) is dependent. For safe operation of the pump, the applied NPSH a value must always be above the required NPSH r value.

Speziell für Kreislaufsysteme wie einem ORC stellt Kavitation eine Herausforderung dar. Hier muss flüssiges Kondensat mit geringem oder sogar keinem Abstand zum Siedepunkt und folglich geringem anliegendem NPSHa-Wert gepumpt werden. Da der benötigte NPSHr-Wert durch die Pumpenkonstruktion festgelegt ist, kann dieser nur begrenzt beeinflusst werden und es muss prozesstechnisch zu jedem Betriebszeitpunkt sichergestellt werden, dass der anliegende NPSHa-Wert nicht den benötigten Wert unterschreitet.Cavitation is a challenge especially for circulatory systems such as an ORC. Here, liquid condensate has to be pumped with little or no distance to the boiling point and consequently a low NPSH a value. Since the required NPSH r value is determined by the pump design, it can only be influenced to a limited extent and it must be ensured in terms of process technology at every point of operation that the applied NPSH a value does not fall below the required value.

Wird ein ORC System heruntergefahren z.B. durch Wegfall / Abstellen der Wärmequelle oder durch ein Notabfahren des Systems, kann es zu einer unkontrollierten Verteilung von Arbeitsmedium im System kommen (z.B. in Expansionsmaschine, horizontalen Rohren oder Flüssigkeitssäcken), wobei das Arbeitsmedium nicht zum Speisebehälter fließt. Das kann dazu führen, dass nicht ausreichend Arbeitsmedium für die Speisepumpe für den gesamten Anfahrvorgang zur Verfügung steht. Der Anfahrvorgang umfasst das Füllen des Verdampfers, Verdampfen von Arbeitsmedium und dabei Aufbau von Druck, Starten der Expansionsmaschine und Beginn der Kondensation und damit Rückfluss von Arbeitsmedium zur Speisepumpe.If an ORC system is shut down, e.g. by eliminating / switching off the heat source or by an emergency shutdown of the system, there may be an uncontrolled distribution of the working medium in the system (e.g. in an expansion machine, horizontal pipes or liquid bags), whereby the working medium does not flow to the feed tank. This can lead to insufficient working medium for the feed pump for the entire start-up process Available. The start-up process includes filling the evaporator, evaporating the working medium and thereby building up pressure, starting the expansion machine and starting the condensation and thus backflow of working medium to the feed pump.

Die ungünstige Verteilung von Arbeitsmedium und das damit verbundene schwierige oder sogar nicht mögliche Anfahren ist ein bekanntes Problem, wofür es nach dem Stand der Technik verschiedene Lösungsvorschläge gibt. In EP 2 613 025 A1 (System and methods for cold startup of rankine cycle devices) wird eine geordnete Verteilung des Arbeitsmediums durch ein schlagartiges Öffnen eines Ventils und ein "Freispülen" von Anlagenteilen mit Ansammlungen von flüssigem Arbeitsmedium vorgeschlagen. Hierzu werden allerdings ein oder mehrere Ventile als zusätzliche Komponenten benötigt. In EP 2 345 797 A2 (Fluid feedback pump to improve cold start performance of organic rankine cycle plants) wird das Arbeitsmedium mittels zusätzlicher Pumpen an die richtigen Stellen des Systems gepumpt. Auch hier sind zusätzliche Komponenten in Form von Pumpen notwendig um einen zuverlässigen Start des Systems zu garantieren.The unfavorable distribution of the working medium and the associated difficult or even impossible start-up is a known problem for which there are various proposed solutions according to the prior art. In EP 2 613 025 A1 (System and methods for cold startup of rankine cycle devices) an orderly distribution of the working medium by suddenly opening a valve and "flushing out" of system parts with accumulations of liquid working medium is proposed. For this, however, one or more valves are required as additional components. In EP 2 345 797 A2 (Fluid feedback pump to improve cold start performance of organic rankine cycle plants) the working medium is pumped to the right places in the system by means of additional pumps. Here, too, additional components in the form of pumps are necessary to guarantee a reliable start of the system.

Der Stand der Technik lehrt weiterhin, dass Dampfleitungen stets fallend zum Kondensator / Speisebehälter zu verlegen sind. Dies bedeutet, dass der Verdampfer an der höchsten Stelle untergebracht werden muss und im Stillstand Kondensat über den Kondensator in Richtung Speisebehälter fließt. Dies ist aber bei der kompakten Bauweise von ORC-Systemen nur schwer oder gar nicht zu realisieren, insbesondere wenn eine maximale Bauhöhe eingehalten werden soll. Selbst wenn der Verdampfer an der höchsten Stelle untergebracht wird, was das automatische Sammeln des Arbeitsmediums im Kondensator / Speisebehälter zur Folge hätte, würde das Problem von Systemzuständen mit nicht ausreichender anliegender Vorlaufhöhe NPSHa wie oben beschrieben nicht behoben.The prior art also teaches that steam lines must always be laid with a downward slope towards the condenser / feed container. This means that the evaporator must be located at the highest point and that when the system is idle, condensate flows through the condenser towards the feed tank. However, with the compact design of ORC systems, this is difficult or impossible to implement, especially if a maximum overall height is to be adhered to. Even if the evaporator is housed at the highest point, which would result in the automatic collection of the working medium in the condenser / feed container, the problem of system states with insufficient flow height NPSH a as described above would not be eliminated.

Durch die beiden aufgeführten Offenbarungen aus dem Stand der Technik kann aber ein weiteres Problem nicht gelöst werden: Beim Anfahren des ORC-Systems kann es zu einer Situation kommen, in der die Speisepumpe und ggf. auch deren Zuleitung eine höhere Temperatur aufweisen als das angesaugte Arbeitsmedium aus dem Kondensator oder als das gerade im Kondensator kondensierende Arbeitsmedium. Der Kondensator, der im Kreislauf als Wärmesenke dient, kann im Stillstand zur kältesten Stelle im System werden, z.B. bei Außenaufstellung des externen Kondensators an Luft bei kalten Außentemperaturen und einer sich in einem Maschinengehäuse/- gebäude befindlichen Pumpe, welche auf eine im Vergleich zur Außentemperatur höheren Temperatur temperiert ist. Aufgrund der im Kondensator großen vorhandenen Wärmeüberträgerflächen oder aufgrund der Verweilzeit des Mediums im Kondensator kann die Pumpe selbst bei gleichen Umgebungstemperaturen von Pumpe und Kondensator zeitweise höher temperiert sein als der Kondensator. Somit gibt es also eine Temperaturzunahme vom Kondensator zur Speisepumpe und diese verringert die anliegende Vorlaufhöhe am Pumpeneinlass (NPSHa). Als Folge kavitiert die Pumpe und es wird kein Arbeitsmedium gefördert. Dies verhindert einen Start des Systems und kann zu Schädigungen an der Pumpe führen. Selbst nach einem Temperaturausgleich von Speisepumpe, Zuleitung und Kondensator kann, besonders bei kompakt aufgebauten Systemen ohne große Höhendifferenzen und damit geodätischer Vorlaufhöhe, die dann anliegende Vorlaufhöhe NPSHa geringer sein als die notwendige Vorlaufhöhe NPSHr, was wiederum Kavitation zur Folge hat.The two listed disclosures from the prior art, however, cannot solve another problem: When starting up the ORC system, a situation can arise in which the feed pump and possibly also its supply line are at a higher temperature than the working medium that is sucked in from the condenser or as the working medium condensing in the condenser. The condenser, which serves as a heat sink in the circuit, can become coldest when it is not running Place in the system, e.g. when the external condenser is installed outside in air at cold outside temperatures and a pump located in a machine housing / building, which is tempered to a higher temperature than the outside temperature. Due to the large heat transfer surfaces present in the condenser or due to the dwell time of the medium in the condenser, the pump can at times have a higher temperature than the condenser, even if the ambient temperatures of the pump and condenser are the same. Thus there is an increase in temperature from the condenser to the feed pump and this reduces the flow head at the pump inlet (NPSH a ). As a result, the pump cavitates and no working medium is conveyed. This prevents the system from starting and can damage the pump. Even after the temperature of the feed pump, supply line and condenser has been equalized, especially in the case of compact systems without large height differences and thus geodetic flow height, the flow height NPSH a then applied can be lower than the necessary flow height NPSH r , which in turn results in cavitation.

