EP2516698B1 - Verfahren zum beschichten durch thermischen spritzen und galvanische plattierung - Google Patents
Verfahren zum beschichten durch thermischen spritzen und galvanische plattierung Download PDFInfo
- Publication number
- EP2516698B1 EP2516698B1 EP10784289.0A EP10784289A EP2516698B1 EP 2516698 B1 EP2516698 B1 EP 2516698B1 EP 10784289 A EP10784289 A EP 10784289A EP 2516698 B1 EP2516698 B1 EP 2516698B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- workpiece
- process according
- zones
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/615—Microstructure of the layers, e.g. mixed structure
- C25D5/617—Crystalline layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/67—Electroplating to repair workpiece
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/04—Electroplating with moving electrodes
- C25D5/06—Brush or pad plating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
Definitions
- the invention relates to a method for coating a workpiece, on which a layer is produced electrochemically.
- a method of the type mentioned is, for example, according to the DE 602 25 352 T2 described. It is possible according to this method to coat the surface of a workpiece electrochemically, for example by means of brush plating.
- a flow, open-pore sponge or a brush is used as a carrier to transfer an electrolyte to the surface to be coated.
- a metallic material is deposited on the surface by applying a voltage between the substrate and an electrode arranged in the region of the transmitter for the electrolyte from the electrolyte.
- metal ions deposited from the molten salt on the surface to be coated must be replaced by new metal ions introduced into the molten salt, so that the separation process does not come to a standstill.
- a method for keeping the concentration of metal ions constant is, for example, in US Pat DE 43 44 387 A1 described.
- a method for coating a workpiece involves the coating of the workpiece with a metal layer, this being done by plasma spraying or flame spraying. Then another layer is applied, which can be done, for example, galvanically. The two layers have a different thermal expansion coefficient.
- a workpiece can be provided by means of plasma spraying or flame spraying with a first layer. Then, a second coating is galvanically produced, for example, these layers having a different coefficient of expansion.
- WO 02/12595 A1 discloses a method in which a workpiece can be coated with a metal layer by plasma spraying or flame spraying. In addition to this layer, a further coating can be produced, for example, galvanically. Furthermore, it is known that several layers can be produced, in which differences in the coefficient of thermal expansion can be compensated by design features. For this purpose, for example, voids in the layers are proposed. Such technical solutions can be, for example, the US 2005/029109 A1 and the EP 1 029 951 A2 remove.
- the object of the invention is to improve an electrochemical coating method in such a way that the electrochemically deposited layers exhibit an inhomogeneous expansion behavior.
- a part of the first material is applied by electrochemical coating on the workpiece, zones of a second material having a thermal expansion coefficient ⁇ , which differs from that of the first material, using a thermal spraying method be applied to the first material and these zones are then embedded by the electrochemical coating in the layer.
- This embedding can take place in such a way that the zones still form part of the resulting surface of the coated component, so that the embedding takes place only on the lateral flanks of the zones.
- Zones within the meaning of the invention are to be understood as meaning partial volumes of the layer whose lateral extent (ie extent seen in the direction parallel to the surface to be coated) is greater than its thickness extent (ie extent, measured perpendicular to the surface to be coated).
- the thermal expansion behavior of the zones in the lateral direction of the layer is more noticeable than perpendicular to this direction.
- the inhomogeneous expansion behavior of the layer produced is caused.
- the second material has a larger thermal expansion coefficient ⁇ than the first material.
- the expansion of the zones causes additional compressive stresses to form in the layer regions adjacent to the zones. These can be used to stabilize the layer structure, if this would react to tensile stresses, for example by formation of cracks.
- an inhomogeneous expansion behavior of the layer can be produced by a suitable combination of the first and the second material and by suitable geometric design of the zones, which can be adapted to different design requirements for the component to be coated.
- the zones can also be made of a material which has a lower thermal expansion coefficient ⁇ than the first material.
- additional compressive stresses would be generated in the first material of the layer when the component is cooled with the layer. This could for example be advantageous if the first material of the layer tends to cold embrittlement and therefore must be protected at low temperatures before the occurrence of tensile stresses.
- a cold gas spraying is applied as a thermal spraying method.
- This is a process in which the coating particles adhere primarily due to their high kinetic energy on the surface. It is therefore also referred to as kinetic spraying.
- the kinetic energy is generated by means of a cold gas spray nozzle, a convergent-divergent nozzle, in a gas jet, wherein heating of the particles not or only in small dimensions. In any case, heating is not enough to melt the particles, as with other thermal spraying methods.
- the advantage in the application of cold gas spraying is therefore that the integrity of the structure of the particles used by the cold gas spraying is not affected.
- this method has the advantage that, in particular in the case of a soft, electrochemically produced layer matrix of the preceding layer, the particles penetrate into the layer, as a result of which a better distribution of the particles in the formed layer is achieved.
- the layer is produced in several layers by the thermal spraying process and the electrochemical coating are carried out alternately several times.
- a layer structure can be produced in which the zones are completely embedded in the layer, ie. H. do not form a part of the surface. This is particularly advantageous when the material of the zones, for example, must be protected from corrosion attack.
- the complete embedding of the zones allows a particularly effective introduction of tensile or compressive stresses into the surrounding microstructure matrix of the first material.
- the thermal spraying and the electrochemical coating are carried out simultaneously, but in each case at different points of the workpiece.
- This can advantageously achieve a particularly high efficiency in the coating of the workpiece.
- the prerequisite is that the workpiece is only partially and simultaneously coated (at different locations) with both coating methods.
- thermal spraying is this is required anyway, because always just the point of impact of the coating jet is coated.
- electrochemical coating a coating method must be selected in which a partial coating of the component is possible, ie in which the entire component is not immersed in the electrolyte. This is preferably possible when applying the so-called brushing, wherein only the portion of the workpiece is currently electrochemically coated, which is in contact with the transmitter of the electrolyte.
- the simultaneous coating of the workpiece with both coating methods can be used when a cylindrical body, in particular a work roll for rolling mills, is coated as a workpiece, wherein this is set in rotation about its center axis and at one point of its circumference the electrochemical coating and on another place of its extent the thermal spraying is made.
- This can be accomplished, for example, by immersing the cylindrical workpiece in the electrolyte with only part of its peripheral surface.
- For a uniform coating then ensures the uniform rotation of the cylindrical workpiece through which gradually the entire surface can be coated.
- the thermal coating can be performed.
- Even when using the Brush Platings the rotation of the roller is very advantageous.
- the carrier for the brush plating then only has to be brought to the workpiece, wherein a relative movement between the workpiece and the transmitter by the constant rotation of the cylindrical workpiece comes about.
- an ionic liquid is used as the electrolyte for the electrochemical coating.
- Ionic liquids are organic liquids consisting of a cation such as an alkylated imidazolium, pyridinium, ammonium or phosphonium ion and an anion such.
- a cation such as an alkylated imidazolium, pyridinium, ammonium or phosphonium ion and an anion such.
- simple halides, tetrafluoroborates or Hexafluorophospaten, bi (trifluoromethylsulfonyl) imides or tri (pentafluoroethyl) -Trifluorophospaten exist.
- ionic liquids also have a high electrochemical stability, inter alia Ti, Ta, Al and Si can be deposited, which can not be deposited from aqueous electrolytes due to the strong evolution of hydrogen.
- Suitable metal salts which are also mentioned in the introduction WO 2006/061081 A2
- halides, imides, amides, alcoholates and salts of mono-, di- or polyvalent organic acids such as acetates, oxalates or tartrates are mentioned.
- the metals to be electrochemically deposited are brought into the appropriate ionic liquid by anodic dissolution.
- a counter electrode to be coated component a soluble electrode is used. This consists of the metal that is to be coated.
- the metal to be deposited may also be added as a salt of the ionic liquid.
- a counterelectrode to the substrate for example, a platinum electrode can be used.
- concentration of the metal ions to be deposited in the ionic liquid is maintained, which, for example, in the already mentioned DE 43 44 387 A1 will be described in more detail.
- the metals are also deposited as nanocrystalline layers when using ionic liquids.
- the ionic liquid suitable cations such as.
- pyrrolinium ions which are surface active and therefore act as a grain refiner during electrochemical deposition. It is advantageous that it is often possible to dispense with the addition of wetting agents or brighteners under these conditions.
- the zones can be distributed as island-like depots in a regular pattern on the workpiece.
- These island-type depots are limited in size down only in that the gas jet of the applied cold gas spraying method creates a point of impact on the component to be coated, which has certain dimensions. This results in the smallest possible extent of the depot. If the depot to be larger, the cold gas jet in the production of the same must be performed in a suitable manner. It is advantageous to produce depots with a round base, but other geometries can be realized. By producing comparatively small depots, it is advantageously achieved that a tight exchange between the first material and the second material in the layer can be realized. As a result, voltage peaks in the structures of the first material and the second material can be kept low as soon as they arise due to the inhomogeneous expansion behavior of the layer.
