EP3118424B1 - Control of orc processes by injection of un-vaporized fluids - Google Patents

Control of orc processes by injection of un-vaporized fluids Download PDF

Info

Publication number
EP3118424B1
EP3118424B1 EP15177121.9A EP15177121A EP3118424B1 EP 3118424 B1 EP3118424 B1 EP 3118424B1 EP 15177121 A EP15177121 A EP 15177121A EP 3118424 B1 EP3118424 B1 EP 3118424B1
Authority
EP
European Patent Office
Prior art keywords
expansion
working medium
mass flow
expansion machine
thermodynamic cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15177121.9A
Other languages
German (de)
French (fr)
Other versions
EP3118424A1 (en
Inventor
Richard Aumann
Roy Langer
Fabian Weigand
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP15177121.9A priority Critical patent/EP3118424B1/en
Priority to US15/745,420 priority patent/US10669898B2/en
Priority to PCT/EP2016/063449 priority patent/WO2017008972A1/en
Priority to CN201680041482.2A priority patent/CN107849943B/en
Publication of EP3118424A1 publication Critical patent/EP3118424A1/en
Application granted granted Critical
Publication of EP3118424B1 publication Critical patent/EP3118424B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/04Control means specially adapted therefor

Definitions

  • thermodynamic cycle device which can in particular be an ORC device, and a preheater for preheating a working medium; an evaporator for evaporating and optionally overheating a first mass flow of the preheated working medium; a volumetric expansion machine for expanding the vaporized and superheated mass flow of the working medium; a condenser for condensing and possibly supercooling the working medium emerging from the outlet; a feed pump for pumping condensed working medium to the preheater; and a first supply device for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of the volumetric expansion machine between a closure and an opening of the expansion chamber.
  • the invention relates to a corresponding method for operating a thermodynamic cycle, in particular an ORC process.
  • a power-generating process such as the Organic Rankine Cycle (ORC)
  • ORC Organic Rankine Cycle
  • both the direct integration of the generated energy and mechanical power into the external system e.g. the expansion machine of the power-generating process can drive the third-party process at least in a supportive manner
  • auxiliary units for example, the third-party process can drive a pump in the force-generating process
  • the saved motors for drive and generators for output also save costs and the compactness can be increased, both of which are critical factors for the integration of a force-generating process in the environment mentioned.
  • a gearbox represents an additional cost, which, depending on the application, has a significant impact on economic efficiency. This effect is reinforced by the fact that gearboxes (especially stepless ones) also lead to a loss in efficiency. Gearboxes are also subject to considerable stress and thus add additional maintenance and corresponding costs to the system. Last but not least, a transmission is also comparatively space-intensive, which is contrary to the goal of compactness in many motor integration applications.
  • US 6,035,643 A discloses an ORC system wherein the turbine has 21 successive stages in which the organic vapor expands and its pressure and temperature therein are reduced to generate mechanical energy from the thermal energy. On the way through the turbine, additional organic medium is added through valve-controlled injection nozzles on the way through the stages.
  • US 5,555,731 A discloses a preheated injection turbine cycle.
  • US 3,234,734 A discloses a process for converting heat into work using a working medium which is overheated and then expanded. An additional amount of liquid medium can be injected into a mixing chamber of the turbine, the injected amount mixing with a first expanded amount and expanding together in a second stage.
  • the tasks 1 and 2 are solved by a device according to claim 1 and a method according to claim 11.
  • thermodynamic cycle device which can in particular be an ORC device, comprises a preheater for preheating a working medium; an evaporator for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine for expanding the vaporized and superheated first mass flow of the working medium; a condenser for condensing the working medium emerging from the expansion machine; and a feed pump for pumping condensed working medium to the preheater.
  • the thermodynamic cycle device according to the invention is characterized by a first feed device for feeding a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
  • the device according to the invention can be further developed in such a way that the first feed device can comprise a feed inlet of the expansion machine and a first feed line between the preheater and the feed inlet.
  • the feed inlet is arranged in fluid communication with an expansion space of the expansion machine at a predetermined volume range of the expansion space, the expansion space expanding between an inlet and an outlet of the expansion machine.
  • the first feed device comprises a first controllable throttle element, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or the first feed device can comprise an injection device on the expansion machine, in particular on the feed inlet.
  • thermodynamic cycle device can further comprise a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
  • a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
  • the second feed device can comprise a second feed line which is arranged between the preheater or the first feed line on the one hand and the inlet or a third line arranged between the evaporator and the inlet on the other hand.
  • the second feed device can comprise a second controllable throttle element, in particular a second thermostatic expansion valve, for regulating the third mass flow.
  • the feed pump can be coupled to a drive train operated via the expansion machine; and wherein the cycle process device may further comprise a controllable recirculation device for partially recirculating working medium from a high pressure side of the feed pump to a low pressure side of the feed pump. Fluctuations and instabilities in the evaporation zone can thus be avoided.
  • the controllable recirculation device can comprise a line from the high pressure side to the low pressure side of the feed pump, wherein the line can be provided with a third controllable throttle element.
  • a rotation of the expansion machine can be coupled to a rotation of an externally running process; in particular, a shaft of the expansion machine can be coupled to an external drive train of an engine, either directly or indirectly via a transmission.
  • the object of the invention is further achieved by a method according to claim 11.
  • the method according to the invention for operating a thermodynamic cycle, in particular an ORC process comprises the following steps: preheating a working medium by means of a preheater; Evaporating and overheating a first mass flow of the preheated working medium through an evaporator; Expanding the vaporized and superheated first mass flow of the working medium in an expansion machine between an inlet and an outlet of the expansion machine; Condensing the working medium emerging from the outlet through a condenser; and pumping condensed working medium to the preheater with a feed pump; the method being characterized by supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
  • the following further step can be provided: regulating the second mass flow and / or injecting the second mass flow into an expansion space of the expansion machine.
  • the method can further comprise: supplying a third mass flow of the preheated working medium to the vaporized and superheated first mass flow of the working medium before it expands in the expansion machine.
  • the third mass flow can be regulated.
  • Another development is that the following further step can be provided: coupling a rotation of the expansion machine with a rotation of an externally running process; in particular by coupling a shaft of the expansion machine to an external drive train of an engine, either directly or indirectly via a transmission.
  • Fig. 1 shows a first embodiment of the thermodynamic cycle device 100 according to the invention in the form of an ORC device (Organic Rankine Cycle).
  • the cycle process device comprises a preheater 10 for preheating a working medium; an evaporator 20 for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine 30 for expanding the vaporized and superheated first mass flow of the working medium; a condenser 60 for condensing the working medium exiting the expansion machine 30; and a feed pump 70 (with motor M) for pumping condensed working medium to the preheater 10.
  • a first feed device 40 is provided for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine 30.
  • the first feed device 40 comprises a feed inlet 48 of the expansion machine 30 and a first feed line 47 between the preheater 10 and the feed inlet 48.
  • the feed inlet 48 is arranged in fluid communication with an expansion space of the expansion machine 30 at a predetermined volume range of the expansion space, the expansion space between one Inlet 32 and an outlet 34 of the expansion machine 30 expanded.
  • the first feed device 40 further comprises a first controllable throttle element 45, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
  • a first controllable throttle element 45 in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
  • the regulation can take place on the basis of the measured temperatures T, which are shown as examples.
  • the throttle element 45 can be controlled accordingly.
  • the rotation of the expansion machine 30 can be coupled to a rotation of an externally running process; in particular, a shaft 31 of the expansion machine 30 can be coupled to an external drive train of a motor 90, either directly or indirectly via a gear 91, which can include a freewheel or shifting options.
  • h 1 , h 2 , h 3 and h 4 denote the enthalpies at the respective in Fig. 1 specified positions.
  • the branched-off liquid working medium is supplied to the expansion machine via a suitable feed after a certain proportion of the expansion and is injected directly (process control according to Fig. 1 ).
  • the injection device In order to achieve thermal equilibrium as quickly as possible during the injection (heat input until there is a uniform temperature in the expansion chamber), the injection device must be designed accordingly and ensure good distribution with high fluid surfaces (e.g. fine atomization).
  • a throttle element in particular a controllable or a passive throttle element (for example a thermostatic expansion valve) is used in the feed line.
  • an inlet hole For injection into the expander, an inlet hole must be made in a suitable place in the housing. This must be determined depending on the volume ratio of the expansion machine.
  • the still high pressure of the chamber has a limiting effect in the direction of the start of expansion, which hinders the entry of liquid fluid.
  • overheating can also increase during the course of the expansion, so that more liquid fluid can also be evaporated at a later point in time of the expansion.
  • participation in a large expansion share of the overall expansion is positive for the generation of benefits.
  • the volume ratio of the expansion ( ⁇ EX ) can be reduced dynamically (see also Fig. 5 ), the following relationship applies to the specific volumes at the time the chamber is closed when entering the expansion machine ( v K, on ) and at the moment of opening the chamber at the outlet of the expansion machine ( v K, off ) with the fixed volume ratio of the expansion machine V i :
  • the actual expansion ratio ( ⁇ real ) is determined from the live steam parameters and the evaporation parameters and is determined by pressure and temperature before and after the expansion machine.
  • the overheating of the dry fluid which increases during the expansion, is used to evaporate additional preheated AM for the expansion and thus to increase the mass flow of the AM participating in the expansion. Otherwise the energy of the overheating of the exhaust steam would have to be dissipated through the condenser.
  • the low-temperature heat source of the preheater is usually not fully utilized and can be better used due to the increased amount of fluid in the preheating.
  • Fig. 2 shows a second embodiment of the thermodynamic cycle device 200 according to the invention, the further compared to the first embodiment Features.
  • the same reference numerals mean the same elements.
  • a second supply device 50 is provided for supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium before its expansion in the expansion machine 30.
  • the second feed device 50 comprises a second feed line 57 which is arranged between the preheater 10 or the first feed line 47 on the one hand and the inlet 32 or a third line 17 arranged between the evaporator 20 and the inlet 32 on the other hand.
  • the second feed device 50 comprises a second controllable throttle element 55, in particular a second thermostatic expansion valve, for regulating the third mass flow.
  • a direct injection of preheated fluid into the live steam upstream of the expansion machine may be necessary - for example, if the temperature limits before the direct injection into the expansion machine are not otherwise ensured (process control according to Fig. 2 ) or if a reduction in overheating is necessary, but the real expansion ratio (through process control according to Fig. 1 ) should not be (further) lowered.
  • Fig. 3 shows a third embodiment of the cycle device 300 according to the invention.
  • the feed pump 70 is coupled to a drive train operated via the expansion machine 30, namely to the external motor 90; wherein the cycle process device further comprises a controllable recirculation device 80 for partially recirculating working medium from a high pressure side of the feed pump 70 to a low pressure side of the feed pump 70.
  • the controllable recirculation device 80 comprises a line 81 from the high pressure side to the low pressure side of the feed pump 70, the line 81 being provided with a third controllable throttle element 82.
  • the pump In the event that the pump is also permanently linked to the process, the pump must be designed with a recirculation circuit (process control according to Fig. 3 ).
  • the pump must be dimensioned so that the lowest possible losses occur in the case of full load and sufficient control power is available at part load. Control power is necessary both for increasing the mass flow through the ORC circuit (e.g. in the event of excessive overheating) and for lowering the mass flow (e.g. available heat quantity is smaller than the heat quantity dissipated by AM or the fresh steam pressure that is set is above the evaporation pressure at the available one Temperature level).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft eine thermodynamische Kreisprozessvorrichtung, die insbesondere eine ORC-Vorrichtung sein kann, und die einen Vorwärmer zum Vorwärmen eines Arbeitsmediums; einen Verdampfer zum Verdampfen und gegebenenfalls Überhitzen eines ersten Massenstroms des vorgewärmten Arbeitsmediums; eine volumetrische Expansionsmaschine zum Expandieren des verdampften und überhitzten Massenstroms des Arbeitsmediums; einen Kondensator zum Kondensieren und gegebenenfalls Unterkühlen des aus dem Auslass austretenden Arbeitsmediums; eine Speisepumpe zum Pumpen von kondensiertem Arbeitsmedium zum Vorwärmer; und eine erste Zuführeinrichtung zum Zuführen eines zweiten Massenstroms des vorgewärmten Arbeitsmediums zum teilweise expandierten ersten Massenstrom des Arbeitsmediums in einer Expansionskammer der volumetrischen Expansionsmaschine zwischen einer Schließung und einer Öffnung der Expansionskammer umfasst. Weiterhin betrifft die Erfindung ein entsprechendes Verfahren zum Betreiben eines thermodynamischen Kreisprozesses, insbesondere eines ORC-Prozesses.The invention relates to a thermodynamic cycle device, which can in particular be an ORC device, and a preheater for preheating a working medium; an evaporator for evaporating and optionally overheating a first mass flow of the preheated working medium; a volumetric expansion machine for expanding the vaporized and superheated mass flow of the working medium; a condenser for condensing and possibly supercooling the working medium emerging from the outlet; a feed pump for pumping condensed working medium to the preheater; and a first supply device for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of the volumetric expansion machine between a closure and an opening of the expansion chamber. Furthermore, the invention relates to a corresponding method for operating a thermodynamic cycle, in particular an ORC process.