Das Problem der Kavitation bei ORC Anlagen ist bekannt und kann gemäß der Offenbarung in DE 10 2009 053 390 B3 z.B. durch Zugabe von Inertgas in einen Speisebehälter / Kondensator gelöst werden.The problem of cavitation in ORC systems is known and, according to the disclosure in DE 10 2009 053 390 B3 be dissolved, for example, by adding inert gas to a feed container / condenser.

Das Dokument FR 2 985 767 A1 offenbart eine Steuervorrichtung für ein System mit einem Rankine-Zyklus. WO 2011/057724 A2 offenbart eine thermodynamische Maschine sowie ein Verfahren zu deren Betrieb. WO 2008/031716 A2 offenbart einen Dampfkreisprozess mit verbesserter Energieausnutzung. WO 2012/021881 A1 offenbart die Drucksteuerung eines Kondensators in einem Rankine-Zyklus, insbesondere in einem ORC. WO 2006/131759 A2 offenbart die Schmierung eines Expanders, wobei die flüssige Phase des Arbeitsfluids ein Schmiermittel enthält. WO 2010/029905 A1 offenbart eine Vorrichtung zur Nutzung von Abwärme mithilfe eines Rankine-Zyklus.The document FR 2 985 767 A1 discloses a controller for a Rankine cycle system. WO 2011/057724 A2 discloses a thermodynamic machine and a method of operating it. WO 2008/031716 A2 discloses a steam cycle with improved energy efficiency. WO 2012/021881 A1 discloses the pressure control of a capacitor in a Rankine cycle, particularly in an ORC. WO 2006/131759 A2 discloses the lubrication of an expander wherein the liquid phase of the working fluid contains a lubricant. WO 2010/029905 A1 discloses a device for utilizing waste heat using a Rankine cycle.

Zusammenfassend kann Folgendes als Motivation für die vorliegende Erfindung festgehalten werden. Zum sicheren Anfahren eines ORC-Systems muss ausreichend Arbeitsmedium mit einer ausreichenden Vorlaufhöhe an der Speisepumpe des Systems vorliegen. In einem ORC Kreislauf kann sich im Stillstand oder bei schlecht kontrolliertem Herunterfahren des Systems eine Fehlverteilung von flüssigem Arbeitsmedium ergeben, was ein Anfahren auf Grund von fehlendem Medium vor der Speisepumpe verhindert. Außerdem kann sich eine nachteilige Temperaturverteilung im Arbeitsmedienkreis einstellen, z.B. könnte das Arbeitsmedium im Vorlagebereich der Speisepumpe wärmer sein als an der kältesten Stelle im System. Durch die in diesem Zustand geringe an der Pumpe anliegende Vorlaufhöhe kann es zur Kavitation der Pumpe kommen. Dies verhindert einen zuverlässigen Start des Systems. Bei kälterer Witterung kann außerdem ein kalter Systemzustand das Anfahren der Anlage verhindern. Beispielsweise kann es zu einer Viskositätssteigerung des Arbeitsmediums oder eines weiteren im Kreislauf vorhandenen Mediums, wie z.B. ein Schmiermittel, kommen, was ein Fördern des Mediums durch die Speisepumpe beeinträchtigen kann.In summary, the following can be stated as the motivation for the present invention. To start up an ORC system safely, there must be sufficient working medium with a sufficient flow height at the system's feed pump. In an ORC circuit it can be at a standstill or at bad controlled shutdown of the system result in a maldistribution of liquid working medium, which prevents a start-up due to a lack of medium in front of the feed pump. In addition, a disadvantageous temperature distribution can occur in the working medium circuit, for example the working medium in the feed area of the feed pump could be warmer than at the coldest point in the system. Due to the low flow height at the pump in this state, cavitation of the pump can occur. This prevents the system from starting reliably. In colder weather, a cold system state can also prevent the system from starting up. For example, the viscosity of the working medium or another medium present in the circuit, such as a lubricant, can increase, which can impair the delivery of the medium through the feed pump.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, die oben beschriebenen Nachteile zumindest teilweise zu überwinden.The object of the invention is to at least partially overcome the disadvantages described above.

Diese Aufgabe wird gelöst durch eine Vorrichtung nach Anspruch 1.This object is achieved by a device according to claim 1.

Vorteilhaft ist dabei, dass eine zum störungsfreien Starten der Pumpe hinreichende Vorlaufhöhe beim Anfahren der thermodynamischen Kreisprozessvorrichtung bereitgestellt wird. Der geschlossene Kreislauf (wobei im Stillstand Absperreinrichtungen, welche die Zirkulation hindern könnten, nicht geschlossen sind) ist in der Art konstruiert sind, dass das im Kreislauf befindliche Fluid durch Gravitationskräfte ohne zusätzlichen Antrieb zum Verdampfer strömt. Beim Start des Systems aus dem Stillstand wird der Verdampfer mit Wärme beaufschlagt, so dass dieser die wärmste Komponente im System ist. Das darin befindliche Arbeitsmedium wird verdampft und möglicherweise auch überhitzt und der entstandene Dampf heizt alle über dem Verdampfer liegenden Anlagenteile. Sollte sich in anderen Anlagenteilen (z.B. in Expansionsmaschine, horizontalen Rohren oder Flüssigkeitssäcken) flüssiges Medium angesammelt haben, wird dieses durch die Erwärmung verdampft und kondensiert anschließend an der kältesten Stelle der Anlage. Die kälteste Stelle im System ist im Normalfall der Kondensator. Sollte dies im Stillstand nicht der Fall sein, kann der Kondensator über eine Regelung der Wärmesenke als kälteste Stelle eingestellt werden (z.B. Start der Kühlung am Kondensator). Vom Kondensator aus strömt das Arbeitsmedium als Vorlage zur Speisepumpe. Die geometrische Anordnung wird so gewählt (Höhenunterschied), dass das Kondensat durch Schwerkraft zum Verdampfer fließen kann (Dichteunterschied zwischen Dampf und Flüssigkeit). Es entsteht ein Naturumlauf, der eine selbständige Ordnung des flüssigen Arbeitsmediums einstellt. Das bedeutet, dass flüssiges Arbeitsmedium im tiefliegenden Anlagenteil (u.a. vor der Pumpe) gesammelt wird, und dass vor einem Start der Pumpe ausreichend Arbeitsmedium mit hinreichender Vorlaufhöhe vor der Pumpe vorhanden ist.It is advantageous here that a lead height sufficient for trouble-free starting of the pump is provided when the thermodynamic cycle device is started up. The closed circuit (with shut-off devices that could prevent the circulation not being closed when the system is at a standstill) is constructed in such a way that the fluid in the circuit flows through gravitational forces to the evaporator without additional drive. When the system is started from standstill, heat is applied to the evaporator so that it is the warmest component in the system. The working medium contained therein is evaporated and possibly also overheated and the resulting steam heats all parts of the system located above the evaporator. If liquid medium has accumulated in other parts of the system (e.g. in an expansion machine, horizontal pipes or bags of liquid), it is evaporated as a result of the heating and then condenses at the coldest point in the system. The coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be controlled as the coldest point by regulating the heat sink can be set (e.g. start of cooling on the condenser). The working medium flows from the condenser as a template to the feed pump. The geometric arrangement is chosen (difference in height) so that the condensate can flow to the evaporator by gravity (difference in density between vapor and liquid). A natural circulation is created, which sets an independent order of the liquid working medium. This means that liquid working medium is collected in the low-lying part of the system (including in front of the pump) and that before the pump is started, there is sufficient working medium with a sufficient flow height in front of the pump.

Ein gegenüber dem Kondensator tiefliegender Verdampfer und ggf. auch tiefer liegende Rohrleitungen stellen eine Möglichkeit dar, dass das im Kreislauf befindliche Fluid durch Gravitationskräfte ohne zusätzlichen Antrieb zum Verdampfer strömt.An evaporator located lower than the condenser and possibly also lower-lying pipelines represent a possibility for the fluid in the circuit to flow to the evaporator due to gravitational forces without additional drive.