- Another possibility is to arrange the zones as strips on the workpiece. This can be an inhomogeneous Create expansion behavior, which is different not only in terms of the expansion behavior of the layer perpendicular to the surface of the workpiece, but also with respect to the lateral expansion behavior in different directions of the layer.
- the zones are arranged as rectangles in a two-dimensional array on the workpiece.
- the layer in the region of at least one zone on a sacrificial material for.
- wax which is removed after the completion of the layer to form a cavity, for example by melting.
- cantilever structures made of the first material with the zones of the second material and of the layer composite surrounding these zones, which structures can be used as mechanical actuating elements due to their inhomogeneous expansion behavior.
- the driving force for the actuation of the actuators are therefore temperature differences during operation of the coated component.
- the zone of the second material is formed together with the first material of the remaining layer to form a multilayer, cantilevered bending beam. At one end of the bending beam is then connected to the rest of the composite layer. Below the bending beam, the already mentioned cavity is formed, wherein the other end of the bending beam is freely movable. Due to the different expansion behavior of the two materials, which are preferably arranged in two adjoining layers, the beam bends according to the mechanism, which is known for example from bimetallic strip. In this way, the actuator is realized.
- a bending beam formed in this way can be produced with its free-carrying end, for example, above an opening in the surface of the workpiece.
- This opening can serve, for example, the supply of a cooling medium.
- the bending beam can be designed so that the opening is only released when a certain temperature is exceeded, so that the coolant is conveyed only in the event of an imminent overheating of the component. This is advantageous realized a temperature-controlled valve. A throttling of the coolant flow can be ensured.
- the zone is produced as a cantilever beam of the second material.
- This has a larger thermal expansion coefficient ⁇ than the first material.
- the bending beam is connected at its one end to the remaining layer composite and executed at its other end with a defined distance to the rest of the layer composite.
- the beam thus formed on no component of the first material.
- This structure can be used, for example, as a thermal switch. Upon heating of the component, the beam expands due to the larger thermal expansion coefficient ⁇ of the beam and bridged at a certain temperature the defined distance to the rest of the composite layer. This creates a contact that assumes an electrical conductivity of at least the second material and leads to a change in the electrical behavior of the layer. This can be measured and used as a switching signal. If the first material is an electrical insulator, this can be achieved by a suitable design of supply lines for example, realize an electrical switch with the beam from the first material.
- the method can be used particularly advantageously for work rolls of a rolling mill. These serve, inter alia, the transport of goods to be rolled, z. As a sheet, which is reduced by the leadership between the work rolls, for example, in its wall thickness. Therefore, the work rolls of a rolling mill are subject to enormous wear. This can be reduced by the coatings applied according to the invention if particles of a hard material are preferably embedded in the zones. These may be, for example, oxides of Al, Co, Mg, Ti, Si or Zr, nitrides of Al, B or Si or carbides of B, Cr, Ti, Si or W or else carbonitrides.
- the mentioned hard materials can be deposited together with particles of a matrix material as a second material in the zones.
- the first material can be selected with a smaller thermal expansion coefficient than the second material in order to generate compressive stresses in the zones when heating the roll surface, which must be preserved because of the proportion of hard materials before the occurrence of tensile stresses in the structure. In the zones then comparatively high concentrations of hard material particles can be realized.
- the hard materials used in the zones of the layer produced on the one hand advantageously reduce their abrasion, so that their wear resistance increases. Furthermore, however, the hard materials also serve the purpose of increasing the surface roughness of the layer, which is required so that the torque of the work rolls can be transferred to the sheet to be rolled. If the hard materials are provided by the multi-layer structure of the roller over the entire layer thickness, it is furthermore advantageously ensured that the surface roughness of the roller is maintained even if the layer undergoes continuous wear by exposing ever new hard material particles. This means that advantageously a component is created which meets the requirements of the surface roughness over its entire intended life in full measure.
- electrochemically base metals such as Ti, Ta, Si, Al or Mg
- An inexpensive deposition is especially by selecting the brush Plating process possible, since in this case a comparatively fast layer growth can be achieved. Particulate entry into the forming zones of the second material is possible and high particle concentrations in the layer can be achieved.
- the process can also be carried out partially on large workpieces since they do not have to be immersed in an electrolyte during brush plating.
- the method can also be used for repair purposes, wherein the coating system (consisting of a cold gas spray gun and a carrier for brush plating) is transportable and therefore also z. B. can be used at the site of the workpiece to be repaired.
- a surface cleaning and activation is performed on the workpiece to be coated. This can be done for example by a so-called brush cleaning by means of an alkaline and / or cyanide electrolyte and brush etching by means of an acidic electrolyte such. For example, hydrochloric or sulfuric acid, take place.
- the first coating step in which a ductile base material, such as. B. nickel or nickel-cobalt, is deposited as a first material. This process is done by means of brush plating.
- a ductile base material such as. B. nickel or nickel-cobalt
- the electrolyte for example, a Watts electrolyte can be used.
- the transfer of the Brush Platings which may be a soaked with the electrolyte felt or sponge, is thereby moved over the surface to be coated.
- an anode in the form of a rod, wire mesh or balls may be included.
- the material of the anode is either the base material of the deposited layer, which then dissolves and regularly must be replaced, or an inert anode, such as platinum.
- the coating is carried out in a non-aqueous electrolyte.
- the surface cleaning and activation of the workpiece to be coated is carried out in the manner already described by brush cleaning and brush etching.
- the first coating step takes place, wherein a metal layer is deposited, for example, from titanium. This process is done by means of brush plating.
- the electrolyte used to deposit titanium as the first material is 1-butyl-3-methylimidazolium tetrafluoroborate, in which titanium tetrafluoroborate is dissolved as ion carrier.
- a felt or sponge is soaked with this electrolyte and moved over the surface of the component to be coated.
- the one formed by the felt or sponge Transmitter is equipped in the manner already described with an electrode. This may consist of titanium or an inert material, such as platinum.
- the second coating step can be carried out in alternation with the electrochemical coating or at the same time at a point at which the electrochemical coating is not currently carried out.
- zones are made of aluminum, for example, as the second material with said cold gas spraying.
- the zones are then incorporated in the manner already described in the metal matrix by again titanium is deposited electrochemically.
- FIG. 1 In the embodiment of the inventive method according to FIG. 1 is a roller-shaped workpiece 11 with a Provided wear protection layer.
- the workpiece 11 is rotatably mounted with its central axis 12, wherein the axis of rotation 13 is identical to the central axis 12.
- a bearing 14 is shown schematically, wherein during the coating, the workpiece 11 is rotated by means of a drive, not shown, at a constant speed.
- FIG. 1 is a plan view of the workpiece 11 from top to bottom vertically shown.
- a transfer device 15 is brought from one side to the workpiece, which consists of a sponge 16 with open pores.
- an electrolyte is applied to the surface 18 of the workpiece in a manner not shown via a feed system 17, which moves away under the transmitter.
- an electrochemical coating takes place, for which purpose the workpiece 11 and the transmitter is connected to a voltage source 19.
- a cold gas spraying nozzle 20 is directed onto the surface 18 of the workpiece and guided stepwise approximately in the direction of the axis of rotation 13 over the surface.
- small depots 27 are formed at the dwellers 26 (shown in FIG. 3 ) of the cold gas jet.
- individual particles from the cold gas jet 21 adhere to the surface and are subsequently incorporated into the layer matrix on the transfer substrate 15 due to the rotation of the workpiece.
- a range of movement 22 of the cold spray nozzle 20 is slightly less than the length of the workpiece, since for example in work rolls of rolling mills as workpieces to be coated, the respective frontal region is not involved in the rolling process and therefore is not exposed to heavy wear. If the movement region 22 of the cold gas spraying nozzle 20 is selected such that it does not extend to the edge of the workpiece to be coated, this has advantages for the process control.
- the movement pattern of the cold spray nozzle is in FIG. 2 shown. This takes a course that corresponds to an eight, taking into account the constant movement 24 of the workpiece due to the rotation. By virtue of the eight-shaped course, a line 25 is formed on the surface 18 of the workpiece 11 FIG. 3 described so that it comes to a uniform loading of the surface with particles. In FIG. 3 are also the dwellers 26 of the cold gas jet shown, the construction of depots 27 in the coating material 28 according to FIG. 4 with a checkerboard-like layer structure leads.
