EP2519396B1 - Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse - Google Patents

Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse Download PDF

Info

Publication number
EP2519396B1
EP2519396B1 EP10776082.9A EP10776082A EP2519396B1 EP 2519396 B1 EP2519396 B1 EP 2519396B1 EP 10776082 A EP10776082 A EP 10776082A EP 2519396 B1 EP2519396 B1 EP 2519396B1
Authority
EP
European Patent Office
Prior art keywords
ventilation nozzle
temperature
ventilation
longitudinal direction
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10776082.9A
Other languages
English (en)
French (fr)
Other versions
EP2519396A1 (de
Inventor
Michael MÄTZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brueckner Maschinenbau GmbH and Co KG
Original Assignee
Brueckner Maschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brueckner Maschinenbau GmbH and Co KG filed Critical Brueckner Maschinenbau GmbH and Co KG
Publication of EP2519396A1 publication Critical patent/EP2519396A1/de
Application granted granted Critical
Publication of EP2519396B1 publication Critical patent/EP2519396B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • B29C55/165Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed

Definitions

  • the invention relates to a ventilation nozzle in particular for heating sheet-like materials according to claim 1 and a plastic film stretching plant according to claim 15.
  • a generic type ventilation nozzle is for example from the EP 0 907 476 B1 known.
  • a heating or cooling gas generally referred to as a treatment gas
  • a treatment gas In the distribution chamber there is a uniform static pressure that is converted into dynamic pressure and thus outflow velocity when flowing out of the ventilation nozzle.
  • the uniformity of the outflow velocity across the web depends on the uniformity of the static pressure in the distribution chamber.
  • Cooled or heated or heated treatment gas can be supplied to such a ventilation nozzle, depending on whether the web guided past the ventilation nozzle is to be cooled, only slightly heated or heated more intensively.
  • Ventilation nozzles are therefore particularly suitable for plastic recovery systems in which a web, ie in particular a plastic film web sequentially or simultaneously stretched, heat-set and can be relaxed.
  • a plastic film consisting for example of a thermoplastic polymer is held at the lateral edges and then stretched in the machine direction (MD direction) and then in the transverse direction (so-called TD direction) sequentially or simultaneously, heat-set and, as mentioned, finally relaxed.
  • MD direction machine direction
  • TD direction transverse direction
  • process steps can be done in ovens in different zones both in the machine direction and in the transverse direction thereto.
  • the film can be tempered in a suitable manner and held by the tempered air flow in suspension and across the transport direction, including the air flow from the aforementioned nozzle boxes of the ventilation nozzle above and / or below the material web, in particular the film web exits. Therefore, these mentioned ventilation nozzles in the form of the nozzle boxes on the air outlet side in the form of a slot or hole nozzle with one or more slots and / or outlet openings.
  • the Düsenausblasraum is usually perpendicular or more or less obliquely to and / or against the withdrawal direction directed the web.
  • a method for transverse stretching of a material web using a ventilation nozzle is for example also from EP 1 883 525 B1 (equals to WO 2006/119959 A ) known. Thereafter, additional heaters or insulations may be provided to specifically heat / cool a plastic film web in general and the plastic film edge in particular. It is proposed to incorporate thermally insulated cover plates at a temperature control in the drafting field with negative temperature gradients in the direction of travel and / or under the edge zones and to position them in such a way that the air which is intended to temper the drafting field or the film flows over cover plates cooling of the edge zones is hindered by the exchange of air. With the help of the cover plates, the air flow is deflected or limited and changed the heat transfer coefficient to the web. In the case of a temperature increase, the cover plates can be mounted in the middle region of the film be achieved, which in the result also higher temperatures in the edge zones are achieved.
  • Heating devices for temperature control of the film are known in many configurations.
  • the object of the present invention in contrast, is to provide an improved ventilation nozzle and a plastic film sheet application with an improved ventilation nozzle.
  • the ventilation nozzle according to the invention has significant advantages over conventional ventilation nozzles.
  • the ventilation nozzle makes it possible to provide an adjustable temperature profile across the material web (material web and, in particular, plastic film film), without thereby ensuring uniformity To change the Beerausblas Malawi and thus the dynamic pressure above and below the material web or transversely to the material web, so that the web even with decreasing Queryak (eg., In a fixing or thin films and / or at high operating speeds) evenly plan through Plant floats.
  • Querzug eg., In a fixing or thin films and / or at high operating speeds
  • a suitable air flow (generally a suitable stream of treatment gas) in a desired manner across the web (so usually transverse to the take-off direction of the web) are generated so that the treatment gas in sufficient quantity and can flow with a sufficient pressure in the direction of the material web.
  • the ventilation nozzle according to the invention are arranged above and / or below the material web.
  • the ventilation nozzle according to the invention can be constructed so that in the guided past the ventilation nozzle material web, a controllable temperature profile both in the machine direction (MD direction) and in the transverse direction (TD direction) can be generated.
  • MD direction machine direction
  • TD direction transverse direction
  • FEM calculations finite elements method have shown that the heat transfer coefficient (WÜK) at the edge of the film, ie in the vicinity of the circulating chain rail track of a stretching machine, comes very close to the heat transfer coefficient in the middle of the film.
  • the change in temperature allows the easier and more direct influence on the treated material web / the plastic film.
  • a material web to be processed in particular a film web to be stretched in the middle of the film, can be temperature-controlled in a targeted manner using simple means, for example, in the vicinity of the film edge or, in particular, on the film edge itself.
  • a uniform air outlet speed can be realized over the working width of the material web with a constant heat transfer coefficient and different temperatures, for example by means of a two-chamber nozzle, a three-chamber nozzle (cf. DE 196 23 471 C1 ), a Kontraflow nozzle, a telescoping Kontraflow nozzle, a floating nozzle or the like.
  • the setting leads to a different one Temperature profiles across the working width also to a reduction in the occurrence of different stretching ratios between the film edge and the center of the plastic film web. Because different temperature conditions lead due to the temperature dependence of the stress-strain behavior of the film to different stretching ratios. Associated with this are the changes in the bowing behavior, the modulus of elasticity changes and the shrinkage behavior of the film.
  • FIG. 1 is schematically the basic structure of a plant for the treatment of web-like materials shown, in concrete a plastic film stretching machine shown.
  • a material web 3 ', in concrete a plastic film 3 in the transverse direction can be stretched sequentially or in the longitudinal and transverse directions simultaneously.
  • a mean vertical or symmetry plane M perpendicular to the plane in FIG. 1 .
  • two closed loop pile webs 5 on which clips 7 can rotate Some of the 7 clubs are in FIG. 1 shown.
  • the plastic film is transported from the left coming through the system, the rotating clips 7 grab the film 3 at the edge 3a of the material web, in the concrete on the plastic film edge 3a respectively opposite and move through the system.
  • the heating zone A then run the clips in the stretching zone B V-shaped apart, whereby the film 3 is stretched at uniform clip speed cross and with increasingly accelerated clips and thus increasing clip spacing not only in transverse but also in the longitudinal direction.
  • the film can be heat-set in the zone C and thereby relax, whereby circumferential clip-web sections 10 can be provided, in which the transverse spacing between the opposing clips becomes slightly larger and smaller again, as in FIG. 1 only schematically indicated.
  • the cooling zone D adjoins the fixing zone C, in which the material web is cooled again to ambient temperature.
  • the clips On the rear side then run the clips on the path section R of the outlet zone to the inlet zone after they were opened at the outlet zone and the stretched material web was released for further deduction.
  • the clips after they have released the film edge 3 again at the end of the outlet zone) after passing through the return path R to a so-called stack area S while reducing the clip spacing (usually to a value 0) where the clips 7 usually be advanced under contact with adjacent clips 7 until they get back into the inlet area A.
  • ventilation nozzles 9 are preferably arranged not only below but also above the material web, as shown in the schematic cross-sectional representation according to FIG FIG. 2 you can see. Between these two ventilation nozzles 9 of the plastic film 3 passes. Such aeration nozzles 9 are for example preferably immediately before or partly still in the stretching zone, ie in the zone section A or B provided. However, in principle they can also be arranged in the fixing zone C or in the cooling zone D. There are basically no restrictions regarding the local arrangement. In principle, the ventilation nozzles can be arranged below the material web exactly at the position at which a ventilation nozzle is also positioned above the material web.
  • the ventilation nozzles provided below and above the material web can also be arranged offset in the direction of web travel, that is to say in the withdrawal direction 8 of the material web. This arrangement can be repeated as often as desired in the longitudinal direction of the system.
  • the ventilation nozzles are arranged parallel to the plane E of the material web, for example at a distance of 5 mm to 300 mm from the material web, so that the Material web is characterized contactlessly heated by the perpendicular or oblique to the nozzle plane exiting air jets (or the exiting treatment gas) and is guided floating over the air jet.
  • the ventilation nozzles 9 are basically arranged in parallel alignment with the plane E of the plastic film 3 or the material web 3 'and usually transversely to the withdrawal direction 8, in other words in the machine longitudinal direction (MD direction) and thus in the cross-machine direction (TD direction ) are arranged.