Stand der TechnikState of the art

Wird ein krafterzeugender Prozess, wie z.B. der Organic Rankine Cycle (ORC), im Umfeld eines weiteren Aggregates, wie z.B. eines Verbrennungsmotors, betrieben, ist sowohl die direkte Einbindung der erzeugten Energie als mechanische Leistung in das Fremdsystem (z.B. kann die Expansionsmaschine des krafterzeugenden Prozesses den Fremdprozess zumindest unterstützend antreiben), als auch deren Bereitstellung für Nebenaggregate (z.B. kann der Fremdprozess eine Pumpe im krafterzeugenden Prozess antreiben) oft vorteilhaft, da es bei der Umwandlung von mechanischer Energie in elektrische Energie zu Umwandlungsverlusten kommt. Zudem entfallen durch die eingesparten Motoren für Antrieb bzw. Generatoren für Abtrieb ebenfalls Kosten und die Kompaktheit kann gesteigert werden, was beides kritische Faktoren für die Integration eines krafterzeugenden Prozesses in das genannte Umfeld sind.If a power-generating process, such as the Organic Rankine Cycle (ORC), is operated in the environment of another unit, such as an internal combustion engine, both the direct integration of the generated energy and mechanical power into the external system (e.g. the expansion machine of the power-generating process can drive the third-party process at least in a supportive manner), as well as their provision for auxiliary units (for example, the third-party process can drive a pump in the force-generating process), since the conversion of mechanical energy into electrical energy leads to conversion losses. In addition, the saved motors for drive and generators for output also save costs and the compactness can be increased, both of which are critical factors for the integration of a force-generating process in the environment mentioned.

Durch eine direkte Anbindung (beispielsweise eine Kopplung über eine starre Welle) verliert jedoch einer der Prozesse den Freiheitsgrad der Drehzahlsteuerung (meist der nachgelagerte Prozess). Um dies zu umgehen, kann eine Anbindung über ein Getriebe erfolgen. Hierdurch kann sowohl eine gestufte als auch eine stufenlose Anbindung die Drehzahlsteuerung ermöglichen. Dieser Wiedergewinn der Drehzahlsteuerung geht jedoch mit einer Reihe nachteiliger Eigenschaften einher. Zum einen stellt ein Getriebe einen zusätzlichen Kostenaufwand dar, der je nach Anwendung einen erheblichen Einfluss auf die Wirtschaftlichkeit hat. Dieser Effekt wird dadurch verstärkt, dass Getriebe (insbesondere stufenlose) ebenfalls zu einer Wirkungsgradeinbuße führen. Getriebe unterliegen ferner einer erheblichen Beanspruchung und fügen der Anlage somit zusätzlichen Wartungsaufwand und entsprechende Kosten hinzu. Nicht zuletzt ist ein Getriebe ebenfalls vergleichsweise bauraumintensiv, was dem Ziel der Kompaktheit bei vielen Anwendungen der Motorintegration entgegensteht.However, through a direct connection (for example a coupling via a rigid shaft) one of the processes loses the degree of freedom of the speed control (usually the downstream process). To avoid this, a connection can be made via a gearbox. This enables both a stepped and a stepless connection to control the speed. However, this regaining of speed control is accompanied by a number of disadvantageous properties. On the one hand, a gearbox represents an additional cost, which, depending on the application, has a significant impact on economic efficiency. This effect is reinforced by the fact that gearboxes (especially stepless ones) also lead to a loss in efficiency. Gearboxes are also subject to considerable stress and thus add additional maintenance and corresponding costs to the system. Last but not least, a transmission is also comparatively space-intensive, which is contrary to the goal of compactness in many motor integration applications.

Durch die hier beschriebene Kopplung der Expansionsmaschine oder der Kopplung sowohl der Expansionsmaschine als auch der Speisepumpe des ORC-Systems an Fremdprozesse ohne Getriebe gehen die Freiheitsgrade der Drehzahlregelung verloren. Hierdurch können keine für den ORC-Betrieb günstigen und für die Komponenten erforderlichen Parameter geregelt werden - vor allem Volumenströme, Temperaturen und Druckniveaus. Dies stellt insbesondere ein Problem für den Betrieb dar, da die erlaubten Temperaturen der Komponenten limitiert sind, insbesondere auf der Abströmseite der Expansionsmaschine.The coupling of the expansion machine described here or the coupling of both the expansion machine and the feed pump of the ORC system to third-party processes without a transmission means that the degrees of freedom of the speed control are lost. As a result, no parameters that are favorable for ORC operation and required for the components can be regulated - especially volume flows, temperatures and pressure levels. This is particularly a problem for the operation, since the permitted temperatures of the components are limited, especially on the downstream side of the expansion machine.

Außerdem kann durch das Fehlen der Drehzahlregelung der Expansionsmaschine nicht gezielt ein Expansionsverhältnis zur Verfügung gestellt werden, welches zu dem in einer volumetrischen Expansionsmaschine fest verbautem Volumenverhältnis korreliert. Die im Stand der Technik übliche Umsetzung eines variablen Volumenverhältnisses mittels variablem Ein- bzw. Auslassfenster stellt ein aufwändiges und teures Verfahren dar, welches die Wirtschaftlichkeit von ORC-Systemen behindert. Eine für die Expansionsmaschine unpassende Expansion kann jedoch zum einen zu stark fallenden Wirkungsgraden und somit ebenfalls einer Unwirtschaftlichkeit des Gesamtsystems führen oder im Extremfall eine Überschreitung des zulässigen Maximaldrucks zur Folge haben. Die Überschreitung von maximal zulässigen Drücken und Temperaturen führt zu einem Ausfall der Anlage mit möglichen Folgeschäden.In addition, due to the lack of speed control of the expansion machine, an expansion ratio cannot be made available that correlates with the volume ratio that is permanently installed in a volumetric expansion machine. The implementation of a variable volume ratio by means of a variable inlet or outlet window, which is customary in the prior art, represents a complex and expensive process which hinders the economy of ORC systems. However, an expansion that is not suitable for the expansion machine can result in efficiency levels falling too sharply and thus also making the overall system inefficient or, in extreme cases, exceeding the permissible maximum pressure. Exceeding the maximum permissible pressures and temperatures leads to a failure of the system with possible consequential damage.