Eine Weiterbildung besteht darin, dass der geschlossene Kreislauf zwischen Kondensator und Verdampfer auch die nichtgestartete Pumpe umfasst und/oder wobei der geschlossene Kreislauf zwischen Verdampfer und Kondensator auch die Expansionsmaschine umfasst. Auf diese Weise kann bei im Stillstand fluiddurchlässigen Bauformen der Pumpe das Arbeitsmedium im Kreislauf auch durch die Pumpe strömen, ohne dass diese gestartet ist.A further development consists in that the closed circuit between the condenser and the evaporator also includes the non-started pump and / or wherein the closed circuit between the evaporator and the condenser also includes the expansion machine. In this way, if the pump is of a design that is permeable to fluid when the pump is at a standstill, the working medium can also flow in the circuit through the pump without the pump having started.

Nach einer anderen Weiterbildung kann sich die Pumpe in einer geringeren Höhe als der Verdampfer befinden. Somit kann die Vorlaufhöhe weiter gesteigert werden.According to another development, the pump can be located at a lower height than the evaporator. Thus, the lead height can be increased further.

Eine andere Weiterbildung besteht darin, dass die thermodynamische Kreisprozessvorrichtung weiterhin ein Bypassventil zur Umgehung der Expansionsmaschine im Kreislauf umfassen kann.Another development consists in the fact that the thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the expansion machine in the circuit.

Gemäß einer anderen Weiterbildung kann die thermodynamische Kreisprozessvorrichtung weiterhin einen Speisebehälter zum Sammeln des kondensierten Arbeitsmediums umfassen, wobei der Speisebehälter im geschlossenen Kreislauf zwischen Kondensator und Verdampfer, insbesondere zwischen Kondensator und Pumpe angeordnet ist.According to another development, the thermodynamic cycle device can furthermore comprise a feed container for collecting the condensed working medium, the feed container being arranged in the closed circuit between the condenser and the evaporator, in particular between the condenser and the pump.

Eine andere Weiterbildung besteht darin, dass weiterhin wenigstens ein Sensor zum Messen der Vorlaufhöhe des Arbeitsmediums vor der Pumpe, insbesondere ein Sensor zum Messen des Drucks des Arbeitsmediums und/oder ein Sensor zum Messen der Temperatur des Arbeitsmediums vorgesehen sein können.Another development is that at least one sensor for measuring the flow height of the working medium upstream of the pump, in particular a sensor for measuring the pressure of the working medium and / or a sensor for measuring the temperature of the working medium, can also be provided.

Nach einer anderen Weiterbildung kann die thermodynamische Kreisprozessvorrichtung weiterhin ein Bypassventil zur Umgehung der Pumpe im Kreislauf umfassen.According to another development, the thermodynamic cycle device can furthermore comprise a bypass valve for bypassing the pump in the circuit.

Gemäß einer anderen Weiterbildung kann die thermodynamische Kreisprozessvorrichtung weiterhin einen Rekuperator zum Übertragen von Wärmeenergie von dem entspannten Arbeitsmedium auf das zwischen Pumpe und Verdampfer gepumpte Arbeitsmediums im Betrieb der thermodynamischen Kreisprozessvorrichtung umfassen, wobei der Rekuperator zwischen Expansionsmaschine und Kondensator angeordnet ist; und ein Bypassventil zum Überbrücken des Rekuperators im Kreislauf, wobei das Bypassventil zum Überbrücken des Rekuperators insbesondere auch das Bypassventil zur Umgehung der Pumpe sein kann.According to another development, the thermodynamic cycle device can furthermore comprise a recuperator for transferring thermal energy from the expanded working medium to the working medium pumped between pump and evaporator during operation of the thermodynamic cycle device, the recuperator being arranged between expansion machine and condenser; and a bypass valve for bypassing the recuperator in the circuit, wherein the bypass valve for bypassing the recuperator can in particular also be the bypass valve for bypassing the pump.

Wenn ein Rekuperator eingesetzt wird, und beispielsweise die Rohrleitung zwischen Pumpe und Verdampfer über den Rekuperator läuft, um das darin gepumpte Arbeitsmedium im Betrieb (Normalbetrieb) der thermodynamischen Kreisprozessvorrichtung mit Wärme aus dem entspannten verdampften Arbeitsmedium nach der Expansionsmaschine und vor dem Kondensator vorzuwärmen, so muss zum erfindungsgemäßen Starten der Kreisprozessvorrichtung ein Bypassventil zum Überbrücken des Rekuperators vorgesehen sein, weil ansonsten durch den Rekuperator, der höher als der Verdampfer angeordnet ist, kein Naturumlauf erfolgen kann.If a recuperator is used and, for example, the pipeline between the pump and evaporator runs over the recuperator in order to preheat the working medium pumped therein during operation (normal operation) of the thermodynamic cycle device with heat from the expanded evaporated working medium downstream of the expansion machine and upstream of the condenser, then it must To start the cycle device according to the invention, a bypass valve for bypassing the recuperator can be provided because otherwise no natural circulation can occur through the recuperator, which is arranged higher than the evaporator.

Die oben genannte Aufgabe wird weiterhin gelöst durch ein Verfahren nach Anspruch 9.The above-mentioned object is also achieved by a method according to claim 9.

Das erfindungsgemäße Verfahren zum Starten einer erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung oder einer deren Weiterbildungen umfasst die folgenden Schritte: Beaufschlagen des Verdampfers mit Wärme und Verdampfen des Arbeitsmediums im Verdampfer, optional zusätzlich auch Überhitzen des Arbeitsmediums im Verdampfer, wodurch Arbeitsmedium zum Kondensator strömt; Kondensieren des Arbeitsmediums im Kondensator; Starten der Pumpe bei Erreichen oder Überschreiten einer vorbestimmten Net Positive Suction Head-Vorlaufhöhe des Arbeitsmediums an der Pumpe.The method according to the invention for starting a thermodynamic cycle device according to the invention or one of its developments comprises the following steps: applying heat to the evaporator and evaporating the working medium in the evaporator, optionally also superheating the working medium in the evaporator, whereby working medium flows to the condenser; Condensation of the working medium in the condenser; Starting the pump when a predetermined Net Positive Suction Head flow height of the working medium at the pump is reached or exceeded.

Das erfindungsgemäße Verfahren hat die Vorteile, die bereits im Zusammenhang mit der erfindungsgemäßen Vorrichtung beschrieben worden sind.The method according to the invention has the advantages that have already been described in connection with the device according to the invention.

Das erfindungsgemäße Verfahren kann dahingehen weitergebildet werden, dass das Starten der Pumpe nach Erreichen oder Überschreiten einer gemessenen Vorlaufhöhe erfolgt oder nach einer vorbestimmten Zeit nach dem Beginn des Beaufschlagens des Verdampfers mit Wärme erfolgen kann.The method according to the invention can be developed in such a way that the pump is started after reaching or exceeding a measured flow height or after a predetermined time after the start of the application of heat to the evaporator.

Nach einer anderen Weiterbildung kann das Verfahren die folgenden weiteren Schritte umfassen: Einstellen der Kondensationstemperatur auf einen ersten Temperaturwert; und Einstellen der Kondensationstemperatur auf einen zweiten Temperaturwert nachdem das kondensierte Arbeitsmedium mit dem ersten Temperaturwert die Pumpe erreicht hat; wobei der zweite Temperaturwert größer als der erste Temperaturwert ist. Die kälteste Stelle im System ist im Normalfall der Kondensator. Sollte dies im Stillstand nicht der Fall sein, kann der Kondensator auf diese Weise z.B. über eine Regelung der Wärmesenke als kälteste Stelle eingestellt werden (z.B. Start der Kühlung am Kondensator).According to another development, the method can include the following further steps: setting the condensation temperature to a first temperature value; and setting the condensation temperature to a second temperature value after the condensed working medium with the first temperature value has reached the pump; wherein the second temperature value is greater than the first temperature value. The coldest point in the system is usually the condenser. If this is not the case at standstill, the condenser can be set as the coldest point in this way, e.g. by regulating the heat sink (e.g. starting cooling on the condenser).

Gemäß einer anderen Weiterbildung kann das Einstellen der Kondensationstemperatur auf einen zweiten Temperaturwert durch eine Absenkung der Drehzahl eines Kondensatorlüfters und/oder durch Absenkung eines Kühlwassermassenstroms oder des Luftmassenstroms und/oder durch eine Temperaturerhöhung des Kühlwassermassenstroms oder des Luftmassenstroms durch den Kondensator erfolgen. Es können alternativ oder zusätzlich auch weitere Maßnahmen, wie z.B. das Schließen von Jalousien oder Klappen des Kondensators zu einer Erhöhung der Kondensationstemperatur führen.According to another development, the condensation temperature can be set to a second temperature value by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser. As an alternative or in addition, further measures such as the Closing the blinds or flaps of the condenser lead to an increase in the condensation temperature.