  • FIG. 2 also in each case in cross-section the corresponding sections of the clip webs 5, ie the associated rails 5 'are shown, which are held by corresponding non-illustrated, but basically known supporting structures 5 "Adjacent to the film web 3, the corresponding rail section 5' can be seen which the clips hold the associated plastic film section 3 and convey through the system while stretching, wherein in FIG. 2 in each case outwardly in cross-section those rail sections 5 'of the revolving roping web 5 can be seen, which lie in the return path zone R, on which the ropes are thus moved back from the outflow zone to the inlet zone.
  • the ventilation nozzle in each case comprises a nozzle box 11, which may for example have a rectangular or square cross-section transverse to its longitudinal extent L.
  • This nozzle box 11 is usually arranged transversely to the withdrawal direction 8 of the material web, preferably perpendicular to the withdrawal direction 8, ie perpendicular to the machine direction MD, but can also be arranged obliquely to the machine direction MD.
  • the nozzle box 11 consists in principle of a multi-chamber system, namely a first chamber 17, which is also referred to below as a feed chamber, and a branched chamber system 19 for distributing the air flow. As will be shown below, two distribution chambers 19 'and 19 "extending side by side in the longitudinal direction L of the nozzle box 11 can be provided.
  • the vent nozzle usually has only one, for example at the front end, a feed opening 21 for supplying the treatment gas in the feed direction 22, wherein the opposite end face of the vent nozzle is usually closed, although here as well treatment gas could flow.
  • nozzle box 11 in cross-section to separate the feed chamber of the distribution chambers extending in the longitudinal direction of the nozzle box wall construction 23 is preferably integrated integrated in the form of a folded sheet, which is formed in cross section in the manner of a U and an upper düsenaustritt featureen, at a distance
  • wall portions 23a which merges into two lateral, running away from the nozzle outlet openings 27 side wall portions 23b, which then adjoin the outwardly projecting flange portions 23c.
  • the nozzle box itself has a nozzle exit side 11a, which is followed by two parallel outer walls 11b extending away from the nozzles 27, which are remote from the nozzle exit openings and pass into a closed bottom 11c.
  • the two flange portions 23 c of the inner wall construction 23 are fixedly connected to the inside of the side wall portions 11 b of the nozzle box 11.
  • the mentioned distribution chamber arrangement is formed.
  • treatment gas is supplied via the at least one front-side feed opening 21, which then passes through a multiplicity of passage openings 27 (eg in the form of slots and / or holes and / or elongated holes) in the inner wall construction 23, in the two outer ones Flange sections 23c may preferably overflow over the entire or predominant length of the nozzle box into the distribution chamber 19 located closer to the nozzle outlet openings.
  • a multiplicity of passage openings 27 eg in the form of slots and / or holes and / or elongated holes
  • Flange sections 23c may preferably overflow over the entire or predominant length of the nozzle box into the distribution chamber 19 located closer to the nozzle outlet openings.
  • the treatment gas from this distribution chamber 19 through the plurality of mentioned nozzle outlet openings 29 in the nozzle exit wall 11a perpendicular or obliquely in or against the direction of material web 3 and perpendicular to the nozzle longitudinal direction L emerge.
  • four rows 29a of nozzle outlet openings 29 are provided, which are arranged running at specific intervals 29b in the longitudinal direction of the nozzle box.
  • the number and arrangement and size of the nozzle outlet openings can be chosen arbitrarily within wide ranges. It may also be slot-shaped, longer-sized nozzle outlet openings or combinations of differently formed outlet openings.
  • an intermediate wall 33 is provided between the upper inner wall 23a of the inner wall construction 23 and the nozzle exit wall 11a, whereby a left and a right distribution chamber 19 ', 19 "is formed, which in the embodiment shown are arranged symmetrically with respect to the vertical median longitudinal plane of symmetry S.
  • the intermediate or partition wall may be provided with holes or differently dimensioned openings as needed to equalize the pressure between the two distribution chambers 19 'and 19 ".
  • tempering sections 35 are now provided in the longitudinal direction of the nozzle box and thus in the longitudinal direction L of the ventilation nozzle, as shown particularly in FIGS FIGS. 4 and 5 can be seen (where FIG. 4 a corresponding representation too FIG. 3 in spatial representation, but with partially omitted outer side wall portions 11b and 11a of the chestnut box and in FIG. 5 a schematic plan view of the nozzle box according to the invention is shown with removed top nozzle opening wall 11a).
  • heaters 35a are installed which are preferably arranged at the same height, ie the same distance from the upper nozzle exit wall 11a.
  • each tempering zone so each tempering section 35 by longitudinally L of the nozzle box arranged and transverse to the longitudinal direction L extending partition wall portions 135 of an adjacent tempering zone 35 can be completely or partially separated.
  • the above-mentioned extending in the entire length of the nozzle box upper intermediate or partition wall portion 33 is provided so that under this training in the longitudinal direction of the nozzle box respectively left and right to the vertical plane of symmetry S of the nozzle box offset lying two separate tempering zones 35th each with integrated heaters 35a are formed.
  • a contiguous tempering zone would be formed per longitudinal section of the nozzle box, in which case only one or, as in FIG. 5 indicated, however, at least two heaters 35a are housed.
  • the heating devices may consist of electrical heating loops 35'a, which are connected by corresponding connection points 36 with electrical not shown supply lines are connected. Other types of heating, such as gas burners or steam or oil heat exchangers, are also conceivable.
  • a gas or air stream (which may be heated or unheated or even cooled) is introduced into the nozzle box, i. introduced into the lower feed chamber 17, where it can flow uniformly over the entire nozzle width via the laterally provided passage openings 27 in the upper Verteilhunt arrangement 19.
  • the partitions or dividers 135 are arranged spaced apart in the longitudinal direction of the nozzle box 11 in the distribution chambers 19, whereby in the longitudinal direction of the nozzle box separate distribution chambers are generated in which the corresponding air flow through the feed chamber 17 only from below via the passage opening 27 provided in the flange sections 23c flow into the respective distribution chamber 19 'or 19 "and flow out via the corresponding nozzle outlet openings 29 associated with this chamber S a plurality of individual, formed by the treatment gas distribution channels 119, which are each provided with separate heaters.
  • the flowing through the treatment gas through the separate tempering 35a may be heated differently or slightly differently to different sections of the treated Material web, in particular of the plastic film to heat up different degrees.
  • a mixing of the treatment gas in the upper part of the nozzle is prevented by the aforementioned partitions or dividing plates 135 in order to make the targeted sections, separately controllable heating of the web 3 in general and the plastic film 3 in particular.
  • the temperature of the treatment gas flowing through the ventilation nozzle can be regulated in the individual zones 35 via a direct or indirect measurement. Indirect temperature measurement is possible, for example, by measuring the surface temperature of the heating coils or heating rods 35'a. Other measuring temperatures can be used in principle. Depending on the measurement temperatures thus obtained, the heating control for the individual tempering zones 35 can then be made in a targeted manner.
  • the mentioned middle extending in the longitudinal direction of the nozzle box intermediate partition wall 33 may be omitted or provided with pressure equalization openings 37 so that in the longitudinal direction of the nozzle box offset lying in each case in the transverse direction of the nozzle box contiguous distribution chambers are formed.
  • the division of the individual distribution chambers 19 in the longitudinal direction of the nozzle box 11 can be made different within wide limits.
  • the individual controllable tempering sections and zones 35 are selected so that they have a length of, for example, 50 mm to 500 mm in the longitudinal direction of the ventilation nozzle, wherein the tempering over the nozzle box length can be chosen uniformly long as well as different lengths.
  • the nozzle according to the invention can be used at various points of a treatment plant.
  • a ventilation nozzle can for example also be used as Vorcomposingdüse, in which case the individual partitions 135 can be omitted and a continuous heating can be provided in the interior of the nozzle body.
  • a continuous heating can be provided on the left as well as on the right side of the vertical longitudinal plane of symmetry of the nozzle box.
  • the solution according to the invention is also distinguished by the fact that only a small additional use of electrical energy for the temperature zones is necessary, since the heating in the control ranges must only take place from a basic air temperature to a respectively required higher level.
  • corresponding preheated air or generally preheated treatment gas for example, with a temperature of 150 ° C (for example in the case of polypropylene films) by means of the invention Tempering device in the vent to a temperature of about 5 ° Kelvin higher level of 155 ° C.
  • a preferred common heating and / or tempering device can be provided in order to heat the inflowing treatment gas as a whole, before it flows via the corresponding passage openings 27 into the distribution chambers.
  • a material web to be processed in particular a film web to be stretched, can be temperature-controlled in a targeted manner in the middle of the film by simple means, for example in the vicinity of the film edge or in particular on the film edge itself.
  • the ventilation nozzle according to the invention can be constructed so that in the guided past the ventilation nozzle material web an adjustable temperature profile both in the machine direction (MD direction) and in the transverse direction (TD direction) can be generated.
  • MD direction machine direction
  • TD direction transverse direction
  • a temperature control in the machine direction can be generated (namely, if the temperature of the treatment gas in the two offset in the machine direction distribution chamber assemblies 19 ', 19 "set differently becomes).
  • a heating device provided for the tempering sections 35 can be constructed, for example, in the form of separate heating devices 35a, so that the several tempering sections 35 can each be equipped with a separate heating device 35a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

