EP3118424B1 - Reglages de processus orc par pulverisation d'un fluide non evapore - Google Patents

Reglages de processus orc par pulverisation d'un fluide non evapore Download PDF

Info

Publication number
EP3118424B1
EP3118424B1 EP15177121.9A EP15177121A EP3118424B1 EP 3118424 B1 EP3118424 B1 EP 3118424B1 EP 15177121 A EP15177121 A EP 15177121A EP 3118424 B1 EP3118424 B1 EP 3118424B1
Authority
EP
European Patent Office
Prior art keywords
expansion
working medium
mass flow
expansion machine
thermodynamic cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15177121.9A
Other languages
German (de)
English (en)
Other versions
EP3118424A1 (fr
Inventor
Richard Aumann
Roy Langer
Fabian Weigand
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP15177121.9A priority Critical patent/EP3118424B1/fr
Priority to US15/745,420 priority patent/US10669898B2/en
Priority to PCT/EP2016/063449 priority patent/WO2017008972A1/fr
Priority to CN201680041482.2A priority patent/CN107849943B/zh
Publication of EP3118424A1 publication Critical patent/EP3118424A1/fr
Application granted granted Critical
Publication of EP3118424B1 publication Critical patent/EP3118424B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/04Control means specially adapted therefor

Definitions

  • thermodynamic cycle device which can in particular be an ORC device, and a preheater for preheating a working medium; an evaporator for evaporating and optionally overheating a first mass flow of the preheated working medium; a volumetric expansion machine for expanding the vaporized and superheated mass flow of the working medium; a condenser for condensing and possibly supercooling the working medium emerging from the outlet; a feed pump for pumping condensed working medium to the preheater; and a first supply device for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of the volumetric expansion machine between a closure and an opening of the expansion chamber.
  • the invention relates to a corresponding method for operating a thermodynamic cycle, in particular an ORC process.
  • a power-generating process such as the Organic Rankine Cycle (ORC)
  • ORC Organic Rankine Cycle
  • both the direct integration of the generated energy and mechanical power into the external system e.g. the expansion machine of the power-generating process can drive the third-party process at least in a supportive manner
  • auxiliary units for example, the third-party process can drive a pump in the force-generating process
  • the saved motors for drive and generators for output also save costs and the compactness can be increased, both of which are critical factors for the integration of a force-generating process in the environment mentioned.
  • a gearbox represents an additional cost, which, depending on the application, has a significant impact on economic efficiency. This effect is reinforced by the fact that gearboxes (especially stepless ones) also lead to a loss in efficiency. Gearboxes are also subject to considerable stress and thus add additional maintenance and corresponding costs to the system. Last but not least, a transmission is also comparatively space-intensive, which is contrary to the goal of compactness in many motor integration applications.
  • US 6,035,643 A discloses an ORC system wherein the turbine has 21 successive stages in which the organic vapor expands and its pressure and temperature therein are reduced to generate mechanical energy from the thermal energy. On the way through the turbine, additional organic medium is added through valve-controlled injection nozzles on the way through the stages.
  • US 5,555,731 A discloses a preheated injection turbine cycle.
  • US 3,234,734 A discloses a process for converting heat into work using a working medium which is overheated and then expanded. An additional amount of liquid medium can be injected into a mixing chamber of the turbine, the injected amount mixing with a first expanded amount and expanding together in a second stage.
  • the tasks 1 and 2 are solved by a device according to claim 1 and a method according to claim 11.
  • thermodynamic cycle device which can in particular be an ORC device, comprises a preheater for preheating a working medium; an evaporator for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine for expanding the vaporized and superheated first mass flow of the working medium; a condenser for condensing the working medium emerging from the expansion machine; and a feed pump for pumping condensed working medium to the preheater.
  • the thermodynamic cycle device according to the invention is characterized by a first feed device for feeding a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
  • the device according to the invention can be further developed in such a way that the first feed device can comprise a feed inlet of the expansion machine and a first feed line between the preheater and the feed inlet.
  • the feed inlet is arranged in fluid communication with an expansion space of the expansion machine at a predetermined volume range of the expansion space, the expansion space expanding between an inlet and an outlet of the expansion machine.