Eine andere Weiterbildung besteht darin, dass die weiteren Schritte Öffnen des Expansionsmaschinen-Bypassventils vor oder zeitgleich mit dem Beaufschlagen des Verdampfers mit Wärme oder Öffnen des Expansionsmaschinen-Bypassventils eine vorbestimmte erste Zeitdauer nach dem Beaufschlagen des Verdampfers mit Wärme oder nach Erreichen eines vorbestimmten ersten Drucks an der Expansionsmaschine; und Schließen des Expansionsmaschinen-Bypassventils nach oder zeitgleich mit dem Start der Pumpe oder Schließen des Expansionsmaschinen-Bypassventils eine vorbestimmte zweite Zeitdauer vor dem Start der Pumpe oder nach Erreichen eines vorbestimmten zweiten Drucks an der Expansionsmaschine vorgesehen sein können.Another development is that the further steps of opening the expansion machine bypass valve before or at the same time as applying heat to the evaporator or opening the expansion machine bypass valve a predetermined first time period after applying heat to the evaporator or after reaching a predetermined first pressure the expansion machine; and closing the expansion machine bypass valve after or simultaneously with the start of the pump or closing the expansion machine bypass valve a predetermined second time period before the start of the pump or after reaching a predetermined second pressure on the expansion machine can be provided.

Nach einer anderen Weiterbildung können die folgenden weiteren Schritte vorgesehen sein: Öffnen des Pumpen-Bypassventils und/oder Rekuperator-Bypassventils vor, während oder eine vorbestimmte dritte Zeitdauer nach dem Beaufschlagen des Verdampfers mit Wärme; und Schließen des Pumpen-Bypassventils und/oder Rekuperator-Bypassventils nach, während oder eine vorbestimmte vierte Zeitdauer vor dem Start der Pumpe.According to another development, the following further steps can be provided: opening the pump bypass valve and / or recuperator bypass valve before, during or for a predetermined third period of time after the evaporator is subjected to heat; and closing the pump bypass valve and / or recuperator bypass valve after, during or a predetermined fourth time period before the start of the pump.

Die genannten Weiterbildungen können einzeln eingesetzt oder geeignet miteinander kombiniert werden.The above-mentioned developments can be used individually or suitably combined with one another.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments as well as advantages of the present invention are explained in more detail below with reference to the drawings. It should be understood that the embodiments do not exhaust the scope of the present invention. It is further understood that some or all of the features described below can also be combined with one another in other ways.

Zeichnungendrawings

Figur 1Figure 1
zeigt die Höhenanordnung in einer thermodynamischen Kreisprozessvorrichtung, insbesondere in einem ORC-System, gemäß der vorliegenden Erfindung.shows the height arrangement in a thermodynamic cycle device, in particular in an ORC system, according to the present invention.
Figur 2Figure 2
zeigt eine Ausführungsform mit kombinierbaren vorteilhaften Weiterbildungen der thermodynamischen Kreisprozessvorrichtung gemäß Figur 1.shows an embodiment with combinable advantageous developments of the thermodynamic cycle device according to FIG Figure 1 .
Figur 3Figure 3
zeigt eine andere Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung.shows another embodiment of the thermodynamic cycle device according to the invention.
AusführungsformenEmbodiments

Figur 1 zeigt eine thermodynamische Kreisprozessvorrichtung, insbesondere ein ORC-System und die höhengeordnete Anordnung der Hauptkomponenten. Das System umfasst eine Speisepumpe 1, die das flüssige Arbeitsmedium unter großer Druckerhöhung zu einem Verdampfer 2 fördert, in dem das Arbeitsmedium verdampft wird, eine Expansionsmaschine 3, in welcher der unter hohem Druck stehende Dampf entspannt wird und dabei mechanische Energie erzeugt wird. Diese kann beispielsweise über einen Generator G in elektrische Energie gewandelt werden. Aus dem Kondensator 4, in dem der Niederdruckdampf aus der Expansionsmaschine 3 verflüssigt wird, gelangt das flüssige Arbeitsmedium über einen möglichen (optionalen) Vorratsbehälter (Speisebehälter) und eine Saugleitung wieder zur Speisepumpe 1 des Systems. Figure 1 shows a thermodynamic cyclic process device, in particular an ORC system and the vertical arrangement of the main components. The system comprises a feed pump 1, which conveys the liquid working medium with a large increase in pressure to an evaporator 2 in which the working medium is evaporated, an expansion machine 3 in which the high pressure steam is expanded and mechanical energy is generated in the process. This can be converted into electrical energy via a generator G, for example. From the condenser 4, in which the low-pressure steam from the expansion machine 3 is liquefied, the liquid working medium is returned to the feed pump 1 of the system via a possible (optional) storage container (feed container) and a suction line.

Im Folgenden wird eine Beschreibung des Anfahrvorgangs gegeben und die Problemlösung durch die beschriebene Anordnung dargelegt.A description of the start-up process is given below and the solution to the problem by means of the described arrangement is shown.

Automatische Ordnung des flüssigen Arbeitsmediums: Die Anlage soll aus dem Stillstand anfahren. Zunächst wird der Verdampfer mit Wärme beaufschlagt (Sollte die Wärme nicht ungesteuert z.B. durch dauerhafte Durchströmung mit einem Wärmeträgermedium am Verdampfer anliegen, muss diese zugeschaltet werden). Im Verdampfer bildet sich Dampf, der die Anlagenkomponenten erwärmt, in anderen Anlagenteilen (z.B. in Expansionsmaschine, horizontalen Rohren oder Flüssigkeitssäcken) flüssig lagerndes Arbeitsmedium verdampft und mit diesen zusammen zum Kondensator strömt und dort nach einiger Zeit verflüssigt wird. Es passiert somit eine Fluidverlagerung vom Verdampfer zum Kondensator. Dies führt zu einem Anstieg des Fluidspiegels auf der Kondensatorseite, was wiederum zu einem Druckgradienten von der kalten Kondensatorseite zur warmen Verdampferseite führt. Durch die beschriebene Verbindung (ohne geschlossene Absperreinrichtungen) wird eine Strömung erzeugt, die Medium aus dem Kondensator über die Pumpe zum Verdampfer strömen lässt. Die Strecke muss dabei so konzipiert sein, dass sich die Strömung allein durch die Schwerkraft einstellt. Es müssen hierfür die Druckverluste der verbauten Komponenten oder Öffnungsdrücke verbauter Ventile beachtet werden.Automatic organization of the liquid working medium: The system should start up from a standstill. First of all, the evaporator is exposed to heat (if the heat is not applied to the evaporator in an uncontrolled manner, e.g. through a permanent flow of a heat transfer medium, this must be switched on). In the evaporator, steam forms, which heats the system components, in others System parts (e.g. in expansion machines, horizontal pipes or bags of liquid), the liquid-bearing working medium evaporates and flows together with these to the condenser, where it is liquefied after a while. There is thus a shift in fluid from the evaporator to the condenser. This leads to an increase in the fluid level on the condenser side, which in turn leads to a pressure gradient from the cold condenser side to the warm evaporator side. The connection described (without closed shut-off devices) creates a flow that allows the medium to flow from the condenser to the evaporator via the pump. The route must be designed in such a way that the flow is established solely by gravity. For this, the pressure losses of the built-in components or the opening pressures of built-in valves must be taken into account.