US 6,035,643 A offenbart ein ORC-System, wobei die Turbine 21 aufeinanderfolgende Stufen aufweist, in denen der organische Dampf expandiert und dessen Druck und Temperatur darin erniedrigt werden, um aus der Wärmeenergie mechanische Energie zu erzeugen. Auf dem Weg durch die Turbine wird zusätzliches organisches Medium durch ventilgesteuerte Einspritzdüsen auf dem Weg durch die Stufen zugefügt. US 6,035,643 A discloses an ORC system wherein the turbine has 21 successive stages in which the organic vapor expands and its pressure and temperature therein are reduced to generate mechanical energy from the thermal energy. On the way through the turbine, additional organic medium is added through valve-controlled injection nozzles on the way through the stages.

US 5,555,731 A offenbart einen Turbinenkreislauf mit vorgewärmter Injektion. US 5,555,731 A discloses a preheated injection turbine cycle.

US 3,234,734 A offenbart ein Verfahren zur Umwandlung von Wärme in Arbeit unter Zuhilfenahme eines Arbeitsmediums, welches überhitzt und anschließend expandiert wird. Dabei kann in eine Mischkammer der Turbine eine zusätzliche Menge von flüssigem Medium eingespritzt werden, wobei die eingespritzte Menge sich mit einer ersten expandierten Menge vermischt und gemeinsam in einer zweiten Stufe expandiert. US 3,234,734 A discloses a process for converting heat into work using a working medium which is overheated and then expanded. An additional amount of liquid medium can be injected into a mixing chamber of the turbine, the injected amount mixing with a first expanded amount and expanding together in a second stage.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es die genannten Nachteile zumindest teilweise zu überwinden, und dementsprechend die folgenden vier Aufgaben zumindest teilweise zu lösen:

  1. 1. Absenken der Überhitzung (bei gegebenem Druck) um die Komponenten vor einem Betrieb bei Temperaturen oberhalb ihrer Limitierung zu schützen und/oder Absenken der Überhitzung um eine Wirtschaftlichkeit des Systems durch verbesserte Wirkungsgrade zu gewährleisten. Die Überhitzung bei trockenen Fluiden ist per se schädlich für den Wirkungsgrad, da sie Energie auf hohem Temperaturniveau darstellt, welche keinen zusätzlichen Beitrag zur Expansion leistet. Je weiter der Abdampf im überhitzten Bereich liegt, desto mehr Wärme muss vor der Verflüssigung im Kondensator abgeführt werden.
  2. 2. Vermeidung von für den Betrieb uneffektiven Volumenverhältnissen auf Grund der nicht regelbaren Drucklagen bei festem Volumenverhältnis der Expansionsmaschine.
  3. 3. Vermeidung von zu hohen Drücken (absolut oder auf die vom System erreichbare Verdampfungstemperatur bezogen), welche zu Schäden an der Anlage oder einer Nichtverdampfung des Fluides oder Teilen hiervon führen, was neben einem Wirkungsgradeinbruch ebenfalls Schäden verursachen kann.
  4. 4. Vermeidung von zu großen Massenströmen des Arbeitsmediums, welche durch die zur Verfügung stehende Wärme nicht (in ausreichendem Maße) verdampft werden können.
The object of the invention is to at least partially overcome the disadvantages mentioned, and accordingly to at least partially solve the following four tasks:
  1. 1. Lowering the overheating (at a given pressure) in order to protect the components from operating at temperatures above their limit and / or lowering the overheating in order to ensure that the system is economical due to improved efficiencies. Overheating in dry fluids is inherently detrimental to efficiency, since it represents energy at a high temperature level, which makes no additional contribution to expansion. The further the exhaust steam is in the overheated area, the more heat has to be removed in the condenser before liquefaction.
  2. 2. Avoiding volume ratios that are ineffective for operation due to the non-controllable pressure levels with a fixed volume ratio of the expansion machine.
  3. 3. Avoidance of excessively high pressures (absolute or based on the evaporation temperature achievable by the system), which lead to damage to the system or non-evaporation of the fluid or parts thereof, which can also cause damage in addition to a drop in efficiency.
  4. 4. Avoidance of excessive mass flows of the working medium, which cannot be evaporated (to a sufficient extent) by the available heat.

Die Aufgaben 1 und 2 werden gelöst durch eine Vorrichtung nach Anspruch 1 und ein Verfahren nach Anspruch 11.The tasks 1 and 2 are solved by a device according to claim 1 and a method according to claim 11.

Die erfindungsgemäße thermodynamische Kreisprozessvorrichtung, die insbesondere eine ORC-Vorrichtung sein kann, umfasst einen Vorwärmer zum Vorwärmen eines Arbeitsmediums; einen Verdampfer zum Verdampfen und Überhitzen eines ersten Massenstroms des vorgewärmten Arbeitsmediums; eine Expansionsmaschine zum Expandieren des verdampften und überhitzten ersten Massenstroms des Arbeitsmediums; einen Kondensator zum Kondensieren des aus der Expansionsmaschine austretenden Arbeitsmediums; und eine Speisepumpe zum Pumpen von kondensiertem Arbeitsmedium zum Vorwärmer. Die erfindungsgemäße thermodynamische Kreisprozessvorrichtung ist gekennzeichnet durch eine erste Zuführeinrichtung zum Zuführen eines zweiten Massenstroms des vorgewärmten Arbeitsmediums zum teilweise expandierten ersten Massenstrom des Arbeitsmediums in der Expansionsmaschine.The thermodynamic cycle device according to the invention, which can in particular be an ORC device, comprises a preheater for preheating a working medium; an evaporator for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine for expanding the vaporized and superheated first mass flow of the working medium; a condenser for condensing the working medium emerging from the expansion machine; and a feed pump for pumping condensed working medium to the preheater. The thermodynamic cycle device according to the invention is characterized by a first feed device for feeding a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.

Dies ermöglicht die Freiheitsgrade der Absenkung der Abdampftemperatur und eines angepassten Expansionsverhältnisses. Die Überhitzung kann auf diese Weise reduziert werden, und das Volumenverhältnis der Expansion kann dynamisch verringert werden.This enables the degrees of freedom of the lowering of the evaporation temperature and an adapted expansion ratio. The overheating can be reduced in this way and the volume ratio of the expansion can be reduced dynamically.

Die erfindungsgemäße Vorrichtung kann dahingehend weitergebildet werden, dass die erste Zuführeinrichtung einen Zuführeinlass der Expansionsmaschine und eine erste Zuführleitung zwischen dem Vorwärmer und dem Zuführeinlass umfassen kann.The device according to the invention can be further developed in such a way that the first feed device can comprise a feed inlet of the expansion machine and a first feed line between the preheater and the feed inlet.

Erfindungsgemäß ist der Zuführeinlass in Fluidverbindung mit einem Expansionsraum der Expansionsmaschine bei einem vorbestimmten Volumenbereich des Expansionsraums angeordnet, wobei der Expansionsraum zwischen einem Einlass und einem Auslass der Expansionsmaschine expandiert.According to the invention, the feed inlet is arranged in fluid communication with an expansion space of the expansion machine at a predetermined volume range of the expansion space, the expansion space expanding between an inlet and an outlet of the expansion machine.

Eine Weiterbildung besteht darin, dass die erste Zuführeinrichtung ein erstes ansteuerbares Drosselelement, insbesondere ein erstes thermostatisches Expansionsventil, zum Regeln des zweiten Massenstroms umfasst und/oder wobei die erste Zuführeinrichtung eine Einspritzvorrichtung an der Expansionsmaschine, insbesondere am Zuführeinlass, umfassen kann.A further development is that the first feed device comprises a first controllable throttle element, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or the first feed device can comprise an injection device on the expansion machine, in particular on the feed inlet.

Gemäß einer anderen Weiterbildung kann die thermodynamische Kreisprozessvorrichtung weiterhin eine zweite Zuführeinrichtung zum Zuführen eines dritten Massenstroms des vorgewärmten Arbeitsmediums zum verdampften und überhitzten ersten Massenstrom des Arbeitsmediums vor dessen Expansion in der Expansionsmaschine umfassen. Dies ermöglicht eine Temperaturlimitierungen vor der Direkteinspritzung in die Expansionsmaschine und eine Absenkung der Überhitzung, auch wenn das reale Expansionsverhältnis nicht (weiter) abgesenkt werden soll. Diese Strategie erlaubt eine schnelle Regulierung der Frischdampftemperatur.According to another development, the thermodynamic cycle device can further comprise a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine. This enables temperature limits before direct injection into the expansion machine and a reduction in overheating, even if the real expansion ratio is not to be (further) reduced. This strategy allows the fresh steam temperature to be regulated quickly.

Die zweite Zuführeinrichtung kann eine zweite Zuführleitung umfassen, die zwischen dem Vorwärmer oder der ersten Zuführleitung einerseits und dem Einlass oder einer zwischen dem Verdampfer und dem Einlass angeordneten dritten Leitung andererseits angeordnet ist.The second feed device can comprise a second feed line which is arranged between the preheater or the first feed line on the one hand and the inlet or a third line arranged between the evaporator and the inlet on the other hand.

Die zweite Zuführeinrichtung kann ein zweites ansteuerbares Drosselelement, insbesondere ein zweites thermostatisches Expansionsventil, zum Regeln des dritten Massenstroms umfassen.The second feed device can comprise a second controllable throttle element, in particular a second thermostatic expansion valve, for regulating the third mass flow.

