EP3375990B1 - Model-based monitoring of the operational state of an expansion machine - Google Patents

Model-based monitoring of the operational state of an expansion machine Download PDF

Info

Publication number
EP3375990B1
EP3375990B1 EP17161565.1A EP17161565A EP3375990B1 EP 3375990 B1 EP3375990 B1 EP 3375990B1 EP 17161565 A EP17161565 A EP 17161565A EP 3375990 B1 EP3375990 B1 EP 3375990B1
Authority
EP
European Patent Office
Prior art keywords
expansion machine
steam pressure
thermodynamic cycle
live steam
feed pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17161565.1A
Other languages
German (de)
French (fr)
Other versions
EP3375990A1 (en
Inventor
Andreas Schuster
Roy Langer
Jens-Patrick Springer
Fabian Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP17161565.1A priority Critical patent/EP3375990B1/en
Priority to BR112019018768-5A priority patent/BR112019018768B1/en
Priority to PCT/EP2017/080029 priority patent/WO2018166642A1/en
Priority to US16/495,088 priority patent/US11035258B2/en
Priority to RU2019129133A priority patent/RU2724806C1/en
Priority to CN201780090816.XA priority patent/CN110730855B/en
Publication of EP3375990A1 publication Critical patent/EP3375990A1/en
Application granted granted Critical
Publication of EP3375990B1 publication Critical patent/EP3375990B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Definitions

  • the invention relates to a method for operating a thermodynamic cycle device, in particular an organic rankine cycle device (ORC device) with an expansion machine, and a thermodynamic cycle device that can be operated with the method according to the invention.
  • a thermodynamic cycle device in particular an organic rankine cycle device (ORC device) with an expansion machine
  • ORC device organic rankine cycle device
  • thermodynamic cycle device for example an Organic Rankine Cycle device
  • a generator or a motor / generator unit in order to feed energy into a power grid
  • the expansion machine is subjected to rotational speeds due to the grid frequency.
  • another external device such as a device with an internal combustion engine, in order to support it.
  • the object of the invention is to avoid the disadvantages mentioned.
  • the invention describes the solution to the above problem by adding model-based control and / or monitoring to the operation (starting process, normal operation, shutdown process) of the thermodynamic cycle device with the expansion machine.
  • thermodynamic cycle device in particular an ORC device
  • the thermodynamic cycle device comprises an evaporator, an expansion machine, a condenser and a feed pump and the expansion machine is coupled to an external device in normal operation
  • the method comprises the steps of: measuring an exhaust pressure downstream of the expansion machine; and setting a volume flow of the feed pump according to a computer-implemented control model of the thermodynamic cycle device as a function of the measured evaporation pressure and a target speed of the expansion machine as input variables of the control model and with the volume flow of the feed pump as output variable of the control model.
  • the evaporation pressure downstream of the expansion machine can be measured between the expansion machine and the feed pump, in particular between the expansion machine and the condenser or between the condenser and the feed pump.
  • the pressure loss of the condenser can either be neglected or it is known and is taken into account in the regulation.
  • the volume flow of the working medium pumped by the feed pump can be regulated in various ways. Setting the speed of the feed pump is one way of adjusting the volume flow of the feed pump, other options would be a throttle (throttle valve) or a 3-way valve after the pump or an adjustment of the delivery characteristics of the feed pump by adjusting a stator or a piston stroke.
  • a throttle throttle valve
  • a 3-way valve after the pump or an adjustment of the delivery characteristics of the feed pump by adjusting a stator or a piston stroke.
  • the method according to the invention has the advantage that the measuring point required for the speed measurement according to the prior art can be avoided with the aid of the model-based control within the scope of the present invention.
  • thermodynamic cycle device can include the following steps: regulating the expansion machine into a state in which the target speed of the expansion machine is greater than or equal to a predetermined speed of the external device to be coupled to the expansion machine, wherein the external device to be coupled comprises in particular a generator, a generator / motor unit or a device operated with a separate motor; and then coupling the expansion machine to the external device. If the speeds are the same, there is a power-neutral coupling. If the speed of the expansion device during coupling is (somewhat) greater than a synchronous speed, then the effective performance of the expansion machine is positive and therefore does not damage the bearing.
  • Another further development is that the following further steps can be carried out: measuring the live steam pressure upstream of the expansion machine; Comparison of the measured live steam pressure with a current model live steam pressure according to the control model; and initiating a shutdown process and / or aborting the starting process if the measured live steam pressure is more than a predetermined amount or more than a predetermined fraction below the model live steam pressure, which depends on the measured exhaust steam pressure.
  • the live steam pressure upstream of the expansion machine can be measured between the feed pump and the expansion machine, in particular between the evaporator and the expansion machine or between the feed pump and the evaporator.
  • the live steam pressure could, for example, be measured at the outlet of the feed pump / inlet of the evaporator and corrected for the pressure loss of the evaporator and / or the pipelines up to the inlet into the expansion machine.
  • the following further steps can be carried out: measuring a heat source temperature of a heat source which supplies the thermodynamic cycle device via the evaporator; and performing the starting process only if the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.
  • thermodynamic cycle device can include the following steps: decoupling the expansion machine from the external device if the live steam pressure and / or the heat source temperature is below a respective one predetermined threshold fall; and opening a bypass line to bypass the expansion machine.
  • control model according to the invention can include analytical and / or numerical and / or tabular relationships of the input and output variables.
  • thermodynamic cycle device according to claim 10.
  • thermodynamic cycle device (in particular an ORC device) according to the invention comprises an evaporator, an expansion machine, a condenser, and a feed pump, the expansion machine being coupled to an external device in normal operation; wherein the thermodynamic cycle device further comprises: an exhaust pressure measurement device for measuring an exhaust pressure downstream of the expansion machine; and a control device for setting a volume flow of the feed pump according to a control model of the thermodynamic cycle device, which is stored in a memory of the control device, as a function of the measured evaporation pressure and a setpoint speed of the expansion machine as input variables of the control model and with the volume flow of the feed pump as output variable of the control model. Measuring the evaporation pressure downstream of the Expansion machine can take place at the points mentioned above in connection with the method according to the invention.
  • thermodynamic cycle device can be further developed in such a way that the control device is designed to carry out the following steps during a starting process of the thermodynamic cycle device: regulating the expansion machine into a state in which the desired speed of the expansion machine is greater than or equal to a predetermined speed of that of the expansion machine to be coupled external device, the external device to be coupled comprising in particular a generator, a generator / motor unit or a device operated with a separate motor; and then coupling the expansion machine to the external device.
  • thermodynamic cycle device further comprises a live steam pressure measuring device for measuring a live steam pressure upstream of the expansion machine; wherein the control device is designed to compare the measured live steam pressure with a current model live steam pressure according to the control model, and to initiate a shutdown process and / or to abort a start-up process if the measured live steam pressure is increased by more than a predetermined amount or by more than a predetermined fraction is below the model live steam pressure.
  • the live steam pressure upstream of the expansion machine can be measured at the points already mentioned above in connection with the method according to the invention.
  • thermodynamic cycle device further comprises: a heat source temperature measuring device for measuring a heat source temperature of a heat source that supplies the thermodynamic cycle device with heat via the evaporator; wherein the control device is designed to carry out the starting process only when the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.
  • thermodynamic cycle device further comprises a bypass line as a direct connection between the evaporator and the condenser to bypass the expansion machine; wherein the control device is designed to carry out the following steps during a shutdown process of the thermodynamic cycle device: decoupling the expansion machine from the external device if the live steam pressure and / or the heat source temperature fall below a respective predetermined threshold value; and opening the bypass line by means of a valve in the bypass line.
  • thermodynamic cycle device further comprises: a coupling for coupling the expansion device to the external device; and / or a transmission for setting a speed ratio from the expansion device to the external device.
  • FIG. 1 shows an embodiment 100 of the thermodynamic cycle device according to the invention.
  • the ORC cycle comprises a feed pump 40 for increasing the pressure, an evaporator 10 for preheating, evaporation and overheating of a working medium, an expansion machine 20 for power-generating expansion of the working medium, which with or without clutch 27 is connected to a generator 25 (or a motor / generator Unit) or an external process 26 is connected, a possible bypass 50 for bypassing the expansion machine 20 and a condenser 30 for deheating, condensation and subcooling of the working medium.
  • the cycle process device 100 comprises an evaporation pressure measuring device 61 for measuring an evaporation pressure downstream of the expansion machine 20.
  • the evaporation pressure measuring device 61 is provided here between the expansion machine 20 and the condenser 30.
  • a control device 80 for setting a volume flow of the working medium pumped by the feed pump 40 (for example by setting a rotational speed of the feed pump 40) according to a control model of the thermodynamic cycle device 100 stored in a memory 81 of the control device 80 only as a function of the measured exhaust steam pressure (if necessary corrected by the mentioned correction value) and a target speed of the expansion machine 20 as input variables of the control model and with the Volume flow of the feed pump 40 (eg in the form of the speed of the feed pump 40) as the output variable of the control model.
  • a coupling switch 28 can also be provided, which couples the generator 25 (or the motor / generator unit) to or disconnects from a power supply system.
  • the invention is based on the following problem. If the expansion machine 20 is operated by a motor, ie power is entered, for example, by the generator 25 in motor operation based on a fixed speed setting or by the external process 26, there is a risk of damage since the power flow does not correspond to the design point ("defective operation").
  • the direction of force on the rotor of the expansion machine (as in Figure 2 ), is based on the force effect of the pressure position of live steam and exhaust steam (depending on the pressure difference across the expansion machine) and the forces due to the power output or power consumption ("transmission force", depending on the pressure quotient via the expansion machine, see also Figure 4 ) certainly. At the operating and thus design point of the expansion machine, these are designed so that the resulting force acts in the direction of the force absorption capacity of the bearing.
  • the expansion machine 20 is a screw expander.
  • Damage is caused, for example, by abrasion or chip formation from the contact of rotating bodies with the housing, since the force effect is not supported by the bearing ( Figure 2 ). This can also result in a shift in the axial direction and possibly a rotation of the bearing ring due to the relief, which can lead to damage to the bearing.
  • connection point b connection speed
  • connection point c connection point
  • the expansion machine 20 is brought to a defined starting point (speed), which prevents damage to the expansion machine when it is switched on.
  • the necessary measurement values of flow and speed of the expansion machine which can be determined by expensive measuring technology, are avoided by model-based control.
  • the state of the expansion machine 20 (in particular its speed) can thus be clearly determined by knowing the live steam pressure, exhaust steam pressure and live steam volume flow (depending on the desired connection speed).
  • the equation above to determine the expansion engine speed initially represents the simplest form and can be further improved in accuracy, for example, by correction using a variable-speed leakage volume flow.
  • the electrical power and thus, for example, a state of the thermodynamic cycle can be derived from the expansion machine speed and the other thermodynamic variables.
  • the live steam mass flow can also be determined relatively easily from the live steam volume flow, which could also be measured in the liquid phase between the feed pump 40 and the evaporator 10.
  • the necessary measuring devices e.g. Coriolis
  • the live steam density also depends on the position of the evaporation pressure, since it is a function of the live steam pressure (and the live steam temperature).
  • the live steam pressure itself is a function of the exhaust steam pressure in this case of the power-free expansion machine operation.
  • This circumstance (p FD and V ⁇ SP vary) also leads to a static starting behavior with fixed speed specification of the feed pump depending on the evaporation pressure, which depends on the condensation conditions such as heat sink temperature depends on starting with a motor drive (high evaporation pressure p AD ; under-synchronous until the expansion machine comes to a standstill) or accelerating the expander beyond the permissible speed (low p AD ).
  • the problems under 1) + 2) can be avoided by additionally monitoring the achieved process variable of the live steam pressure before the connection process. If the pump and the bypass behave regularly, this must correspond to the value determined in the modeling. If it deviates downwards, the start can be terminated without damaging the expansion machine 20.
  • T HW necessary heat source temperature
  • the temperature on the heat input side of the system is reduced in the desired manner in order to achieve a safe standstill of the system at moderate temperatures.
  • this lowering reduces the fresh steam pressure p FD and thus the pressure quotient ⁇ .
  • Damaged operation can also occur here during the downhill run.
  • T HW hot water temperature
  • p FD live steam pressure
  • control device 80 of the feed pump 40 which works without measured values of the expander speed or the flow and contains the low pressure (exhaust pressure) as an input variable in order to regulate to a desired speed of the expansion device 20.
  • the Live steam pressure and the hot water temperature from the model formation are used as a monitoring variable (falling below the model value means deviation in the system with damage potential).