Erzeugung von Vorlaufhöhe und Systemstart: Die geordnete Verteilung von flüssigem Medium (wie oben beschrieben) und sammeln einer ausreichende Menge an Arbeitsmedium vor der Pumpe garantiert allerdings noch nicht, dass das Medium mit ausreichender Vorlaufhöhe (NPSHa) an der Pumpe anliegt um den Start der Pumpe zu ermöglichen. Um eine ausreichende Vorlaufhöhe herzustellen, kann folgendermaßen vorgegangen werden. Durch eine Kühlung des Kondensators (durch eine Wärmesenke wie z.B. Umgebungsluft oder Kühlwasser) wird zunächst die Kondensationstemperatur und folglich der Druck im Kondensator verringert. Kondensat mit geringer Temperatur strömt aus dem Kondensator in den Speisebehälter (falls vorhanden) und folgend in die Zuleitung zur Pumpe. Nach einiger Zeit erreicht das Fluid mit der sich einstellenden niedrigen Kondensationstemperatur durch den Naturumlauf die Pumpe. Nun wird, z.B. durch eine Regelung der Wärmesenke, die Temperatur im Kondensator angehoben womit auch der Druck im Kondensator steigt. Dies kann z.B. durch eine Absenkung der Drehzahl eines Kondensatorlüfters und/oder durch Absenkung eines Kühlwassermassenstroms oder des Luftmassenstroms und/oder durch eine Temperaturerhöhung des Kühlwassermassenstroms oder des Luftmassenstroms durch den Kondensator erfolgen. Durch das kältere, an der Pumpe anliegende Fluid, und dem gestiegenen Druck im Kondensator, erhöht sich die anliegende Vorlaufhöhe an der Pumpe. Nach Überschreitung eines Grenzwertes der Vorlaufhöhe (NPSHa>NPSHr) oder nach einer gewissen, erfahrungsbasierten Zeit, kann die Pumpe gestartet werden um den regulären Anfahrprozess des ORC-Systems zu beginnen.Generation of flow height and system start: The orderly distribution of liquid medium (as described above) and collecting a sufficient amount of working medium in front of the pump does not guarantee, however, that the medium is present at the pump with sufficient flow height (NPSH a ) at the start of the Allow pump. The following procedure can be used to create a sufficient advance height. By cooling the condenser (using a heat sink such as ambient air or cooling water), the condensation temperature and consequently the pressure in the condenser are initially reduced. Low temperature condensate flows from the condenser into the feed tank (if present) and then into the feed line to the pump. After some time, the fluid reaches the pump with the low condensation temperature that sets in due to the natural circulation. Now, for example by regulating the heat sink, the temperature in the condenser is raised, which also increases the pressure in the condenser. This can be done, for example, by lowering the speed of a condenser fan and / or by lowering a cooling water mass flow or the air mass flow and / or by increasing the temperature of the cooling water mass flow or the air mass flow through the condenser. Due to the colder fluid applied to the pump and the increased pressure in the condenser, the flow height applied to the pump increases. After exceeding a limit value of the flow height (NPSH a > NPSH r ) or after a certain, experience-based time, the pump can be started in order to begin the regular start-up process of the ORC system.

Der Stand der Technik lehrt im Gegensatz dazu (wie oben dargelegt), dass Dampfleitungen stets fallend zum Kondensator / Speisebehälter zu verlegen sind.In contrast, the prior art teaches (as set out above) that steam lines must always be laid with a downward slope to the condenser / feed container.

Die Vorrichtung nach Figur 2 umfasst zur Verbesserung der in Figur 1 dargestellten Anordnung zusätzliche Komponenten. Diese und deren Funktion werden anhand von im Folgenden beschrieben.The device according to Figure 2 includes to improve the in Figure 1 arrangement shown additional components. These and their function are described below with reference to.

Komponente 5 bezeichnet ein Bypassventil an der Expansionsmaschine 3. Dieses Bypassventil 5 über die Expansionsmaschine ermöglicht z.B. bei volumetrischen Expansionsmaschinen, dass eine ausreichende Menge vom im Verdampfer erzeugten Dampf zum Kondensator 4 strömen kann. Das Bypassventil kann außerdem als Not-Abfahrventil dienen, das im Gefahrenfall eine schnelle Entspannung des Hochdruckdampfes vor der Expansionsmaschine ermöglicht. Das Bypassventil kann z.B. als stromlos geöffnetes Magnetventil ausgeführt werden. Im Falle des Anfahrens mit der beschriebenen Anordnung der Komponenten bleibt das Ventil geöffnet und ermöglicht somit den natürlichen Umlauf des Arbeitsmediums. Das Ventil wird für die beschriebene Funktion benötigt, wenn die Arbeitsmedienmenge über eine stillstehende (oder auch drehende) Expansionsmaschine nicht für die angestrebte natürliche Umwälzung des Fluids ausreicht.Component 5 designates a bypass valve on the expansion machine 3. This bypass valve 5 via the expansion machine enables, e.g. in volumetric expansion machines, that a sufficient amount of the vapor generated in the evaporator can flow to the condenser 4. The bypass valve can also serve as an emergency shutdown valve, which in the event of danger enables the high-pressure steam to be rapidly released in front of the expansion machine. The bypass valve can, for example, be designed as a normally open solenoid valve. When starting up with the described arrangement of the components, the valve remains open and thus enables the natural circulation of the working medium. The valve is required for the function described if the amount of working medium via a stationary (or rotating) expansion machine is not sufficient for the desired natural circulation of the fluid.

Die Komponente 6 bezeichnet einen Speisebehälter. Der Speisebehälter kann benötigt werden um in jedem Betriebszustand ausreichend Arbeitsmedium an der Speisepumpe anliegend zur Verfügung zu stellen. Er puffert die Gesamtmenge Arbeitsmedium und verhindert somit den Stillstand der Anlage bei Verlust von Arbeitsmedium, Ungleichverteilung von Arbeitsmedium, unterschiedlichen Dampfdichten und damit Dampfmassen bei Betrieb und Stillstand oder ungenauer Befüllung des Systems. In Verbindung mit der Benutzung mit Inertgas fällt dem Behälter eine weitere Funktion zu. Er erhöht das Gasvolumen im System. Damit kann die Vorlaufhöhe über alle Betriebszustände hinweg relativ konstant gehalten werden (siehe dazu auch die Offenbarung in DE 10 2009 053 390 B3 ). Bei Verwendung von Inertgas zur Verhinderung von Kavitation ergibt sich ein weiterer Vorteil durch die beschriebene Anordnung im Naturumlauf. Eine stetige Umwälzung von Arbeitsmedium, die alleine durch den Temperaturunterschied und den daraus resultierenden Druckunterschied zwischen Verdampfer und Kondensator hervorgerufen wird und unabhängig vom Betrieb der Speisepumpe ist, sorgt dafür, dass sich das im Kreislauf befindliche Inertgas automatisch im Kondensator und Speisebehälter sammelt. Wie in DE 10 2009 053 390 B3 beschrieben, erhöht das Inertgas, das im Speisebehälter vorliegt, aufgrund seines konzentrationsabhängigen Partialdrucks die Vorlaufhöhe zur Pumpe. Da sich das Inertgas im Stillstand durch Diffusion in der gesamten Anlage verteilt und somit der Partialdruck im Speisebehälter sinkt, kann ohne eine Konzentration des Inertgases im Speisebehälter durch z.B. den beschriebenen Naturumlauf ein kavitationsfreies Anfahren der Pumpe aus dem Stillstand nicht immer gewährleistet werden. Dies muss durch eine größere Inertgasmenge und / oder einen größeren Speisebehälter mit größerem Dampfvolumen kompensiert werden, so dass das System auch aus dem Stillstand sicher angefahren werden kann. Die nötige Inertgasmenge kann durch das beschriebene Verfahren verringert werden, was zu einer steigenden Druckdifferenz an der Expansionsmaschine und einer höheren erzeugten Leistung führt (Steigerung der Systemeffizienz).The component 6 denotes a feed container. The feed tank can be required in order to provide sufficient working medium in contact with the feed pump in every operating state. It buffers the total amount of working medium and thus prevents the system from coming to a standstill in the event of loss of working medium, uneven distribution of working medium, different steam densities and thus steam masses during operation and standstill or inaccurate filling of the system. In connection with the use with inert gas, the container has a further function. It increases the volume of gas in the system. This means that the advance height can be kept relatively constant across all operating states (see also the disclosure in DE 10 2009 053 390 B3 ). When using inert gas to prevent cavitation, there is a further advantage due to the described arrangement in natural circulation. A constant circulation of the working medium, which is caused solely by the temperature difference and the resulting pressure difference between the evaporator and the condenser and regardless of the When the feed pump is in operation, the inert gas in the circuit is automatically collected in the condenser and feed tank. As in DE 10 2009 053 390 B3 described, the inert gas that is present in the feed tank increases the flow height to the pump due to its concentration-dependent partial pressure. Since the inert gas is distributed throughout the entire system by diffusion during standstill and thus the partial pressure in the feed tank drops, a cavitation-free start-up of the pump from standstill cannot always be guaranteed without a concentration of the inert gas in the feed tank through the natural circulation described, for example. This must be compensated for by a larger amount of inert gas and / or a larger feed container with a larger steam volume, so that the system can also be started safely from standstill. The required amount of inert gas can be reduced by the method described, which leads to an increasing pressure difference on the expansion machine and a higher output generated (increase in system efficiency).