- FIG. 4 is a plan view of the layer surface represents. It can be seen that the depots 27 are embedded in the first material 28 of the layer so that they form part of the layer surface. In FIG. 5 however, the depots 27 are completely surrounded by the material 28 of the layer. This can be achieved by carrying out an electrochemical coating step with the first material 28 of the layer after application of the depots 27 without once again applying the second material. A thus formed layer 29 thus has three layers 30, of which only the middle is equipped with the depots 27.
- the layer surface is shown with exposed strips 31 of the second material, which are embedded in the first material 28 on the side edges.
- Another embodiment results when instead of the strips 31 rectangles 32 are produced, as shown in Figure 7. These too are exposed at the top, so that they can be seen in the layer surface, while they are embedded with their sides by the first material.
- a bending beam 33 can be integrated.
- wax 34 is applied in a predetermined shape to the component 11 as a sacrificial material, wherein the sacrificial material also closes an opening 35 in the component 11 and thus prevents it from being closed by the coating process.
- the first material 28 is first deposited electrochemically, wherein the sacrificial material must be provided with an electrically conductive starting layer for this purpose.
- a zone 36 is produced by cold gas spraying onto the first material and then embedded in the first material 28 at its flanks 36a.
- FIGS. 9 and 10 Another embodiment is in the FIGS. 9 and 10 to see, with the sectional planes of the other figures are drawn accordingly (section XX corresponds to the sectional plane in FIG. 10 and section IX-IX of the section plane in FIG. 9 ).
- a bar 37 is shown, which is integrated in the layer 29.
- the beam 37 which consists entirely of the second material, embedded in the first material 28 (see. FIG. 10 ) and thus fixed in the region of the layer 29.
- the sacrificial material 34 By the sacrificial material 34, a cavity is defined, which results in that the beam 37 is arranged freely supported in the layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Beschichten eines Werkstücks, auf dem elektrochemisch eine Schicht hergestellt wird.
- Ein Verfahren der eingangs genannten Art ist beispielsweise gemäß der
DE 602 25 352 T2 beschrieben. Es ist gemäß diesem Verfahren möglich, die Oberfläche eines Werkstücks elektrochemisch beispielsweise mittels Brush Plating zu beschichten. Hierbei wird ein Fließ, offenporiger Schwamm oder eine Bürste als Überträger verwendet, um ein Elektrolyt auf die zu beschichtende Oberfläche zu übertragen. Dort wird durch Anlegen einer Spannung zwischen dem Substrat und einer im Bereich des Überträgers für den Elektrolyten angeordneten Elektrode aus dem Elektrolyt ein metallischer Werkstoff auf der Oberfläche abgeschieden. - Gemäß der
WO 2006/061081 A2 ist es außerdem bekannt, dass eine elektrochemische Abscheidung von Metall auch mit ionischen Flüssigkeiten vorgenommen werden kann, die einen wässrigen Elektrolyten ersetzen. Der Einsatz ionischer Flüssigkeiten, also Salzschmelzen, die im Bereich von unter 100°C, vorzugsweise sogar bei Raumtemperatur flüssig vorliegen, hat den Vorteil, dass sich bei deren Verwendung größere Prozessfenster für die Abscheidung von Metallen ergeben, die sich mittels wässriger Elektrolyte aufgrund ihrer Position in der Spannungsreihe der Metalle nicht oder nur schwer abscheiden lassen. Ein Beispiel für ein solches Metall ist Ta. Es ist zu beachten, dass die aus der Salzschmelze auf der zu beschichtenden Oberfläche abgeschiedenen Metallionen durch neue in die Salzschmelze eingebrachte Metallionen ersetzt werden müssen, damit der Abscheideprozess nicht zum Erliegen kommt. Ein Verfahren für das Konstanthalten der Konzentration an Metallionen ist beispielsweise in derDE 43 44 387 A1 beschrieben. - Gemäß der
WO 2006/089519 A1 ist ein Verfahren zum Beschichten eines Werkstücks beschrieben. Dieses beinhaltet die Beschichtung des Werkstücks mit einer Metallschicht, wobei dies durch Plasmaspritzen oder Flammspritzen erfolgt. Darauf wird eine weitere Schicht aufgebracht, wobei dies beispielsweise galvanisch erfolgen kann. Die beiden Schichten haben einen unterschiedlichen thermischen Ausdehnungskoeffizienten. - Gemäß der
US 2008/299247 A1 ist ein Verfahren beschrieben, bei dem ein Werkstück mittels Plasmaspritzen oder Flammspritzen mit einer ersten Schicht versehen werden kann. Darauf wird eine zweite Beschichtung beispielsweise galvanisch hergestellt, wobei diese Schichten einen unterschiedlichen Ausdehnungskoeffizient haben. - Gemäß der
WO 02/12595 A1 US 2005/029109 A1 und derEP 1 029 951 A2 entnehmen. - Die Aufgabe der Erfindung liegt darin, ein elektrochemisches Beschichtungsverfahren dahingehend zu verbessern, dass die elektrochemisch abgeschiedenen Schichten ein inhomogenes Ausdehnungsverhalten zeigen.
- Diese Aufgabe wird mit dem eingangs genannten Verfahren erfindungsgemäß dadurch gelöst, dass ein Teil des ersten Werkstoffs durch elektrochemisches Beschichten auf das Werkstück aufgetragen wird, Zonen eines zweiten Werkstoffes mit einem thermischen Ausdehnungskoeffizienten α, welcher von demjenigen des ersten Werkstoffes abweicht, unter Anwendung eines thermischen Spritzverfahrens auf den ersten Werkstoff aufgebracht werden und diese Zonen anschließend durch das elektrochemische Beschichten in die Schicht eingebettet werden. Diese Einbettung kann derart erfolgen, dass die Zonen noch einen Teil der entstehenden Oberfläche des beschichteten Bauteils bilden, so dass die Einbettung nur an den seitlichen Flanken der Zonen erfolgt. Alternativ ist es auch möglich, die Zonen in die Schicht derart einzubetten, dass diese durch den ersten Werkstoff vollständig umschlossen sind. Als Zonen im Sinne der Erfindung sind Teilvolumina der Schicht zu verstehen, deren laterale Ausdehnung (d. h. Ausdehnung gesehen in Richtung parallel zur zu beschichtenden Oberfläche) größer ist als deren Dickenausdehnung (d. h. Ausdehnung, gemessen senkrecht zur zu beschichtenden Oberfläche). Dies führt dazu, dass sich das thermische Ausdehnungsverhalten der Zonen in lateraler Richtung der Schicht stärker bemerkbar macht als senkrecht zu dieser Richtung. Hierdurch wird erfindungsgemäß das inhomogene Ausdehnungsverhalten der erzeugten Schicht hervorgerufen.
- Beispielsweise kann vorgesehen werden, dass der zweite Werkstoff einen größeren thermischen Ausdehnungskoeffizienten α aufweist als der erste Werkstoff. In diesem Falle führt die Ausdehnung der Zonen dazu, dass sich in den an die Zonen benachbarten Schichtbereichen zusätzliche Druckspannungen ausbilden. Diese können zur Stabilisierung des Schichtgefüges verwendet werden, wenn dieses auf Zugspannungen beispielsweise durch Ausbildung von Rissen reagieren würde.
- Vorteilhaft lässt sich durch eine geeignete Kombination des ersten und des zweiten Werkstoffes und durch geeignete geometrische Gestaltung der Zonen ein inhomogenes Ausdehnungsverhalten der Schicht erzeugen, welches an unterschiedliche konstruktive Erfordernisse für das zu beschichtende Bauteil angepasst werden kann. Die Zonen können auch aus einem Werkstoff hergestellt werden, welcher einen geringeren thermischen Ausdehnungskoeffizienten α aufweist als der erste Werkstoff. In diesem Falle würden in dem ersten Werkstoff der Schicht zusätzliche Druckspannungen erzeugt werden, wenn das Bauteil mit der Schicht abgekühlt wird. Dies könnte beispielsweise von Vorteil sein, wenn das erste Material der Schicht zur Kaltversprödung neigt und deshalb bei tiefen Temperaturen vor dem Auftreten von Zugspannungen geschützt werden muss.
- Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass als thermisches Spritzverfahren ein Kaltgasspritzen angewendet wird. Hierbei handelt es sich um ein Verfahren, bei dem die Beschichtungspartikel vorrangig aufgrund ihrer hohen kinetischen Energie auf der Oberfläche haften bleiben. Es wird daher auch als kinetisches Spritzen bezeichnet. Die kinetische Energie wird mittels einer Kaltgasspritzdüse, einer konvergent-divergenten Düse, in einem Gasstrahl erzeugt, wobei eine Erwärmung der Partikel nicht oder nur in geringem Maße erfolgt. In jedem Fall reicht die Erwärmung nicht aus, um, wie bei anderen thermischen Spritzverfahren, die Partikel aufzuschmelzen. Der Vorteil bei der Anwendung des Kaltgasspritzens ist daher, dass die Integrität des Gefüges der verwendeten Partikel durch das Kaltgasspritzen nicht beeinträchtigt wird. Außerdem hat dieses Verfahren den Vorteil, dass insbesondere bei einer weichen elektrochemisch hergestellten Schichtmatrix der vorangehenden Lage die Partikel in die Schicht eindringen, wodurch eine bessere Verteilung der Partikel in der ausgebildeten Schicht erreicht wird.
- Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass die Schicht in mehreren Lagen hergestellt wird, indem das thermische Spritzverfahren und das elektrochemische Beschichten abwechselnd mehrfach durchgeführt werden. Hierdurch kann, wie bereits eingangs erläutert, ein Schichtaufbau erzeugt werden, bei dem die Zonen vollständig in die Schicht eingebettet werden, d. h. keinen Anteil an der Oberfläche bilden. Dies ist dann besonders vorteilhaft, wenn das Material der Zonen beispielsweise vor einem Korrosionsangriff geschützt werden muss. Außerdem ermöglicht die vollständige Einbettung der Zonen eine besonders effektive Einleitung von Zug- oder Druckspannungen in die umgebende Gefügematrix des ersten Werkstoffs.
- Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass dass das thermische Spritzen und das elektrochemische Beschichten gleichzeitig, jedoch jeweils an unterschiedlichen Stellen des Werkstückes durchgeführt wird. Hierdurch lässt sich vorteilhaft eine besonders hohe Effizienz bei der Beschichtung des Werkstückes erreichen. Voraussetzung ist, dass das Werkstück mit beiden Beschichtungsverfahren jeweils nur partiell und dafür gleichzeitig (an unterschiedlichen Stellen) beschichtet wird. Beim thermischen Spritzen ist dies ohnehin erforderlich, weil immer gerade nur der Punkt des Auftreffens des Beschichtungsstrahls beschichtet wird. Beim elektrochemischen Beschichten muss ein Beschichtungsverfahren gewählt werden, bei dem eine partielle Beschichtung des Bauteils möglich ist, d. h. bei dem nicht das ganze Bauteil in den Elektrolyten eintaucht. Dies ist bevorzugt beim Anwenden des sogenannten Brush Platings möglich, wobei hier lediglich der Teilbereich des Werkstücks aktuell elektrochemisch beschichtet wird, welcher mit dem Überträger des Elektrolyten in Kontakt steht.
- Besonders bevorzugt lässt sich das gleichzeitige Beschichten des Werkstückes mit beiden Beschichtungsverfahren anwenden, wenn als Werkstück ein zylindrischer Körper, insbesondere eine Arbeitswalze für Walzwerke, beschichtet wird, wobei dieser in Rotation um seine Mittelachse versetzt wird und an einer Stelle seines Umfanges das elektrochemische Beschichten und an einer anderen Stelle seines Umfanges das thermische Spritzen vorgenommen wird. Dies lässt sich beispielsweise bewerkstelligen, indem das zylindrische Werkstück nur mit einem Teil seiner Umfangsfläche in den Elektrolyten eingetaucht wird. Für ein gleichmäßiges Beschichten sorgt dann die gleichmäßige Drehung des zylindrischen Werkstückes, durch die nach und nach die gesamte Mantelfläche beschichtet werden kann. In dem Bereich, welcher nicht in den Elektrolyten eintaucht, kann das thermische Beschichten vorgenommen werden. Auch unter Anwendung des Brush Platings ist die Drehung der Walze sehr vorteilhaft. Der Überträger für das Brush Plating muss dann lediglich an das Werkstück herangeführt werden, wobei eine Relativbewegung zwischen dem Werkstück und dem Überträger durch die ständige Drehung des zylindrischen Werkstückes zustande kommt.
- Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass als Elektrolyt für das elektrochemische Beschichten eine ionische Flüssigkeit verwendet wird. Dies hat den Vorteil, dass auch unedlere Metalle aus einem nicht wässrigen Medium, nämlich der Salzschmelze des ionischen Beschichtens, abgeschieden werden können. Bei ionischen Flüssigkeiten handelt es sich um organische Flüssigkeiten, die aus einem Kation wie einem alkylierten Imidazolium, Pyridinium-, Ammonium- oder Phosphoniumion und einem Anion, wie z. B. einfachen Halogeniden, Tetrafluoroboraten oder Hexafluorophospaten, Bi(trifluormethylsulfonyl)imiden oder Tri(pentafluorethyl)-Trifluorophospaten bestehen.
- Da ionische Flüssigkeiten auch eine hohe elektrochemische Stabilität besitzen, können vorteilhaft unter anderem Ti, Ta, Al und Si abgeschieden werden, die sich aus wässrigen Elektrolyten aufgrund der starken Wasserstoffentwicklung nicht abscheiden lassen. Geeignete Metallsalze, die auch in der eingangs erwähnten
WO 2006/061081 A2 genannt werden, sind beispielsweise Halogenide, Imide, Amide, Alkoholate und Salze von ein-, zwei- oder mehrwertigen organischen Säuren, wie Acetate, Oxalate oder Tartrate. Die Metalle, die elektrochemisch abgeschieden werden sollen, werden durch anodische Auflösung in die geeignete ionische Flüssigkeit gebracht. Als Gegenelektrode zum zu beschichtenden Bauteil wird eine lösliche Elektrode verwendet. Diese besteht aus dem Metall, das beschichtet werden soll. Alternativ kann das abzuscheidende Metall auch als Salz der ionischen Flüssigkeit zugefügt werden. Als Gegenelektrode zum Substrat kann dann beispielsweise eine Platinelektrode verwendet werden. In diesem Fall muss dafür gesorgt werden, dass die Konzentration der abzuscheidenden Metallionen in der ionischen Flüssigkeit aufrechterhalten wird, was beispielsweise in der eingangs bereits erwähntenDE 43 44 387 A1 näher beschrieben wird. Außerdem können die Metalle bei Verwendung von ionischen Flüssigkeiten auch als nanokristalline Schichten abgeschieden werden. Hierzu sind der ionischen Flüssigkeit geeignete Kationen, wie z. B. Pyrroliniumionen, hinzuzufügen, die grenzflächenaktiv sind und daher als Kornverfeinerer beim elektrochemischen Abscheiden wirken. Vorteilhaft ist es, dass unter diesen Bedingungen häufig auf die Zugabe von Netzmitteln oder Glanzmitteln verzichtet werden kann. - Im Folgenden wird näher ausgeführt, wie die Zonen im Einzelnen geometrisch ausgebildet werden können.
- Gemäß einer Ausgestaltung der Erfindung können die Zonen als inselartige Depots in einem regelmäßigen Muster auf dem Werkstück verteilt werden. Diese inselartigen Depots sind in ihrer Größe nach unten nur dadurch begrenzt, dass der Gasstrahl des angewendeten Kaltgasspritzverfahrens eine Auftreffstelle auf dem zu beschichtenden Bauteil erzeugt, welche gewisse Abmessungen aufweist. Hierdurch ergibt sich die kleinstmögliche Ausdehnung des Depots. Soll das Depot größer werden, muss der Kaltgasstrahl bei der Erzeugung desselben in geeigneter Weise geführt werden. Vorteilhaft ist dabei die Erzeugung von Depots mit runder Grundfläche, jedoch können auch andere Geometrien verwirklicht werden. Durch die Herstellung von vergleichsweise kleinen Depots wird vorteilhaft erreicht, dass ein dichter Wechsel zwischen dem ersten Werkstoff und dem zweiten Werkstoff in der Schicht realisiert werden kann. Hierdurch können Spannungsspitzen in den Gefügen des ersten Werkstoffes und des zweiten Werkstoffes gering gehalten werden, sobald diese aufgrund des inhomogenen Ausdehnungsverhaltens der Schicht entstehen.
- Eine andere Möglichkeit besteht darin, die Zonen als Streifen auf dem Werkstück anzuordnen. Hierdurch lässt sich ein inhomogenes Ausdehnungsverhalten erzeugen, welches nicht nur bezüglich des Ausdehnungsverhaltens der Schicht senkrecht zur Oberfläche des Werkstückes, sondern auch bezüglich des lateralen Ausdehnungsverhaltens in unterschiedliche Richtungen der Schicht unterschiedlich ausfällt.
- Alternativ ist es auch möglich, dass die Zonen als Rechtecke in einem zweidimensionalen Array auf dem Werkstück angeordnet sind.