  • the first feed device comprises a first controllable throttle element, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or the first feed device can comprise an injection device on the expansion machine, in particular on the feed inlet.
  • thermodynamic cycle device can further comprise a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
  • a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
  • the second feed device can comprise a second feed line which is arranged between the preheater or the first feed line on the one hand and the inlet or a third line arranged between the evaporator and the inlet on the other hand.
  • the second feed device can comprise a second controllable throttle element, in particular a second thermostatic expansion valve, for regulating the third mass flow.
  • the feed pump can be coupled to a drive train operated via the expansion machine; and wherein the cycle process device may further comprise a controllable recirculation device for partially recirculating working medium from a high pressure side of the feed pump to a low pressure side of the feed pump. Fluctuations and instabilities in the evaporation zone can thus be avoided.
  • the controllable recirculation device can comprise a line from the high pressure side to the low pressure side of the feed pump, wherein the line can be provided with a third controllable throttle element.
  • a rotation of the expansion machine can be coupled to a rotation of an externally running process; in particular, a shaft of the expansion machine can be coupled to an external drive train of an engine, either directly or indirectly via a transmission.
  • the object of the invention is further achieved by a method according to claim 11.
  • the method according to the invention for operating a thermodynamic cycle, in particular an ORC process comprises the following steps: preheating a working medium by means of a preheater; Evaporating and overheating a first mass flow of the preheated working medium through an evaporator; Expanding the vaporized and superheated first mass flow of the working medium in an expansion machine between an inlet and an outlet of the expansion machine; Condensing the working medium emerging from the outlet through a condenser; and pumping condensed working medium to the preheater with a feed pump; the method being characterized by supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
  • the following further step can be provided: regulating the second mass flow and / or injecting the second mass flow into an expansion space of the expansion machine.
  • the method can further comprise: supplying a third mass flow of the preheated working medium to the vaporized and superheated first mass flow of the working medium before it expands in the expansion machine.
  • the third mass flow can be regulated.
  • Another development is that the following further step can be provided: coupling a rotation of the expansion machine with a rotation of an externally running process; in particular by coupling a shaft of the expansion machine to an external drive train of an engine, either directly or indirectly via a transmission.
  • Fig. 1 shows a first embodiment of the thermodynamic cycle device 100 according to the invention in the form of an ORC device (Organic Rankine Cycle).
  • the cycle process device comprises a preheater 10 for preheating a working medium; an evaporator 20 for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine 30 for expanding the vaporized and superheated first mass flow of the working medium; a condenser 60 for condensing the working medium exiting the expansion machine 30; and a feed pump 70 (with motor M) for pumping condensed working medium to the preheater 10.
  • a first feed device 40 is provided for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine 30.
  • the first feed device 40 comprises a feed inlet 48 of the expansion machine 30 and a first feed line 47 between the preheater 10 and the feed inlet 48.
  • the feed inlet 48 is arranged in fluid communication with an expansion space of the expansion machine 30 at a predetermined volume range of the expansion space, the expansion space between one Inlet 32 and an outlet 34 of the expansion machine 30 expanded.
  • the first feed device 40 further comprises a first controllable throttle element 45, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
  • a first controllable throttle element 45 in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
  • the regulation can take place on the basis of the measured temperatures T, which are shown as examples.
  • the throttle element 45 can be controlled accordingly.
  • the rotation of the expansion machine 30 can be coupled to a rotation of an externally running process; in particular, a shaft 31 of the expansion machine 30 can be coupled to an external drive train of a motor 90, either directly or indirectly via a gear 91, which can include a freewheel or shifting options.