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft ein Verfahren zum Betreiben einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer Organic-Rankine-Cycle-Vorrichtung (ORC-Vorrichtung) mit einer Expansionsmaschine sowie eine thermodynamische Kreisprozessvorrichtung, die mit dem erfindungsgemäßen Verfahren betrieben werden kann.The invention relates to a method for operating a thermodynamic cycle device, in particular an organic rankine cycle device (ORC device) with an expansion machine, and a thermodynamic cycle device that can be operated with the method according to the invention.

Stand der TechnikState of the art

Wird eine thermodynamische Kreisprozessvorrichtung, beispielsweise eine Organic-Rankine-Cycle-Vorrichtung, mit einem Generator oder einer Motor/Generator-Einheit gekoppelt, um Energie in ein Stromnetz einzuspeisen, werden der Expansionsmaschine bedingt durch die Netzfrequenz Drehzahlen aufgeprägt. Ähnliches erfolgt bei einer Kopplung mit einer anderen externen Vorrichtung, wie beispielsweise einer Vorrichtung mit einem Verbrennungsmotor, um diesen zu unterstützen.If a thermodynamic cycle device, for example an Organic Rankine Cycle device, is coupled to a generator or a motor / generator unit in order to feed energy into a power grid, the expansion machine is subjected to rotational speeds due to the grid frequency. The same applies to a coupling with another external device, such as a device with an internal combustion engine, in order to support it.

Es hat sich herausgestellt, dass etwa bei einem Ankopplungsvorgang der externen Vorrichtung Schäden an der Expansionsmaschine der thermodynamischen Kreisprozessvorrichtung entstehen können, insbesondere im Lager der rotierenden Elemente der Expansionsmaschine. Diese Schäden treten nach den Erfahrungen des Anmelders dann auf, wenn der Expansionsmaschine effektiv Leistung zugeführt wird. Dies betrifft insbesondere Schraubenexpansionsmaschinen.It has been found that, for example, during a coupling process of the external device, damage to the expansion machine of the thermodynamic cycle device can occur, in particular in the bearing of the rotating elements of the expansion machine. According to the experience of the applicant, this damage occurs when power is effectively supplied to the expansion machine. This applies in particular to screw expansion machines.

Ein Koppeln eines mit einem ORC-System betriebenen Generators wird in EP 1759094 B1 beschrieben. Die Kopplung mit dem Stromnetz erfolgt dann, wenn die gemessene Generatordrehzahl zur Netzfrequenz passt, was deshalb eine leistungsfreie Ankopplung impliziert. Diese Drehzahlmessung stellt jedoch einen zusätzlichen Kostenaufwand dar bzw. ist bei (halb-) hermetischen Maschinen sogar extrem aufwändig, weil die Welle von außen nicht direkt zugänglich ist. Eine Drehzahlmessung aufgrund der erzeugten Spannung ist bei Aysnchrongeneratoren, die nicht mit dem Netz verbunden oder anderweitig nicht magnetisiert sind, nicht möglich.Coupling a generator operated with an ORC system is described in EP 1759094 B1 described. The coupling to the power grid takes place when the measured generator speed matches the grid frequency, which therefore implies a power-free coupling. However, this speed measurement represents an additional cost or is even extreme with (semi) hermetic machines complex because the shaft is not directly accessible from the outside. A speed measurement based on the generated voltage is not possible with synchronous generators that are not connected to the mains or are not otherwise magnetized.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden.The object of the invention is to avoid the disadvantages mentioned.

Die Erfindung beschreibt die Lösung des oben genannten Problems, indem dem Betrieb (Startvorgang, Normalbetrieb, Abschaltvorgang) der thermodynamischen Kreisprozessvorrichtung mit der Expansionsmaschine eine modellbasierte Regelung und/oder Überwachung hinzugefügt wird.The invention describes the solution to the above problem by adding model-based control and / or monitoring to the operation (starting process, normal operation, shutdown process) of the thermodynamic cycle device with the expansion machine.

Die erfindungsgemäße Lösung wird definiert durch ein Verfahren mit den Merkmalen gemäß Anspruch 1.The solution according to the invention is defined by a method with the features according to claim 1.

Die Erfindung offenbart somit ein Verfahren zur Regelung einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer ORC-Vorrichtung, wobei die thermodynamische Kreisprozessvorrichtung einen Verdampfer, eine Expansionsmaschine, einen Kondensator und eine Speisepumpe umfasst und die Expansionsmaschine im Normalbetrieb mit einer externen Vorrichtung gekoppelt ist, und wobei das Verfahren die folgenden Schritte umfasst: Messen eines Abdampfdrucks stromabwärts der Expansionsmaschine; und Einstellen eines Volumenstroms der Speisepumpe gemäß einem computerimplementierten Regelungsmodell der thermodynamischen Kreisprozessvorrichtung in Abhängigkeit von dem gemessenen Abdampfdruck und einer Solldrehzahl der Expansionsmaschine als Eingangsgrößen des Regelungsmodells und mit dem Volumenstrom der Speisepumpe als Ausgangsgröße des Regelungsmodells.The invention thus discloses a method for controlling a thermodynamic cycle device, in particular an ORC device, wherein the thermodynamic cycle device comprises an evaporator, an expansion machine, a condenser and a feed pump and the expansion machine is coupled to an external device in normal operation, and the method comprises the steps of: measuring an exhaust pressure downstream of the expansion machine; and setting a volume flow of the feed pump according to a computer-implemented control model of the thermodynamic cycle device as a function of the measured evaporation pressure and a target speed of the expansion machine as input variables of the control model and with the volume flow of the feed pump as output variable of the control model.

Das Messen des Abdampfdrucks stromabwärts der Expansionsmaschine kann zwischen der Expansionsmaschine und der Speisepumpe erfolgen, insbesondere zwischen der Expansionsmaschine und dem Kondensator oder zwischen dem Kondensator und der Speisepumpe. Bei einer Messung zwischen dem Kondensator und der Speisepumpe kann der Druckverlust des Kondensators entweder vernachlässigt werden oder er ist bekannt und wird in der Regelung mit berücksichtigt.The evaporation pressure downstream of the expansion machine can be measured between the expansion machine and the feed pump, in particular between the expansion machine and the condenser or between the condenser and the feed pump. When measuring between the capacitor and the feed pump, the pressure loss of the condenser can either be neglected or it is known and is taken into account in the regulation.

In das Regelungsmodell geht (außer der Solldrehzahl der Expansionsmaschine) als Eingangsgröße nur der gemessene Abdampfdruck oder ein um einen Korrekturwert korrigierter Messwert des Abdampfdrucks ein. Im Falle einer Messung des Abdampfdrucks zwischen Kondensator und Speisepumpe kann somit ein Druckverlust des Kondensators und/oder von Rohrleitungen zwischen der Expansionsmaschine und der Messtelle berücksichtigt werden und der gemessene Abdampfdruck entsprechend korrigiert werden.In the control model (apart from the setpoint speed of the expansion machine), only the measured exhaust steam pressure or a measured value of the exhaust steam pressure corrected by a correction value is used as the input variable. In the case of a measurement of the evaporation pressure between the condenser and the feed pump, a pressure loss of the condenser and / or of pipes between the expansion machine and the measuring point can thus be taken into account and the measured evaporation pressure can be corrected accordingly.

Der Volumenstrom des durch die Speisepumpe gepumpten Arbeitsmediums kann auf verschiede Art und Weise geregelt werden. Das Einstellen der Drehzahl der Speisepumpe ist eine Möglichkeit zur Anpassung des Volumenstroms der Speisepumpe, andere Möglichkeiten wären eine Drossel (Drosselventil) oder ein 3-Wege-Ventil nach der Pumpe oder eine Anpassung der Fördercharakteristik der Speisepumpe durch Verstellung eines Leitrades oder eines Kolbenhubes.The volume flow of the working medium pumped by the feed pump can be regulated in various ways. Setting the speed of the feed pump is one way of adjusting the volume flow of the feed pump, other options would be a throttle (throttle valve) or a 3-way valve after the pump or an adjustment of the delivery characteristics of the feed pump by adjusting a stator or a piston stroke.