Eine andere Weiterbildung besteht darin, dass die Speisepumpe mit einem über die Expansionsmaschine betriebenen Antriebsstrang gekoppelt sein kann; und wobei die Kreisprozessvorrichtung weiterhin eine regelbare Rezirkulationseinrichtung zum teilweisen Rezirkulieren von Arbeitsmedium von einer Hochdruckseite der Speisepumpe zu einer Niederdruckseite der Speisepumpe umfassen kann. Schwankungen und Instabilitäten in der Verdampfungszone können so vermieden werden.Another further development is that the feed pump can be coupled to a drive train operated via the expansion machine; and wherein the cycle process device may further comprise a controllable recirculation device for partially recirculating working medium from a high pressure side of the feed pump to a low pressure side of the feed pump. Fluctuations and instabilities in the evaporation zone can thus be avoided.

Die regelbare Rezirkulationseinrichtung kann eine Leitung von der Hochdruckseite zu der Niederdruckseite der Speisepumpe umfassen, wobei die Leitung die mit einem dritten ansteuerbaren Drosselelement versehen sein kann.The controllable recirculation device can comprise a line from the high pressure side to the low pressure side of the feed pump, wherein the line can be provided with a third controllable throttle element.

Gemäß einer anderen Weiterbildung kann eine Drehung der Expansionsmaschine mit einer Drehung eines extern laufenden Prozesses koppelbar sein; wobei insbesondere eine Welle der Expansionsmaschine mit einem externen Antriebsstrang eines Motors koppelbar sein kann, entweder direkt oder indirekt über ein Getriebe.According to another development, a rotation of the expansion machine can be coupled to a rotation of an externally running process; in particular, a shaft of the expansion machine can be coupled to an external drive train of an engine, either directly or indirectly via a transmission.

Die erfindungsgemäße Aufgabe wird weiterhin gelöst durch ein Verfahren nach Anspruch 11.The object of the invention is further achieved by a method according to claim 11.

Das erfindungsgemäße Verfahren zum Betreiben eines thermodynamischen Kreisprozesses, insbesondere eines ORC-Prozesses, umfasst die folgenden Schritte: Vorwärmen eines Arbeitsmediums durch einen Vorwärmer; Verdampfen und Überhitzen eines ersten Massenstroms des vorgewärmten Arbeitsmediums durch einen Verdampfer; Expandieren des verdampften und überhitzten ersten Massenstroms des Arbeitsmediums in einer Expansionsmaschine zwischen einem Einlass und einem Auslass der Expansionsmaschine; Kondensieren des aus dem Auslass austretenden Arbeitsmediums durch einen Kondensator; und Pumpen von kondensiertem Arbeitsmedium zum Vorwärmer mit einer Speisepumpe; wobei das Verfahren gekennzeichnet ist durch Zuführen eines zweiten Massenstroms des vorgewärmten Arbeitsmediums zum teilweise expandierten ersten Massenstrom des Arbeitsmediums in der Expansionsmaschine.The method according to the invention for operating a thermodynamic cycle, in particular an ORC process, comprises the following steps: preheating a working medium by means of a preheater; Evaporating and overheating a first mass flow of the preheated working medium through an evaporator; Expanding the vaporized and superheated first mass flow of the working medium in an expansion machine between an inlet and an outlet of the expansion machine; Condensing the working medium emerging from the outlet through a condenser; and pumping condensed working medium to the preheater with a feed pump; the method being characterized by supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.

Die Vorteile des erfindungsgemäßen Verfahrens und dessen Weiterbildungen entsprechen - wenn nicht anders angegeben - jenen der erfindungsgemäßen Vorrichtung.Unless otherwise stated, the advantages of the method according to the invention and its developments correspond to those of the device according to the invention.

Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens kann der folgende weitere Schritt vorgesehen sein: Regeln des zweiten Massenstroms und/oder Einspritzen des zweiten Massenstroms in einen Expansionsraum der Expansionsmaschine.According to a development of the method according to the invention, the following further step can be provided: regulating the second mass flow and / or injecting the second mass flow into an expansion space of the expansion machine.

Eine andere Weiterbildung besteht darin, dass das Verfahren weiterhin umfassen kann: Zuführen eines dritten Massenstroms des vorgewärmten Arbeitsmediums zum verdampften und überhitzten ersten Massenstrom des Arbeitsmediums vor dessen Expansion in der Expansionsmaschine.Another development is that the method can further comprise: supplying a third mass flow of the preheated working medium to the vaporized and superheated first mass flow of the working medium before it expands in the expansion machine.

Gemäß einer anderen Weiterbildung kann der dritte Massenstrom geregelt werden.According to another development, the third mass flow can be regulated.

Eine andere Weiterbildung besteht darin, dass der folgende weitere Schritt vorgesehen sein kann: Koppeln einer Drehung der Expansionsmaschine mit einer Drehung eines extern laufenden Prozesses; insbesondere durch Koppeln einer Welle der Expansionsmaschine mit einem externen Antriebsstrang eines Motors, entweder direkt oder indirekt über ein Getriebe.Another development is that the following further step can be provided: coupling a rotation of the expansion machine with a rotation of an externally running process; in particular by coupling a shaft of the expansion machine to an external drive train of an engine, either directly or indirectly via a transmission.

Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.The further developments mentioned can be used individually or, as claimed, can be suitably combined with one another.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments and advantages of the present invention are explained in more detail below with reference to the drawings. It is understood that the embodiments are not exhaustive of the scope of the present invention. It is further understood that some or all of the features described below can also be combined with one another in other ways.

Zeichnungendrawings

Fig. 1Fig. 1
zeigt eine erste Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung.shows a first embodiment of the thermodynamic cycle device according to the invention.
Fig. 2Fig. 2
zeigt eine zweite Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung.shows a second embodiment of the thermodynamic cycle device according to the invention.
Fig. 3Fig. 3
zeigt eine dritte Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung.shows a third embodiment of the thermodynamic cycle device according to the invention.
Fig. 4Fig. 4
zeigt qualitativ den Zusammenhang von Expansionsverhältnis und Expansionswirkungsgrad.qualitatively shows the relationship between expansion ratio and expansion efficiency.
Fig. 5Fig. 5
ist eine beispielhafte Darstellung des Zusammenhangs von Druck und Enthalpie bei der Direkteinspritzung von vorgewärmtem Arbeitsmedium in die Expansionsmaschine.is an exemplary representation of the relationship between pressure and enthalpy in the direct injection of preheated working medium into the expansion machine.
AusführungsformenEmbodiments

Fig. 1 zeigt eine erste Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung 100 in Form einer ORC-Vorrichtung (Organic Rankine Cycle). Die Kreisprozessvorrichtung umfasst einen Vorwärmer 10 zum Vorwärmen eines Arbeitsmediums; einen Verdampfer 20 zum Verdampfen und Überhitzen eines ersten Massenstroms des vorgewärmten Arbeitsmediums; eine Expansionsmaschine 30 zum Expandieren des verdampften und überhitzten ersten Massenstroms des Arbeitsmediums; einen Kondensator 60 zum Kondensieren des aus der Expansionsmaschine 30 austretenden Arbeitsmediums; und eine Speisepumpe 70 (mit Motor M) zum Pumpen von kondensiertem Arbeitsmedium zum Vorwärmer 10. Erfindungsgemäß ist eine erste Zuführeinrichtung 40 zum Zuführen eines zweiten Massenstroms des vorgewärmten Arbeitsmediums zum teilweise expandierten ersten Massenstrom des Arbeitsmediums in der Expansionsmaschine 30 vorgesehen. Fig. 1 shows a first embodiment of the thermodynamic cycle device 100 according to the invention in the form of an ORC device (Organic Rankine Cycle). The cycle process device comprises a preheater 10 for preheating a working medium; an evaporator 20 for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine 30 for expanding the vaporized and superheated first mass flow of the working medium; a condenser 60 for condensing the working medium exiting the expansion machine 30; and a feed pump 70 (with motor M) for pumping condensed working medium to the preheater 10. According to the invention, a first feed device 40 is provided for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine 30.

Die erste Zuführeinrichtung 40 umfasst einen Zuführeinlass 48 der Expansionsmaschine 30 und eine erste Zuführleitung 47 zwischen dem Vorwärmer 10 und dem Zuführeinlass 48. Der Zuführeinlass 48 ist in Fluidverbindung mit einem Expansionsraum der Expansionsmaschine 30 bei einem vorbestimmten Volumenbereich des Expansionsraums angeordnet, wobei der Expansionsraum zwischen einem Einlass 32 und einem Auslass 34 der Expansionsmaschine 30 expandiert.The first feed device 40 comprises a feed inlet 48 of the expansion machine 30 and a first feed line 47 between the preheater 10 and the feed inlet 48. The feed inlet 48 is arranged in fluid communication with an expansion space of the expansion machine 30 at a predetermined volume range of the expansion space, the expansion space between one Inlet 32 and an outlet 34 of the expansion machine 30 expanded.

Die erste Zuführeinrichtung 40 umfasst weiterhin ein erstes ansteuerbares Drosselelement 45, insbesondere ein erstes thermostatisches Expansionsventil, zum Regeln des zweiten Massenstroms umfasst und/oder wobei die erste Zuführeinrichtung 40 eine Einspritzvorrichtung 41 an der Expansionsmaschine 30, insbesondere am Zuführeinlass 48.The first feed device 40 further comprises a first controllable throttle element 45, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.

Die Regelung kann auf der Grundlage der gemessenen und exemplarisch dargestellten Temperaturen T erfolgen. Insbesondere kann das Drosselelement 45 entsprechend angesteuert werden.The regulation can take place on the basis of the measured temperatures T, which are shown as examples. In particular, the throttle element 45 can be controlled accordingly.

Die Drehung der Expansionsmaschine 30 ist mit einer Drehung eines extern laufenden Prozesses koppelbar; wobei insbesondere eine Welle 31 der Expansionsmaschine 30 mit einem externen Antriebsstrang eines Motors 90 koppelbar ist, entweder direkt oder indirekt über ein Getriebe 91, welches einen Freilauf oder Schaltmöglichkeiten umfassen kann.The rotation of the expansion machine 30 can be coupled to a rotation of an externally running process; in particular, a shaft 31 of the expansion machine 30 can be coupled to an external drive train of a motor 90, either directly or indirectly via a gear 91, which can include a freewheel or shifting options.