  • h 1 , h 2 , h 3 and h 4 denote the enthalpies at the respective in Fig. 1 specified positions.
  • the branched-off liquid working medium is supplied to the expansion machine via a suitable feed after a certain proportion of the expansion and is injected directly (process control according to Fig. 1 ).
  • the injection device In order to achieve thermal equilibrium as quickly as possible during the injection (heat input until there is a uniform temperature in the expansion chamber), the injection device must be designed accordingly and ensure good distribution with high fluid surfaces (e.g. fine atomization).
  • a throttle element in particular a controllable or a passive throttle element (for example a thermostatic expansion valve) is used in the feed line.
  • an inlet hole For injection into the expander, an inlet hole must be made in a suitable place in the housing. This must be determined depending on the volume ratio of the expansion machine.
  • the still high pressure of the chamber has a limiting effect in the direction of the start of expansion, which hinders the entry of liquid fluid.
  • overheating can also increase during the course of the expansion, so that more liquid fluid can also be evaporated at a later point in time of the expansion.
  • participation in a large expansion share of the overall expansion is positive for the generation of benefits.
  • the volume ratio of the expansion ( ⁇ EX ) can be reduced dynamically (see also Fig. 5 ), the following relationship applies to the specific volumes at the time the chamber is closed when entering the expansion machine ( v K, on ) and at the moment of opening the chamber at the outlet of the expansion machine ( v K, off ) with the fixed volume ratio of the expansion machine V i :
  • the actual expansion ratio ( ⁇ real ) is determined from the live steam parameters and the evaporation parameters and is determined by pressure and temperature before and after the expansion machine.
  • the overheating of the dry fluid which increases during the expansion, is used to evaporate additional preheated AM for the expansion and thus to increase the mass flow of the AM participating in the expansion. Otherwise the energy of the overheating of the exhaust steam would have to be dissipated through the condenser.
  • the low-temperature heat source of the preheater is usually not fully utilized and can be better used due to the increased amount of fluid in the preheating.
  • Fig. 2 shows a second embodiment of the thermodynamic cycle device 200 according to the invention, the further compared to the first embodiment Features.
  • the same reference numerals mean the same elements.
  • a second supply device 50 is provided for supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium before its expansion in the expansion machine 30.
  • the second feed device 50 comprises a second feed line 57 which is arranged between the preheater 10 or the first feed line 47 on the one hand and the inlet 32 or a third line 17 arranged between the evaporator 20 and the inlet 32 on the other hand.
  • the second feed device 50 comprises a second controllable throttle element 55, in particular a second thermostatic expansion valve, for regulating the third mass flow.
  • a direct injection of preheated fluid into the live steam upstream of the expansion machine may be necessary - for example, if the temperature limits before the direct injection into the expansion machine are not otherwise ensured (process control according to Fig. 2 ) or if a reduction in overheating is necessary, but the real expansion ratio (through process control according to Fig. 1 ) should not be (further) lowered.
  • Fig. 3 shows a third embodiment of the cycle device 300 according to the invention.
  • the feed pump 70 is coupled to a drive train operated via the expansion machine 30, namely to the external motor 90; wherein the cycle process device further comprises a controllable recirculation device 80 for partially recirculating working medium from a high pressure side of the feed pump 70 to a low pressure side of the feed pump 70.
  • the controllable recirculation device 80 comprises a line 81 from the high pressure side to the low pressure side of the feed pump 70, the line 81 being provided with a third controllable throttle element 82.
  • the pump In the event that the pump is also permanently linked to the process, the pump must be designed with a recirculation circuit (process control according to Fig. 3 ).
  • the pump must be dimensioned so that the lowest possible losses occur in the case of full load and sufficient control power is available at part load. Control power is necessary both for increasing the mass flow through the ORC circuit (e.g. in the event of excessive overheating) and for lowering the mass flow (e.g. available heat quantity is smaller than the heat quantity dissipated by AM or the fresh steam pressure that is set is above the evaporation pressure at the available one Temperature level).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Claims (15)