Das erfindungsgemäße Verfahren hat den Vorteil, dass die gemäß Stand der Technik erforderliche Messstelle für die Drehzahlmessung mit Hilfe der modellbasierten Regelung im Rahmen der vorliegenden Erfindung vermieden werden kann.The method according to the invention has the advantage that the measuring point required for the speed measurement according to the prior art can be avoided with the aid of the model-based control within the scope of the present invention.

Das erfindungsgemäße Verfahren kann dahingehend weitergebildet werden, dass ein Startvorgang der thermodynamischen Kreisprozessvorrichtung die folgenden Schritte umfassen kann: Regeln der Expansionsmaschine in einen Zustand, in dem die Solldrehzahl der Expansionsmaschine größer oder gleich einer vorbestimmten Drehzahl der an die Expansionsmaschine zu koppelnden externen Vorrichtung ist, wobei die zu koppelnde externe Vorrichtung insbesondere einen Generator, eine Generator/Motor-Einheit oder eine mit einem separaten Motor betriebene Vorrichtung umfasst; und nachfolgendes Koppeln der Expansionsmaschine mit der externen Vorrichtung. Wenn die Drehzahlen gleich sind, so erfolgt eine leistungsneutrale Kopplung. Wenn die Drehzahl der Expansionsvorrichtung bei der Kopplung (etwas) größer ist als eine Synchrondrehzahl, dann ist die effektive Leistung der Expansionsmaschine positiv und somit nicht lagerschädigend.The method according to the invention can be further developed in such a way that a starting process of the thermodynamic cycle device can include the following steps: regulating the expansion machine into a state in which the target speed of the expansion machine is greater than or equal to a predetermined speed of the external device to be coupled to the expansion machine, wherein the external device to be coupled comprises in particular a generator, a generator / motor unit or a device operated with a separate motor; and then coupling the expansion machine to the external device. If the speeds are the same, there is a power-neutral coupling. If the speed of the expansion device during coupling is (somewhat) greater than a synchronous speed, then the effective performance of the expansion machine is positive and therefore does not damage the bearing.

Eine andere Weiterbildung besteht darin, dass die folgenden weiteren Schritte ausgeführt werden können: Messen des Frischdampfdrucks stromaufwärts der Expansionsmaschine; Vergleich des gemessenen Frischdampfdrucks mit einem aktuellen Modell-Frischdampfdruck gemäß dem Regelungsmodell; und Einleiten eines Abfahrvorgangs und/oder Abbrechen des Startvorgangs, falls der gemessene Frischdampfdruck um mehr als einen vorbestimmten Betrag oder um mehr als einen vorbestimmten Bruchteil unter dem Modell-Frischdampfdruck liegt, welcher vom gemessenen Abdampfdruck abhängt.Another further development is that the following further steps can be carried out: measuring the live steam pressure upstream of the expansion machine; Comparison of the measured live steam pressure with a current model live steam pressure according to the control model; and initiating a shutdown process and / or aborting the starting process if the measured live steam pressure is more than a predetermined amount or more than a predetermined fraction below the model live steam pressure, which depends on the measured exhaust steam pressure.

Das Messen des Frischdampfdrucks stromaufwärts der Expansionsmaschine kann zwischen der Speisepumpe und der Expansionsmachine erfolgen, insbesondere zwischen dem Verdampfer und der Expansionsmaschine oder zwischen der Speisepumpe und dem Verdampfer. Der Frischdampfdruck könnte beispielsweise am Ausgang der Speisepumpe / Einlass des Verdampfers gemessen werden und um den Druckverlust des Verdampfers und/oder der Rohrleitungen bis zum Einlass in die Expansionsmaschine korrigiert werden.The live steam pressure upstream of the expansion machine can be measured between the feed pump and the expansion machine, in particular between the evaporator and the expansion machine or between the feed pump and the evaporator. The live steam pressure could, for example, be measured at the outlet of the feed pump / inlet of the evaporator and corrected for the pressure loss of the evaporator and / or the pipelines up to the inlet into the expansion machine.

Dies kann dahingehend weitergebildet werden, dass während des Startvorgangs das Koppeln der Expansionsmaschine mit der externen Vorrichtung nur dann erfolgt, wenn der gemessene Frischdampfdruck größer oder gleich dem Modell-Frischdampfdruck ist.This can be developed in such a way that during the starting process the expansion machine is only coupled to the external device if the measured live steam pressure is greater than or equal to the model live steam pressure.

Gemäß einer anderen Weiterbildung können die folgenden weiteren Schritte ausgeführt werden: Messen einer Wärmequellentemperatur einer Wärmequelle, die der thermodynamischen Kreisprozessvorrichtung über den Verdampfer Wärme zuführt; und Durchführen des Startvorgangs nur dann, wenn die gemessene Wärmequellentemperatur größer oder gleich einer aktuellen Modell-Wärmequellentemperatur gemäß dem Regelungsmodell ist.According to another development, the following further steps can be carried out: measuring a heat source temperature of a heat source which supplies the thermodynamic cycle device via the evaporator; and performing the starting process only if the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.

Eine andere Weiterbildung besteht darin, dass ein Abfahrvorgang der thermodynamischen Kreisprozessvorrichtung die folgenden Schritte umfassen kann: Entkoppeln der Expansionsmaschine von der externen Vorrichtung, falls der Frischdampfdruck und/oder die Wärmequellentemperatur unter einen jeweiligen vorgegebenen Schwellwert fallen; und Öffnen einer Bypassleitung zur Umgehung der Expansionsmaschine.Another development is that a shutdown process of the thermodynamic cycle device can include the following steps: decoupling the expansion machine from the external device if the live steam pressure and / or the heat source temperature is below a respective one predetermined threshold fall; and opening a bypass line to bypass the expansion machine.

Dies kann dahingehend weitergebildet werden, dass weiterhin der folgende Schritt ausgeführt wird: Reduzieren des Volumenstroms (insbesondere durch Reduzieren der Drehzahl) der Speisepumpe bis gemäß Regelungsmodell ein leistungsneutraler oder kräftefreier Zustand der Expansionsvorrichtung erreicht ist, in dem die von der Expansionsvorrichtung aufgenommene Leistung gleich der von der Expansionsvorrichtung abgegebenen Leistung ist bzw. die auf die Expansionsvorrichtung in Richtung einer Drehachse der Expansionsvorrichtung wirkende Gesamtkraft gleich Null ist.This can be further developed in such a way that the following step is carried out: reducing the volume flow (in particular by reducing the speed) of the feed pump until, according to the control model, a power-neutral or force-free state of the expansion device is achieved in which the power consumed by the expansion device is equal to that of output of the expansion device or the total force acting on the expansion device in the direction of an axis of rotation of the expansion device is zero.

Das erfindungsgemäße Regelungsmodell kann analytische und/oder numerische und/oder tabellarische Zusammenhänge der Eingangs- und Ausgangsgrößen umfassen.The control model according to the invention can include analytical and / or numerical and / or tabular relationships of the input and output variables.

Die oben genannte Aufgabe wird auch gelöst durch eine thermodynamische Kreisprozessvorrichtung nach Anspruch 10.The above-mentioned object is also achieved by a thermodynamic cycle device according to claim 10.

Die erfindungsgemäße thermodynamische Kreisprozessvorrichtung (insbesondere eine ORC-Vorrichtung) umfasst einen Verdampfer, eine Expansionsmaschine, einen Kondensator, und eine Speisepumpe, wobei die Expansionsmaschine im Normalbetrieb mit einer externen Vorrichtung gekoppelt ist; wobei die thermodynamische Kreisprozessvorrichtung weiterhin umfasst: eine Abdampfdruck-Messvorrichtung zum Messen eines Abdampfdrucks stromabwärts der Expansionsmaschine; und eine Regelungsvorrichtung zum Einstellen eines Volumenstroms der Speisepumpe gemäß einem in einem Speicher der Regelungsvorrichtung gespeicherten Regelungsmodell der thermodynamischen Kreisprozessvorrichtung in Abhängigkeit von dem gemessenen Abdampfdruck und einer Solldrehzahl der Expansionsmaschine als Eingangsgrößen des Regelungsmodells und mit dem Volumenstrom der Speisepumpe als Ausgangsgröße des Regelungsmodells. Das Messen des Abdampfdrucks stromabwärts der Expansionsmaschine kann an den oben im Zusammenhang mit dem erfindungsgemäßen Verfahren genannten Stellen erfolgen.The thermodynamic cycle device (in particular an ORC device) according to the invention comprises an evaporator, an expansion machine, a condenser, and a feed pump, the expansion machine being coupled to an external device in normal operation; wherein the thermodynamic cycle device further comprises: an exhaust pressure measurement device for measuring an exhaust pressure downstream of the expansion machine; and a control device for setting a volume flow of the feed pump according to a control model of the thermodynamic cycle device, which is stored in a memory of the control device, as a function of the measured evaporation pressure and a setpoint speed of the expansion machine as input variables of the control model and with the volume flow of the feed pump as output variable of the control model. Measuring the evaporation pressure downstream of the Expansion machine can take place at the points mentioned above in connection with the method according to the invention.

Die erfindungsgemäße thermodynamische Kreisprozessvorrichtung kann dahingehend weitergebildet werden, dass die Regelungsvorrichtung dazu ausgebildet ist, während eines Startvorgangs der thermodynamischen Kreisprozessvorrichtung die folgenden Schritte auszuführen: Regeln der Expansionsmaschine in einen Zustand, in dem die Solldrehzahl der Expansionsmaschine größer oder gleich einer vorbestimmten Drehzahl der an die Expansionsmaschine zu koppelnden externen Vorrichtung ist, wobei die zu koppelnde externe Vorrichtung insbesondere einen Generator, eine Generator/Motor-Einheit oder eine mit einem separaten Motor betriebene Vorrichtung umfasst; und nachfolgendes Koppeln der Expansionsmaschine mit der externen Vorrichtung.The thermodynamic cycle device according to the invention can be further developed in such a way that the control device is designed to carry out the following steps during a starting process of the thermodynamic cycle device: regulating the expansion machine into a state in which the desired speed of the expansion machine is greater than or equal to a predetermined speed of that of the expansion machine to be coupled external device, the external device to be coupled comprising in particular a generator, a generator / motor unit or a device operated with a separate motor; and then coupling the expansion machine to the external device.