Das Einspritzen des vorgewärmten Arbeitsmediums in die bereits teilweise erfolgte Expansion hat die im Folgenden dargestellte Wirkung.Injecting the preheated working medium into the expansion that has already partially taken place has the effect shown below.

I. Vorsehen einer Direkteinspritzung vorgewärmten Fluides in die laufende Expansion gemäß Prozessführung in Fig. 1 zur Lösung von Aufgaben 1 und 2:I. Provision of a direct injection of preheated fluids into the ongoing expansion according to the process control in FIG. 1 to solve tasks 1 and 2:

Während der für den ORC-Kreis üblichen Prozesse der Vorwärmung VW (Q̇VW), Verdampfung VD (VD) und Überhitzung ÜH ( ÜH ) wird ein Teil des Fluides (AM,DE ) vor der Verdampfung abgeführt. Der Gesamtenergieeintrag in das System, welcher direkt oder über einen Zwischenkreis erfolgen kann, lässt sich wie folgt bestimmen: Q ˙ ges = Q ˙ VW + Q ˙ VD + Q ˙ Ü H

Figure imgb0001
Q ˙ VW = h 2 h 1 m ˙ AM , VW = T 2 T 1 c p , 1 2 m ˙ AM , VW
Figure imgb0002
Q ˙ VD = h 3 h 2 m ˙ AM . VD = Δ h evap m ˙ AM . VD
Figure imgb0003
Q ˙ Ü H = h 4 h 3 m ˙ AM , Ü H = T 4 T 3 c p , 3 4 m ˙ AM , Ü H
Figure imgb0004
During the processes of preheating VW (Q̇ VW ), evaporation VD ( VD ) and overheating ÜH ( Ü H ), which are common for the ORC circuit, part of the fluid ( AM, DE ) is removed before evaporation. The total energy input into the system, which can take place directly or via an intermediate circuit, can be determined as follows: Q ˙ total = Q ˙ VW + Q ˙ VD + Q ˙ Ü H
Figure imgb0001
Q ˙ VW = H 2nd - H 1 m ˙ AT THE , VW = T 2nd - T 1 c p , 1 - 2nd m ˙ AT THE , VW
Figure imgb0002
Q ˙ VD = H 3rd - H 2nd m ˙ AT THE . VD = Δ H evap m ˙ AT THE . VD
Figure imgb0003
Q ˙ Ü H = H 4th - H 3rd m ˙ AT THE , Ü H = T 4th - T 3rd c p , 3rd - 4th m ˙ AT THE , Ü H
Figure imgb0004

Hier bezeichnen h1 , h2 , h3 und h4 die Enthalpien an den jeweiligen in Fig. 1 angegebenen Positionen. Für die hier angewandte Betrachtung des Abzweigens von Arbeitsmedium (AM) nach der Vorwärmung wird keine weitere Aufteilung des Massenstromes betrachtet und die Verdampfung und Überhitzung lässt sich zusammenfassen zu Verdampfen mit Überhitzen ( VÜ): Q ˙ V Ü = Q ˙ VD + Q ˙ Ü H = h 4 h 2 m ˙ AM , V Ü

Figure imgb0005

mit m ˙ AM , V U ¨ = m ˙ AM , VD = m ˙ AM , U ¨ H
Figure imgb0006

ferner gilt: m ˙ AM , VW m ˙ AM , V U ¨ = m ˙ AM , DE
Figure imgb0007
Here h 1 , h 2 , h 3 and h 4 denote the enthalpies at the respective in Fig. 1 specified positions. For the consideration of the branching of working medium (AM) after preheating, no further division of the mass flow is considered and the evaporation and overheating can be summarized as evaporation with overheating ( V Ü ): Q ˙ V Ü = Q ˙ VD + Q ˙ Ü H = H 4th - H 2nd m ˙ AT THE , V Ü
Figure imgb0005

With m ˙ AT THE , V U ¨ = m ˙ AT THE , VD = m ˙ AT THE , U ¨ H
Figure imgb0006

the following also applies: m ˙ AT THE , VW - m ˙ AT THE , V U ¨ = m ˙ AT THE , DE
Figure imgb0007

Um sich erneut die Freiheitsgrade von Temperatur und angepasstem Expansionsverhältnis zu ermöglichen, wird das abgezweigte flüssige Arbeitsmedium der Expansionsmaschine über eine geeignete Zuführung bereits nach einem gewissen Anteil der Expansion zugeführt und direkt eingespritzt (Prozessführung gemäß Fig. 1). Um bei der Einspritzung ein möglichst schnelles Erreichen des thermischen Gleichgewichtes (Wärmeeintrag bis eine einheitliche Temperatur in der Expansionskammer vorliegt) zu erreichen, muss die Einspritzvorrichtung entsprechend ausgeführt werden und eine gute Verteilung mit hohen Fluidoberflächen gewährleisten (z.B. feine Zerstäubung). Für die Regelbarkeit der Parameter wird ein Drosselelement, insbesondere ein ansteuerbares oder ein passives Drosselelement (z.B. thermostatisches Expansionsventil) in die Zuführleitung eingesetzt.In order to again allow the degrees of freedom of temperature and adapted expansion ratio, the branched-off liquid working medium is supplied to the expansion machine via a suitable feed after a certain proportion of the expansion and is injected directly (process control according to Fig. 1 ). In order to achieve thermal equilibrium as quickly as possible during the injection (heat input until there is a uniform temperature in the expansion chamber), the injection device must be designed accordingly and ensure good distribution with high fluid surfaces (e.g. fine atomization). For the controllability of the parameters, a throttle element, in particular a controllable or a passive throttle element (for example a thermostatic expansion valve) is used in the feed line.

Für die Einspritzung in den Expander muss an geeigneter Stelle im Gehäuse eine Einlassbohrung vorgenommen werden. Diese muss je nach Volumenverhältnis der Expansionsmaschine bestimmt werden. Begrenzend in Richtung Expansionsbeginn wirkt der noch hohe Druck der Kammer, wodurch der Eintrag von flüssigem Fluid behindert wird. Zudem kann auch die Überhitzung im Verlauf der Expansion zunehmen, sodass zu einem späteren Zeitpunkt der Expansion auch mehr flüssiges Fluid verdampft werden kann. Andererseits sollte bis zur Kammeröffnung ausreichend Zeit sein, um ein thermisches Gleichgewicht mit vollständiger Verdampfung zu erhalten. Weiterhin ist auch die Teilnahme an einem großen Expansionsanteil an der Gesamtexpansion positiv für die Leistungsgenerierung.For injection into the expander, an inlet hole must be made in a suitable place in the housing. This must be determined depending on the volume ratio of the expansion machine. The still high pressure of the chamber has a limiting effect in the direction of the start of expansion, which hinders the entry of liquid fluid. In addition, overheating can also increase during the course of the expansion, so that more liquid fluid can also be evaporated at a later point in time of the expansion. On the other hand, there should be enough time to open the chamber to maintain thermal equilibrium with complete evaporation. Furthermore, participation in a large expansion share of the overall expansion is positive for the generation of benefits.

Hierdurch können verschiedene positive Effekte erzielt werden:Various positive effects can be achieved in this way:

a. Volumenverhältnisanpassunga. Volume ratio adjustment

Das Volumenverhältnis der Expansion (Φ EX ) kann dynamisch verringert werden (siehe dazu auch Fig. 5), es gilt der folgende Zusammenhang mit den spezifischen Volumina zum Zeitpunkt der Kammerschließung im Eintritt in die Expansionsmaschine (vK,ein ) sowie im Moment der Kammeröffnung am Austritt der Expansionsmaschine (vK,aus ) mit dem festen Volumenverhältnis der Expansionsmaschine Vi: Φ EX = v K , aus v K , ein

Figure imgb0008
v K , ein = V K , ein m AM , K , ein
Figure imgb0009
v K , aus = V K , aus m AM , K , aus
Figure imgb0010
V i = V K , aus V K , ein = konstant
Figure imgb0011
mit den Kammervolumina am Ein- und Auslass V K,ein/aus sowie der Masse des in der Kammer eingeschlossenen Arbeitsmediums m AM,K,ein/ aus. Da im Standardfall ohne Kammereinspritzung die Masse des Arbeitsmediums in der Kammer konstant ist, ergibt sich Φ EX = Vi. The volume ratio of the expansion (Φ EX ) can be reduced dynamically (see also Fig. 5 ), the following relationship applies to the specific volumes at the time the chamber is closed when entering the expansion machine ( v K, on ) and at the moment of opening the chamber at the outlet of the expansion machine ( v K, off ) with the fixed volume ratio of the expansion machine V i : Φ EX = v K , out v K , a
Figure imgb0008
v K , a = V K , a m AT THE , K , a
Figure imgb0009
v K , out = V K , out m AT THE , K , out
Figure imgb0010
V i = V K , out V K , a = constant
Figure imgb0011
with the chamber volumes at the inlet and outlet V K, on / off and the mass of the working medium m AM, K, on / off enclosed in the chamber . Since the mass of the working medium in the chamber is constant in the standard case without chamber injection, Φ EX = V i results .

Das real anliegende Expansionsverhältnis (Φ real ) bestimmt sich aus den Frischdampfparametern sowie den Abdampfparametern und ist von Druck und Temperatur vor und nach der Expansionsmaschine bestimmt.The actual expansion ratio (Φ real ) is determined from the live steam parameters and the evaporation parameters and is determined by pressure and temperature before and after the expansion machine.