Die Komponente 7 bezeichnet Sensoren zur Messung der anliegenden Vorlaufhöhe (NPSHa). Durch eine mögliche Anbringung von Sensoren (hier z.B. Druck P und Temperatur T) kann die Vorlaufhöhe (NPSHa) bestimmt werden. Dies kann als Startkriterium für den Start der Pumpe beim beschriebenen Anfahrvorgang des Systems dienen.The component 7 designates sensors for measuring the applied flow height (NPSH a ). By attaching sensors (here for example pressure P and temperature T), the flow height (NPSH a ) can be determined. This can serve as a start criterion for starting the pump during the described start-up process of the system.

Die Komponente 8 bezeichnet ein Bypassventil um die Speisepumpe. Dieses Ventil 8 zur Umgehung der Speisepumpe kann im beschriebenen Fall verwendet werden, um eine ausreichende Strömung von flüssigem Arbeitsmedium vom Kondensator zum Verdampfer zu gewährleisten. Dies wird beispielsweise notwendig, wenn die Speisepumpe auf Grund ihrer Konstruktion / Bauform (z.B. Verdrängerpumpe) im Stillstand undurchlässig für Medium ist. Ein weiterer Grund könnte die große zu überwindende Höhendifferenz in der Pumpe (z.B. in vertikalen mehrstufigen Kreiselpumpen) sein, welche eine natürliche Strömung verhindert. Das Bypassventil kann schaltbar oder regelbar gestaltet werden. Außerdem kann es als federbelastetes Ventil mit einstellbaren oder festen Öffnungs- und Schließdrücken ausgeführt werden. Das Ventil öffnet somit erst bei einer gewissen anliegenden Druckdifferenz zwischen Saug- und Druckseite der Pumpe und bleibt im Betrieb der Anlage geschlossen oder das Ventil ist bis zu einer gewissen Druckdifferenz zwischen Druck- und Saugseite geöffnet und schließt automatisch bei Betrieb ab dieser gewissen Druckdifferenz zwischen Druck- und Saugseite. Die Druckdifferenz zum Öffnen des Ventils muss so klein sein, dass eine natürliche Umwälzung möglich ist. Außerdem kann das Ventil als Sicherheitsventil im Gefahrenfall dienen. Durch das schnelle Öffnen des Ventils im Gefahrenfall kann Medium aus dem Verdampfer in Richtung Kondensator fließen. Dies verhindert einen übermäßigen Druckanstieg im Verdampfer durch weiteres Verdampfen von Arbeitsmedium. Um Zurückströmen von Arbeitsmedium vom Verdampfer zur Pumpe in gewissen Betriebspunkten zu verhindern, beispielsweise zum Schutz der Pumpe vor heißem Arbeitsmedium, kann zudem ein Rückschlagventil (nicht in Zeichnung dargestellt) stromabwärts der Pumpe eingesetzt werden.Component 8 denotes a bypass valve around the feed pump. This valve 8 for bypassing the feed pump can be used in the case described in order to ensure a sufficient flow of liquid working medium from the condenser to the evaporator. This is necessary, for example, if the feed pump is impermeable to the medium due to its design (e.g. positive displacement pump) when it is at a standstill. Another reason could be the large height difference to be overcome in the pump (e.g. in vertical multistage centrifugal pumps), which prevents a natural flow. The bypass valve can be designed to be switchable or controllable. It can also be designed as a spring-loaded valve with adjustable or fixed opening and closing pressures. The valve therefore only opens when there is a certain pressure difference between the suction and pressure side of the pump and remains closed during operation of the system or the valve is up to a certain pressure difference between the pressure and suction side opens and closes automatically when operating from this certain pressure difference between pressure and suction side. The pressure difference for opening the valve must be so small that natural circulation is possible. In addition, the valve can serve as a safety valve in the event of danger. By opening the valve quickly in the event of danger, medium can flow out of the evaporator in the direction of the condenser. This prevents an excessive increase in pressure in the evaporator due to further evaporation of the working medium. In order to prevent the working medium from flowing back from the evaporator to the pump at certain operating points, for example to protect the pump from hot working medium, a check valve (not shown in the drawing) can also be used downstream of the pump.

In Figur 3 ist eine Ausführungsform der thermodynamischen Kreisprozessvorrichtung mit einem Rekuperator 9 dargestellt. Der Rekuperator 9 dient zum Übertragen von Wärmeenergie von dem entspannten Arbeitsmedium auf das zwischen Pumpe 1 und Verdampfer 2 gepumpte Arbeitsmedium im Betrieb der thermodynamischen Kreisprozessvorrichtung, wobei der Rekuperator 9 zwischen Expansionsmaschine 3 und Kondensator 4 angeordnet ist. Weiterhin ist ein Bypassventil 8 zum Überbrücken des Rekuperators 9 im Kreislauf vorgesehen, wobei das Bypassventil 8 zum Überbrücken des Rekuperators 9 hier gleichzeitig auch das Bypassventil 8 zur Umgehung der Pumpe 1 ist. Wenn die Rohrleitung zwischen Pumpe 1 und Verdampfer 2 über den Rekuperator 9 läuft, um das darin gepumpte Arbeitsmedium im Normalbetrieb der thermodynamischen Kreisprozessvorrichtung mit Wärme aus dem entspannten verdampften Arbeitsmedium zwischen der Expansionsmaschine 3 und dem Kondensator 4 vorzuwärmen, so muss zum erfindungsgemäßen Starten der Kreisprozessvorrichtung das Bypassventil 8 zum Überbrücken des Rekuperators 9 geöffnet sein, weil durch den Rekuperator 9, der höher als der Verdampfer 2 angeordnet ist, ansonsten kein Naturumlauf des Arbeitsmediums erfolgen kann.In Figure 3 an embodiment of the thermodynamic cycle device with a recuperator 9 is shown. The recuperator 9 is used to transfer thermal energy from the expanded working medium to the working medium pumped between pump 1 and evaporator 2 during operation of the thermodynamic cycle device, the recuperator 9 being arranged between expansion machine 3 and condenser 4. Furthermore, a bypass valve 8 is provided for bypassing the recuperator 9 in the circuit, the bypass valve 8 for bypassing the recuperator 9 here also being the bypass valve 8 for bypassing the pump 1. If the pipeline between pump 1 and evaporator 2 runs over recuperator 9 in order to preheat the working medium pumped therein in normal operation of the thermodynamic cycle device with heat from the expanded vaporized working medium between expansion machine 3 and condenser 4, then the cycle device must be started according to the invention Bypass valve 8 for bridging the recuperator 9 must be open, because otherwise no natural circulation of the working medium can occur through the recuperator 9, which is arranged higher than the evaporator 2.