  1. Dispositif à cycle thermodynamique (100, 200, 300), en particulier dispositif à cycle organique de Rankine (ORC), comprenant :
    un préchauffeur (10) pour préchauffer un fluide de travail ;
    un évaporateur (20) pour évaporer et surchauffer un premier débit massique du fluide de travail préchauffé ; et
    une machine d'expansion volumétrique (30) pour dilater le premier débit massique évaporé et surchauffé du fluide de travail ;
    un condenseur (60) pour condenser le fluide de travail sortant de la machine d'expansion (30) ;
    une pompe d'alimentation (70) pour pomper le fluide de travail condensé vers le préchauffeur (10) ;
    caractérisé par
    un premier moyen d'alimentation (40) pour amener un deuxième débit massique du fluide de travail préchauffé au premier débit massique partiellement dilaté du fluide de travail dans une chambre d'expansion de la machine d'expansion volumétrique (30) entre une fermeture et une ouverture de la chambre d'expansion.
  2. Dispositif à cycle thermodynamique selon la revendication 1, où le premier dispositif d'alimentation (40) comprend une entrée d'alimentation (48) de la machine d'expansion (30) et une première conduite d'alimentation (47) entre le préchauffeur (10) et l'entrée d'alimentation (48).
  3. Dispositif à cycle thermodynamique selon la revendication 2, où l'entrée d'alimentation (48) est disposée en communication fluidique avec un espace d'expansion de la machine d'expansion (30) dans une plage de volume prédéterminée de l'espace d'expansion, et où, lors du fonctionnement du dispositif à cycle thermodynamique, le fluide de travail dans l'espace d'expansion se dilate entre une entrée (32) et une sortie (34) de la machine d'expansion (30).
  4. Dispositif à cycle thermodynamique selon l'une des revendications 1 à 3, où le premier dispositif d'alimentation (40) comprend un premier élément d'étranglement (45), en particulier une première vanne d'expansion thermostatique, pour régler le deuxième débit massique et/ou où le premier dispositif d'alimentation (40) comprend un dispositif d'injection (41) sur la machine d'expansion (30), en particulier à l'entrée d'alimentation (48).
  5. Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 4, comprenant en outre :
    un deuxième moyen d'alimentation (50) pour amener un troisième débit massique du fluide de travail préchauffé au premier débit massique évaporé et surchauffé du fluide de travail avant son expansion dans la machine d'expansion (30).
  6. Dispositif à cycle thermodynamique selon la revendication 5, où le deuxième dispositif d'alimentation (50) comprend une deuxième conduite d'alimentation (57) disposée entre le préchauffeur (10) ou la première conduite d'alimentation (47) d'une part et l'entrée (32) ou une troisième conduite (17) disposée entre l'évaporateur (20) et l'entrée (32) d'autre part.
  7. Dispositif à cycle thermodynamique selon la revendication 5 ou 6, où le deuxième dispositif d'alimentation (50) comprend un deuxième élément d'étranglement (55), en particulier une deuxième vanne d'expansion thermostatique, pour régler le troisième débit massique.
  8. Dispositif à cycle thermodynamique selon l'une des revendications 1 à 7, où la pompe d'alimentation (70) est couplée à une chaîne cinématique entraînée par la machine d'expansion (30) ; et où le dispositif à cycle thermodynamique comprend en outre :
    un dispositif de recirculation réglable (80) pour la recirculation partielle du fluide de travail d'un côté haute pression de la pompe d'alimentation (70) à un côté basse pression de la pompe d'alimentation (70).
  9. Dispositif à cycle thermodynamique selon la revendication 8, où le dispositif de recirculation réglable (80) comprend un conduit (81) allant du côté haute pression au côté basse pression de la pompe d'alimentation (70), et où le conduit (81) est muni d'un troisième élément d'étranglement (82).
  10. Dispositif à cycle thermodynamique selon l'une des revendications 1 à 9, où une rotation de la machine d'expansion (30) peut être couplée à une rotation d'un processus se déroulant à l'extérieur ; où en particulier un arbre (31) de la machine d'expansion (30) peut être couplé à une chaîne cinématique externe d'un moteur, soit directement soit indirectement par l'intermédiaire d'une transmission qui peut avoir une roue libre ou des capacités de changement de vitesse.
  11. Procédé pour faire fonctionner un cycle thermodynamique, en particulier un cycle ORC, le procédé comprenant les étapes suivantes :
    préchauffage d'un fluide de travail par un préchauffeur (10) ;
    évaporation et surchauffe d'un premier débit massique du fluide de travail préchauffé au moyen d'un évaporateur (20) ;
    dilatation du premier débit massique évaporé et surchauffé du fluide de travail dans une machine à expansion volumétrique (30) ;
    condensation du fluide de travail sortant de la sortie (34) par un condenseur (60) ; et
    pompage du fluide de travail condensé vers le préchauffeur (10) avec une pompe d'alimentation (70) ;
    caractérisé par
    l'acheminement d'un deuxième débit massique du fluide de travail préchauffé au premier débit massique partiellement dilaté du fluide de travail dans une chambre d'expansion de la machine à expansion volumétrique (30) entre une fermeture et une ouverture de la chambre d'expansion.
  12. Procédé selon la revendication 11, avec en outre l'étape consistant à :
    régler le second débit massique et/ou injecter le second débit massique dans un espace d'expansion de la machine d'expansion (30) entre une entrée (32) et une sortie (34) de la machine d'expansion (30).
  13. Procédé selon la revendication 11 ou 12, comprenant en outre :
    l'acheminement d'un troisième débit massique du fluide de travail préchauffé au premier débit massique évaporé et surchauffé du fluide de travail avant sa dilatation dans la machine d'expansion (30) ; optionnellement avec l'étape supplémentaire consistant à régler le troisième débit massique.
  14. Procédé selon l'une des revendications 11 à 13, avec en outre l'étape consistant à :
    réduire un rapport volumique de la dilatation du fluide de travail dilaté dans la chambre d'expansion en introduisant le deuxième débit massique du fluide de travail préchauffé dans la chambre de dilatation.
  15. Procédé selon l'une des revendications 11 à 14, comprenant :
    le couplage d'une rotation de la machine d'expansion (30) avec une rotation d'un processus se déroulant à l'extérieur ; en particulier par le couplage d'un arbre (31) de la machine d'expansion (30) avec une chaîne cinématique externe d'un moteur, soit directement, soit indirectement par l'intermédiaire d'une transmission.
EP15177121.9A 2015-07-16 2015-07-16 Reglages de processus orc par pulverisation d'un fluide non evapore Active EP3118424B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15177121.9A EP3118424B1 (fr) 2015-07-16 2015-07-16 Reglages de processus orc par pulverisation d'un fluide non evapore
US15/745,420 US10669898B2 (en) 2015-07-16 2016-06-13 Control of ORC processes by injecting unevaporated fluid
PCT/EP2016/063449 WO2017008972A1 (fr) 2015-07-16 2016-06-13 Régulation de processus orc par injection d'un fluide non vaporisé
CN201680041482.2A CN107849943B (zh) 2015-07-16 2016-06-13 通过喷射未蒸发流体控制orc过程