Im Falle von Φ real < Φ EX befindet man sich im Bereich der Nachkompression. Bei dieser wird das Fluid während der Expansion in der Expansionsmaschine (Kammer geschlossen) auf ein niedrigeres Druckniveau gebracht, als tatsächlich nach der Expansionsmaschine vorliegt. Dies führt dazu, dass nach dem Öffnen der Kammer das Fluid verdichtet wird, was durch die hierbei von der Expansionsmaschine aufzubringende erhöhte Ausschiebearbeit sehr negative Auswirkungen auf den Wirkungsgrad hat. Im Bereich der Nachexpansion (Φ real > Φ EX ) hat der erhöhte Austrittsdruck aus der Kammer eine positive Wirkung. Hierbei liegt das Druckniveau in der Expansionskammer am Ende der Expansion noch über dem nach der Expansionsmaschine. Hierdurch expandiert das Fluid beim Öffnen der Kammer noch weiter, die Nachexpansion generiert aufgrund der geringeren von der Expansionsmaschine aufzuwendenden Ausschiebearbeit zusätzlich Leistung.In the case of Φ real EX one is in the area of post-compression. In this case, the fluid is brought to a lower pressure level during expansion in the expansion machine (chamber closed) than is actually present after the expansion machine. This leads to the fact that the fluid is compressed after opening the chamber, which has very negative effects on the efficiency due to the increased push-out work to be carried out by the expansion machine. In the area of post-expansion (Φ real > Φ EX ), the increased outlet pressure from the chamber has a positive effect. The pressure level in the expansion chamber at the end of the expansion is still higher than that after the Expansion machine. As a result, the fluid expands further when the chamber is opened, and the post-expansion generates additional power due to the lower push-out work to be performed by the expansion machine.

Durch die Einspritzung von Fluid während der Expansion gilt: mAM,K,aus > mAM,K,ein , was gemäß oben gezeigtem Zusammenhang zu einer Verringerung von Φ EX führt, sodass Φ EX < Vi : Φ EX = v K , aus v K , ein = V K , aus m AM , K , aus m AM , K , ein V K , ein = V K , aus V K , ein m AM , K , ein m AM , K , aus = V i m AM , K , ein m AM , K , aus < V i

Figure imgb0012
Due to the injection of fluid during expansion, the following applies: m AM, K, off > m AM, K, on , which leads to a reduction in Φ EX according to the relationship shown above, so that Φ EX < V i : Φ EX = v K , out v K , a = V K , out m AT THE , K , out m AT THE , K , a V K , a = V K , out V K , a m AT THE , K , a m AT THE , K , out = V i m AT THE , K , a m AT THE , K , out < V i
Figure imgb0012

Diese Verschiebung ist mit dem qualitativen Verlauf des isentropen Expansionswirkungsgrades in Fig. 4 dargestellt.This shift is due to the qualitative course of the isentropic expansion efficiency Fig. 4 shown.

Des Weiteren wird hierdurch das Prinzip einer internen Rekuperation (wie in Fig. 5 dargestellt) in den Prozess integriert.Furthermore, the principle of internal recuperation (as in Fig. 5 shown) integrated into the process.

Diese führt auf zwei Weisen zu einer Verbesserung der Leistungsabgabe des Systems. Zum einen wird die bei der Expansion steigende Überhitzung des trockenen Fluides genutzt, um zusätzliches vorgewärmtes AM für die Expansion zu verdampfen und somit den Massenstrom des an der Expansion teilnehmenden AM zu erhöhen. Die Energie der Überhitzung des Abdampfes müsste andernfalls durch den Kondensator abgeführt werden. Zusätzlich hierzu ist die Niedertemperaturwärmequelle des Vorwärmers meist nicht vollständig ausgenutzt und kann durch die erhöhte Fluidmenge in der Vorwärmung besser ausgenutzt werden.This leads to an improvement in the performance of the system in two ways. On the one hand, the overheating of the dry fluid, which increases during the expansion, is used to evaporate additional preheated AM for the expansion and thus to increase the mass flow of the AM participating in the expansion. Otherwise the energy of the overheating of the exhaust steam would have to be dissipated through the condenser. In addition to this, the low-temperature heat source of the preheater is usually not fully utilized and can be better used due to the increased amount of fluid in the preheating.

Die interne Rekuperation vermeidet hierbei zwei Probleme, die eine normale Rekuperation im Anschluss an die Expansion hat. Zum einen entsteht kein zusätzlicher Druckverlust durch Einbauten nach der Expansion, welche das für die Expansion verfügbare Druckniveau verringert. Weiterhin entspricht eine anschließende Rekuperation einer Vorwärmung des AM, wofür jedoch meist bereits ausreichend Wärme auf niedrigem Temperaturniveau zur Verfügung steht, weshalb dieser die genutzte Wärmemenge gegenüber der verfügbaren verringert.Internal recuperation avoids two problems that normal recuperation has after the expansion. On the one hand, there is no additional pressure loss through internals after the expansion, which reduces the pressure level available for the expansion. Furthermore, a subsequent recuperation corresponds to a preheating of the AM, for which, however, there is usually already sufficient heat available at a low temperature level, which is why this reduces the amount of heat used compared to the available one.

b. Senkung der Überhitzung des Abdampfesb. Reduction of overheating of the exhaust steam

Neben dem positiven Effekt auf die Leistung, kann es ebenfalls durch die Limitierung der Komponenten, z.B. des dampfgekühlten Generators, notwendig sein, die Abdampftemperatur zu senken. Eine Erhöhung des Massenstromes würde die Überhitzung des AM verringern, kann jedoch keinen Einfluss auf das bereits als Frischdampf vorliegende Fluid nehmen und stellt somit einen relativ trägen Regeleingriff dar. Hingegen lässt sich dies durch die Einspritzung sehr schnell realisieren.In addition to the positive effect on performance, it can also be achieved by limiting the components, e.g. of the steam-cooled generator, it may be necessary to lower the steam temperature. An increase in the mass flow would reduce the overheating of the AM, but cannot influence the fluid already present as live steam and thus represents a relatively sluggish control intervention. On the other hand, this can be achieved very quickly by the injection.

Da die Gesamtwärmebilanz durch die Bypassung nicht beeinflusst wird, ist auch durch diese schnelle Regelung der Frischdampftemperatur ein Nachregeln durch den Massenstrom notwendig. Dies geschieht durch die Drehzahlregelung der Pumpe (auf nicht drehzahlregelbare Pumpen wird in Abschnitt III. im Zusammenhang mit Fig. 3 eingegangen).Since the overall heat balance is not affected by the bypass, this rapid regulation of the fresh steam temperature also requires readjustment by the mass flow. This is done by regulating the speed of the pump (on pumps that cannot be regulated in speed is related to Section III Fig. 3 received).

Temperaturlimitierungen von Komponenten, die sich vor der Direkteinspritzung in die laufende Expansion befinden, können hierdurch nicht gewährleistet werden (siehe hierzu Abschnitt II.)This cannot guarantee the temperature limits of components that are in the current expansion prior to direct injection (see Section II.)

c. Messung der Parameterc. Measurement of the parameters

Hierfür sind zwei Regelstrategien denkbar:

  1. 1. Vor der Einspritzstelle: modellprädiktive Ermittlung der einzuspritzenden Menge an AM anhand eines gemessenen Ist-Wertes. Es wird nicht gemessen, inwiefern sich nach der Einspritzung der geforderte Sollwert (=Maximalwert) auch einstellt.
  2. 2. Nach der Einspritzstelle: "klassische" Regelung der einzuspritzenden Menge an AM durch Vergleich von Soll- und Istwert.
Two control strategies are conceivable for this:
  1. 1. In front of the injection point: predictive determination of the amount of AM to be injected on the basis of a measured actual value. It is not measured to what extent the required setpoint (= maximum value) is also set after the injection.
  2. 2. After the injection point: "classic" regulation of the amount of AM to be injected by comparing the setpoint and actual value.

Fig. 2 zeigt eine zweite Ausführungsform der erfindungsgemäßen thermodynamischen Kreisprozessvorrichtung 200, die gegenüber der ersten Ausführungsform weitere Merkmale aufweist. Gleiche Bezugszeichen bedeuten dabei gleiche Elemente. Es ist eine zweite Zuführeinrichtung 50 zum Zuführen eines dritten Massenstroms des vorgewärmten Arbeitsmediums zum verdampften und überhitzten ersten Massenstrom des Arbeitsmediums vor dessen Expansion in der Expansionsmaschine 30 vorgesehen. Die zweite Zuführeinrichtung 50 umfasst eine zweite Zuführleitung 57, die zwischen dem Vorwärmer 10 oder der ersten Zuführleitung 47 einerseits und dem Einlass 32 oder einer zwischen dem Verdampfer 20 und dem Einlass 32 angeordneten dritten Leitung 17 andererseits angeordnet ist. wobei die zweite Zuführeinrichtung 50 ein zweites ansteuerbares Drosselelement 55, insbesondere ein zweites thermostatisches Expansionsventil, zum Regeln des dritten Massenstroms umfasst. Fig. 2 shows a second embodiment of the thermodynamic cycle device 200 according to the invention, the further compared to the first embodiment Features. The same reference numerals mean the same elements. A second supply device 50 is provided for supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium before its expansion in the expansion machine 30. The second feed device 50 comprises a second feed line 57 which is arranged between the preheater 10 or the first feed line 47 on the one hand and the inlet 32 or a third line 17 arranged between the evaporator 20 and the inlet 32 on the other hand. wherein the second feed device 50 comprises a second controllable throttle element 55, in particular a second thermostatic expansion valve, for regulating the third mass flow.

Diese Maßnahme hat die im Folgenden beschriebene Wirkung.This measure has the effect described below.