Gemäß einer anderen Weiterbildung umfasst die thermodynamische Kreisprozessvorrichtung weiterhin eine Frischdampfdruck-Messvorrichtung zum Messen eines Frischdampfdrucks stromaufwärts der Expansionsmaschine; wobei die Regelungsvorrichtung dazu ausgebildet ist, den gemessenen Frischdampfdruck mit einem aktuellen Modell-Frischdampfdruck gemäß dem Regelungsmodell zu vergleichen, und einen Abfahrvorgang einzuleiten und/oder einen Startvorgang abzubrechen, falls der gemessene Frischdampfdruck um mehr als einen vorbestimmten Betrag oder um mehr als einen vorbestimmten Bruchteil unter dem Modell-Frischdampfdruck liegt. Das Messen des Frischdampfdrucks stromaufwärts der Expansionsmaschine kann an den bereits oben im Zusammenhang mit dem erfindungsgemäßen Verfahren genannten Stellen erfolgen.According to another development, the thermodynamic cycle device further comprises a live steam pressure measuring device for measuring a live steam pressure upstream of the expansion machine; wherein the control device is designed to compare the measured live steam pressure with a current model live steam pressure according to the control model, and to initiate a shutdown process and / or to abort a start-up process if the measured live steam pressure is increased by more than a predetermined amount or by more than a predetermined fraction is below the model live steam pressure. The live steam pressure upstream of the expansion machine can be measured at the points already mentioned above in connection with the method according to the invention.

Eine andere Weiterbildung besteht darin, dass die thermodynamische Kreisprozessvorrichtung weiterhin umfasst: eine Wärmequellentemperatur-Messvorrichung zum Messen einer Wärmequellentemperatur einer Wärmequelle, die der thermodynamischen Kreisprozessvorrichtung über den Verdampfer Wärme zuführt; wobei die Regelungsvorrichtung dazu ausgebildet ist, den Startvorgangs nur dann durchzuführen, wenn die gemessene Wärmequellentemperatur größer oder gleich einer aktuellen Modell-Wärmequellentemperatur gemäß dem Regelungsmodell ist.Another development is that the thermodynamic cycle device further comprises: a heat source temperature measuring device for measuring a heat source temperature of a heat source that supplies the thermodynamic cycle device with heat via the evaporator; wherein the control device is designed to carry out the starting process only when the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.

Gemäß einer anderen Weiterbildung umfasst die thermodynamische Kreisprozessvorrichtung weiterhin eine Bypassleitung als direkte Verbindung zwischen dem Verdampfer und dem Kondensator zur Umgehung der Expansionsmaschine; wobei die Regelungsvorrichtung dazu ausgebildet ist, während eines Abfahrvorgangs der thermodynamischen Kreisprozessvorrichtung die folgenden Schritte auszuführen: Entkoppeln der Expansionsmaschine von der externen Vorrichtung, falls der Frischdampfdruck und/oder die Wärmequellentemperatur unter einen jeweiligen vorgegebenen Schwellwert fallen; und Öffnen der Bypassleitung mittels eines Ventils in der Bypassleitung.According to another development, the thermodynamic cycle device further comprises a bypass line as a direct connection between the evaporator and the condenser to bypass the expansion machine; wherein the control device is designed to carry out the following steps during a shutdown process of the thermodynamic cycle device: decoupling the expansion machine from the external device if the live steam pressure and / or the heat source temperature fall below a respective predetermined threshold value; and opening the bypass line by means of a valve in the bypass line.

Eine andere Weiterbildung besteht darin, dass die thermodynamische Kreisprozessvorrichtung weiterhin umfasst: eine Kupplung zum Koppeln der Expansionsvorrichtung mit der externen Vorrichtung; und/oder ein Getriebe zum Einstellen eines Drehzahlverhältnisses von der Expansionsvorrichtung zur externen Vorrichtung.Another development is that the thermodynamic cycle device further comprises: a coupling for coupling the expansion device to the external device; and / or a transmission for setting a speed ratio from the expansion device to the external device.

Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.The further developments mentioned can be used individually or, as claimed, can be suitably combined with one another.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments and advantages of the present invention are explained in more detail below with reference to the drawings. It is understood that the embodiments are not exhaustive of the scope of the present invention. It is further understood that some or all of the features described below can also be combined with one another in other ways.

Zeichnungendrawings

Fig. 1Fig. 1
zeigt eine Ausführungsform der erfindungsgemäßen Vorrichtung.shows an embodiment of the device according to the invention.
Fig. 2Fig. 2
zeigt Kräfte in der Expansionsmaschine.shows forces in the expansion machine.
Fig. 3Fig. 3
zeigt die Leistung der Expansionsmaschine in Abhängigkeit von dessen Drehzahl.shows the performance of the expansion machine depending on its speed.
Fig. 4Fig. 4
zeigt die Leistung der Expansionsmaschine in Abhängigkeit von dem anliegenden Druckverhältnis.shows the performance of the expansion machine depending on the applied pressure ratio.
Fig. 5Fig. 5
zeigt einen Regelungsvorgang im Leistung-Druckverhältnis-Diagramm.shows a control process in the power-pressure ratio diagram.
Ausführungsformenembodiments

Beispielhaft wird im Folgenden ein ORC-Prozess als thermodynamischer Kreisprozess angenommen. Figur 1 zeigt eine Ausführungsform 100 der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung. Der ORC-Kreisprozess umfasst eine Speisepumpe 40 zur Druckerhöhung, einen Verdampfer 10 zur Vorwärmung, Verdampfung und Überhitzung eines Arbeitsmediums, eine Expansionsmaschine 20 zur leistungserzeugenden Expansion des Arbeitsmediums, welcher mit oder ohne Kupplung 27 an einen Generator 25 (oder eine Motor-/Generator-Einheit) oder einen Fremdprozess 26 angeschlossen wird, einem möglichen Bypass 50 zur Umgehung der Expansionsmaschine 20 und einem Kondensator 30 zur Enthitzung, Kondensation und Unterkühlung des Arbeitsmediums.In the following, an ORC process is assumed as an example as a thermodynamic cycle. Figure 1 shows an embodiment 100 of the thermodynamic cycle device according to the invention. The ORC cycle comprises a feed pump 40 for increasing the pressure, an evaporator 10 for preheating, evaporation and overheating of a working medium, an expansion machine 20 for power-generating expansion of the working medium, which with or without clutch 27 is connected to a generator 25 (or a motor / generator Unit) or an external process 26 is connected, a possible bypass 50 for bypassing the expansion machine 20 and a condenser 30 for deheating, condensation and subcooling of the working medium.

Zusätzlich umfasst die erfindungsgemäße Kreisprozessvorrichtung 100 eine Abdampfdruck-Messvorrichtung 61 zum Messen eines Abdampfdrucks stromabwärts der Expansionsmaschine 20. Beispielhaft ist die Abdampfdruck-Messvorrichtung 61 hier zwischen der Expansionsmaschine 20 und dem Kondensator 30 vorgesehen. Es ist jedoch auch möglich, diese zwischen dem Kondensator 30 und der Speisepumpe anzuordnen, ggf. unter Berücksichtigung eines Druckverlustes im Kondensator 30 in Form eines Korrekturwertes zum gemessenen Abdampfdruck.In addition, the cycle process device 100 according to the invention comprises an evaporation pressure measuring device 61 for measuring an evaporation pressure downstream of the expansion machine 20. By way of example, the evaporation pressure measuring device 61 is provided here between the expansion machine 20 and the condenser 30. However, it is also possible to arrange them between the condenser 30 and the feed pump, possibly taking into account a pressure loss in the condenser 30 in the form of a correction value for the measured evaporation pressure.

Weiterhin ist eine Regelungsvorrichtung 80 zum Einstellen eines Volumenstroms des durch die Speisepumpe 40 gepumpten Arbeitsmediums (z.B. durch Einstellen einer Drehzahl der Speisepumpe 40) gemäß einem in einem Speicher 81 der Regelungsvorrichtung 80 gespeicherten Regelungsmodell der thermodynamischen Kreisprozessvorrichtung 100 nur in Abhängigkeit von dem gemessenen Abdampfdruck (ggf. um den genannten Korrekturwert korrigiert) und einer Solldrehzahl der Expansionsmaschine 20 als Eingangsgrößen des Regelungsmodells und mit dem Volumenstrom der Speisepumpe 40 (z.B. in Form der Drehzahl der Speisepumpe 40) als Ausgangsgröße des Regelungsmodells.Furthermore, a control device 80 for setting a volume flow of the working medium pumped by the feed pump 40 (for example by setting a rotational speed of the feed pump 40) according to a control model of the thermodynamic cycle device 100 stored in a memory 81 of the control device 80 only as a function of the measured exhaust steam pressure (if necessary corrected by the mentioned correction value) and a target speed of the expansion machine 20 as input variables of the control model and with the Volume flow of the feed pump 40 (eg in the form of the speed of the feed pump 40) as the output variable of the control model.

Im Falle der Kopplung eines Generators 25 (oder einer Motor-/Generator-Einheit) kann weiterhin ein Kopplungsschalter 28 vorgesehen sein, der den Generator 25 (oder die Motor-/Generator-Einheit) an ein Stromnetz ankoppelt bzw. von diesem abkoppelt.In the case of coupling a generator 25 (or a motor / generator unit), a coupling switch 28 can also be provided, which couples the generator 25 (or the motor / generator unit) to or disconnects from a power supply system.

Die zu Grunde liegende Problematik der erfindungsgemäßen Lösung wird nachfolgend diskutiert.The underlying problem of the solution according to the invention is discussed below.