  • Die Erfindung betrifft eine Belüftungsdüse insbesondere zur Erwärmung von bahnförmigen Materialien nach Anspruch 1 sowie eine Kunststofffolienreckanlage nach Anspruch 15.
  • Eine gattungsbildende Belüftungsdüse ist beispielsweise aus der EP 0 907 476 B1 bekannt geworden. Mittels dieser vorbekannten Belüftungsdüse ist es möglich ein allgemein als Behandlungsgas bezeichnetes Heiz- oder Kühlgas in eine Zuführkammer einzuleiten, von wo aus das Behandlungsgas über eine Druckausgleichskammer in eine Verteilkammer strömen kann. In der Verteilkammer herrscht ein möglichst gleichmäßiger statischer Druck, der beim Ausströmen aus der Belüftungsdüse in dynamischen Druck und damit Ausströmgeschwindigkeit umgewandelt wird. Die Gleichmäßigkeit der Ausströmgeschwindigkeit quer zur Warenbahn ist abhängig von der Gleichmäßigkeit des statischen Drucks in der Verteilkammer. Durch gleichmäßiges Ausströmen des Luft- bzw. Gasstroms kann die Materialbahn in geringem Abstand zur Belüftungsdüse quasi schwebend an dieser vorbei geführt werden.
  • Einer derartigen Belüftungsdüse kann gekühltes oder erwärmtes oder erhitztes Behandlungsgas zugeführt werden, je nachdem, ob die an der Belüftungsdüse vorbei geführte Bahn gekühlt, nur geringfügig erwärmt oder stärker erhitzt werden soll.
  • Derartige Belüftungsdüsen eignen sich von daher vor allem für Kunststoffreckanlagen, bei denen eine Warenbahn, d.h. insbesondere eine Kunststofffolienbahn sequenziell oder simultan verstreckt, thermofixiert und letztlich relaxiert werden kann. Dazu wird eine beispielsweise aus einem thermoplastischen Polymer bestehende Kunststofffolie an den seitlichen Rändern gehalten und dann in Maschinenlaufrichtung (MD-Richtung) und anschließend in Querrichtung dazu (sogenannte TD-Richtung) sequenziell oder simultan verstreckt, thermofixiert und, wie erwähnt, zum Schluss relaxiert. Diese Verfahrensschritte können in Öfen in verschiedenen Zonen sowohl in Maschinenlaufrichtung als auch in Querrichtung dazu erfolgen. Die Folie kann dabei in geeigneter Weise temperiert und durch den temperierten Luftstrom in der Schwebe entlang und quer zur Transportrichtung gehalten werden, wozu der Luftstrom aus den erwähnten Düsenkästen der Belüftungsdüse ober- und/oder unterhalb der Materialbahn, im Besonderen der Folienbahn austritt. Von daher haben diese erwähnten Belüftungsdüsen in Form der Düsenkästen an der Luftaustrittsseite die Form einer Schlitz- oder Lochdüse mit einer oder mehreren Schlitzen und/oder Austrittsöffnungen. Die Düsenausblasrichtung ist dabei in der Regel senkrecht oder mehr oder weniger schräg zur und/oder entgegen der Abzugsrichtung der Materialbahn gerichtet.
  • Mit derartigen Belüftungsdüsen kann zum Teil eine sehr gleichmäßige Luftausblasgeschwindigkeit über die gesamte Arbeitsbreite der Belüftungsdüse erzielt werden. Damit wird auch der Wärmeübergang über die Arbeitsbreite der zu behandelnden Materialbahn, in der Regel des zu behandelnden Kunststofffilms sehr konstant. Schließlich kann mit derartigen Belüftungsdüsen auch die Temperatur über die Arbeitsbreite der Materialbahn / des Kunststofffilms sehr konstant gehalten werden.
  • Vor allem im Falle von Reckanlagen treten aber durch die V-förmigen Verstreckungsbereiche der Warenbahn (im Querreckbereich und/oder bei einer Simultanreckanlage) in der Reckzone Nachteile auf:
    1. a) durch die hohen Durchlaufgeschwindigkeiten der Warenbahn wird Schleppluft aus dem Aufheizbereich der Warenbahn in den V-förmigen Verstreckbereich geschleppt. Die Luft bzw. das Behandlungsgas im Aufheizbereich ist in der Regel heißer als im Verstreckbereich, womit in der Streckzone an den Rändern ein immer breiter werdender kälterer Bereich entsteht;
    2. b) durch die hohen Luftgeschwindigkeiten im Aufheizbereich entstehen höhere statische Drücke an der Warenbahn als im Verstreckbereich. Durch den Überdruck dringt wärmere Luft aus der Vorheizzone in die Mitte der Streckzone, wodurch der Rand der Materialbahn bzw. der Rand des Kunststofffilms im Windschatten liegt;
    3. c) schließlich ist ein zu reckender Kunststofffilm am Filmrand dicker (Knochenprofil) und muss von daher zur Erzielung eines verbesserten Reckvorganges und zur Verbesserung der Filmqualität besser durchwärmt werden;
    4. d) durch Differenzgeschwindigkeiten zwischen Film und Transportein-richtung und unterschiedliche Temperatureinwirkung treten zudem Änderungen der Filmeigenschaften über die Arbeitsbreite auf, die dem Fachmann als geometrisches und charakteristisches Bowing (s. Park, O.O.; Kim, W.S.; Park, C.I.; Yang, S.-M.: Analysis of the Bowing Phenomenon in the Tenter Process of Biaxially Oriented Polypropylene Film. (2001) In: Korean Journal of Chemical Engineering. (2001) Vol. 18, Nr. 3, S. 317-321), als Schrumpfverhalten und als Änderung des E-Moduls bekannt sind.
  • Ein Verfahren zum Querstrecken einer Materialbahn unter Verwendung einer Belüftungsdüse ist beispielsweise auch aus der EP 1 883 525 B1 (entspricht der WO 2006/119959 A ) bekannt geworden. Danach können zusätzliche Aufheizungen oder Isolierungen vorgesehen sein, um eine Kunststofffolienbahn im Allgemeinen und den Kunststofffolien-Rand im Besonderen zu erwärmen bzw. zu kühlen. Dabei wird vorgeschlagen bei einer Temperaturführung im Streckfeld mit negativen Temperaturgradienten in Laufrichtung über und/ oder unter den Randzonen thermisch isolierte Abdeckbleche einzubauen und diese so zu positionieren, dass die Luft, welche das Streckfeld bzw. die Folie temperieren soll, über Abdeckbleche hinweg strömt, so dass eine Abkühlung der Randzonen durch den Luftaustausch behindert wird. Mit Hilfe der Abdeckbleche wird der Luftstrom umgelenkt bzw. begrenzt und der Wärmeübergangskoeffizient auf die Warenbahn verändert. Im Falle einer Temperaturerhöhung können die Abdeckbleche im Mittenbereich der Folie angebracht werden, wodurch im Ergebnis gleichfalls höhere Temperaturen in den Randzonen erreicht werden.
  • Schließlich ist aus der WO 2006/130141 A1 zu entnehmen, dass im Falle eines biaxial orientierten Polymerfilms eine Temperierung über die Arbeitsbreite der Folie hinweg mittels Infrarotheizung vorgenommen werden kann. Hierbei wird die Warenbahn mittels Strahlungswärme direkt beheizt, was bei dünnen Folien oder speziellen Folien auf Grund der hohen Energiedichte zu Problemen führen kann.
  • Heizeinrichtungen zur Temperierung des Films sind dabei in vielfacher Ausgestaltung bekannt.
  • Aufgabe der vorliegenden Erfindung ist es demgegenüber, eine verbesserte Belüftungsdüse sowie eine Kunststofffolienreckanlege mit einer verbesserten Belüftungsdüse zu schaffen.
  • Die Aufgabe wird erfindungsgemäß bezüglich der Belüftungsdüse entsprechend den im Anspruch 1 und bezüglich der Kunststofffolienreckanlage entsprechend den im Anspruch 15 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Die erfindungsgemäße Belüftungsdüse weist wesentliche Vorteile gegenüber herkömmlichen Belüftungsdüsen aus.
  • Als eine der wesentlichen Eigenschaften im Rahmen der Erfindung zeigt sich, dass mit der Belüftungsdüse es möglich wird, ein einstellbares Temperaturprofil quer zur Warenbahn (Materialbahn und insbesondere Kunststofffolienfilm) zu schaffen, und zwar ohne dass dabei die Gleichmäßigkeit der Luftausblasgeschwindigkeit und damit des Staudrucks ober- und unterhalb der Materialbahn bzw. quer zur Materialbahn zu ändern, damit die Materialbahn auch bei nachlassendem Querzug (z. B. in einer Fixierzone oder bei dünnen Filmen und/oder bei großen Arbeitsgeschwindigkeiten) gleichmäßig plan durch die Anlage schwebt. Durch diese Maßnahmen wird letztlich eine verbesserte Eigenschaft der bearbeiteten Warenbahn und insbesondere einer Endfolieneigenschaft bezüglich Bowing sowie der Schrumpfeigenschaft und der E-Modulverteilung erreicht.
  • Mit der erfindungsgemäßen Belüftungsdüse kann ebenso wie bei vorbekannten Düsen ein geeigneter Luftstrom (allgemein ein geeigneter Strom eines Behandlungsgases) in gewünschter Weise über die Materialbahn hinweg (also in der Regel quer zur Abzugsrichtung der Materialbahn) so erzeugt werden, dass das Behandlungsgas in ausreichender Menge und mit einem ausreichenden Strömdruck in Richtung Materialbahn ausströmen kann. Dadurch soll weiterhin gewährleistet werden, dass die an der Luftdüse vorbeilaufende Materialbahn entsprechend geführt wird, also im Abstand der Belüftungsdüse an dieser vorbei schwebt. Dabei kann die erfindungsgemäße Belüftungsdüse, wie im Stand der Technik auch, oberhalb und/oder unterhalb der Materialbahn angeordnet werden.