II. Vorsehen einer Direkteinspritzung vorgewärmten Fluides vor der Expansion gemäß Fig. 2 zur Lösung des verbleibenden Teiles von Problem 1 (Temperaturlimitierung vor der Expansion):II. Providing a direct injection of preheated fluids before expansion according to FIG. 2 to solve the remaining part of problem 1 (temperature limitation before expansion): a. Senkung der Überhitzung des Frischdampfesa. Reduction of overheating of live steam

Zusätzlich zu der Direkteinspritzung in die Expansionsmaschine (Prozessführung gemäß Fig. 1) kann eine Direkteinspritzung von vorgewärmtem Fluid in den Frischdampf vor der Expansionsmaschine notwendig sein - beispielsweise dann, wenn auch die Temperaturlimitierungen vor der Direkteinspritzung in die Expansionsmaschine nicht anderweitig sichergestellt sind (Prozessführung gemäß Fig. 2) oder wenn eine Absenkung der Überhitzung notwendig ist, jedoch das reale Expansionsverhältnis (durch Prozessführung gemäß Fig. 1) nicht (weiter) abgesenkt werden soll.In addition to direct injection into the expansion machine (process control according to Fig. 1 ) a direct injection of preheated fluid into the live steam upstream of the expansion machine may be necessary - for example, if the temperature limits before the direct injection into the expansion machine are not otherwise ensured (process control according to Fig. 2 ) or if a reduction in overheating is necessary, but the real expansion ratio (through process control according to Fig. 1 ) should not be (further) lowered.

Diese Strategie erlaubt eine schnelle Regulierung auf die Frischdampftemperatur, welche wie bereits beschrieben, durch die Pumpe zu langsam wäre.This strategy allows rapid regulation to the fresh steam temperature, which, as already described, would be too slow by the pump.

Da die Gesamtwärmebilanz durch diese Maßnahme jedoch erhalten bleibt, muss ebenfalls die Regelung des Gesamtmassenstromes, beispielsweise durch Erhöhung der Pumpenleistung, erfolgen.However, since the overall heat balance is retained through this measure, the regulation of the total mass flow must also take place, for example by increasing the pump output.

b. Messung der Parameterb. Measurement of the parameters

Hierfür sind zwei Regelstrategien denkbar:

  1. 1. Vor der Einspritzstelle: modellprädiktive Ermittlung der einzuspritzenden Menge an AM anhand eines gemessenen Ist-Wertes. Es wird nicht gemessen, inwiefern sich nach der Einspritzung der geforderte Sollwert (=Maximalwert) auch einstellt.
  2. 2. Nach der Einspritzstelle: "klassische" Regelung der einzuspritzenden Menge an AM durch Vergleich von Soll- und Istwert.
Two control strategies are conceivable for this:
  1. 1. In front of the injection point: predictive determination of the amount of AM to be injected on the basis of a measured actual value. It is not measured to what extent the required setpoint (= maximum value) is also set after the injection.
  2. 2. After the injection point: "classic" regulation of the amount of AM to be injected by comparing the setpoint and actual value.

Fig. 3 zeigt eine dritte Ausführungsform der erfindungsgemäßen Kreisprozessvorrichtung 300. Die Speisepumpe 70 ist mit einem über die Expansionsmaschine 30 betriebenen Antriebsstrang gekoppelt, nämlich mit dem externen Motor 90; wobei die Kreisprozessvorrichtung weiterhin eine regelbare Rezirkulationseinrichtung 80 zum teilweisen Rezirkulieren von Arbeitsmedium von einer Hochdruckseite der Speisepumpe 70 zu einer Niederdruckseite der Speisepumpe 70 umfasst. Die regelbare Rezirkulationseinrichtung 80 umfasst eine Leitung 81 von der Hochdruckseite zu der Niederdruckseite der Speisepumpe 70, wobei die Leitung 81 die mit einem dritten ansteuerbaren Drosselelement 82 versehen ist. Fig. 3 shows a third embodiment of the cycle device 300 according to the invention. The feed pump 70 is coupled to a drive train operated via the expansion machine 30, namely to the external motor 90; wherein the cycle process device further comprises a controllable recirculation device 80 for partially recirculating working medium from a high pressure side of the feed pump 70 to a low pressure side of the feed pump 70. The controllable recirculation device 80 comprises a line 81 from the high pressure side to the low pressure side of the feed pump 70, the line 81 being provided with a third controllable throttle element 82.

Diese Maßnahme hat die im Folgenden beschrieben Wirkung.This measure has the effect described below.

III. Vorsehen einer regelbaren Rezirkulation um die Speisepumpe im Falle einer zusätzlichen Kopplung der Speisepumpe an den Fremdprozess gemäß Fig. 3 zur Lösung der oben genannten Aufgaben 3 und 4:III. Providing an adjustable recirculation around the feed pump in the event of an additional coupling of the feed pump to the external process according to FIG. 3 to solve the above-mentioned tasks 3 and 4:

Im Falle, dass die Pumpe ebenfalls fest mit dem Prozess gekoppelt wird, ist eine Auslegung der Pumpe mit Rezirkulationsschaltung notwendig (Prozessführung gemäß Fig. 3).In the event that the pump is also permanently linked to the process, the pump must be designed with a recirculation circuit (process control according to Fig. 3 ).

Der Nachteil dieser Verschaltung liegt darin, dass zusätzliche Verluste durch die Rezirkulation um die Pumpe erzeugt werden. Dies ist jedoch notwendig, um sich bei fester Anbindung die Regelung des Massenstromes zu erhalten.The disadvantage of this connection is that additional losses are generated by the recirculation around the pump. However, this is necessary in order to maintain the regulation of the mass flow with a fixed connection.

Hierbei ist die Pumpe so zu dimensionieren, dass im Volllastfall möglichst geringe Verluste auftreten und gleichzeitig in Teillast ausreichend Regelleistung zur Verfügung steht. Regelleistung ist sowohl für die Erhöhung des Massenstromes durch den ORC-Kreis notwendig (z.B. bei zu hoher Überhitzung) als auch zur Senkung des Massenstromes (z.B. verfügbare Wärmemenge ist kleiner als durch AM abgeführte Wärmemenge oder der sich einstellende Frischdampfdruck liegt über dem Verdampfungsdruck bei dem verfügbaren Temperaturniveau).The pump must be dimensioned so that the lowest possible losses occur in the case of full load and sufficient control power is available at part load. Control power is necessary both for increasing the mass flow through the ORC circuit (e.g. in the event of excessive overheating) and for lowering the mass flow (e.g. available heat quantity is smaller than the heat quantity dissipated by AM or the fresh steam pressure that is set is above the evaporation pressure at the available one Temperature level).

Ferner besteht in der Aufteilung in eine Regelung mit zwei Komponenten, bei der die Erste den Verdampfer umgeht (Bypass zweigt vor VD ab und führt das Fluid nach VD+ÜH wieder zu), und die Zweite, die ein Nachregeln des Massenstroms (entweder durch Pumpe mit drehzahlregelbarem Motor oder über Rezirkulationsregelung) durch den Verdampfer umfasst, den Vorteil, dass plötzliche Schwankungen und Instabilitäten in der Verdampfungszone vermieden werden. Dieser Einfluss sei kurz am Beispiel einer zu starken Überhitzung mit der Notwendigkeit einer Erhöhung des Massenstromes dargelegt:
Die Regelung der Pumpe/Rezirkulation erhöht den Massenstrom, gleichzeitig wird die Direkteinspritzung vergrößert. Hierdurch erfährt die Durchströmung des Verdampfers und Überhitzers nur eine geringe Massenstromänderung. Da die verschiedenen Wärmeübergänge im Verdampfer/Überhitzer sensibel auf Füllstandsänderungen reagieren, hilft diese Maßnahme den Prozess zu stabilisieren. Im Falle, dass nur oder auch Prozessführung gemäß Fig. 2 zur Regelung eingesetzt wird, wird deren Anteil an AM,DE langsam wieder auf Null gefahren, sodass insgesamt ein schneller Regeleingriff mit rel. langsamen Änderungsraten in der Verdampferdurchströmung erreicht wird.
There is also a division into a control with two components, in which the first bypasses the evaporator (bypass branches off before VD and feeds the fluid back to VD + ÜH), and the second, which regulates the mass flow (either by pump with a speed-adjustable motor or via recirculation control) by the evaporator, the advantage that sudden fluctuations and instabilities in the evaporation zone are avoided. This influence is briefly explained using the example of excessive overheating with the need to increase the mass flow:
The regulation of the pump / recirculation increases the mass flow, at the same time the direct injection is increased. As a result, the flow through the evaporator and superheater experiences only a small change in mass flow. As the different heat transfers in the evaporator / superheater react sensitively to changes in level, this measure helps to stabilize the process. In the event that only or also litigation according to Fig. 2 is used for control, their share of AM, DE is slowly brought back to zero, so that overall a quick control intervention with rel. slow rates of change in the evaporator flow is achieved.

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are merely exemplary and the full scope of the present invention is defined by the claims.