Zusammenfassend ist festzustellen: Das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung (Höhenanordnung) stellen sicher, dass der ORC zuverlässig und schnell gestartet werden kann. Das Verfahren benötigt in der einfachen Anordnung keinerlei Sensoren oder Aktoren (z.B. Ventile) zum sicheren Start. Durch die automatische Verteilung des Arbeitsmediums im System kann im Vergleich zu anders angeordneten Systemen (z.B. mit erhöht angebrachten Verdampfer und tiefliegenden Kondensator oder Expansionsmaschine) die Gesamtmenge an Arbeitsmedium im System reduziert werden, da durch die antriebslose Ordnung von flüssigen Arbeitsmedium immer ausreichend Fluid in der Saugleitung der Pumpe vorliegt. Die automatische Aufheizung des Systems durch den Naturumlauf bei Wärmezufuhr sorgt für eine Vorwärmung der Komponenten. Bei kalter Witterung kann dies den Start des Systems beschleunigen und sich verlängernd auf die Lebensdauer der Komponenten auswirken. Das sichere, kavitationsfreie Anfahren der Anlage verhindert mögliche Schäden an der Pumpe, die durch eine (Teil-) Kavitation an der Pumpe auftreten können. Durch das Verfahren kann eine ausreichende Vorlaufhöhe für die Speisepumpe im Anfahrvorgang gewährleistet werden. Somit können andere Methoden, welche ansonsten zum Erzeugen einer Vorlaufhöhe nötig wären, wegfallen bzw. deren Auswirkung auf den Wirkungsgrad der Anlage können verringert werden. Da andere Methoden (z.B. Unterkühlung des Kondensats oder Inertgaszugabe) leistungsmindernd auswirken, führt die beschriebene Methode zum Anstieg der Gesamteffizienz des ORC Systems. Durch das beschriebene Verfahren kann die Füllmenge an Arbeitsmedium eingespart werden. Die Erfahrung zeigt, dass die Startfähigkeit von ORC-Systemen sonst nur durch große Mengen an Arbeitsmedium garantiert werden kann. Das Arbeitsmedium hat mit Preisen von 20-80 €/kg einen erheblichen Einfluss auf die Wirtschaftlichkeit von ORC-Systemen. Durch geringere Inhaltsmengen können außerdem vorgeschriebene Wartungsintervalle verlängert und der Wartungsaufwand reduziert werden (F-Gas Regulation) was zu deutlichen Kostensenkungen im Betrieb führen kann. Zu beachten ist jedoch, dass der Wärmeeintrag ins System nicht selbsthemmend - wie z.B. durch einen oben liegenden Verdampfer - gestoppt werden kann. Dies kann zwar ein Nachteil z.B. für Wartungstätigkeiten sein, wobei gegebenenfalls der Wärmeeintrag über andere, zusätzliche Maßnahmen verhindert werden muss.In summary, the following can be stated: The method according to the invention and the device according to the invention (height arrangement) ensure that the ORC can be started reliably and quickly. In the simple arrangement, the method does not require any sensors or actuators (eg valves) for a safe start. Due to the automatic distribution of the working medium in the system, the Compared to differently arranged systems (e.g. with elevated evaporator and low-lying condenser or expansion machine), the total amount of working medium in the system can be reduced, since there is always sufficient fluid in the suction line of the pump due to the non-drive arrangement of the liquid working medium. The automatic heating of the system through the natural circulation when heat is supplied ensures that the components are preheated. In cold weather, this can accelerate the start of the system and extend the service life of the components. The safe, cavitation-free start-up of the system prevents possible damage to the pump that can occur as a result of (partial) cavitation on the pump. The method can ensure a sufficient flow height for the feed pump in the start-up process. This means that other methods that would otherwise be necessary to generate a flow height can be omitted or their effect on the efficiency of the system can be reduced. Since other methods (e.g. undercooling of the condensate or the addition of inert gas) reduce the performance, the method described leads to an increase in the overall efficiency of the ORC system. The filling amount of working medium can be saved by the method described. Experience shows that the startability of ORC systems can otherwise only be guaranteed with large quantities of working medium. With prices of 20-80 € / kg, the working medium has a significant influence on the profitability of ORC systems. With smaller amounts of content, prescribed maintenance intervals can also be extended and the maintenance effort reduced (F-Gas Regulation), which can lead to significant cost reductions in operation. It should be noted, however, that the heat input into the system cannot be stopped in a self-locking manner - for example, by an overhead evaporator. Although this can be a disadvantage, for example for maintenance activities, the introduction of heat may have to be prevented by other, additional measures.

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are exemplary only, and the full scope of the present invention is defined by the claims.

Claims (14)

  1. A thermodynamic cycle apparatus, in particular an organic Rankine cycle apparatus, comprising:
    a working medium;
    an evaporator (2) for evaporating and, optionally, additionally superheating the working medium;
    an expansion machine (3) for generating mechanical energy while expanding the evaporated working medium;
    a condenser (4) for condensing and, optionally, additionally subcooling the working medium, in particular the working medium expanded in the expansion machine; and
    a pump (1) for pumping the condensed working medium to the condenser when the thermodynamic cycle apparatus is in operation;
    wherein the evaporator (2) is located on a lower level than the condenser (4), such that, prior to starting the pump (1), the condensed working medium can flow from the condenser (4) to the evaporator (2) by force of gravity and the working medium can circulate in a closed circuit via the evaporator (2) and the condenser (4), whereby at least a predetermined minimum head height of the liquid working medium can be provided at the pump (1);
    characterized in that
    the thermodynamic cycle apparatus is further configured to provide the predetermined minimum head of the liquid working medium at the pump (1) by means of:
    a reduction of a pressure in the condenser (4) by cooling the condenser (4), and thereafter
    increasing the pressure in the condenser (4) by means of (i) lowering a speed of a fan of the condenser (4) and/or by means of (ii) reducing a cooling water mass flow or an air mass flow through the condenser (4) and/or by means of (iii) increasing a temperature of the cooling water mass flow or the air mass flow through the condenser (4).
  2. The thermodynamic cycle apparatus according to claim 1, wherein the closed circuit between the condenser and the evaporator also comprises the pump and/or wherein the closed circuit between the evaporator and the condenser also comprises the expansion machine.
  3. The thermodynamic cycle apparatus according to one of the claims 1 to 2, wherein the pump is located on a lower level than the evaporator.
  4. The thermodynamic cycle apparatus according to one of the claims 1 to 3, further comprising a bypass valve (5) for bypassing the expansion machine in the circuit.
  5. The thermodynamic cycle apparatus according to one of the claims 1 to 4, further comprising a feed tank (6) for collecting the condensed working medium, the feed tank being arranged in the closed circuit between the condenser and the evaporator, in particular between the condenser and the pump.
  6. The thermodynamic cycle apparatus according to one of the claims 1 to 5, further comprising: at least one sensor for measuring the head height of the working medium upstream of the pump, in particular a sensor (7, P) for measuring the pressure of the working medium and/or a sensor (7, T) for measuring the temperature of the working medium.
  7. The thermodynamic cycle apparatus according to one of the claims 1 to 6, further comprising a bypass valve (8) for bypassing the pump in the circuit.
  8. The thermodynamic cycle apparatus according to one of the claims 1 to 7, further comprising:
    a recuperator for transferring thermal energy from the expanded working medium to the working medium pumped between the pump and the evaporator when the thermodynamic cycle apparatus is in operation, the recuperator being arranged between the expansion machine and the condenser; and
    a bypass valve for bridging the recuperator in the circuit, the bypass valve for bridging the recuperator being, in combination with claim 7, especially also provided as a bypass valve for bypassing the pump.
  9. A method of starting a thermodynamic cycle apparatus according to one of the claims 1 to 8, the method comprising the following steps:
    applying heat to the evaporator and evaporating the working medium in the evaporator, optionally, additionally superheating the working medium in the evaporator with non-started, whereby working medium is caused to flow to the condenser;
    condensing the working medium in the condenser with non-started pump;
    starting the pump when a predetermined Net Positive Suction Head height of the working medium at the pump is reached or exceeded.
  10. The method according to claim 9, wherein the pump is started when a measured head height has been reached or exceeded, or when a predetermined period of time has elapsed after the beginning of the application of heat to the evaporator.
  11. The method according to claim 9 or 10, comprising the following additional steps:
    adjusting the condensation temperature to a first temperature value; and
    adjusting the condensation temperature to a second temperature value, when the condensed working medium having the first temperature value has reached the pump;
    wherein the second temperature value is higher than the first temperature value.
  12. The method according to claim 11, wherein the adjustment of the condensation temperature to a second temperature value is effected by lowering the rotational speed of a condenser fan and/or by reducing a cooling water mass flow or the air mass flow and/or by increasing the temperature of the cooling water mass flow or of the air mass flow through the condenser.
  13. The method according to one of the claims 9 to 12, comprising the following additional steps:
    opening the expansion machine bypass valve prior to or simultaneously with the application of heat to the evaporator or opening the expansion machine bypass valve a predetermined first period of time after the application of heat to the evaporator or after a predetermined first pressure at the expansion machine has been reached; and
    closing the expansion machine bypass valve after or simultaneously with the starting of the pump or closing the expansion machine bypass valve a predetermined second period of time prior to starting the pump or after a predetermined second pressure at the expansion machine has been reached.
  14. The method according to one of the claims 9 to 13, comprising the following additional steps:
    opening the pump bypass valve and/or the recuperator bypass valve prior to, during or a predetermined third period of time subsequent to the application of heat to the evaporator; and
    closing the pump bypass valve and/or the recuperator bypass valve after, during or a predetermined fourth period of time prior to the start of the pump.
EP13189918.9A 2013-10-23 2013-10-23 Device and method for reliable starting of ORC systems Active EP2865854B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13189918.9A EP2865854B1 (en) 2013-10-23 2013-10-23 Device and method for reliable starting of ORC systems
US15/030,862 US10247046B2 (en) 2013-10-23 2014-10-20 Device and method for reliably starting ORC systems
CN201480058736.2A CN105849371B (en) 2013-10-23 2014-10-20 For reliably starting the apparatus and method for of ORC system
RU2016112366A RU2661998C2 (en) 2013-10-23 2014-10-20 Systems with organic rankine cycle (orc) reliable starting device and method
PCT/EP2014/072393 WO2015059069A1 (en) 2013-10-23 2014-10-20 Device and method for reliably starting orc systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13189918.9A EP2865854B1 (en) 2013-10-23 2013-10-23 Device and method for reliable starting of ORC systems