  • Um nunmehr den Film entsprechend temperieren zu können wird in Abweichung zum Stand der Technik nicht mehr vorgeschlagen der Belüftungsdüse einen entsprechend temperierten Luftstrom oder ein entsprechend temperiertes Behandlungsgas zuzuführen, sondern in der Belüftungsdüse selbst Temperiereinrichtungen vorzusehen. Dabei handelt es sich in der Regel um Heizeinrichtungen, die es ermöglichen, das Behandlungsgas im Allgemeinen und Luft im Besonderen auf eine spezifische Temperatur zu bringen, um die vorbeilaufende Materialbahn nicht nur schwebend zu führen, sondern vor allem auch auf ein gewünschtes Temperaturniveau zu bringen.
  • Dabei kann die erfindungsgemäße Belüftungsdüse so aufgebaut sein, dass in der an der Belüftungsdüse vorbeigeführten Materialbahn ein regelbares Temperaturprofil sowohl in Maschinenlaufrichtung (MD-Richtung) als auch in Querrichtung dazu (TD-Richtung) erzeugt werden kann. In der Praxis wurde mittels FEM-Berechnungen (finite elements method) gezeigt, dass der Wärmeübergangskoeffizient (WÜK) am Rand der Folie, also in der Nähe der umlaufenden Kettenschienenbahn einer Reckanlage, dem Wärmeübergangskoeffizienten in der Folienmitte sehr nahe kommt.
  • Allerdings ist zu berücksichtigen, dass am Folienrand während des Reckvorganges der Folie, aufgrund der größeren Folienranddicke (Knochenprofil), dem Einfluss der Kettenschiene und der in der Mitte eingeschleppten Luft, andere Randbedingungen herrschen, die sich auf Grund der unterschiedlichen Streckspannungen im Material bei unterschiedlichen Materialtemperaturen teilweise in unterschiedlichen Streckverhältnissen einmal am Folienrand und zum anderen in der Folienmitte bemerkbar machen. Dies gilt auch bezüglich der Folienrandstreifenbreite. Für die Materialbahn, d.h. insbesondere für den Kunststofffilm beispielsweise im Falle einer Folienreckanlage wie aber auch für den Rand der Materialbahnen bezüglich des Kunststofffilms ergeben sich vor allem die folgenden Einflussparameter:
    1. a) die Luft- bzw. Gasauströmgeschwindigkeit, die über den Wärmeübergangskoeffizient Einfluss auf die Temperatur der Materialbahn/Folie nimmt, oder
    2. b) die Luft- bzw. Gastemperatur.
  • Die Veränderung der Temperatur ermöglicht dabei die einfachere und direktere Einflussnahme auf die behandelte Materialbahn / den Kunststofffilm.
  • Durch die Erfindung ist es nunmehr möglich, die Temperatur des Behandlungsgases (in der Regel Luft) über die Arbeitsbreite der Belüftungsdüse hinweg einzustellen und unterschiedlich zu regeln, um hierüber Einfluss auf die Folientemperatur über die Folienbreite hinweg nehmen zu können. Somit kann eine zu bearbeitende Materialbahn, insbesondere eine zu reckende Folienbahn in der Folienmitte mit einfachen Mitteln zielgerichtet anders temperiert werden als beispielsweise in der Nähe des Folienrandes oder insbesondere am Folienrand selbst.
  • Dabei kann eine gleichmäßige Luftaustrittsgeschwindigkeit über die Arbeitsbreite der Materialbahn mit einem konstanten Wärmeübergangskoeffizient und unterschiedlichen Temperaturen realisiert werden, beispielsweise mittels einer Zweikammerdüse, einer Dreikammerdüse (Vgl. DE 196 23 471 C1 ), einer Kontraflowdüse, einer teleskopierenden Kontraflowdüse, einer Schwebedüse oder der gleichen.
  • Es hat sich gezeigt, dass im Rahmen der Erfindung eine abweichende Luftgeschwindigkeit über die Arbeitsbreite von weniger als +/-2% möglich ist.
  • Schließlich führt die Einstellung eines unterschiedlichen Temperaturprofils über die Arbeitsbreite hinweg auch zu einer Verringerung des Auftretens unterschiedlicher Streckverhältnisse zwischen dem Folienrand und der Folienmitte der Kunststofffolienbahn. Denn unterschiedliche Temperaturbedingungen führen auf Grund der Temperaturabhängigkeit des Spannungs- Dehnungsverhaltens der Folie zu unterschiedlichen Reckverhältnissen. Damit verbunden sind die Änderungen im bowing Verhalten, den E-Modul Änderungen und dem Schrumpfverhalten der Folie.
  • Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert. Dabei zeigen im einzelnen
  • Figur 1:
    eine schematische Draufsicht auf eine Folienreckanlage;
    Figur 2:
    eine schematische Querschnittsdarstellung durch die in Figur 1 gezeigte Folienreckanlage;
    Figur 3:
    eine räumliche Darstellung einer erfindungsgemäßen Belüftungsdüse (ausschnittsweise) mit einem Düsenkasten;
    Figur 4:
    eine ähnliche Darstellung zu Figur 3 in quasi "durchsichtiger" Darstellung; und
    Figur 5:
    eine auszugsweise Draufsicht auf das Ausführungsbeispiel nach Figuren 3 und 4 bei weggelassener Düsenwand.
  • In Figur 1 ist in schematischer Weise der Grundaufbau einer Anlage zur Behandlung von bahnförmigen Materialien gezeigt, im Konkreten eine Kunststofffolien-Reckanlage gezeigt. In dieser Kunststofffolien-Reckanlage kann eine Materialbahn 3', im Konkreten ein Kunststofffilm 3 in Querrichtung sequenziell oder in Längs- und Querrichtung simultan gereckt werden.
  • Dazu sind zu einer mittleren Vertikal- oder Symmetrieebene M (senkrecht zur Zeichenebene in Figur 1) zwei geschlossene umlaufende Kluppenbahnen 5 vorgesehen, auf denen Kluppen 7 umlaufen können. Einige der Kluppen 7 sind in Figur 1 gezeigt. Dabei wird der Kunststofffilm von links kommend durch die Anlage hindurch befördert, wobei die umlaufenden Kluppen 7 den Film 3 am Rand 3a der Materialbahn, im Konkreten am Kunststofffolienrand 3a jeweils gegenüberliegend ergreifen und durch die Anlage hindurch bewegen. Nach der Aufheizzone A laufen dann die Kluppen in der Reckzone B V-förmig auseinander, wodurch der Film 3 bei gleichmäßiger Kluppengeschwindigkeit Quer- und bei zunehmend beschleunigten Kluppen und damit sich vergrößerndem Kluppenabstand nicht nur in Quer- sondern simultan auch in Längsrichtung gereckt wird. Nach dieser Reckzone B kann der Film in der Zone C thermofixiert werden und dabei relaxieren, wobei umlaufende Kluppenbahnenabschnitte 10 vorgesehen sein können, in denen der Querabstand zwischen den gegenüberliegenden Kluppen geringfügig größer und wieder kleiner wird, wie dies in Figur 1 nur schematisch angedeutet ist. In der Regel schließt sich an die Fixierzone C eine Kühlzone D an, in der die Warenbahn wieder auf Umgebungstemperatur abgekühlt wird.
  • Auf der rückwärtigen Seite laufen dann die Kluppen auf dem Wegabschnitt R von der Auslaufzone zur Einlaufzone zurück, nachdem sie an der Auslaufzone geöffnet wurden und die gereckte Materialbahn zum weiteren Abzug freigegeben wurde. Mit anderen Worten kehren die Kluppen (nachdem sie am Ende der Auslaufzone den Folienrand 3 wieder freigegeben haben) nach Durchlaufen des Rücklaufweges R zu einem sogenannten Stack-Bereich S unter Verringerung des Kluppenabstandes (in der Regel bis auf einen Wert 0) wo die Kluppen 7 in der Regel unter Berührung mit benachbarten Kluppen 7 vorgeschoben werden, bis sie wieder in den Einlaufbereich A gelangen.
  • An geeigneten Stellen sind bevorzugt nicht nur unterhalb sondern auch oberhalb der Materialbahn Belüftungsdüsen 9 angeordnet, wie dies in der schematischen Querschnittsdarstellung gemäß Figur 2 zu sehen ist. Zwischen diesen beiden Belüftungsdüsen 9 läuft der Kunststofffilm 3 hindurch. Derartige Belüftungsdüsen 9 sind beispielsweise bevorzugt unmittelbar vor oder zum Teil noch in der Reckzone, also im Zonenabschnitt A bzw. B vorgesehen. Sie können aber grundsätzlich auch in der in der Fixierzone C oder in der Kühlzone D angeordnet sein. Einschränkungen bezüglich der örtlichen Anordnung bestehen grundsätzlich nicht. Grundsätzlich können die Belüftungsdüsen unterhalb der Materialbahn genau an jener Position angeordnet werden, an der eine Belüftungsdüse auch oberhalb der Materialbahn positioniert wird. Grundsätzlich können aber auch die unterhalb und oberhalb der Materialbahn vorgesehenen Belüftungsdüsen in Warenbahnlaufrichtung, also in Abzugsrichtung 8 der Materialbahn versetzt zueinander angeordnet werden. Diese Anordnung kann sich dabei beliebig oft in Längsrichtung der Anlage wiederholen. Üblicherweise sind dabei die Belüftungsdüsen parallel zur Ebene E der Materialbahn angeordnet, beispielsweise in einem Abstand von 5 mm bis 300 mm gegenüber der Materialbahn, so dass die Materialbahn dadurch berührungslos durch die senkrecht oder schräg zur Düsenebene austretenden Luftstrahlen (oder des austretenden Behandlungsgases) erwärmt wird und über den Luftstrahl schwebend geführt wird.