Claims (15)

  1. Thermodynamic cycle device (100, 200, 300), in particular an ORC device, comprising:
    a preheater (10) for preheating a working medium;
    an evaporator (20) for evaporating and superheating a first mass flow of the preheated working medium; and
    a volumetric expansion machine (30) for expanding the evaporated and superheated first mass flow of the working medium;
    a condenser (60) for condensing the working medium exiting said expansion machine (30); and
    a feed pump (70) for pumping condensed working medium to said preheater (10);
    characterized by
    a first supply apparatus (40) for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of said volumetric expansion machine (30) between an opening and a closing of said expansion chamber.
  2. Thermodynamic cycle device according to claim 1, where said first supply apparatus (40) comprises a supply inlet (48) of said expansion machine (30) and a first supply line (47) between said preheater (10) and said supply inlet (48).
  3. Thermodynamic cycle device according to claim 2, where said supply inlet (48) is disposed in fluid communication with an expansion space of said expansion machine (30) at a predetermined volume range of said expansion space, and where during operation of said thermodynamic cycle device, working medium in said expansion space expands between an inlet (32) and an outlet (34) of said expansion machine (30).
  4. Thermodynamic cycle device according to one of the claims 1 to 3, where said first supply apparatus (40) comprises a first throttle element (45), in particular a first thermostatic expansion valve, for controlling the second mass flow and/or where said first supply apparatus (40) comprises an injection device (41) at said expansion machine (30), in particular at said supply inlet (48).
  5. Thermodynamic cycle device according to one of the claims 1 to 4, further comprising:
    a second supply apparatus (50) for supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium prior to its expansion in said expansion machine (30).
  6. Thermodynamic cycle device according to claim 5, where said second supply apparatus (50) comprises a second supply line (57) arranged between said preheater (10) or said first supply line (47), on the one hand, and said inlet (32) or a third line (17) arranged between said evaporator (20) and said inlet (32), on the other hand.
  7. Thermodynamic cycle device according to claim 5 or 6, where said second supply apparatus (50) comprises a second throttle element (55), in particular a second thermostatic expansion valve, for controlling the third mass flow.
  8. Thermodynamic cycle device according to one of the claims 1 to 7, where said feed pump (70) is coupled to a drive train driven via said expansion machine (30); and where said cycle device further comprises:
    a controllable recirculation apparatus (80) for partially recirculating working fluid from a high pressure side of said feed pump (70) to a low pressure side of said feed pump (70).
  9. Thermodynamic cycle device according to claim 8, where said controllable recirculation apparatus (80) comprises a line (81) from the high pressure side to the low pressure side of said feed pump (70), and where said line (81) is provided with a third throttle element (82).
  10. Thermodynamic cycle device according to one of the claims 1 to 9, where a rotation of said expansion machine (30) can be coupled with a rotation of an externally running process; where, in particular, a shaft (31) of said expansion machine (30) can be coupled to an external drive train of a motor, either directly or indirectly via a transmission which can have freewheeling or shifting options.
  11. Method for operating a thermodynamic cycle, in particular an ORC process, where said method comprises the following steps:
    preheating a working medium with a preheater (10);
    evaporating and superheating a first mass flow of the preheated working medium with an evaporator (20);
    expanding the evaporated and superheated first mass flow of the working medium in a volumetric expansion machine (30);
    condensing the working medium exiting said outlet (34) with a condenser (60); and
    pumping condensed working medium to said preheater (10) with a feed pump (70);
    characterized by
    supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of said volumetric expansion machine (30) between an opening and a closing of said expansion chamber.
  12. Method according to claim 11, comprising the further step of:
    controlling the second mass flow and/or injecting the second mass flow into an expansion space of said expansion machine (30) between an inlet (32) and an outlet (34) of said expansion machine (30).
  13. Method according to claim 11 or 12, further comprising:
    supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium prior to its expansion in said expansion machine (30); optionally with the further step of controlling the third mass flow.
  14. Method according to one of claims 11 to 13, comprising the further step of:
    reducing a volume ratio of the expansion of the working medium expanded in the expansion machine by supplying the second mass flow of the preheated working medium in the expansion chamber.
  15. Method according to one of the claims 11 to 14, comprising:
    coupling a rotation of said expansion machine (30) with a rotation of an externally running process; in particular by coupling a shaft (31) of said expansion machine (30) to an external drive train of a motor, either directly or indirectly via a transmission.
EP15177121.9A 2015-07-16 2015-07-16 Control of orc processes by injection of un-vaporized fluids Active EP3118424B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15177121.9A EP3118424B1 (en) 2015-07-16 2015-07-16 Control of orc processes by injection of un-vaporized fluids
US15/745,420 US10669898B2 (en) 2015-07-16 2016-06-13 Control of ORC processes by injecting unevaporated fluid
PCT/EP2016/063449 WO2017008972A1 (en) 2015-07-16 2016-06-13 Control of orc processes by injecting unevaporated fluid
CN201680041482.2A CN107849943B (en) 2015-07-16 2016-06-13 Controlling ORC process by injecting unevaporated fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15177121.9A EP3118424B1 (en) 2015-07-16 2015-07-16 Control of orc processes by injection of un-vaporized fluids

Publications (2)

Publication Number Publication Date
EP3118424A1 EP3118424A1 (en) 2017-01-18
EP3118424B1 true EP3118424B1 (en) 2020-05-20

Family

ID=53785439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15177121.9A Active EP3118424B1 (en) 2015-07-16 2015-07-16 Control of orc processes by injection of un-vaporized fluids

Country Status (4)

Country Link
US (1) US10669898B2 (en)
EP (1) EP3118424B1 (en)
CN (1) CN107849943B (en)
WO (1) WO2017008972A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769888B2 (en) 2017-02-09 2020-10-14 株式会社神戸製鋼所 Thermal energy recovery device
EP3375990B1 (en) * 2017-03-17 2019-12-25 Orcan Energy AG Model-based monitoring of the operational state of an expansion machine
AT521050B1 (en) 2018-05-29 2019-10-15 Fachhochschule Burgenland Gmbh Process for increasing energy efficiency in Clausius-Rankine cycle processes
CN110739805A (en) * 2019-10-27 2020-01-31 北京工业大学 closed expansion unit generator spray cooling system for organic Rankine cycle
CN111636937B (en) * 2020-06-22 2024-07-16 中国长江动力集团有限公司 ORC power generation device capable of automatically adjusting liquid level and adjusting method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234734A (en) * 1962-06-25 1966-02-15 Monsanto Co Power generation
US5555731A (en) * 1995-02-28 1996-09-17 Rosenblatt; Joel H. Preheated injection turbine system
US6035643A (en) * 1998-12-03 2000-03-14 Rosenblatt; Joel H. Ambient temperature sensitive heat engine cycle
US6393840B1 (en) * 2000-03-01 2002-05-28 Ter Thermal Retrieval Systems Ltd. Thermal energy retrieval system for internal combustion engines
JP5278496B2 (en) * 2011-03-25 2013-09-04 株式会社豊田自動織機 Vehicle exhaust heat recovery system
US8653686B2 (en) * 2011-12-06 2014-02-18 Donald E Hinks System for generating electric and mechanical power utilizing a thermal gradient
WO2014117159A1 (en) * 2013-01-28 2014-07-31 Eaton Corporation Multi-stage volumetric fluid expansion device
WO2014165144A1 (en) * 2013-03-13 2014-10-09 Echogen Power Systems, L.L.C. Control system for a heat engine system utilizing supercritical working fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10669898B2 (en) 2020-06-02
US20180209307A1 (en) 2018-07-26
CN107849943B (en) 2020-07-28
CN107849943A (en) 2018-03-27
EP3118424A1 (en) 2017-01-18
WO2017008972A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
EP3118424B1 (en) Control of orc processes by injection of un-vaporized fluids
EP2686526B1 (en) Method for operating a steam cycle process
EP2567074B1 (en) Control of a thermal cyclic process
EP2808500A1 (en) Heat pump cycle with a first thermal fluid energy machine and a second thermal fluid energy machine
WO2012048959A1 (en) Device and method for the recovery of waste heat of an internal combustion engine
EP2732140B1 (en) Method for controlling a heat recovery device in an internal combustion engine
DE102010001118A1 (en) Method for operating an internal combustion engine with a steam power plant
DE112016001877T5 (en) Compressor driven ORC waste heat recovery unit and control method
DE19902437A1 (en) Rapid running-up and load raising process for gas turbine plant, involving raising fuel mass flow supplied to plant and at same time supplying auxiliary working medium to turbine
EP2933443A1 (en) Cooling device for a capacitor of a system for a thermodynamic cycle process, system for a thermodynamic cycle process, assembly with an internal combustion engine and a system, motor vehicle, and a method for carrying out a thermodynamic cycle
WO2015149916A1 (en) Method for operating a system for a thermodynamic cycle, control device for a system for a thermodynamic cycle, a system, and an arrangement made from an internal combustion engine and a system
DE632316C (en) Gas turbine system with constant pressure combustion
EP2425101A2 (en) Heat recovery device and operating method
EP2432973A2 (en) Steam circuit process device and method for controlling the same
DE102012222082B4 (en) Device and method for waste heat utilization of an internal combustion engine
EP3559564B1 (en) Method and apparatus for generating process cold and process steam
EP3375990A1 (en) Model-based monitoring of the operational state of an expansion machine
EP2937630B1 (en) Method for operating a system for a thermodynamic cycle process with a multiple evaporator, control device for a system, system for a thermodynamic cycle process with a multiple evaporator, and assembly of a combustion engine and a system
WO2012152602A1 (en) Line circuit and method for operating a line circuit for waste-heat utilization of an internal combustion engine
DE102010010614B4 (en) Method and device for generating energy in an ORC system
EP1375867B1 (en) Intercooling process and intercooled gas turbine engine
WO2014023295A2 (en) Device for operating a rankine cycle
WO2018145884A1 (en) Method for operating a heat pump installation, heat pump installation and power plant having a heat pump installation
DE102011003068B4 (en) Device and method for waste heat utilization of an internal combustion engine
WO2023139167A1 (en) Heat pump for generating process heat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: AUMANN, RICHARD

Inventor name: LANGER, ROY

Inventor name: WEIGAND, FABIAN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: LANGER, ROY

Inventor name: AUMANN, RICHARD

Inventor name: WEIGAND, FABIAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012611

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1272734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1272734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240729

Year of fee payment: 10

Ref country code: SE

Payment date: 20240724

Year of fee payment: 10