Publications (2)

Publication Number Publication Date
EP2865854A1 EP2865854A1 (en) 2015-04-29
EP2865854B1 true EP2865854B1 (en) 2021-08-18

Family

ID=49488478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13189918.9A Active EP2865854B1 (en) 2013-10-23 2013-10-23 Device and method for reliable starting of ORC systems

Country Status (5)

Country Link
US (1) US10247046B2 (en)
EP (1) EP2865854B1 (en)
CN (1) CN105849371B (en)
RU (1) RU2661998C2 (en)
WO (1) WO2015059069A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474272B (en) 2015-09-08 2020-08-14 阿特拉斯·科普柯空气动力股份有限公司 ORC for converting waste heat from a heat source into mechanical energy and cooling system employing the same
BE1023753B1 (en) * 2015-09-08 2017-07-11 Atlas Copco Airpower Naamloze Vennootschap ORC TO CREATE WASTE HEAT FROM A HEAT SOURCE IN MECHANICAL ENERGY AND A COOLING SYSTEM USING SUCH A ORC
FR3055149B1 (en) * 2016-08-18 2020-06-26 IFP Energies Nouvelles CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE WITH A DEVICE FOR EMERGENCY STOPPING OF THE CIRCUIT AND METHOD USING SUCH A CIRCUIT
DE102016218936B4 (en) 2016-09-29 2022-10-06 Rolls-Royce Solutions GmbH Method for operating a system for carrying out a thermodynamic cycle, system for carrying out a thermodynamic cycle and arrangement with such a system and an internal combustion engine
EP3375990B1 (en) * 2017-03-17 2019-12-25 Orcan Energy AG Model-based monitoring of the operational state of an expansion machine
CN112240224B (en) * 2019-07-19 2023-08-15 艾默生环境优化技术(苏州)有限公司 Fluid circulation system, method of operating the same, computer readable medium, and controller
CN111636937A (en) * 2020-06-22 2020-09-08 中国长江动力集团有限公司 ORC power generation device with automatic liquid level adjustment function and adjusting method thereof
CN111594280B (en) * 2020-06-23 2023-09-19 南京天加能源科技有限公司 Dual-turbine gas suspension ORC power generation system and control method
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11255315B1 (en) 2021-04-02 2022-02-22 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production
CN114439561A (en) * 2021-12-20 2022-05-06 华电电力科学研究院有限公司 Boiler flue gas waste heat recovery power generation system and method thereof
CN114483237B (en) * 2022-01-20 2024-03-12 重庆江增船舶重工有限公司 Liquid level balance control system and method for evaporator of organic working medium distributed energy supply system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2053376C1 (en) * 1993-04-09 1996-01-27 Анатолий Ефремович Булкин Electric power plant
RU2186224C2 (en) * 1999-04-27 2002-07-27 Самарский государственный технический университет Method and device for starting and supplying gas to gas-turbine power plant
EP1896698A2 (en) * 2005-06-10 2008-03-12 City University Expander lubrication in vapour power systems
GB0511864D0 (en) * 2005-06-10 2005-07-20 Univ City Expander lubrication in vapour power systems
DE102006043491B4 (en) * 2006-09-12 2013-05-29 Amovis Gmbh Steam cycle process with improved energy utilization
WO2008153516A1 (en) * 2007-05-25 2008-12-18 Carrier Corporation Rankine system with gravity-driven pump
JP2010065587A (en) * 2008-09-10 2010-03-25 Sanden Corp Waste heat utilization apparatus
DE102009053390B3 (en) 2009-11-14 2011-06-01 Orcan Energy Gmbh Thermodynamic machine and method for its operation
US8739535B2 (en) 2009-12-18 2014-06-03 General Electric Company Fluid feedback pump to improve cold start performance of organic rankine cycle plants
CN103180554B (en) * 2010-08-13 2016-01-20 康明斯知识产权公司 Transducing head bypass valve is used to carry out Rankine cycle condenser pressure control
US9249691B2 (en) 2012-01-06 2016-02-02 General Electric Company Systems and methods for cold startup of rankine cycle devices
FR2985767B1 (en) * 2012-01-18 2019-03-15 IFP Energies Nouvelles DEVICE FOR CONTROLLING A WORKING FLUID IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD USING SUCH A DEVICE
CN102536365A (en) * 2012-02-10 2012-07-04 中国科学技术大学 Organic working medium thermal power generation circulating system boosted by aid of gravity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105849371B (en) 2018-07-03
US20160251983A1 (en) 2016-09-01
WO2015059069A1 (en) 2015-04-30
CN105849371A (en) 2016-08-10
EP2865854A1 (en) 2015-04-29
RU2661998C2 (en) 2018-07-23
RU2016112366A (en) 2017-11-27
US10247046B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
EP2865854B1 (en) Device and method for reliable starting of ORC systems
WO2014102027A2 (en) System for recuperating energy from a waste heat flow of an internal combustion engine
EP2686526B1 (en) Method for operating a steam cycle process
EP2359058B1 (en) Method of operating a waste heat steam generator
EP2909452B1 (en) Apparatus for producing electrical energy with an orc cycle
DE102008046853A1 (en) Waste heat recovery device
DE102014223626A1 (en) Apparatus and method for recovering waste heat energy and a utility vehicle
DE112013002415B4 (en) exhaust heat recovery device
DE112010005419B4 (en) Rankine cycle system
DE102014206023B4 (en) System for a thermodynamic cycle, arrangement with an internal combustion engine and a system, method for lubricating an expansion device in a system for a thermodynamic cycle, and motor vehicle
EP3006682B1 (en) Device and method for operating a heating distribution station
WO2010097203A2 (en) Method for operating a power plant
EP3141710B1 (en) Device and method for operating volumetric expansion machines
DE102009022865A1 (en) Rankine cycle for use in heat recovery system for vehicle e.g. motor vehicle, has two collecting vessels whose volume corresponds to volume of heat exchangers to be emptied, where one of collecting vessels accommodates water
EP3375990B1 (en) Model-based monitoring of the operational state of an expansion machine
DE102019006054A1 (en) Solar system and a method for operating the solar system
EP3014178A2 (en) Operating method for an externally heated once-through steam generator
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part
WO2012152602A1 (en) Line circuit and method for operating a line circuit for waste-heat utilization of an internal combustion engine
DE102012100645B4 (en) ORC - Organic Rankine cycle
EP3015660B1 (en) Method for operating a thermodynamic cycle process
WO2014117924A2 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
EP3922930B1 (en) Compression cooling system and method for operating a compression cooling system
DE1228623B (en) Steam power plant with forced steam generator and reheater
WO2016062532A1 (en) Method for shortening the start-up process of a steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

R17P Request for examination filed (corrected)

Effective date: 20151013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: GEWALD, DANIELA

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: GRILL, ANDREAS

Inventor name: CELIK, ASIM

Inventor name: AUMANN, RICHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: WALTER, DANIELA

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: GRILL, ANDREAS

Inventor name: CELIK, ASIM

Inventor name: AUMANN, RICHARD

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015885

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1421837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015885

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1421837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231030

Year of fee payment: 11

Ref country code: FR

Payment date: 20231024

Year of fee payment: 11

Ref country code: DE

Payment date: 20231026

Year of fee payment: 11