- Besonders vorteilhaft ist es, wenn die Schicht im Bereich zumindest einer Zone auf einem Opfermaterial, z. B. Wachs, hergestellt wird, welches nach der Fertigstellung der Schicht unter Ausbilden eines Hohlraums beispielsweise durch Aufschmelzen entfernt wird. Hierdurch lassen sich vorteilhaft mit den Zonen aus dem zweiten Werkstoff und dem diese Zonen umgebenden Schichtverbund aus dem ersten Werkstoff freitragende Strukturen erzeugen, die aufgrund ihres inhomogenen Ausdehnungsverhaltens als mechanische Stellelemente Verwendung finden können. Die treibende Kraft für die Betätigung der Stellelemente sind demzufolge Temperaturdifferenzen während des Betriebs des beschichteten Bauteils.
- Beispielsweise ist es möglich, dass die Zone aus dem zweiten Werkstoff zusammen mit dem ersten Werkstoff der restlichen Schicht zu einem mehrlagigen, frei tragenden Biegebalken ausgebildet wird. An seinem einen Ende ist der Biegebalken dann mit dem restlichen Schichtverbund verbunden. Unterhalb des Biegebalkens entsteht der bereits genannte Hohlraum, wobei das andere Ende des Biegebalkens frei beweglich ist. Durch das unterschiedliche Ausdehnungsverhalten der beiden Werkstoffe, die vorzugsweise in zwei aneinandergrenzenden Schichten angeordnet sind, biegt sich der Balken nach dem Mechanismus, der beispielsweise von Bimetallstreifen bekannt ist. Auf diese Weise ist das Stellelement verwirklicht.
- Ein so gebildeter Biegebalken kann mit seinem frei tragenden Ende beispielsweise oberhalb einer Öffnung in der Oberfläche des Werkstücks hergestellt werden. Diese Öffnung kann beispielsweise der Zuführung eines Kühlmediums dienen. Der Biegebalken kann so ausgebildet sein, dass die Öffnung erst freigegeben wird, wenn eine bestimmte Temperatur überschritten wird, so dass das Kühlmittel nur bei einer drohenden Überhitzung des Bauteils gefördert wird. Damit ist vorteilhaft ein temperaturgesteuertes Ventil verwirklicht. Auch eine Drosselung des Kühlmittelflusses kann gewährleistet werden.
- Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass die Zone als frei tragender Balken aus dem zweiten Werkstoff hergestellt wird. Dieser weist einen größeren thermischen Ausdehnungskoeffizienten α auf als der erste Werkstoff. Der Biegebalken wird an seinem einen Ende mit dem restlichen Schichtverbund verbunden und an seinem anderen Ende mit einem definierten Abstand zum restlichen Schichtverbund ausgeführt. Vorzugsweise weist der so gebildete Balken keine Komponente aus dem ersten Werkstoff auf. Diese Struktur kann beispielsweise als thermischer Schalter verwendet werden. Bei einer Erwärmung des Bauteils dehnt sich der Balken aufgrund des größeren thermischen Ausdehnungskoeffizienten α des Balkens aus und überbrückt bei einer bestimmten Temperatur den definierten Abstand zum restlichen Schichtverbund. Hierbei entsteht ein Kontakt, der eine elektrische Leitfähigkeit zumindest des zweiten Werkstoffes vorausgesetzt und zu einer Änderung des elektrischen Verhaltens der Schicht führt. Diese kann gemessen werden und als Schaltsignal verwendet werden. Ist der erste Werkstoff ein elektrischer Isolator, so lässt sich durch eine geeignete Ausführung von Zuleitungen beispielsweise aus dem ersten Werkstoff auch ein elektrischer Schalter mit dem Balken realisieren.
- Bei Bauteilen mit einer Drehachse, die vorzugsweise zylindersymmetrisch sind, ist es besonders vorteilhaft, wenn die mit Zonen versehenen Teile der Schicht in Umfangsrichtung bezüglich der Drehachse gesehen mit Teilen der Schicht ohne diese Zonen einander abwechseln. Hierdurch ist es, wie bereits erläutert, vorteilhaft möglich, aufgrund des inhomogenen Ausdehnungsverhaltens in dem Bauteil in Umfangsrichtung Druckspannung zu erzeugen. Dies kann von besonderem Vorteil sein, wenn das Bauteil beispielsweise wegen hoher Drehzahlen und den dabei auftretenden Fliehkräften ohne Vorsehen der Zonen im Randbereich auf Zug beansprucht würde.
- Das Verfahren kann besonders vorteilhaft für Arbeitswalzen eines Walzwerks angewendet werden. Diese dienen u. a. dem Transport des zu walzenden Gutes, z. B. einem Blech, welches durch die Führung zwischen den Arbeitswalzen beispielsweise in seiner Wandstärke verringert wird. Daher unterliegen die Arbeitswalzen eines Walzwerks einem enormen Verschleiß. Dieser kann durch die erfindungsgemäß aufgetragenen Beschichtungen verringert werden, wenn in die Zonen bevorzugt Partikel eines Hartstoffs eingebettet werden. Dies können beispielsweise Oxide von A1, Co, Mg, Ti, Si oder Zr, Nitride von A1, B oder Si oder Carbide von B, Cr, Ti, Si oder W oder auch Carbonitride sein. Weiterhin können Kohlenstoff als Graphit, Diamant, DLC (Diamant like Carbon) oder Glassy-Carbon oder Gemische aus allen genannten Stoffen zum Einsatz kommen. Besonders bevorzugte Hartstoffe sind die Folgenden: TiC, B4C, Cr3C2, SiC, WC, TiN, MoB, TiB2, Al2O3, Cr2O3, TiO2. Auch Partikel aus Hartmetallen (WC, TiC oder TiN mit einem Anteil von ≥ 80 Gew.-% in einer Matrix aus Co, Ni, Cr, Fe) können verwendet werden.
- Die genannten Hartstoffe können zusammen mit Partikeln eines Matrixwerkstoffes als zweiter Werkstoff in den Zonen abgeschieden werden. Der erste Werkstoff kann mit einem kleineren thermischen Ausdehnungskoeffizienten als der zweite Werkstoff ausgewählt werden, um bei einer Erwärmung der Walzenoberfläche Druckspannungen in den Zonen zu erzeugen, welche wegen des Anteils an Hartstoffen vor dem Auftreten von Zugspannungen im Gefüge bewahrt werden müssen. In den Zonen können dann vergleichsweise hohe Konzentrationen an Hartstoffpartikeln verwirklicht werden.
- Die verwendeten Hartstoffe in den Zonen der hergestellten Schicht verringern zum einen vorteilhaft deren Abrieb, so dass deren Verschleißfestigkeit steigt. Weiterhin erfüllen die Hartstoffe jedoch auch den Zweck, die Oberflächenrauhigkeit der Schicht zu vergrößern, welche erforderlich ist, damit das Drehmoment der Arbeitswalzen auf das zu walzende Blech übertragen werden kann. Werden die Hartstoffe durch den mehrlagigen Aufbau der Walze über die gesamte Schichtdicke vorgesehen, so wird weiterhin vorteilhaft sichergestellt, dass auch bei einem Abrieb der Schicht mit fortlaufendem Verschleiß durch Freilegen immer neuer Hartstoffpartikel die Oberflächenrauhigkeit der Walze erhalten bleibt. Dies bedeutet, dass vorteilhaft ein Bauteil geschaffen wird, welches über seine gesamte vorgesehen Lebensdauer die Anforderungen an die Oberflächenrauhigkeit in vollem Maß erfüllt.
- Die Vorteile des erfindungsgemäßen Verfahrens sollen an dieser Stelle noch einmal zusammengefasst werden. Es ist eine galvanische Abscheidung auch von elektrochemisch unedlen Metallen, wie Ti, Ta, Si, A1 oder Mg, möglich, wenn eine ionische Flüssigkeit als Elektrolyt ausgewählt wird. Eine kostengünstige Abscheidung ist insbesondere durch Auswahl des Brush Plating-Verfahrens möglich, da hierbei ein vergleichsweise schnelles Schichtwachstum erreicht werden kann. Ein Partikeleintrag in die sich ausbildende Zonen aus dem zweiten Werkstoff ist möglich und es können hohe Partikelkonzentrationen in der Schicht erreicht werden. Das Verfahren ist auch partiell an großen Werkstücken ausführbar, da dieses beim Brush Plating nicht in einen Elektrolyten eingetaucht werden müssen. Insbesondere kann das Verfahren auch zu Reparaturzwecken angewendet werden, wobei das Beschichtungssystem (bestehend aus einer Kaltgasspritzpistole und einem Überträger für das Brush Plating) transportabel ist und daher auch z. B. am Einsatzort des zu reparierenden Werkstücks eingesetzt werden kann.