  • Dabei ist aus der Darstellung gemäß Figur 2 auch zu ersehen, dass die Belüftungsdüsen 9 grundsätzlich in Parallelausrichtung zur Ebene E des Kunststofffilms 3 bzw. der Materialbahn 3' angeordnet und üblicherweise quer zur Abzugsrichtung 8, mit anderen Worten also in Maschinenlängsrichtung (MD-Richtung) und damit in Maschinenquerrichtung (TD-Richtung) angeordnet sind. Dabei sind in Figur 2 auch noch jeweils im Querschnitt die zugehörigen Abschnitte der Kluppenbahnen 5, d.h. der zugehörigen Schienen 5' gezeigt, die über entsprechende nicht näher dargestellte aber grundsätzlich bekannte Tragkonstruktionen 5" gehalten sind. Benachbart zur Folienbahn 3 ist dabei der entsprechende Schienenabschnitt 5' zu sehen, auf welchem die Kluppen den zugehörigen Kunststofffilmabschnitt 3 halten und durch die Anlage hindurch befördern und dabei recken, wobei in Figur 2 jeweils außenliegend im Querschnitt jene Schienenabschnitte 5' der umlaufenden Kluppenbahn 5 zu sehen sind, die in der Rückwegzone R liegen, auf welcher also von der Auslaufzone zur Einlaufzone die Kluppen wieder rückbewegt werden.
  • Nachfolgend wird anhand der Figuren 3 bis 5 der weitere Aufbau der erfindungsgemäßen Düse beschrieben.
  • Die Belüftungsdüse umfasst dabei jeweils einen Düsenkasten 11, der beispielsweise einen rechteckförmigen oder quadratischen Querschnitt quer zu dessen Längserstreckung L aufweisen kann. Dieser Düsenkasten 11 ist in der Regel quer zur Abzugsrichtung 8 der Materialbahn angeordnet, bevorzugt senkrecht zur Abzugsrichtung 8, also senkrecht zur Maschinenrichtung MD, kann aber auch schräg zur Maschinenrichtung MD angeordnet sein.
  • Der Düsenkasten 11 besteht vom Prinzip her aus einem Mehrkammersystem, und zwar einer ersten Kammer 17, die nachfolgend teilweise auch als Zuführkammer bezeichnet wird, sowie einem verzweigten Kammersystem 19 zur Verteilung des Luftstroms. Wie nachfolgend gezeigt wird, können dabei zwei in Längsrichtung L des Düsenkastens 11 nebeneinander verlaufende Verteilkammern 19' und 19" vorgesehen sein.
  • Die Belüftungsdüse weist in der Regel lediglich nur an einer, beispielsweise an der vorderen Stirnseite eine Zuführöffnung 21 zur Zuführung des Behandlungsgases in Zuführrichtung 22 auf, wobei das gegenüberliegende Stirnende der Belüftungsdüse in der Regel geschlossen ist, obgleich auch hier ebenso Behandlungsgas zuströmen könnte.
  • Innerhalb des im Querschnitt quadratisch oder rechteckförmigen Düsenkastens 11 ist zur Trennung der Zuführkammer von den Verteilkammern eine in Längsrichtung des Düsenkastens verlaufende Wandkonstruktion 23 vorzugsweise in Form eines gekanteten Bleches integriert eingebaut, welche im Querschnitt nach Art eines U gebildet ist und einen oberen düsenaustrittseitigen, im Abstand zu Düsenaustrittsöffnungen 27 des Düsenkastens 11 vorgesehen Wandabschnitten 23a umfasst, der in zwei seitliche, von den Düsenaustrittsöffnungen 27 weglaufende Seitenwandabschnitte 23b übergeht, an denen sich dann nach außen vorstehende Flanschabschnitte 23c anschließen.
  • Der Düsenkasten selbst weist eine Düsenaustrittsseite 11a auf, an die sich von den Düsen 27 weglaufend zwei parallele Außenwände 11b anschließen, die zu den Düsenaustrittsöffnungen entfernt liegend in einen geschlossenen Boden 11c übergehen.
  • Im gezeigten Ausführungsbeispiel sind die beiden Flanschabschnitte 23c der inneren Wandkonstruktion 23 mit der Innenseite der Seitenwandabschnitte 11b des Düsenkastens 11 fest verbunden.
  • Da die Wandkonstruktion 23 von den Seitenwänden 21b und der Düsenaustrittswand 11a beabstandet ist, entsteht neben der erwähnten Zuführkammer 17 zwischen der Wandkonstruktion 23 und den Seitenwänden 23b bzw. der Düsenaustrittswand 11a und 11b des Düsenkastens 11 die erwähnte Verteilkammer-Anordnung.
  • Im gezeigten Ausführungsbeispiel wird über die zumindest eine stirnseitige Zuführöffnung 21 Behandlungsgas zugeführt, welches dann durch eine Vielzahl von Durchtrittsöffnungen 27 (z.B. in Form von Schlitzen und/oder Löchern und/oder Langlöchern) in der inneren Wandkonstruktion 23, im gezeigten Ausführungsbeispiel in den beiden außenliegenden Flanschabschnitten 23c vorzugsweise über die gesamte oder überwiegende Länge des Düsenkastens in die in den Düsenaustrittsöffnungen näher liegende Verteilkammer 19 überströmen kann. Dadurch wird das in Längsrichtung L der Düse und damit quer zur Maschinenlaufrichtung strömende Behandlungsgas um 90° umgelenkt und strömt senkrecht zur Materialbahn bzw. Düsenaustrittsfläche 11a nach oben. Dadurch wird ein Druckausgleich zwischen Zuführ- und Verteilkammer erzeugt.
  • Schließlich kann das Behandlungsgas von dieser Verteilkammer 19 durch die Vielzahl der erwähnten Düsenaustrittsöffnungen 29 in der Düsenaustrittswand 11a senkrecht oder schräg in oder entgegen der Richtung Materialbahn 3 und senkrecht zur Düsenlängsrichtung L austreten. Im gezeigten Ausführungsbeispiel sind dabei vier Reihen 29a von Düsenaustrittsöffnungen 29 vorgesehen, die in bestimmten Abständen 29b in Längsrichtung des Düsenkastens verlaufend angeordnet sind. Anzahl und Anordnung sowie Größe der Düsenaustrittsöffnungen kann in weiten Bereichen beliebig gewählt werden. Es können auch schlitzförmige, länger dimensionierte Düsenaustrittsöffnungen sein oder Kombinationen aus unterschiedlich gebildeten Austrittsöffnungen.
  • Wie aus dem Ausführungsbeispiel auch noch zu ersehen ist, ist in der mittleren vertikalen Symmetrieebene S (die in Längsrichtung durch den Düsenkasten verläuft) eine Zwischen- oder Trennwand 33 zwischen der oberen Innenwand 23a der inneren Wandkonstruktion 23 und der Düsenaustrittswand 11a vorgesehen, wodurch eine linke und eine rechte Verteilkammer 19', 19" gebildet ist, die im gezeigten Ausführungsbeispiel symmetrisch zu der vertikalen Mittellängssymmetrieebene S angeordnet sind. Die Zwischen- oder Trennwand kann bei Bedarf mit Löchern oder anders dimensionierten Öffnungen versehen sein, um einen Druckausgleich zwischen den beiden Verteilkammern 19' und 19" zu erzielen.
  • Um die verbesserte Temperierung einer zu behandelnden Materialbahn zu realisieren, sind nunmehr in Längsrichtung des Düsenkastens und damit in Längsrichtung L der Belüftungsdüse Temperier-Abschnitte 35 vorgesehen, wie dies insbesondere in den Figuren 4 und 5 zu ersehen ist (wobei Figur 4 eine entsprechende Darstellung zu Figur 3 in räumlicher Darstellung wiedergibt, allerdings bei teilweise weggelassenen äußeren Seitenwandabschnitten 11b und 11a des Düstenkastens und in Figur 5 eine schematische Draufsicht auf den erfindungsgemäßen Düsenkasten bei abgenommener oberer Düsenöffnungswand 11a gezeigt ist). In diesen Temperier-Abschnitten 35 sind beispielsweise Heizeinrichtungen 35a eingebaut die bevorzugt in gleicher Höhenlage, d.h. gleichem Abstand zur oberen Düsenaustrittswand 11a angeordnet sind. Wie dabei insbesondere aus der schematischen Draufsicht gemäß Figur 5 zu entnehmen ist, kann jede Temperierzone, also jeder Temperier-Abschnitt 35 durch in Längsrichtung L des Düsenkastens versetzt angeordnete und quer zur Längsrichtung L verlaufende Trennwandabschnitte 135 von einer benachbarten Temperier-Zone 35 komplett oder zum Teil getrennt werden. Im gezeigten Ausführungsbeispiel ist auch der bereits erwähnte in der gesamten Länge des Düsenkastens verlaufende obere Zwischen- oder Trennwandabschnitt 33 vorgesehen, so dass unter dieser Ausbildung in Längsrichtung des Düsenkastens jeweils links und rechts zur vertikalen Symmetrieebene S des Düsenkastens versetzt liegend zwei getrennte Temperier-Zonen 35 mit jeweils integrierten Heizeinrichtungen 35a gebildet sind. Würde die in Längsrichtung des Düsenkastens verlaufende Zwischen- oder Trennwand 33 weggelassen oder mit Druckausgleichsöffnungen 37 werden, würde jeweils eine zusammenhängende Temperierzone pro in Längsrichtung verlaufenden Abschnitt des Düsenkastens gebildet sein, in der dann beispielsweise nur eine oder, wie in Figur 5 angedeutet, gleichwohl zumindest zwei Heizeinrichtungen 35a untergebracht sind. Die Heizeinrichtungen können dabei aus elektrischen Heizschleifen 35'a bestehen, die durch entsprechende Anschlussstellen 36 mit nicht näher gezeigten elektrischen versorgungsleitungen verbunden sind. Es sind auch andere Beheizungsarten wie Gasbrenner oder Dampf- oder Ölwärme- tauscher denkbar.