Diskussion der ProblemstellungDiscussion of the problem

Der Erfindung liegt die folgende Problemstellung zu Grunde. Wird die Expansionsmaschine 20 motorisch betrieben, d.h. Leistung wird beispielsweise durch den Generator 25 im motorischen Betrieb auf Grund einer festen Drehzahlvorgabe oder durch den Fremdprozess 26 eingetragen, besteht die Gefahr der Schädigung, da der Kraftfluss nicht dem Auslegungspunkt entspricht ("schadhafter Betrieb"). Die Kraftrichtung auf die Läufer der Expansionsmaschine (wie in Figur 2 dargestellt), wird von der Kraftwirkung der Drucklage von Frischdampf und Abdampf (abhängig von der Druckdifferenz über die Expansionsmaschine) sowie der Kräfte auf Grund der Leistungsabgabe bzw. Leistungsaufnahme ("Übertragungskraft", abhängig vom Druckquotienten über die Expansionsmaschine, vgl. auch Figur 4) bestimmt. Im Betriebs- und somit Auslegepunkt der Expansionsmaschine sind diese so gestaltet, dass die resultierende Kraft in Richtung der Kraftaufnahmefähigkeit der Lagerung wirkt. Im dargestellten Beispiel ist die Expansionsmaschine 20 ein Schraubenexpander.The invention is based on the following problem. If the expansion machine 20 is operated by a motor, ie power is entered, for example, by the generator 25 in motor operation based on a fixed speed setting or by the external process 26, there is a risk of damage since the power flow does not correspond to the design point ("defective operation"). The direction of force on the rotor of the expansion machine (as in Figure 2 ), is based on the force effect of the pressure position of live steam and exhaust steam (depending on the pressure difference across the expansion machine) and the forces due to the power output or power consumption ("transmission force", depending on the pressure quotient via the expansion machine, see also Figure 4 ) certainly. At the operating and thus design point of the expansion machine, these are designed so that the resulting force acts in the direction of the force absorption capacity of the bearing. In the example shown, the expansion machine 20 is a screw expander.

Ein Schaden entsteht zum Beispiel durch Abrieb bzw. Spanbildung durch Berührung von drehenden Körpern mit dem Gehäuse, da die Kraftwirkung nicht durch die Lagerung abgestützt wird (Figur 2). Hierbei kann es ebenfalls zu einem Verschieben in Achsrichtung und unter Umständen zu einer Rotation des Lagerrings auf Grund der Entlastung kommen, was zu einer Schädigung des Lagers führen kann.Damage is caused, for example, by abrasion or chip formation from the contact of rotating bodies with the housing, since the force effect is not supported by the bearing ( Figure 2 ). This can also result in a shift in the axial direction and possibly a rotation of the bearing ring due to the relief, which can lead to damage to the bearing.

Dieser motorische Betrieb ergibt sich jedoch automatisch, wenn die Expansionsmaschine im Zuschaltpunkt noch im Stillstand (vorliegende Drucklage kann die nötige Nachkompression nicht überwinden) ist oder die Drehzahl unterhalb der Zuschaltsynchrondrehzahl liegt (Zuschaltpunkt a) in Figur 3). In diesen Punkten wird die Expansionsmaschine beschleunigt und es wird Leistung dafür aufgewendet. Die verfügbare Leistung des Expanders ist somit negativ.However, this motor operation occurs automatically when the expansion machine is still at a standstill at the activation point (the current pressure cannot overcome the necessary post-compression) or the speed is below the activation synchronous speed (activation point a) in Figure 3 ). In these points, the expansion machine is accelerated and performance is spent on it. The available performance of the expander is therefore negative.

Zum besseren Verständnis wird hier von Nachkompression (genauer: Nachkompressionsleistung) und Nachexpansion (genauer: Nachexpansionsleistung) gesprochen. Im Prinzip handelt es sich hierbei jedoch um einen anderen Anteil der Ausschiebearbeit (PAA), welche durch die Expansionsmaschine zum Ausschieben des am Ende der Expansion in der Kammer der Expansionsmaschine befindlichen Mediums gegen den Abdampfdruck pAD aufzubringen ist. Diese Unterscheidung bezieht sich somit auf die Referenz (PAA,ref), bei der der Öffnungsdruck der Kammer gleich dem Abdampfdruck hinter der Kammer ist.For better understanding, we speak of post-compression (more precisely: post-compression performance) and post-expansion (more precisely: post-expansion performance). In principle, however, this is a different part of the push-out work (P AA ), which has to be applied by the expansion machine to push out the medium at the end of the expansion in the chamber of the expansion machine against the evaporation pressure p AD . This distinction therefore relates to the reference (P AA, ref ), in which the opening pressure of the chamber is equal to the evaporation pressure behind the chamber.

Es gilt demnach:

  • Für pKammer > pAD : P Nachexpansion = P AA ; ref P AA , ist ; P Nachkompression = 0
    Figure imgb0001
  • Für pKammer < pAD : P Nachkompression = P AA ; ref P AA , ist ; P Nachexpansion = 0
    Figure imgb0002
  • Für pKammer = pAD : P Nachexpansion = 0 ; P N a c h k o m pression = 0
    Figure imgb0003
The following therefore applies:
  • For p chamber > p AD : P Further Expansion = P AA ; ref - P AA . is ; P post-compression = 0
    Figure imgb0001
  • For p chamber <p AD : P post-compression = P AA ; ref - P AA . is ; P Further Expansion = 0
    Figure imgb0002
  • For p chamber = p AD : P Further Expansion = 0 ; P N a c H k O m pressure = 0
    Figure imgb0003

Für das schadfreie Zuschalten muss die Expansionsmaschine demnach mindestens in einem neutralen Leistungspunkt bei Zuschaltdrehzahl (Zuschaltpunkt b) in Figur 3) oder darüber sein (Zuschaltpunkt c) in Figur 3), so dass die Expansionsmaschine zumindest nicht beschleunigt oder aber gebremst wird, und somit zumindest keine negative Leistung abgeben wird.For damage-free connection, the expansion machine must therefore at least at a neutral power point at the connection speed (connection point b) in Figure 3 ) or above (connection point c) in Figure 3 ), so that the expansion machine is at least not accelerated or braked, and thus will at least not give any negative power.

Vor dem Zuschalten des Generators oder Fremdprozesses wiederum kann keine Leistung abgeführt werden, d.h. die Maschine würde bei undefinierter Dampfzufuhr möglicherweise unkontrolliert bis zu einem Schaden beschleunigt werden.No power can be dissipated before the generator or external process is switched on, ie if the steam supply is undefined, the machine could possibly be accelerated uncontrollably until it was damaged.

Die Kenntnis über die aktuelle Expansionsmaschinendrehzahl wäre zwar prinzipiell mit Hilfe einer Drehzahlmessung möglich. Diese Drehzahlmessung stellt jedoch einen zusätzlichen Kostenaufwand dar bzw. ist nur sehr aufwändig zu realisieren.Knowledge of the current expansion machine speed would in principle be possible with the help of a speed measurement. However, this speed measurement represents an additional cost or can be implemented only with great effort.

Der schadhafte Zustand durch Leistungszufuhr an die Expansionsmaschine ergibt sich weiterhin im Betrieb und Abschaltvorgang, wenn die Nachkompressionsleistung die Expansionsleistung auf Grund zu geringer Drucklagen übersteigt (siehe Figur 4). Hierbei kommt es zu einer Expansion des Gases in der geschlossenen Expansionskammer der Expansionsmaschine. Nach dem Öffnen ist der Druck in der Kammer jedoch unter dem Niveau der Abdampfseite, weshalb die Expansionsmaschine dieses beim Ausschieben teilweise wieder verdichten und das zusätzlich vom Kondensator in die Kammer zurückgeströmte Medium ebenfalls ausschieben muss ("Nachkompression"). Es gilt: P brutto = P Expansion + P Nachexpansion + P Nachkompression

Figure imgb0004
The defective condition due to power supply to the expansion machine continues to arise during operation and shutdown if the post-compression performance exceeds the expansion performance due to insufficient pressure levels (see Figure 4 ). This leads to an expansion of the gas in the closed expansion chamber of the expansion machine. After opening, however, the pressure in the chamber is below the level of the evaporation side, which is why the expansion machine partially compresses it when it is pushed out and the medium that has additionally flowed back into the chamber must also push out ("post-compression"). The following applies: P gross = P expansion + P Further Expansion + P post-compression
Figure imgb0004

Das Druckverhältnis π ist definiert als Quotient aus Frischdampfdruck zu Abdampfdruck: π = p FD / p AD

Figure imgb0005
mit

  • pFD = Frischdampf druck
  • pAD = Abdampf druck
The pressure ratio π is defined as the quotient from live steam pressure to exhaust steam pressure: π = p FD / p AD
Figure imgb0005
With
  • p FD = live steam pressure
  • p AD = exhaust steam pressure

Neben dem hier verwendeten und direkt messbaren Druckverhältnis kann statt diesem auch das Volumenverhältnis Φ verwendet werden: Φ = ρ AD / ρ FD

Figure imgb0006
mit

  • ρFD = Frischdampf dichte
  • ρAD = Abdampf dichte
In addition to the directly measurable pressure ratio used here, the volume ratio Φ can also be used instead: Φ = ρ AD / ρ FD
Figure imgb0006
With
  • ρ FD = live steam density
  • ρ AD = evaporating density

Beide Kennzahlen (π, Φ) liefern in erster Näherung das gleiche Ergebnis.Both key figures ( π, Φ ) provide the same result in a first approximation.

Erfindungsgemäße Lösungen der ProblemstellungSolutions to the problem according to the invention Startvorgangstarting procedure

Hierbei wird die Expansionsmaschine 20 auf einen definierten Ausgangspunkt (Drehzahl) gebracht, welcher Schaden an der Expansionsmaschine im Zuschalten verhindert. Die notwendigen, durch teure Messtechnik ermittelbaren Messwerte von Durchfluss und Drehzahl der Expansionsmaschine werden durch modellbasierte Regelung umgangen.Here, the expansion machine 20 is brought to a defined starting point (speed), which prevents damage to the expansion machine when it is switched on. The necessary measurement values of flow and speed of the expansion machine, which can be determined by expensive measuring technology, are avoided by model-based control.

Diese modellbasierte Regelung stützt sich hierbei auf die Grundlagen der Kenntnis des leistungsneutralen Punktes der Expansionsmaschine (wie in Figur 4 gezeigt, es gilt Pbrutto = 0 und somit PExpansion = -PNachkompression). Dies bedeutet, dass abhängig vom Abdampfdruck pAD ein entsprechender Frischdampfdruck pFD erreicht werden muss.This model-based control is based on the basics of knowledge of the neutral point of the expansion machine (as in Figure 4 shown, P gross = 0 and thus P expansion = -P post-compression ). This means that depending on the exhaust steam pressure p AD, a corresponding live steam pressure p FD must be reached.