- Zunächst wird an dem zu beschichtenden Werkstück eine Oberflächenreinigung und -aktivierung vorgenommen. Dies kann beispielsweise durch ein sogenanntes Brush Cleaning mittels eines alkalischen und/oder zyanidischen Elektrolyten und Brush Etching mittels eines sauren Elektrolyten, wie z. B. Salz- oder Schwefelsäure, erfolgen. Dann erfolgt der erste Beschichtungsschritt, bei dem ein duktiles Basismaterial, wie z. B. Nickel oder Nickel-Kobalt, als erster Werkstoff abgeschieden wird. Dieser Prozess wird mittels Brush Plating durchgeführt. Als Elektrolyt kann beispielsweise ein Watts-Elektrolyt verwendet werden. Der Überträger des Brush Platings, der ein mit dem Elektrolyt getränkter Filz oder Schwamm sein kann, wird dabei über die zu beschichtende Fläche bewegt. In dem Überträger kann eine Anode in Form eines Stabes, Drahtgeflechtes oder aus Kugeln enthalten sein. Das Material der Anode ist entweder der Grundwerkstoff der abzuscheidenden Schicht, wobei diese sich dann auflöst und regelmäßig ersetzt werden muss, oder eine inerte Anode, beispielsweise aus Platin.
- Je nach Werkstückgeometrie kann anschließend an das elektrochemische Beschichten bzw. gleichzeitig an einer anderen Stelle der weitere Beschichtungsschritt erfolgen. Hierbei werden Zonen eines zweiten Werkstoffes mit anderem thermischen Ausdehnungskoeffizienten mittels thermischen Spritzens, bevorzugt Kaltgasspritzen aufgetragen, wobei die Partikel mechanisch mit der Oberfläche verkrallen und daher haften bleiben. Beim Kaltgasspritzen wird die Oberfläche dabei vorteilhaft kaum thermisch beansprucht. Daher kann diese sofort wieder dem elektrochemischen Beschichtungsschritt zugeführt werden. Es kann eine dichte Folge von elektrochemischen und thermischen Beschichtungsschritten realisiert werden. Hierdurch ist ein schneller Schichtaufbau möglich, was vorteilhaft einer höheren Wirtschaftlichkeit der hergestellten Teile zugute kommt.
- Zunächst erfolgt die Beschichtung in einem nicht wässrigen Elektrolyten. Die Oberflächenreinigung und -aktivierung des zu beschichtenden Werkstücks erfolgt in der bereits beschriebenen Weise durch Brush Cleaning und Brush Etching. Nach einer Trocknung bei 100°C erfolgt der erste Beschichtungsschritt, wobei eine Metallschicht beispielsweise aus Titan abgeschieden wird. Dieser Prozess wird mittels Brush Plating durchgeführt. Der benutzte Elektrolyt zur Abscheidung von Titan als erstem Werkstoff ist 1-Butyl-3-Methylimidazolium-tetrafluoroborat, in dem als Ionenträger Titantetrafluoroborat gelöst wird. Ein Filz oder Schwamm wird mit diesem Elektrolyten getränkt und über die zu beschichtende Fläche des Bauteils bewegt. Der durch den Filz oder Schwamm gebildete Überträger ist in der bereits beschriebenen Weise mit einer Elektrode ausgestattet. Diese kann aus Titan oder einem inerten Material, wie Platin, bestehen.
- Je nach Werkstückgeometrie kann im Wechsel mit dem elektrochemischen Beschichten oder auch gleichzeitig an einer Stelle, an der das elektrochemische Beschichten aktuell nicht durchgeführt wird, der zweite Beschichtungsschritt vorgenommen werden. Hier werden Zonen beispielsweise aus Aluminium als zweiten Werkstoff mit dem genannten Kaltgasspritzen hergestellt. Im nachfolgenden elektrochemischen Behandlungsschritt werden die Zonen dann in der bereits beschriebenen Weise in die Metallmatrix eingebaut, indem wieder Titan elektrochemisch abgeschieden wird.
- Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen:
- Figur 1
- ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Beschichtung eines Werkstücks,
- Figur 2 und 3
- ein Bewegungsmuster, wie die Kaltgasspritzdüse gemäß
Figur 1 geführt werden kann und - Figur 4 bis 11
- Schichtaufbauten, die sich mit Ausführungsbeispielen des erfindungsgemäßen Verfahrens herstellen lassen.
- Bei dem Ausführungsbeispiel des erfindungsgemäßen Verfahrens gemäß
Figur 1 wird ein walzenförmiges Werkstück 11 mit einer Verschleißschutzschicht versehen. Das Werkstück 11 ist mit seiner Mittelachse 12 drehbar gelagert, wobei die Drehachse 13 mit der Mittelachse 12 identisch ist. Eine Lagerung 14 ist schematisch dargestellt, wobei während des Beschichtens das Werkstück 11 mittels eines nicht dargestellten Antriebs mit konstanter Geschwindigkeit gedreht wird. - In
Figur 1 ist eine Aufsicht auf das Werkstück 11 von oben nach senkrecht unten dargestellt. Während des Beschichtens wird von der einen Seite ein Überträger 15 an das Werkstück herangeführt, der aus einem Schwamm mit offenen Poren 16 besteht. Durch diese wird in nicht näher dargestellter Weise über ein Zuführsystem 17 ein Elektrolyt auf die Oberfläche 18 des Werkstücks aufgetragen, welches sich unter dem Überträger hinweg bewegt. Dabei findet ein elektrochemisches Beschichten statt, wobei zu diesem Zweck das Werkstück 11 und der Überträger an eine Spannungsquelle 19 angeschlossen wird. - Gleichzeitig findet auf der gegenüberliegenden Seite des Werkstücks ein Kaltgasspritzen statt. Eine Kaltgasspritzdüse 20 wird hierzu auf die Oberfläche 18 des Werkstückes gerichtet und schrittweise ungefähr in Richtung der Drehachse 13 über die Oberfläche geführt. An den Verweilstellen 26 (dargestellt in
Figur 3 ) des Kaltgasstrahls entstehen kleine Depots 27 (dargestellt inFigur 4 ) eines Werkstoffes mit anderem Ausdehnungskoeffizienten als dem des durch das elektrochemisches Beschichten aufgebrachten Schichtwerkstoffes. Beim Führen des Kaltgasstrahls zwischen den Verweilstellen bleiben einzelne Partikel aus dem Kaltgasstrahl 21 an der Oberfläche haften und werden aufgrund der Drehung des Werkstücks anschließend in die sich danach ausbildende Schicht am Überträger 15 in die Schichtmatrix eingebaut. Dies entfalten aber im Vergleich zu den Depots 27 wegen ihrer geringen Ausdehnung eine vernachlässigbare Wirkung. - Zu erkennen ist in
Figur 1 auch, dass ein Bewegungsbereich 22 der Kaltspritzdüse 20 etwas geringer ausfällt als die Länge des Werkstückes, da beispielsweise bei Arbeitswalzen von Walzwerken als zu beschichtende Werkstücke der jeweils stirnseitige Bereich am Walzprozess nicht beteiligt ist und daher auch nicht der starken Verschleißbeanspruchung ausgesetzt ist. Wird der Bewegungsbereich 22 der Kaltgasspritzdüse 20 so gewählt, dass dieser nicht bis zum Rand des zu beschichtenden Werkstückes reicht, hat dies Vorteile für die Verfahrensführung. Das Bewegungsmuster der Kaltspritzdüse ist inFigur 2 dargestellt. Dieser nimmt einen Verlauf, der einer Acht entspricht, wobei hierbei die ständige Bewegung 24 des Werkstückes aufgrund der Drehung berücksichtigt wird. Durch den acht-förmigen Verlauf wird auf der Oberfläche 18 des Werkstückes 11 nämlich eine Linie 25 gemäßFigur 3 beschrieben, so dass es zu einer gleichmäßigen Beladung der Oberfläche mit Partikeln kommt. InFigur 3 sind auch die Verweilstellen 26 des Kaltgasstrahls dargestellt, die zu einem Aufbau von Depots 27 im Schichtwerkstoff 28 gemäßFigur 4 mit einer schachbrett-artigen Schichtstruktur führt. - In
Figur 4 ist eine Aufsicht auf die Schichtoberfläche darstellt. Zu erkennen ist, dass die Depots 27 so in den ersten Werkstoff 28 der Schicht eingebettet sind, dass diese einen Teil der Schichtoberfläche bilden. InFigur 5 hingegen sind die Depots 27 vollständig vom Werkstoff 28 der Schicht umgeben. Dies lässt sich dadurch erreichen, dass nach dem Aufbringen der Depots 27 ein elektrochemischer Beschichtungsschritt mit dem ersten Werkstoff 28 der Schicht durchgeführt wird, ohne ein weiteres Mal das zweite Material aufzubringen. Eine so gebildete Schicht 29 weist damit drei Lagen 30 auf, von denen nur die mittlere mit den Depots 27 ausgestattet ist. - In
Figur 6 ist wiederum die Schichtoberfläche mit frei liegenden Streifen 31 des zweiten Werkstoffes dargestellt, die an den Seitenflanken in den ersten Werkstoff 28 eingebettet sind. Eine andere Ausführungsform ergibt sich, wenn statt der Streifen 31 Rechtecke 32 hergestellt werden, wie dies in Figur 7 dargestellt ist. Auch diese liegen oben frei, so dass sie in der Schichtoberfläche zu erkennen sind, während sie mit ihren Seiten durch den ersten Werkstoff eingebettet sind. - In