  • Somit wird also über die Lufteinströmseite 21 oder an beiden gegenüberliegenden Lufteinströmseiten 21 an beiden Düsenden ein Gas- oder Luftstrom (der beheizt oder unbeheizt oder gar gekühlt sein kann) in den Düsenkasten, d.h. in die untere Zuführkammer 17 eingeleitet, wo er gleichmäßig über die gesamte Düsenbreite über die seitlich vorgesehenen Durchtrittsöffnungen 27 in die obere Verteilkammer-Anordnung 19 einströmen kann.
  • Aus Figur 4 ist auch zu ersehen, dass die Trennwände oder Trennbleche 135 in Längsrichtung des Düsenkastens 11 voneinander beabstandet in den Verteilkammern 19 angeordnet sind, wodurch in Längsrichtung des Düsenkastens voneinander getrennte Verteilkammern erzeugt werden, in denen der entsprechende Luftstrom über die Zuführkammer 17 nur von unten her über die in den Flanschabschnitten 23c vorgesehene Durchtrittsöffnung 27 in die jeweilige Verteilkammer 19' bzw. 19" einströmen und über die entsprechenden, dieser Kammer zugeordneten Düsenaustrittsöffnungen 29 ausströmen. Unter Verwendung der erwähnten in Längsrichtung des Düsenkastens verlaufenden Zwischenwand 33 werden dadurch links und rechts zur vertikalen Symmetrieebene S eine Vielzahl von einzelnen, vom Behandlungsgas durchströmten Verteilkanälen 119 gebildet, die jeweils mit separaten Heizeinrichtungen versehen sind. In diesen Abschnitten kann also das durchströmende Behandlungsgas durch die separaten Temperiereinrichtungen 35a gegebenenfalls unterschiedlich oder leicht unterschiedlich erwärmt werden, um unterschiedliche Abschnitte der zu behandelnden Materialbahn, insbesondere des Kunststofffilms unterschiedlich stark aufzuheizen. Dabei wird durch die erwähnten Trennwände oder Trennbleche 135 eine Durchmischung des Behandlungsgases im oberen Teil der Düse verhindert, um die gezielte abschnittsweise, separat regelbare Aufwärmung der Materialbahn 3 im Allgemeinen und der Kunststofffolienbahn 3 im Besonderen vornehmen zu können.
  • Die Temperatur des durch die Belüftungsdüse hindurchströmenden Behandlungsgases kann dabei in den einzelnen Zonen 35 über eine direkte oder indirekte Messung geregelt werden. Eine indirekte Temperaturmessung ist beispielsweise durch die Messung der Oberflächentemperatur der Heizschleifen oder Heizstäbe 35'a möglich. Auch andere Messtemperaturen können grundsätzlich eingesetzt werden. In Abhängigkeit der so gewonnenen Messtemperaturen kann dann gezielt die Heizsteuerung für die einzelnen Temperier-Zonen 35 vorgenommen werden.
  • Bei Bedarf kann auch die erwähnte mittlere, in Längsrichtung des Düsenkastens verlaufende Zwischen-Trennwand 33 weggelassen werden oder mit Druckausgleichsöffnungen 37 versehen werden, so dass in Längsrichtung des Düsenkastens versetzt liegend jeweils in Querrichtung des Düsenkastens zusammenhängende Verteilkammern gebildet sind.
  • Die Einteilung der einzelnen Verteilkammern 19 in Längsrichtung des Düsenkastens 11 kann in weiten Grenzen unterschiedlich vorgenommen werden. Bevorzugt werden die einzelnen regelbaren Temperierabschnitte und -zonen 35 so gewählt werden, dass sie in Längsrichtung der Belüftungsdüse eine Länge von beispielsweise 50 mm bis 500 mm aufweisen, wobei die Temperierabschnitte über die Düsenkastenlänge gleichmäßig lang als auch unterschiedlich lang gewählt werden können.
  • Dadurch ist es vor allem auch möglich den Folienrand (der in der Regel dicker ist als der verbleibende Folienbahnabschnitt) mit einer unterschiedlich einstellbaren Temperatur zu regeln, als andere Folienbahnabschnitte. Dadurch können beispielsweise auch separate Randheizungen wegfallen, wie sie bei anderen Reckanlagen teilweise notwendig oder sinnvoll sind. Insbesondere auch bei Folienreckanlagen mit mittels Linearmotoren angetriebenen Kluppen können separate Randheizungen bei Verwendung der vorstehend erläuterten erfindungsgemäßen Belüftungsdüse wegfallen.
  • Die erfindungsgemäße Düse kann an verschiedenen Stellen einer Behandlungsanlage eingesetzt werden. Dabei kann eine derartige Belüftungsdüse beispielsweise auch als Vorheizdüse verwendet werden, wobei in diesem Falle die einzelnen Trennwände 135 wegfallen können und eine durchgängige Heizung im Inneren des Düsenkörpers vorgesehen sein kann. Dabei kann eine durchgängige Heizung auf der linken wie auf der rechten Seite der vertikalen Längssymmetrieebene des Düsenkastens vorgesehen sein.
  • Die erfindungsgemäße Lösung zeichnet sich auch dadurch aus, dass nur ein geringer zusätzlicher elektrischer Energieeinsatz für die Temperaturzonen notwendig ist, da die Erwärmung in den Regelbereichen nur von einer Grundlufttemperatur auf ein jeweils benötigtes höheres Niveau erfolgen muss. Mit anderen Worten kann entsprechend vorgeheizte Luft oder allgemein vorgeheiztes Behandlungsgas beispielsweise mit einer Temperatur von 150°C (beispielsweise im Falle von Polypropylenfolien) mittels der erfindungsgemäßen Temperiereinrichtung in die Belüftungsdüse auf ein ca. 5° Kelvin höheres Niveau von 155 °C erfolgen.
  • Durch die gegebenenfalls unterschiedlich aufgeheizte Temperatur des Behandlungsgases ist ein direkter Einfluss auf die Filmtemperatur über die Arbeitsbreite der Folienbahn im Besonderen und der verwendeten und zu bearbeitenden Materialbahn im Allgemeinen möglich.
  • Abweichend vom gezeigten Ausführungsbeispiel ist es grundsätzlich auch möglich, teleskopierende Schlitzdüsen mit einzelnen Heizzonen zu verwenden. Durch derartige Maßnahmen kann der Einfluss der Temperatur des Behandlungsgases auf die Temperatur der Materialbahn (insbesondere des Kunststofffilms) durch eine Verringerung des Abstandes zur Materialbahn noch erheblich verstärkt werden, so dass ein gezielter punktueller Einsatz in der Aufheiz-, Streck-, Fixier- und oder Kühlzone möglich ist.
  • Schließlich soll der Vollständigkeit halber auch noch erwähnt werden, dass selbst in der Zuführkammer 17 eine bevorzugte gemeinsame Heiz- und/oder Temperiereinrichtung vorgesehen sein kann, um das einströmende Behandlungsgas insgesamt zu erwärmen, bevor es über die entsprechenden Durchzugsöffnungen 27 in die Verteilkammern strömt.
  • Die erfindungsgemäße Belüftungsdüse ist so aufgebaut und/oder in einer Anlage so ausrichtbar und/oder montierbar, dass das Behandlungsgas
    • senkrecht zur Material- oder Warenbahn,
    • schräg und/oder parallel in Richtung der Material- oder Warenbahn und/oder schräg und/oder parallel entgegen
    der Richtung und/oder der Abzugsrichtung der Material- bzw Warenbahn ausströmen kann.
  • Durch das erläuterte Ausführungsbeispiel ist nunmehr ersichtlich, dass es im Rahmen der Erfindung möglich ist, die Temperatur des Behandlungsgases (in der Regel Luft) über die Arbeitsbreite der Belüftungsdüse hinweg einzustellen und unterschiedlich zu regeln, um hierüber Einfluss auf die Folientemperatur über die Folienbreite hinweg nehmen zu können. Mit anderen Worten sind also in Längsrichtung L der Belüftungsdüse 9 mehrere Temperier-Abschnitte 35 vorgesehen, worüber die Temperatur des Behandlungsgases und damit die Folientemperatur über die Breite der Materialbahn 3 hinweg unterschiedlich einstellbar ist. Dadurch kann eine zu bearbeitende Materialbahn, insbesondere eine zu reckende Folienbahn, in der Folienmitte mit einfachen Mitteln zielgerichtet anders temperiert werden, als beispielsweise in der Nähe des Folienrandes oder insbesondere am Folienrand selbst.
  • Dabei kann die erfindungsgemäße Belüftungsdüse so aufgebaut sein, dass in der an der Belüftungsdüse vorbei geführten Materialbahn ein regelbares Temperaturprofil sowohl in Maschinenlaufrichtung (MD-Richtung) als auch in Querrichtung dazu (TD-Richtung) erzeugt werden kann. Mit anderen Worten kann neben einer Temperaturregelung über die Breite der Materialbahn hinweg auch eine Temperaturregelung in Maschinenlaufrichtung erzeugt werden (wenn nämlich die Temperatur des Behandlungsgases in den beiden in Maschinenlaufrichtung versetzt zueinander liegenden Verteilkammer-Anordnungen 19', 19" unterschiedlich eingestellt wird).
  • Wie bereits erwähnt, kann eine für die Temperier-Abschnitte 35 vorgesehene Heizeinrichtung beispielsweise in Form von separaten Heizeinrichtungen 35a aufgebaut sein, so dass die mehreren Temperier-Abschnitte 35 jeweils mit einer separaten Heizeinrichtung 35a ausgestattet sein können.