Weiter ist die Drehzahl bei welcher die Expansionsmaschine in diesem leistungsfreien Zustand betrieben wird von dem zugeführten Dampfvolumenstrom FD abhängig: n EM = V ˙ FD / V Kammer K

Figure imgb0007
mit

  • nEM = Expansionsmaschinendrehzahl
  • FD = Frischdampf volumenstrom
  • VKammer = Hochdruckkammervolumen der Expansionsmaschine
  • K = Kammerzahl pro Umdrehung
The speed at which the expansion machine is operated in this power-free state also depends on the steam volume flow FD supplied: n EM = V ˙ FD / V chamber * K
Figure imgb0007
With
  • n EM = expansion machine speed
  • FD = live steam volume flow
  • V chamber = high pressure chamber volume of the expansion machine
  • K = number of chambers per revolution

Somit ist der Zustand der Expansionsmaschine 20 (insbesondere deren Drehzahl) eindeutig über die Kenntnis von Frischdampfdruck, Abdampfdruck und Frischdampfvolumenstrom (abhängig von der gewünschten Zuschaltdrehzahl) ermittelbar. Die obige Gleichung zur Ermittlung der Expansionsmaschinendrehzahl stellt zunächst die einfachste Form dar und kann z.B. durch die Korrektur mittels eines drehzahlvariablen Leckagevolumenstroms in der Genauigkeit weiter verbessert werden. Aus der Expansionsmaschinendrehzahl und den weiteren thermodynamischen Größen kann die elektrische Leistung und damit z.B. ein Zustand des thermodynamischen Kreisprozesses abgeleitet werden.The state of the expansion machine 20 (in particular its speed) can thus be clearly determined by knowing the live steam pressure, exhaust steam pressure and live steam volume flow (depending on the desired connection speed). The equation above to determine the expansion engine speed initially represents the simplest form and can be further improved in accuracy, for example, by correction using a variable-speed leakage volume flow. The electrical power and thus, for example, a state of the thermodynamic cycle can be derived from the expansion machine speed and the other thermodynamic variables.

Die Messung des Frischdampfvolumenstromes ist jedoch eine relativ kostenintensive Messung, welche somit die Wirtschaftlichkeit des Gesamtsystems negativ beeinflusst.However, the measurement of the live steam volume flow is a relatively cost-intensive measurement, which therefore has a negative impact on the economy of the overall system.

Aus dem Frischdampfvolumenstrom lässt sich zwar relativ einfach auch der Frischdampfmassenstrom bestimmen, welcher sich ebenfalls in der flüssigen Phase zwischen Speisepumpe 40 und Verdampfer 10 messen ließe. Die hierfür nötigen Messgeräte (z.B. Coriolis) sind jedoch ebenfalls mit erheblichen Kosten verbunden.The live steam mass flow can also be determined relatively easily from the live steam volume flow, which could also be measured in the liquid phase between the feed pump 40 and the evaporator 10. The necessary measuring devices (e.g. Coriolis) are also associated with considerable costs.

Es besteht jedoch ferner ein direkter Zusammenhang zwischen Frischdampfvolumenstrom und durch die Speisepumpe 40 flüssig gefördertem Volumenstrom, welcher sich über die Dichten bestimmen lässt: V ˙ SP = V ˙ FD ρ FD / ρ fl

Figure imgb0008
mit

  • SP = Volumenstrom durch die Speisepumpe
  • FD = Volumenstrom durch die Expansionsmaschine
  • ρFD = Dichte des Frischdampfes durch die Expansionsmaschine
  • ρfl = Dichte des flüssigen Mediums in der Speisepumpe
However, there is also a direct correlation between live steam volume flow and volume flow conveyed by the feed pump 40, which can be determined via the densities: V ˙ SP = V ˙ FD * ρ FD / ρ fl
Figure imgb0008
With
  • SP = volume flow through the feed pump
  • FD = volume flow through the expansion machine
  • ρ FD = density of live steam from the expansion machine
  • ρ fl = density of the liquid medium in the feed pump

Es ist zu beachten, dass auch die Frischdampfdichte somit von der Lage des Abdampfdruckes abhängt, da sie eine Funktion des Frischdampfdruckes (und der Frischdampftemperatur) ist. Der Frischdampfdruck selbst ist in diesem Falle des leistungsfreien Expansionsmaschinenbetriebs eine Funktion des Abdampfdruckes. Dieser Umstand (pFD und SP variieren) führt auch dazu, dass ein statisches Startverhalten mit Festdrehzahlvorgabe der Speisepumpe je nach Abdampfdruck, welcher von den Kondensationsbedingungen wie z.B. Wärmesenkentemperatur abhängt, zu einem Startvorgang mit motorischem Antrieb (hoher Abdampfdruck pAD; untersynchron bis Stillstand der Expansionsmaschine) oder zu einem Beschleunigen des Expanders über die zulässige Drehzahl hinaus (tiefes pAD) führen kann.It should be noted that the live steam density also depends on the position of the evaporation pressure, since it is a function of the live steam pressure (and the live steam temperature). The live steam pressure itself is a function of the exhaust steam pressure in this case of the power-free expansion machine operation. This circumstance (p FD and SP vary) also leads to a static starting behavior with fixed speed specification of the feed pump depending on the evaporation pressure, which depends on the condensation conditions such as heat sink temperature depends on starting with a motor drive (high evaporation pressure p AD ; under-synchronous until the expansion machine comes to a standstill) or accelerating the expander beyond the permissible speed (low p AD ).

Ferner ist die notwendige Druckdifferenz aus dem leistungsneutralen Punkt, welche die Speisepumpe 40 aufbringen muss, gegeben als p SP = p FD p AD

Figure imgb0009
Furthermore, the necessary pressure difference from the neutral point, which the feed pump 40 must apply, is given as p SP = p FD - p AD
Figure imgb0009

Hierdurch sind somit der Volumenstrom in der Speisepumpe 40 sowie die Druckdifferenz, welche die Speisepumpe 40 aufbringen muss, bekannt. Durch Modellbildung der Speisepumpe 40 kann nun ein Drehzahlpunkt der Speisepumpe 40 gefunden werden, an welchem diese Bedingung von Druckdifferenz und Durchfluss erfüllt ist.As a result, the volume flow in the feed pump 40 and the pressure difference which the feed pump 40 must apply are known. By modeling the feed pump 40, a speed point of the feed pump 40 can now be found at which this condition of pressure difference and flow is fulfilled.

Somit ergibt sich eine Startregelung, welche jedem Abdampfdruck und zugehöriger Zuschaltdrehzahl (Solldrehzahl der Expansionsmaschine 20) einen Wert für die Speisepumpendrehzahl zuordnet, ohne dass zusätzliche Messstellen notwendig sind. Als nachteilig ist zu erwähnen, dass die tatsächlichen Werte dieser wichtigen Messgrößen somit durch ein Modell abgebildet werden und tatsächlich im System jedoch unbekannt bleiben.This results in a start control which assigns a value for the feed pump speed to each exhaust steam pressure and the associated connection speed (target speed of the expansion machine 20), without additional measuring points being necessary. It is to be mentioned as a disadvantage that the actual values of these important measurement variables are thus represented by a model and actually remain unknown in the system.

Folgende Mechanismen können jedoch ein schadfreies Zuschalten dennoch gefährden:

  1. 1) Ein Versagen der Speisepumpe (Kavitation, Motorschädigung etc.) führt zu einem zu geringeren Druckniveau / Durchfluss als für den schadfreien Betrieb benötigt wird.
  2. 2) Ein nicht oder nicht vollständig geschlossener Bypass 50 (Figur 1) oder anderweitiger Abfluss von Kältemittel, der nicht durch die Expansionskammern geführt wird, führt im Zuschalten zu einem zu geringen Druckniveau.
  3. 3) Das Temperaturniveau der Wärmequelle liegt unterhalb des notwendigen Niveaus, um das Arbeitsmedium auf dem notwendigen Frischdampfdruck verdampfen zu können.
However, the following mechanisms can still endanger damage-free switching:
  1. 1) Failure of the feed pump (cavitation, motor damage, etc.) leads to a lower pressure level / flow than is required for damage-free operation.
  2. 2) A bypass 50 that is not or not completely closed ( Figure 1 ) or other outflow of refrigerant, which is not led through the expansion chambers, leads to a too low pressure level when switched on.
  3. 3) The temperature level of the heat source is below the necessary level in order to be able to evaporate the working medium at the necessary live steam pressure.

Die Problematik unter 1) + 2) kann vermieden werden, indem dem Zuschaltvorgang zusätzlich eine Überwachung der erreichten Prozessgröße des Frischdampfdrucks vorgeschaltet wird. Verhalten sich Pumpe und Bypass regulär, muss dieser dem in der Modellbildung bestimmten Wert entsprechen. Weicht er nach unten ab, so kann der Start abgebrochen werden, ohne die Expansionsmaschine 20 zu schädigen.The problems under 1) + 2) can be avoided by additionally monitoring the achieved process variable of the live steam pressure before the connection process. If the pump and the bypass behave regularly, this must correspond to the value determined in the modeling. If it deviates downwards, the start can be terminated without damaging the expansion machine 20.

Die Problematik unter 3) wird vermieden, indem ebenfalls ein Modell der notwendigen Wärmequellentemperatur (THW, Figur 1) hinterlegt wird und der Startvorgang erst vollzogen wird, wenn mindestens dieser für den sicheren Start notwendige Wert erreicht oder überschritten wurde.The problem under 3) is avoided by also using a model of the necessary heat source temperature (T HW , Figure 1 ) is stored and the starting process is only completed when at least this value necessary for a safe start has been reached or exceeded.