Figur 8 ist dargestellt, wie in die Schicht 29 auf dem Bauteil 11 ein Biegebalken 33 integriert werden kann. Um zu gewährleisten, dass dieser frei tragend hergestellt werden kann, wird als Opfermaterial 34 Wachs in einer vorgegebenen Form auf das Bauteil 11 aufgebracht, wobei das Opfermaterial auch eine Öffnung 35 im Bauteil 11 verschließt und so verhindert, dass diese durch den Beschichtungsvorgang verschlossen wird. Oberhalb des Opfermaterials 34 wird zunächst der erste Werkstoff 28 elektrochemisch abgeschieden, wobei das Opfermaterial zu diesem Zweck mit einer elektrisch leitfähigen Startschicht versehen werden muss. Anschließend wird auf den ersten Werkstoff eine Zone 36 durch Kaltgasspritzen hergestellt und anschließend an deren Flanken 36a in den ersten Werkstoff 28 eingebettet. Damit die Zone 36 selbst nicht durch den ersten Werkstoff 28 beschichtet wird, wird diese elektrisch isoliert (beispielsweise mittels eines Schutzlackes). Auf diese Weise entsteht zumindest im mittleren Teil des Biegebalkens 33 ein zweilagiger Verbund, der sich bei Temperaturänderungen aufgrund des inhomogenen Ausdehnungsverhaltens biegt und auf diese Weise auch die Öffnung 35 verschließen kann. Um diese Funktion zu gewährleisten, wird nach erfolgter Herstellung des Biegebalkens 33 das Opfermaterial 34 beispielsweise durch Aufschmelzen entfernt. - Ein anderes Ausführungsbeispiel ist in den
Figuren 9 und 10 zu sehen, wobei die Schnittebenen der jeweils anderen Figuren entsprechend eingezeichnet sind (Schnitt X-X entspricht der Schnittebene inFigur 10 und Schnitt IX-IX der Schnittebene inFigur 9 ). InFigur 9 ist ein Balken 37 dargestellt, der in die Schicht 29 integriert ist. An seinem einen Ende ist der Balken 37, der vollständig aus dem zweiten Werkstoff besteht, in den ersten Werkstoff 28 eingebettet (vgl.Figur 10 ) und damit im Bereich der Schicht 29 fixiert. Durch das Opfermaterial 34 ist ein Hohlraum definiert, welcher dazu führt, dass der Balken 37 frei tragend in der Schicht angeordnet ist. - Durch eine Erwärmung dehnt sich der Balken 37 aus, wobei bei einer genügenden Längenausdehnung ein Abstand a überbrückt wird, so dass der Balken 37 an eine aus dem ersten Werkstoff 28 gebildete Querstrebe 38 stößt. Diese überspannt ebenfalls frei tragend eine Ausgleichsöffnung 39, so dass sich bei einer weiteren Erwärmung und Ausdehnung des Balkens 37 die Querstrebe 38 elastisch verformen kann. In
Figur 10 ist zu erkennen, dass das Opfermaterial auch unterhalb des Balkens 37 und der Querstrebe 38 dafür sorgt, dass eine Verbindung zum Bauteil 11 unterbleibt. Nach erfolgter Herstellung der Schicht 29 muss das Opfermaterial entfernt werden. - In
Figur 9 ist zudem zu erkennen, an welchen Stellen 40 Elektroden an der Oberfläche angreifen könnten, um eine Änderung des elektrischen Widerstandes im Falle eines Kontaktes des Balkens 37 mit der Querstrebe 38 zu detektieren. Dieser lässt sich insbesondere dann messen, wenn der Balken 37 einen geringeren elektrischen Widerstand aufweist, als der erste Werkstoff 28. - In
Figur 11 ist ein Bauteil 11 dargestellt, welches als Welle ausgeführt ist und im Querschnitt dargestellt ist. Die Schicht besteht aus dem ersten Werkstoff 28, wobei axial verlaufende Streifen 31 in der Schicht vorgesehen sind. Von außen betrachtet ergibt das Bauteil 11 damit ein Schichtbild, wie dieses inFigur 6 dargestellt ist.
Claims (14)
- Verfahren zum Beschichten eines Werkstücks (11), auf dem elektrochemisch eine Schicht (26) aus einem ersten Werkstoff hergestellt wird,
dadurch gekennzeichnet,
dass- ein Teil des ersten Werkstoffs durch elektrochemisches Beschichten auf das Werkstück (11) aufgetragen wird,- Zonen eines zweiten Werkstoffes mit einem thermischen Ausdehnungskoeffizienten α, welcher von demjenigen des ersten Werkstoffes abweicht, unter Anwendung eines thermischen Spritzverfahrens auf den ersten Werkstoff aufgebracht werden und- anschließend die Zonen aus dem zweiten Werstoff durch das elektrochemische Beschichten in die Schicht (26) eingebettet werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass der zweite Werkstoff einen größeren thermischen Ausdehnungskoeffizienten α aufweist, als der erste Werkstoff. - Verfahren nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass als thermisches Spritzverfahren ein Kaltgasspritzen angewendet wird. - Verfahren nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass die Schicht (26) in mehreren Lagen (28) hergestellt wird, indem das thermische Spritzverfahren und das elektrochemische Beschichten mehrfach durchgeführt werden. - Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
dass das thermische Spritzen und das elektrochemische Beschichten gleichzeitig, jedoch jeweils an unterschiedlichen Stellen des Werkstückes (11) durchgeführt wird. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass als Elektrolyt für das elektrochemische Beschichten eine ionische Flüssigkeit verwendet wird. - Verfahren nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass die Zonen als inselartige Depots (27) in einem regelmäßigen Muster auf dem Werkstück verteilt werden. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Zonen als Streifen (31) auf dem Werkstück (11) angeordnet sind. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Zonen als Rechtecke (32) in einem zweidimensionalen Array auf dem Werkstück angeordnet sind. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Schicht (26) im Bereich zumindest einer Zone auf einem Opfermaterial (34) hergestellt wird, welches nach der Fertigstellung der Schicht (26) unter Ausbilden eines Hohlraumes entfernt wird. - Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass die Zone zusammen mit dem ersten Werkstoff zu einem mehrlagigen, freitragenden Biegebalken (33) ausgebildet wird, der an seinem einen Ende mit dem restlichen Schichtverbund verbunden ist. - Verfahren nach Anspruch 11,
dadurch gekennzeichnet,
dass der Biegebalken (33) mit seinem freitragenden Ende oberhalb einer Öffnung (35) in der Oberfläche des Werkstückes (11) hergestellt wird. - Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass die Zone als freitragender Balken (37) aus dem zweiten Werkstoff hergestellt wird,• der einen größeren thermischen Ausdehnungskoeffizienten α hat, als das erste Material,• der an seinem einen Ende mit dem restlichen Schichtverbund verbunden ist und• der an seinem anderen Ende mit einem definierten Abstand zum restlichen Schichtverbund hergestellt wird. - Verfahren nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,
dass das Bauteil (11) eine Drehachse (13) aufweist, und die mit Zonen versehenen Teile der Schicht in Umfangsrichtung bezüglich der Drehachse (13) gesehen mit Teilen der Schicht ohne diese Zonen einander abwechseln.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009060937A DE102009060937A1 (de) | 2009-12-22 | 2009-12-22 | Verfahren zum elektrochemischen Beschichten |
PCT/EP2010/067830 WO2011076499A1 (de) | 2009-12-22 | 2010-11-19 | Verfahren zum elektrochemischen beschichten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2516698A1 EP2516698A1 (de) | 2012-10-31 |
EP2516698B1 true EP2516698B1 (de) | 2014-04-02 |
Family
ID=43501121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10784289.0A Not-in-force EP2516698B1 (de) | 2009-12-22 | 2010-11-19 | Verfahren zum beschichten durch thermischen spritzen und galvanische plattierung |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120269982A1 (de) |
EP (1) | EP2516698B1 (de) |
DE (1) | DE102009060937A1 (de) |
WO (1) | WO2011076499A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114505210B (zh) * | 2020-11-17 | 2023-06-23 | 武汉苏泊尔炊具有限公司 | 刀具加工方法与刀具 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753849A (en) * | 1986-07-02 | 1988-06-28 | Carrier Corporation | Porous coating for enhanced tubes |