Claims (15)

  1. Belüftungsdüse, insbesondere zur Erwärmung von bahnförmigen Materialien (3), wobei sich die Belüftungsdüse (9) in Betriebsstellung in ihrer Längsrichtung quer zur Abzugsrichtung (8) der Materialbahn (3) erstreckt, mit zumindest einer Zuführkammer (17) zur Versorgung der Belüftungsdüse (9) mit einem Behandlungsgas und mit einer mit der Zuführkammer (17) über zumindest eine Überströmanordnung in Verbindung stehende Verteilkammeranordnung (19), von der aus das Behandlungsgas über eine oder mehrere in Längsrichtung der Belüftungsdüse (9) vorgesehene Düsenaustrittsöffnung (29) mit Quer zur Längsrichtung (L) der Belüftungsdüse (9) verlaufende Strömungsrichtung über die Breite der Materialbahn 3 hinweg ausströmen kann, dadurch gekennzeichnet, dass in der Belüftungsdüse (9) zumindest ein sich in Längsrichtung (L) der Belüftungsdüse erstreckender Temperier-Abschnitt (35) mit einer integrierten Heizeinrichtung (35a) vorgesehen ist, und dass in Längsrichtung (L) der Belüftungsdüse (9) mehrere Temperier-Abschnitte (35) vorgesehen sind, worüber die Temperatur des Behandlungsgases und damit die Folientemperatur über die Breite der Materialbahn (3) hinweg unterschiedlich einstellbar ist.
  2. Belüftungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass in Längsrichtung (L) der Belüftungsdüse (9) mehrere Temperier-Abschnitte (35) vorgesehen sind, die jeweils mit separaten Heizeinrichtungen (35a) ausgestattet sind.
  3. Belüftungsdüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in Längsrichtung (L) der Belüftungsdüse (9) versetzt zueinander angeordneten Temperier-Abschnitte (35) durch quer zur Längsrichtung (L) der Belüftungsdüse (9) ausgerichtete Trennwände (135) voneinander getrennt sind, durch die separate Strömungskanäle (119) gebildet sind, worüber das Behandlungsgas von einer Zuführkammer (17) über die Überströmanordnung in die einzelnen die Strömungskanäle (119) bildenden Temperier-Abschnitte (35) einströmen und hierüber über die nachgeordneten Düsenaustrittsöffnungen (29) aus der Belüfungsdüse (9) austreten kann.
  4. Belüftungsdüse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Länge der Temperier-Abschnitte (35) 50 mm bis 1000 mm beträgt.
  5. Belüftungsdüse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zumindest eine Temperier-Abschnitt (35) und die vorzugsweise mehreren Temperier-Abschnitte (35) im Bereich der Verteilkammer-Anordnung (19) vorgesehen sind.
  6. Belüftungsdüse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Längsrichtung (L) der Belüftungsdüse (9) im Bereich der Verteilkammer-Anordnung (19) zumindest eine Zwischen- oder Trennwand (33) vorgesehen ist, wodurch quer zur Längsrichtung (L) der Belüftungsdüse (9) zumindest eine erste Verteilkammer-Anordnung (19') und eine daneben angeordnete, ebenfalls in Längsrichtung (L) der Belüftungsdüse (9) verlaufende zweite Verteilkammer-Anordnung (19") gebildet ist.
  7. Belüftungsdüse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Überströmanordnung zwischen der Zuführkammer (17) und der zumindest einen Verteilkammer (19) eine Vielzahl von Durchtrittsöffnungen (27) aufweist, worüber das Behandlungsgas von der Zuführkammer (17) in die zumindest eine Verteilkammer (19) strömen kann.
  8. Belüftungsdüse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass durch die in Längsrichtung (L) der Belüftungsdüse (9) verlaufende Zwischen- oder Trennwand (33) und durch die quer dazu verlaufenden Trennwände (135) 2n kanalförmige Verteilkammern (19, 119) gebildet sind, in denen jeweils separate Heizeinrichtungen (35a) untergebracht sind, wobei n eine ganze natürliche Zahl >0 ist.
  9. Belüftungsdüse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die eine oder die mehreren Heizeinrichtungen (35a) Heizschleifen oder Heizstäbe (35'a) umfassen oder daraus bestehen.
  10. Belüftungsdüse nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die eine oder die mehreren Heizeinrichtungen (35a) mit verschiedenen Heizungsarten wie Gas, Elektrisch, Thermalöl oder Dampf beheizt werden können.
  11. Belüftungsdüse nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Behandlungsgas senkrecht zur Materialbahn ausströmen kann.
  12. Belüftungsdüse nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Behandlungsgas schräg und/oder parallel in Richtung der Materialbahn ausströmen kann.
  13. Belüftungsdüse nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Behandlungsgas schräg und/oder parallel entgegen der Richtung der Materialbahn ausströmen kann.
  14. Belüftungsdüse nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mittels der Belüftungsdüse die Luftausblasgeschwindigkeit und/oder der Staudruck ober- und/oder unterhalb einer Materialbahn durch mehrere in der Belüftungszone vorgesehene regelbare Temperier-Abschnitte (35) im Sinne einer Verringerung von Abweichungen, wie Bowing, Schrumpf und E-Modul, zueinander einstell- und/oder regelbar ist.
  15. Kunststofffolienreckanlage mit einer Belüftungsdüse nach einem der Ansprüche 1 bis 14.
EP10776082.9A 2009-12-30 2010-10-14 Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse Active EP2519396B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910060753 DE102009060753A1 (de) 2009-12-30 2009-12-30 Belüftungsdüse sowie Kunststofffolienreckanlage mit zugehöriger Belüftungsdüse
PCT/EP2010/006297 WO2011079885A1 (de) 2009-12-30 2010-10-14 Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse

Publications (2)

Publication Number Publication Date
EP2519396A1 EP2519396A1 (de) 2012-11-07
EP2519396B1 true EP2519396B1 (de) 2013-08-28

Family

ID=43243162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10776082.9A Active EP2519396B1 (de) 2009-12-30 2010-10-14 Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse

Country Status (5)

Country Link
EP (1) EP2519396B1 (de)
JP (1) JP5470472B2 (de)
CN (1) CN102712133B (de)
DE (1) DE102009060753A1 (de)
WO (1) WO2011079885A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011864B4 (de) 2010-03-18 2022-12-22 Brückner Maschinenbau GmbH & Co. KG Verfahren zur Online-Ermittlung mechanischer und/oder optischer Eigenschaften einer Kunststofffolie
JP5989165B1 (ja) * 2015-03-25 2016-09-07 株式会社日本製鋼所 空気噴射部材とこれを用いたフィルムの製造方法
CN104690953A (zh) * 2015-03-26 2015-06-10 刘子睿 薄膜双向拉伸装置及方法
DE102016200827B4 (de) 2016-01-21 2017-10-05 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Folienreckanlage zum Verhindern von Verschmutzungen infolge Schmelzens der Folie sowie Verfahren zum Verhindern von derartigen Verschmutzungen in einer solchen Anlage
DE102018124521A1 (de) * 2018-10-04 2020-04-09 Brückner Maschinenbau GmbH & Co. KG Behandlungsanlage für eine durch einen Behandlungsofen hindurchführbare flexible Materialbahn, insbesondere Kunststofffolie
DE102019120794A1 (de) 2019-08-01 2021-02-04 Brückner Maschinenbau GmbH & Co. KG Belüftungsmodul sowie zugehörige Reckanlage
US20220323971A1 (en) * 2019-10-17 2022-10-13 Toray Industries, Inc. Blowoff nozzle
CN112721132A (zh) * 2021-01-15 2021-04-30 昆山竹言薄膜特殊材料有限公司 一种薄膜生产加工用拉伸装置
CN114646202B (zh) * 2022-03-17 2023-03-24 佛山市盟思拉伸机械有限公司 薄膜生产线烘箱及其柔送风热交换单元

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1460544A1 (de) * 1963-07-20 1969-03-27 Dornbusch & Co Verfahren und Vorrichtung zur Waermebehandlung von empfindlichen Warenbahnen
JPS61149343A (ja) * 1984-12-25 1986-07-08 Oji Yuka Gouseishi Kk 樹脂フイルムの温度分布制御方法
JPS61219625A (ja) * 1985-03-26 1986-09-30 Oji Yuka Gouseishi Kk 樹脂延伸フイルムの製造方法
JPH01314140A (ja) * 1988-06-14 1989-12-19 Japan Steel Works Ltd:The フィルム製造用横延伸機の熱風供給装置
JP2612244B2 (ja) * 1988-12-29 1997-05-21 王子油化合成紙株式会社 延伸樹脂フィルムの肉厚制御方法
JP2528669Y2 (ja) * 1991-08-19 1997-03-12 三菱重工業株式会社 テンタオーブン用プレナムダクト
JPH0596619A (ja) * 1991-10-08 1993-04-20 Mitsubishi Heavy Ind Ltd フイルム延伸機
KR970010453B1 (ko) * 1994-06-24 1997-06-26 주식회사 에스케이씨 열가소성 수지 필름의 제조방법
DE19623471C1 (de) * 1996-06-12 1998-02-05 Brueckner Maschbau Belüftungsdüse
JP2000313060A (ja) * 1999-04-28 2000-11-14 Mitsubishi Heavy Ind Ltd テンターオーブン
JP2002144420A (ja) * 2000-11-14 2002-05-21 Fuji Photo Film Co Ltd テンタ
JP2003025420A (ja) * 2001-07-18 2003-01-29 Mitsubishi Heavy Ind Ltd テンタオーブンの熱風循環装置
CN100396464C (zh) * 2003-03-04 2008-06-25 三菱丽阳株式会社 片状物的热处理装置及热处理方法
WO2006119959A1 (de) 2005-05-10 2006-11-16 Treofan Germany Gmbh & Co. Kg Verfahren und vorrichtung zum querverstrecken einer materialbahn
WO2006130141A1 (en) 2005-06-01 2006-12-07 3M Innovative Properties Company Method of controlling cross-web caliper profile of biaxially oriented polymeric films
JP2007152816A (ja) * 2005-12-07 2007-06-21 Toray Ind Inc シートの加工装置及び加工方法
JP4813216B2 (ja) * 2006-03-08 2011-11-09 富士フイルム株式会社 テンタの送風装置、ポリマーフィルムの乾燥方法及びポリマーフィルムの製造方法
JP2007261068A (ja) * 2006-03-28 2007-10-11 Fujifilm Corp テンタの送風装置及びポリマーフィルムの製造方法
JP2007276382A (ja) * 2006-04-11 2007-10-25 Toray Ind Inc 二軸延伸ポリエステルフィルムの製造方法
JP2007320276A (ja) * 2006-06-05 2007-12-13 Toray Ind Inc テンターオーブン
JP2008100456A (ja) * 2006-10-20 2008-05-01 Toray Ind Inc シート状物の熱処理装置
KR101425109B1 (ko) * 2007-03-20 2014-08-01 도레이 카부시키가이샤 공기 분출 노즐 및 그것을 사용한 텐터 오븐
JP5228834B2 (ja) * 2008-03-28 2013-07-03 東レ株式会社 エア噴出ノズルおよびそれを用いたテンターオーブン

Also Published As

Publication number Publication date
CN102712133A (zh) 2012-10-03
DE102009060753A1 (de) 2011-07-07
JP5470472B2 (ja) 2014-04-16
JP2013516339A (ja) 2013-05-13
WO2011079885A1 (de) 2011-07-07
EP2519396A1 (de) 2012-11-07
CN102712133B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2519396B1 (de) Belüftungsdüse sowie kunststofffolienreckanlage mit zugehöriger belüftungsdüse
DE10123241C1 (de) Gasabschluss für Reaktoren mittels Gasleitkörpern
DE10146179C1 (de) Anlage zum Trocknen von Gipskartonplatten
DE202015106039U1 (de) Behandlungseinrichtung
EP0192169A2 (de) Vorrichtung zum berührungsfreien Führen von Warenbahnen, insbesondere Metallbändern, mittels eines Gasmediums
EP3300486A1 (de) Verfahren und vorrichtung zum kühlen von extrudierten profilen
EP0464036B1 (de) Verfahren und vorrichtung zur behandlung von monofilen
EP3632640B1 (de) Behandlungsanlage für eine durch einen behandlungsofen hindurchführbare flexible materialbahn, insbesondere kunststofffolie
EP3795332A2 (de) Belüftungsmodul sowie zugehörige reckanlage
EP0907476B1 (de) Belüftungsdüse
EP2630280B1 (de) Vorrichtung zur herstellung von strangförmigen produkten
EP3271133B1 (de) Behandlungsfluidführung in einer folienreckanlage
DE102017127595A1 (de) Belüftungsmodul für eine Folienreckanlage und eine solche Folienreckanlage
DE102018219289B3 (de) Verfahren und Vorrichtung zur Beaufschlagung einer Materialbahn mit einem Gasstrom
DE202014103343U1 (de) Behandlungseinrichtung, insbesondere Trocknungseinrichtung
EP3546382B1 (de) Dampfbalken und schrumpftunnel
EP4000863B1 (de) Behandlungsanlage für eine durch einen behandlungsofen hindurchführbare flexible materialbahn, insbesondere kunststofffolie
DE102013103758B4 (de) Verfahren zur Herstellung einer thermoplastischen Kunststoffschaumplatte und Luftkühlungsvorrichtung
DE6803360U (de) Vorrichtung zur behandlung von orientierten, hitzestabilisierten, thermoplastischen kunststoffolien
DE102011089536A1 (de) Vorrichtung zur Kühlung von bewegtem Flachmaterial
EP2942408A1 (de) Vorrichtung zur schwebenden führung von bahnförmigem material
WO2015086289A1 (de) Verfahren und vorrichtung zum trocknen einer faserstoffbahn
EP3250742B1 (de) Luftkasten einer ausrüstungsmaschine
DE102019102595A1 (de) Verfahren zum Abkühlen von bewegtem metallischen Material sowie Vorrichtung zur Durchführung eines solchen Verfahrens
DE102020114029A1 (de) Blasdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130516

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 629050

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004551

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

BERE Be: lapsed

Owner name: BRUCKNER MASCHINENBAU G.M.B.H. & CO. KG

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004551

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004551

Country of ref document: DE

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101014

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131014

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161024

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 629050

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010004551

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010004551

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010004551

Country of ref document: DE

Owner name: BRUECKNER MASCHINENBAU GMBH, DE

Free format text: FORMER OWNER: BRUECKNER MASCHINENBAU GMBH & CO. KG, 83313 SIEGSDORF, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 14

Ref country code: FR

Payment date: 20231023

Year of fee payment: 14

Ref country code: DE

Payment date: 20231018

Year of fee payment: 14