Normalbetriebnormal operation

Im Betrieb kann es bei fehlender Wärmezufuhr und schlechter Wärmeabfuhr (z.B. hohe Lufttemperatur/Wassertemperatur) zu sehr geringen Druckdifferenzen von pFD zu pAD kommen. Dabei ist es ebenfalls möglich, dass dies wiederum zu einem schadhaften Betrieb der Anlage wie in Figur 2 und Figur 4 gezeigt kommt. Anstatt hier eine Bruttoleistungsauswertung vorzunehmen, welche noch weitere Einflussfaktoren hat, soll mit der gewählten Modellbildung das schadensverursachende Unterschreiten des notwendigen Druckquotienten π bzw. Volumenverhältnisses Φ mittels Überwachung des notwendigen Frischdampfdrucks pFD bezogen auf den Abdampfdruck vorgenommen werden. Wird hier ein kritischer Schwellwert erreicht, wird das System kontrolliert abgefahren, bevor schadhafte Zustände erreicht werden können. Eine weitere Möglichkeit stellt die Überwachung der elektrischen Leistung der Expansionsmaschine dar. Unterschreitet diese einen kritischen Schwellwert, so wird das System kontrolliert abgefahren.In operation, there may be very low pressure differences from p FD to p AD if there is no heat supply and poor heat dissipation (e.g. high air temperature / water temperature). It is also possible that this in turn leads to defective operation of the system as in Figure 2 and Figure 4 shown comes. Instead of carrying out a gross power evaluation here, which also has other influencing factors, the chosen model should be used to cause the damage to fall below the required pressure quotient π or volume ratio Φ by monitoring the necessary live steam pressure p FD in relation to the exhaust steam pressure. If a critical threshold value is reached here, the system is shut down in a controlled manner before defective states can be reached. Another option is to monitor the electrical power of the expansion machine. If this falls below a critical threshold value, the system is shut down in a controlled manner.

AbfahrenDepart

Im Abfahrprogramm wird die Temperaturlage auf der Wärmeeintragsseite des Systems in gewünschter Weise reduziert, um einen sicheren Stillstandszustand des Systems bei moderaten Temperaturen zu erreichen. Dieses Absenken reduziert jedoch den anliegenden Frischdampfdruck pFD und somit den Druckquotienten π. Im Extremfall kann es hier während des Abfahrens deshalb ebenfalls zu einem schadhaften Betrieb kommen.In the shutdown program, the temperature on the heat input side of the system is reduced in the desired manner in order to achieve a safe standstill of the system at moderate temperatures. However, this lowering reduces the fresh steam pressure p FD and thus the pressure quotient π. In extreme cases Damaged operation can also occur here during the downhill run.

Um dies zu verhindern, wird ebenfalls die für den sicheren Betrieb notwendige Heißwassertemperatur (THW) mittels einer Messvorrichtung 63 und der Frischdampfdruck (pFD) mittels einer Messvorrichtung 62 überwacht. Wird ein definierter Schwellwert unterschritten, wird die Expansionsmaschine von der Leistungsanbindung entkoppelt, d.h. es wird weder Leistung ab noch zugeführt, und gleichzeitig der Bypass 50 mittels Ventil 51 geöffnet, um den Druck auf der Frischdampfseite abzubauen und das System ggfs. weiter nachlaufen zu lassen. Das Abschalten bezogen auf einen Frischdampfdruck abhängig vom Abdampfdruck vermeidet zum einen den schadhaften Betrieb zum anderen aber auch, dass die Drucklage noch derart hoch ist, dass ein Abschalten der Expanderleistungsanbindung (Entkoppeln der Expansionsvorrichtung) diesen unkontrolliert hochdrehen lässt, bevor sich der Druck über den Bypass 50 weit genug abbauen kann. Diese Sicherheit kann zusätzlich hergestellt werden, indem die Speisepumpendrehzahl allmählich bis auf einen Wert reduziert wird, der dem Nullleistungspunkt aus der Modellbildung entspricht. Hierdurch wird ein Betriebszustand erreicht, bei dem bei einer weiteren Regelung der Expansionsmaschine (des Expanders) 20 oder eines Fehlers der Bypassöffnung die Expansionsmaschine 20 auf definierter Drehzahl unterhalb einer schadhaften Drehzahl leistungsneutral betrieben wird. Insgesamt sind auch die Betriebszeiten im leistungsneutralen Bereich zu minimieren, da durch die sehr geringe Lagerbelastung hierbei ein lebenszeitverkürzender Betrieb vorliegt.To prevent this, the hot water temperature (T HW ) required for safe operation is also monitored by means of a measuring device 63 and the live steam pressure (p FD ) is monitored by means of a measuring device 62. If the temperature falls below a defined threshold, the expansion machine is decoupled from the power connection, i.e. neither power is supplied nor supplied, and at the same time the bypass 50 is opened by means of valve 51 in order to reduce the pressure on the live steam side and, if necessary, to let the system continue to run. Switching off based on a live steam pressure depending on the evaporation pressure on the one hand avoids the defective operation and on the other hand that the pressure level is still so high that switching off the expander power connection (decoupling the expansion device) can turn it up in an uncontrolled manner before the pressure can be released via the bypass 50 can mine enough. This safety can also be achieved by gradually reducing the feed pump speed to a value that corresponds to the zero power point from the modeling. This achieves an operating state in which, in the case of a further control of the expansion machine (the expander) 20 or a fault in the bypass opening, the expansion machine 20 is operated at a defined speed below a defective speed without affecting power. Overall, the operating times in the performance-neutral area must also be minimized, since the very low bearing load means that the service life is shortened.

Der Rahmen der Regelstrategie ist nachfolgend nochmals kurz zusammengefasst und in Figur 5 verdeutlicht:
Als Ergebnis der Modellbildung steht eine Reglungsvorrichtung 80 der Speisepumpe 40, welche ohne Messwerte der Expanderdrehzahl oder des Durchflusses arbeitet und als Eingangsgröße den Niederdruck (Abdampfdruck) beinhaltet, um auf eine Solldrehzahl der Expansionsvorrichtung 20 zu regeln.
The framework of the control strategy is briefly summarized below and in Figure 5 clarifies:
As a result of the model formation, there is a control device 80 of the feed pump 40, which works without measured values of the expander speed or the flow and contains the low pressure (exhaust pressure) as an input variable in order to regulate to a desired speed of the expansion device 20.

Um die korrekte Funktion der Speisepumpe 40 und des Bypasses 50 zu gewährleisten (ein Versagen führt wiederum zu motorischem schadhaften Betrieb) wird zudem der Frischdampfdruck und die Heißwassertemperatur aus der Modellbildung als Überwachungsgröße verwendet (Unterschreiten von Modellwert bedeutet Abweichung im System mit Schadenspotential).In order to ensure the correct functioning of the feed pump 40 and the bypass 50 (failure in turn leads to defective motor operation), the Live steam pressure and the hot water temperature from the model formation are used as a monitoring variable (falling below the model value means deviation in the system with damage potential).

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are merely exemplary and the full scope of the present invention is defined by the claims.

Claims (15)

  1. Method for controlling a thermodynamic cycle process apparatus (100), in particular an ORC apparatus, wherein the thermodynamic cycle process apparatus comprises an evaporator (10), an expansion machine (20), a condenser (30) and a feed pump (40), and the expansion machine (20) is coupled to an external apparatus (26) during normal operation, and wherein the method comprises the following steps:
    measuring an exhaust steam pressure downstream of the expansion machine; and
    setting a volume flow of the feed pump in accordance with a computer-implemented control model of the thermodynamic cycle process apparatus as a function of the measured exhaust steam pressure and a target rotational speed of the expansion machine (20) as input variables of the control model and with the volume flow of the feed pump as output variable of the control model.
  2. Method according to claim 1, wherein setting the flow rate of the feed pump (40) includes:
    setting the speed of rotation of the feed pump (40); and/or
    setting a throttle valve or a 3-way valve behind the pump; and/or
    setting a conveying characteristic of the feed pump (40), in particular by setting a guide wheel in the case of a centrifugal pump as the feed pump or by setting a piston stroke in the case of a piston pump as the feed pump.
  3. Method according to claim 1 or 2, wherein a starting process of the thermodynamic cycle process apparatus comprises the following steps:
    controlling the expansion machine (20) to a state in which the target rotational speed of the expansion machine (20) is greater than or equal to a predetermined speed of the external apparatus to be coupled to the expansion machine (20), the external apparatus (26) to be coupled comprising in particular a generator (25), a generator/motor unit or a device driven by a separate motor; and
    subsequent coupling of the expansion machine (20) with the external apparatus (26).
  4. Method according to one of claims 1 to 3, comprising the further steps:
    measuring the live steam pressure upstream of the expansion machine (20);
    comparing the measured live steam pressure with a current model live steam pressure according to the control model; and
    initiating a shutdown process and/or aborting the starting process if the measured live steam pressure is below the model live steam pressure by more than a predetermined amount or by more than a predetermined fraction.
  5. Method according to claim 4, wherein during the starting process the expansion machine (20) is coupled to the external apparatus (26) only if the measured live steam pressure is greater than or equal to the model live steam pressure.
  6. Method according to one of claims 3 to 5, comprising the further steps:
    measuring a heat source temperature of a heat source supplying heat to the thermodynamic cycle process apparatus (100) via the evaporator (10); and
    performing the start procedure only if the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.
  7. Method according to one of claims 4 to 6, in case a shutdown process is initiated, wherein the shutdown process of the thermodynamic cycle process apparatus (100) comprises the following steps:
    decoupling the expansion machine (20) from the external apparatus (26) if the live steam pressure and/or the heat source temperature fall below a respective predetermined threshold; and
    opening a bypass line (50) to bypass the expansion machine (20).
  8. Method according to claim 7, comprising the further step:
    reducing the volume flow of the feed pump (40) until a neutral or force-free state of the expansion machine (20) is reached according to the control model, in which the power consumed by the expansion machine (20) is equal to the power output by the expansion machine (20) or the total force acting on the expansion machine (20) in the direction of an axis of rotation of the expansion machine (20) is zero.
  9. Method according to one of claims 1 to 8, wherein the control model includes analytical and/or numerical and/or tabular relations of the input and output variables.
  10. Thermodynamic cycle process apparatus (100), in particular an ORC apparatus, comprising an evaporator (10), an expansion machine (20), a condenser (30), and a feed pump (40), the expansion machine (20) being coupled to an external apparatus (25, 26) during normal operation; further characterized by:
    an exhaust steam pressure measuring device (61) for measuring an exhaust steam pressure downstream of said expansion machine (20); and
    a control device (80) for setting a volumetric flow of the feed pump (40) in accordance with a control model of the thermodynamic cycle process apparatus stored in a storage (81) of the control device (80) as a function of the measured exhaust steam pressure and a target rotational speed of the expansion machine (20) as input variables of the control model and with the volumetric flow of the feed pump (40) as output variable of the control model.
  11. Thermodynamic cycle process apparatus according to claim 10, wherein the control device (80) is adapted to perform the following steps during a starting process of the thermodynamic cycle process apparatus:
    controlling the expansion machine (20) to a state in which the target rotational speed of the expansion machine is greater than or equal to a predetermined speed of the external apparatus to be coupled to the expansion machine, the external apparatus to be coupled comprising in particular a generator, a generator/motor unit or a device driven by a separate motor; and
    subsequent coupling of the expansion machine (20) with the external apparatus (25, 26).
  12. Thermodynamic cycle process apparatus according to claim 10 or 11 further comprising:
    a live steam pressure measuring device (62) for measuring a live steam pressure upstream of the expansion machine (20);
    the control device (80) being adapted to compare the measured live steam pressure with a current model live steam pressure according to the control model, and to initiate a shutdown process and/or abort a starting process if the measured live steam pressure is below the model live steam pressure by more than a predetermined amount or by more than a predetermined fraction.
  13. Thermodynamic cycle process apparatus according to one of claims 10 to 12 further comprising:
    a heat source temperature measuring device (63) for measuring a heat source temperature of a heat source that supplies heat to said thermodynamic cycle process apparatus (100) via said evaporator (10); and
    wherein the control device (80) is adapted to perform the starting process only when the measured heat source temperature is greater than or equal to a current model heat source temperature according to the control model.
  14. Thermodynamic cycle process apparatus according to one of claims 10 to 13 further comprising:
    a bypass line (50) as a direct connection between the evaporator (10) and the condenser (30) for bypassing the expansion machine (20);
    said control device (80) being adapted to perform the following steps during a shutdown operation of said thermodynamic cycle process apparatus:
    decoupling the expansion machine (20) from the external apparatus (25, 26) if the live steam pressure and/or the heat source temperature fall below a respective predetermined threshold; and
    opening the bypass line (50) by means of a valve (51) in the bypass line.
  15. Thermodynamic cycle process apparatus according to one of claims 10 to 14 further comprising:
    a coupling (27) for coupling said expansion machine (20) to said external apparatus (25, 26); and/or
    a gear for setting a speed ratio from said expansion machine (20) to said external apparatus (25, 26).
EP17161565.1A 2017-03-17 2017-03-17 Model-based monitoring of the operational state of an expansion machine Active EP3375990B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17161565.1A EP3375990B1 (en) 2017-03-17 2017-03-17 Model-based monitoring of the operational state of an expansion machine
BR112019018768-5A BR112019018768B1 (en) 2017-03-17 2017-11-22 METHOD FOR CONTROLLING A THERMODYNAMIC CYCLE PROCESS APPARATUS, AND THERMODYNAMIC CYCLE PROCESS APPARATUS
PCT/EP2017/080029 WO2018166642A1 (en) 2017-03-17 2017-11-22 Model-based monitoring of the operating state of an expansion machine
US16/495,088 US11035258B2 (en) 2017-03-17 2017-11-22 Model-based monitoring of the operating state of an expansion machine
RU2019129133A RU2724806C1 (en) 2017-03-17 2017-11-22 Model-based expansion control of operating conditions of expansion machine
CN201780090816.XA CN110730855B (en) 2017-03-17 2017-11-22 Model-based monitoring of expander operating conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17161565.1A EP3375990B1 (en) 2017-03-17 2017-03-17 Model-based monitoring of the operational state of an expansion machine