FI83439C (fi) * | 1989-08-24 | 1991-07-10 | Valmet Paper Machinery Inc | Vals i pappersmaskin och foerfarande foer framstaellning av denna. |
US5268045A (en) * | 1992-05-29 | 1993-12-07 | John F. Wolpert | Method for providing metallurgically bonded thermally sprayed coatings |
DE4344387C2 (de) | 1993-12-24 | 1996-09-05 | Atotech Deutschland Gmbh | Verfahren zur elektrolytischen Abscheidung von Kupfer und Anordnung zur Durchführung des Verfahrens |
WO1995032322A1 (fr) * | 1994-05-24 | 1995-11-30 | Toyo Kohan Co., Ltd. | Appareil pour le traitement d'une bande |
CA2572499A1 (en) * | 1997-04-04 | 1998-10-15 | University Of Southern California | Method for electrochemical fabrication including use of multiple structural and/or sacrificial materials |
US7045043B1 (en) * | 2000-07-24 | 2006-05-16 | Pohang Iron And Steel Co., Ltd. | Method of reducing a band mark of an electroplating steel sheet |
DE10052405A1 (de) * | 2000-10-20 | 2002-05-02 | Rwth Aachen Inst Fuer Werkstof | Verfahren zum Herstellen einer Verbundstruktur mit einem zellularen Werkstück sowie mit diesem hergestellte Verbundstruktur |
WO2003049514A2 (en) * | 2001-12-03 | 2003-06-12 | Memgen Corporation | Miniature rf and microwave components and methods for fabricating such components |
US20040146650A1 (en) * | 2002-10-29 | 2004-07-29 | Microfabrica Inc. | EFAB methods and apparatus including spray metal or powder coating processes |
US20050029109A1 (en) * | 2002-05-07 | 2005-02-10 | Gang Zhang | Method of electrochemically fabricating multilayer structures having improved interlayer adhesion |
JP4554357B2 (ja) * | 2002-05-07 | 2010-09-29 | マイクロファブリカ インク | 電気化学的に成型加工され、気密的に封止された微細構造および上記微細構造を製造するための方法および装置 |
PT1516076E (pt) | 2002-06-25 | 2008-03-11 | Integran Technologies Inc | Processo para electrodeposição de folhas, revestimentos e microcomponentes metálicos e compósitos de matrizes metálicas |
DE102004059520A1 (de) * | 2004-12-10 | 2006-06-14 | Merck Patent Gmbh | Elektrochemische Abscheidung von Tantal und/oder Kupfer in ionischen Flüssigkeiten |
DE102005008487C5 (de) * | 2005-02-24 | 2011-08-18 | Praxair S.T. Technology, Inc., Conn. | Beschichteter Körper aus Kohlefaser verstärktem Kunststoff für Papier- und Druckmaschinen, insbesondere Walze, und Verfahren zum Herstellen eines solchen Körpers |
JP4469385B2 (ja) * | 2007-05-31 | 2010-05-26 | 株式会社日立産機システム | 微細モールド及びその製造方法 |
EP2285752A1 (de) * | 2008-05-01 | 2011-02-23 | Maxim Seleznev | Kontinuierliche oder diskrete metallisierungsschicht auf einem keramiksubstrat |
-
2009
- 2009-12-22 DE DE102009060937A patent/DE102009060937A1/de not_active Withdrawn
-
2010
- 2010-11-19 WO PCT/EP2010/067830 patent/WO2011076499A1/de active Application Filing
- 2010-11-19 US US13/518,627 patent/US20120269982A1/en not_active Abandoned
- 2010-11-19 EP EP10784289.0A patent/EP2516698B1/de not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
DE102009060937A1 (de) | 2011-06-30 |
WO2011076499A1 (de) | 2011-06-30 |
US20120269982A1 (en) | 2012-10-25 |
EP2516698A1 (de) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0168868B1 (de) | Verfahren zum Aufbringen einer schutzoxydbildende Elemente enthaltenden Korrosionsschutzschicht auf den Grundkörper einer Gasturbinenschaufel und Korrosionssschutzschicht auf dem Grundkörper einer Gasturbinenschaufel | |
DE102010049198B4 (de) | Verfahren zum Anfertigen einer Widerstandspunktschweißelektrode | |
WO2000060136A1 (de) | Leichtmetallzylinderblock, verfahren zu seiner herstellung und vorrichtung zur durchführung des verfahrens | |
DE2906245B2 (de) | Drahtelektrode für das funkenerosive Schneider ihrer Herstellung | |
EP2862958B1 (de) | Stahlkolben für eine Brennkraftmaschine und Verfahren zu dessen Herstellung | |
EP3683332B1 (de) | Schneidwerkzeug mit räumlich strukturierter beschichtung | |
DE3513882A1 (de) | Schutzschicht | |
DE112007000436T5 (de) | Wälzlager und Verfahren zur Herstellung desselben | |
CH667469A5 (de) | Verfahren zum aufbringen von schutzschichten. | |
DE102009023818A1 (de) | Wälzlager und Verfahren zur Beschichtung eines Bauteils des Wälzlagers | |
EP2326742B1 (de) | Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets | |
WO2007101512A1 (de) | Rolle zur metallbearbeitung, insbesondere stranggiessrolle, sowie verfahren zur herstellung einer solchen rolle | |
DE102009043594B4 (de) | Verfahren zum elektrochemischen Beschichten und Einbau von Partikeln in die Schicht | |
EP2516698B1 (de) | Verfahren zum beschichten durch thermischen spritzen und galvanische plattierung | |
WO2007071542A1 (de) | Beschichtung für eine kokille für eine stranggiessanlage und verfahren zur beschichtung | |
AT524071B1 (de) | Verfahren zur Herstellung eines mehrschichtigen Gleitlagerelementes | |
EP3889292A1 (de) | Aufspannplatte für druckgiessmaschine und herstellungsverfahren | |
DE69100405T2 (de) | Rasterwalze mit einer gemusterten schicht in einer galvanischen deckschicht und walzkörper für eine derartige walze. | |
DE20302566U1 (de) | Lötspitze | |
DE102011015932A1 (de) | Elektrode für ein elektrochemisches Abtragverfahren | |
DE2037454A1 (de) | Metallgegenstand, wie Rasierklinge, und Verfahren und Vorrichtung zur Herstellung desselben | |
DE112006000290T5 (de) | Gegenstand mit verbesserter Festigkeit gegenüber einer Erosion durch Zink | |
DE4026607A1 (de) | Verfahren zur erhoehung der standzeit eines werkzeuges zum schaelen von straengen und draehten aus aluminium | |
DE102011007391B3 (de) | Verfahren zur Herstellung eines Zylinders einer Druckmaschine | |
DE102009038685A1 (de) | Flüssigmetall-Dreh-Übertrager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120612 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130516 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010006569 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C23C0028020000 Ipc: C25D0005340000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 4/02 20060101ALI20130924BHEP Ipc: C25D 5/34 20060101AFI20130924BHEP Ipc: C23C 4/12 20060101ALI20130924BHEP Ipc: C23C 4/18 20060101ALI20130924BHEP Ipc: C25D 7/04 20060101ALN20130924BHEP Ipc: C25D 5/06 20060101ALN20130924BHEP Ipc: C25D 5/10 20060101ALI20130924BHEP Ipc: C25D 3/66 20060101ALN20130924BHEP |
|
INTG | Intention to grant announced |
Effective date: 20131025 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 660207 Country of ref document: AT Kind code of ref document: T Effective date: 20140415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010006569 Country of ref document: DE Effective date: 20140515 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140402 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140702 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140702 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140703 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140804 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010006569 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010006569 Country of ref document: DE Effective date: 20150106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141119 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101119 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20161123 Year of fee payment: 7 Ref country code: GB Payment date: 20161114 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20161011 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170120 Year of fee payment: 7 Ref country code: CH Payment date: 20170202 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010006569 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 660207 Country of ref document: AT Kind code of ref document: T Effective date: 20171119 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171119 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180602 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171119 |