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15177121.9A EP3118424B1 (fr) 2015-07-16 2015-07-16 Reglages de processus orc par pulverisation d'un fluide non evapore

Publications (2)

Publication Number Publication Date
EP3118424A1 EP3118424A1 (fr) 2017-01-18
EP3118424B1 true EP3118424B1 (fr) 2020-05-20

Family

ID=53785439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15177121.9A Active EP3118424B1 (fr) 2015-07-16 2015-07-16 Reglages de processus orc par pulverisation d'un fluide non evapore

Country Status (4)

Country Link
US (1) US10669898B2 (fr)
EP (1) EP3118424B1 (fr)
CN (1) CN107849943B (fr)
WO (1) WO2017008972A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769888B2 (ja) 2017-02-09 2020-10-14 株式会社神戸製鋼所 熱エネルギー回収装置
EP3375990B1 (fr) * 2017-03-17 2019-12-25 Orcan Energy AG Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente
AT521050B1 (de) 2018-05-29 2019-10-15 Fachhochschule Burgenland Gmbh Verfahren zur Steigerung der Energieeffizienz in Clausius-Rankine-Kreisprozessen
CN110739805A (zh) * 2019-10-27 2020-01-31 北京工业大学 一种用于有机朗肯循环的封闭式膨胀机组发电机喷雾冷却系统
CN111636937A (zh) * 2020-06-22 2020-09-08 中国长江动力集团有限公司 液位自动调节的orc发电装置及其调节方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234734A (en) * 1962-06-25 1966-02-15 Monsanto Co Power generation
US5555731A (en) * 1995-02-28 1996-09-17 Rosenblatt; Joel H. Preheated injection turbine system
US6035643A (en) * 1998-12-03 2000-03-14 Rosenblatt; Joel H. Ambient temperature sensitive heat engine cycle
US6393840B1 (en) * 2000-03-01 2002-05-28 Ter Thermal Retrieval Systems Ltd. Thermal energy retrieval system for internal combustion engines
JP5278496B2 (ja) * 2011-03-25 2013-09-04 株式会社豊田自動織機 車両用排熱回収装置
US8653686B2 (en) * 2011-12-06 2014-02-18 Donald E Hinks System for generating electric and mechanical power utilizing a thermal gradient
EP2948647B1 (fr) * 2013-01-28 2016-11-16 Eaton Corporation Système volumétrique de récupération d'énergie par détente à trois étages
US20160061055A1 (en) * 2013-03-13 2016-03-03 Echogen Power Systems, L.L.C. Control system for a heat engine system utilizing supercritical working fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107849943B (zh) 2020-07-28
US20180209307A1 (en) 2018-07-26
WO2017008972A1 (fr) 2017-01-19
CN107849943A (zh) 2018-03-27
US10669898B2 (en) 2020-06-02
EP3118424A1 (fr) 2017-01-18