Publications (2)

Publication Number Publication Date
EP3375990A1 EP3375990A1 (en) 2018-09-19
EP3375990B1 true EP3375990B1 (en) 2019-12-25

Family

ID=58358479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17161565.1A Active EP3375990B1 (en) 2017-03-17 2017-03-17 Model-based monitoring of the operational state of an expansion machine

Country Status (6)

Country Link
US (1) US11035258B2 (en)
EP (1) EP3375990B1 (en)
CN (1) CN110730855B (en)
BR (1) BR112019018768B1 (en)
RU (1) RU2724806C1 (en)
WO (1) WO2018166642A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111794820B (en) * 2020-06-09 2021-09-03 同济大学 Organic Rankine cycle system
CN112377270B (en) * 2020-11-11 2022-05-17 贵州电网有限责任公司 Method for rapidly stabilizing rotating speed in impact rotation process of expansion generator set

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304771A1 (en) * 1975-03-21 1976-10-15 Chaudronnerie Entr Indle METHOD AND APPARATUS FOR TRANSFORMATION OF RELATIVELY LOW TEMPERATURE HEAT INTO DRIVING FORCE OR ENERGY
DE10056231B4 (en) * 2000-11-13 2012-02-23 Alstom Technology Ltd. Method for operating a combined cycle power plant
US6581384B1 (en) * 2001-12-10 2003-06-24 Dwayne M. Benson Cooling and heating apparatus and process utilizing waste heat and method of control
US7290393B2 (en) * 2004-05-06 2007-11-06 Utc Power Corporation Method for synchronizing an induction generator of an ORC plant to a grid
JP2006250073A (en) * 2005-03-11 2006-09-21 Honda Motor Co Ltd Rankine cycle device
FR2945574B1 (en) * 2009-05-13 2015-10-30 Inst Francais Du Petrole DEVICE FOR MONITORING THE WORKING FLUID CIRCULATING IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD FOR SUCH A DEVICE
SG182746A1 (en) * 2010-01-27 2012-08-30 United Technologies Corp Organic rankine cycle (orc) load following power generation system and method of operation
US8813498B2 (en) * 2010-06-18 2014-08-26 General Electric Company Turbine inlet condition controlled organic rankine cycle
EP2469047B1 (en) * 2010-12-23 2016-04-20 Orcan Energy AG Thermal power plant and method for control, regulation, and/or monitoring of a system including an expansion device
DE102010056297B3 (en) * 2010-12-24 2011-12-15 Robert Bosch Gmbh Waste heat utilization system
EP2476869B1 (en) * 2011-01-17 2017-04-05 Orcan Energy AG Lubrication of volumetric expansion machines
US20140224469A1 (en) * 2013-02-11 2014-08-14 Access Energy Llc Controlling heat source fluid for thermal cycles
EP2865854B1 (en) * 2013-10-23 2021-08-18 Orcan Energy AG Device and method for reliable starting of ORC systems
CN103982256B (en) * 2013-12-31 2015-11-18 湖南齐力达电气科技有限公司 A kind of control gear of grid type low-temperature waste heat power generation system
DE102014206033A1 (en) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh Method for operating a system for a thermodynamic cycle, control device for a system for a thermodynamic cycle, system, and arrangement of an internal combustion engine and a system
US20150377077A1 (en) * 2014-06-26 2015-12-31 Kevin J. Laboe Organic rankine cycle waste heat recovery system
EP3118424B1 (en) * 2015-07-16 2020-05-20 Orcan Energy AG Control of orc processes by injection of un-vaporized fluids
BE1023904B1 (en) * 2015-09-08 2017-09-08 Atlas Copco Airpower Naamloze Vennootschap ORC for converting waste heat from a heat source into mechanical energy and compressor installation that uses such an ORC.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110730855B (en) 2022-05-13
CN110730855A (en) 2020-01-24
WO2018166642A1 (en) 2018-09-20
EP3375990A1 (en) 2018-09-19
RU2724806C1 (en) 2020-06-25
BR112019018768A2 (en) 2020-04-07
BR112019018768A8 (en) 2023-01-24
BR112019018768B1 (en) 2023-12-05
US11035258B2 (en) 2021-06-15
US20200095897A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
EP2865854B1 (en) Device and method for reliable starting of ORC systems
EP3375990B1 (en) Model-based monitoring of the operational state of an expansion machine
DE112012002660T5 (en) Waste heat power generator
WO2018177640A1 (en) Apparatus for controlling a hydraulic machine
EP3118424B1 (en) Control of orc processes by injection of un-vaporized fluids
EP2927438A1 (en) System for a thermodynamic cycle process, control device for a system for a thermodynamic cycle process, method for operating a system, and assembly with a combustion engine and a system
EP2093386B1 (en) Gas turbine bearing oil system with oil recirculation
DE102018209203B4 (en) Low pressure steam turbine plant and operating method for a low pressure steam turbine plant
EP3420199A1 (en) Turbine blade, associated device, turbomachine and use
EP3830422A1 (en) Vacuum pump
EP3601806A1 (en) Apparatus for controlling a hydraulic machine
EP2886811B1 (en) Method for condenser control in a thermal cycle arrangement and thermal cycle arrangement
DE102011121274A1 (en) Device for converting energy by organic Rankine cycle, comprises organic working unit, which has working unit circuit, and arrangement for maximizing energy efficiency of organic Rankine cycle
EP1365110B1 (en) Process and apparatus for operating a steam power plant, especially in a partial load range
DE102016001393B4 (en) Laser oscillator with fan
DE102018218065A1 (en) Waste heat utilization device, in particular for an internal combustion engine of a motor vehicle
WO2019202055A1 (en) Turbine generator and method for operating a turbine generator
DE102010041144A1 (en) A quick start device for a turbine, and method for operating a quick start device
EP3578765B1 (en) Low pressure steam turbine system and operating method for a turbo set and for a low pressure steam turbine system
DE102022110368A1 (en) Method for operating a fluid circuit for a motor vehicle and corresponding fluid circuit
EP3247599A1 (en) Brake device with retarder, and method for regulating such a brake device
DE102021208409A1 (en) Method for operating a waste heat utilization device
DE102013112382A1 (en) Method and device for using a waste heat of an internal combustion engine and vehicle
DE102018001782A1 (en) A method of operating a waste heat recovery system and waste heat recovery system
DE102009024778A1 (en) Hybrid fluid energy machine arrangement for vehicle, has steam turbine arranged downstream of heat exchanger for expanding work fluid, where turbine is coupled with energy machine and arranged on shaft of energy machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190304

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190826

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: LANGER, ROY

Inventor name: WEIGAND, FABIAN

Inventor name: SPRINGER, JENS-PATRICK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003231

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1217354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003231

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200317

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1217354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230322

Year of fee payment: 7

Ref country code: DE

Payment date: 20230323

Year of fee payment: 7

Ref country code: BE

Payment date: 20230322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230325

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 7