Similar Documents

Publication Publication Date Title
EP3118424B1 (fr) Reglages de processus orc par pulverisation d'un fluide non evapore
EP2686526B1 (fr) Procédé pour faire fonctionner un processus à circuit de vapeur
EP2567074B1 (fr) Régulation d'un processus cyclique thermique
EP2808500A1 (fr) Pompe à chaleur dotée d'une première machine thermique à énergie fluidique et d'une seconde machine thermique à énergie fluidique
WO2012048959A1 (fr) Dispositif et procédé pour utiliser la chaleur dissipée par un moteur à combustion interne
DE102010001118A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage
EP2732140B1 (fr) Procédé de régulation d'un dispositif de récupération de chaleur pour un moteur à combustion interne
DE112016001877T5 (de) Kompressorangetriebene ORC-Abwärmerückgewinnungseinheit und Steuerungsverfahren
DE19902437A1 (de) Verfahren und Vorrichtung zum schnellen Anfahren und zur schnellen Leistungssteigerung einer Gasturbinenanlage
EP2933443A1 (fr) Dispositif de refroidissement pour un condensateur d'un système pour un cycle thermodynamique, système pour un cycle thermodynamique, agencement doté d'un moteur à combustion interne et d'un système, véhicule, et procédé d'exécution d'un cycle thermodynamique
WO2015149916A1 (fr) Procédé permettant de faire fonctionner un système pour un circuit fermé thermodynamique, dispositif de commande pour un système d'un circuit fermé thermodynamique, système, et ensemble composé d'un moteur à combustion interne et d'un système
DE632316C (de) Gasturbinenanlage mit Gleichdruckverbrennung
EP2425101A2 (fr) Dispositif d'exploitation de chaleur et procédé de fonctionnement
EP2432973A2 (fr) Dispositif à cycle à vapeur et procédé de commande de ce dispositif
DE102012222082B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
EP3375990A1 (fr) Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente
EP2937630B1 (fr) Procédé de fonctionnement d'un système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux, dispositif de commande pour un système, système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux et agencement d'un moteur à combustion interne et d'un système
WO2012152602A1 (fr) Circuit de conduite et procédé permettant de faire fonctionner un circuit de conduite destiné à récupérer la chaleur dissipée d'un moteur à combustion interne
DE102010010614B4 (de) Verfahren und Vorrichtung zur Energieerzeugung in einer ORC-Anlage
EP1375867B1 (fr) Procédé de refroidissement intermédiaire et turbine à gaz avec refroidissement intermédiaire
WO2014023295A2 (fr) Dispositif pour l'utilisation d'un processus de clausius-rankine
WO2018145884A1 (fr) Procédé permettant de faire fonctionner une installation de pompes à chaleur, installation de pompes à chaleur et centrale électrique comprenant une installation de pompes à chaleur
DE102011003068B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine
WO2023139167A1 (fr) Pompe à chaleur pour générer de la chaleur de traitement
DE640927C (de) Gasturbinenanlage mit Gleichdruckverbrennung des Treibmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: AUMANN, RICHARD

Inventor name: LANGER, ROY

Inventor name: WEIGAND, FABIAN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: LANGER, ROY

Inventor name: AUMANN, RICHARD

Inventor name: WEIGAND, FABIAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012611

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1272734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1272734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230725

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230703

Year of fee payment: 9

Ref country code: IT

Payment date: 20230727

Year of fee payment: 9

Ref country code: GB

Payment date: 20230725

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230725

Year of fee payment: 9

Ref country code: FR

Payment date: 20230725

Year of fee payment: 9

Ref country code: DE

Payment date: 20230727

Year of fee payment: 9

Ref country code: BE

Payment date: 20230725

Year of fee payment: 9