EP2507542B1 - Appareil d'éclairage, et dispositif d'éclairage de voie de circulation - Google Patents

Appareil d'éclairage, et dispositif d'éclairage de voie de circulation Download PDF

Info

Publication number
EP2507542B1
EP2507542B1 EP10782615.8A EP10782615A EP2507542B1 EP 2507542 B1 EP2507542 B1 EP 2507542B1 EP 10782615 A EP10782615 A EP 10782615A EP 2507542 B1 EP2507542 B1 EP 2507542B1
Authority
EP
European Patent Office
Prior art keywords
optical unit
luminaire
secondary optical
longitudinal direction
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10782615.8A
Other languages
German (de)
English (en)
Other versions
EP2507542A1 (fr
Inventor
Simon Schwalenberg
Peter Brick
Julius Muschaweck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2507542A1 publication Critical patent/EP2507542A1/fr
Application granted granted Critical
Publication of EP2507542B1 publication Critical patent/EP2507542B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • a lamp is specified.
  • a traffic route lighting device is specified.
  • a luminaire with a structured reflector is in the publication US Pat. No. 6,773,135 B1 to find.
  • a vehicle light is in the document DE 102 43 373 A1 disclosed.
  • An object to be solved is to specify a luminaire which has a predeterminable emission characteristic and which is glare-poor.
  • a traffic route illumination device which has a specific, predefinable emission characteristic and which is glare-poor.
  • the luminaire contains at least one, preferably a plurality of optoelectronic semiconductor components.
  • the semiconductor component may be a light-emitting diode or a light-emitting diode module.
  • the semiconductor device is configured to emit white light.
  • this comprises at least one primary optic.
  • the primary optics are arranged downstream of the semiconductor device along a beam path and spaced from the semiconductor device.
  • the primary optics are formed by a lens, which directs radiation emitted by the semiconductor component into a specific solid angle range. Spaced apart may mean that there is no direct connection between a semiconductor material of the optoelectronic semiconductor device and the primary optics.
  • a coupling medium, an air gap or an evacuated area is located between a radiation exit area of the semiconductor component and a radiation entrance area of the primary optics.
  • this comprises a secondary optic.
  • the secondary optics is subordinate to the primary optics along a beam path.
  • the secondary optics are in particular a reflective element.
  • this comprises a tertiary optic.
  • Tertiary optics is subordinate to secondary optics and primary optics, and in particular is set up to transmit the radiation generated by the semiconductor component.
  • a proportion of at least 30%, in particular of at least 50%, of the radiation emitted by the semiconductor component strikes the secondary optics and the tertiary optics.
  • a radiation component of at least 50% of the radiation emitted by the at least one optoelectronic semiconductor component is incident on the secondary optics and on the tertiary optics.
  • the radiation components that hit the secondary optics and the tertiary optics can be different radiation components.
  • the proportion of radiation that passes from the primary optics to the secondary optics continues to arrive partially or, preferably, completely subsequently to the tertiary optics.
  • the secondary optics and / or the tertiary optics are set up for a small-angle scattering of the radiation emitted by the semiconductor component.
  • a mean scattering cone of the radiation scattered by the secondary optics and / or the tertiary optics has an aperture angle of between 1 ° and 5 ° inclusive.
  • the scattering cone is designed asymmetrically.
  • the scattering cone along an x-direction may have an opening angle of approximately 2 ° and along an orthogonal y-direction an opening angle of approximately 6 °.
  • An average opening angle of the scattering cone then preferably results from half of the sum of the opening angles in the spatial directions, that is to say approximately 4 ° in the present example.
  • a parallel beam is converted by the secondary optics and / or by the tertiary optics into a divergent beam with the opening angle.
  • the aperture angle is, for example, an angular range in which a radiation intensity has dropped to 50% of a maximum intensity along a certain direction, FWHM angle for short.
  • the aperture angle may be a minimum angle range into which at least 68% or at least 95% of the radiation intensity of the incident, parallel beam is emitted.
  • the luminaire comprises at least one optoelectronic semiconductor component and at least one primary optic, which is arranged downstream of the semiconductor component and spaced therefrom. Furthermore, the lamp has a secondary optics and preferably also a Tertiary optics, which are subordinate to the primary optics. A proportion of at least 50% of a radiation emitted by the semiconductor component reaches the secondary optics and the tertiary optics. Furthermore, the secondary optics and / or the tertiary optics is set up for a small-angle scattering of the radiation emitted by the semiconductor component.
  • the secondary optics is designed as a reflector.
  • the secondary optics reflects the radiation directed from the primary optics to the secondary optics into a certain solid angle range.
  • the secondary optics is then made opaque.
  • the tertiary optic is a scattering plate.
  • the tertiary optics is then translucent and set up to transmit the visible radiation emitted by the semiconductor component.
  • the Tertiäroptik is designed for a near-infrared radiation transmissive and / or impermeable to ultraviolet radiation.
  • this includes both the secondary optic and the tertiary optic.
  • the Secondary optics is an optical element reflecting according to the law of reflection, that is, the secondary optics is not set up for small-angle scattering of the radiation. Only the secondary optics and the primary optics subordinate tertiary optics is set up in this embodiment to a small-angle scattering of the radiation.
  • the secondary optics surround the semiconductor component and the primary optic in a lateral direction on all sides.
  • the semiconductor device and the primary optics are surrounded in a horizontal direction around the secondary optics.
  • the secondary optics and the tertiary optics include the semiconductor component as well as the primary optic on all sides.
  • a kind of box can be formed by the secondary optics and by the tertiary optics, in which both the semiconductor component and the primary optics are located.
  • the box can additionally be formed by a carrier of the semiconductor component. It is possible for the semiconductor device and the primary optics to be dustproof in the box.
  • the secondary optics has a paraboloidal or ellipsoidal basic shape in a cross section, perpendicular to a longitudinal direction of the secondary optics.
  • the secondary optics in cross section is shaped as a semi-ellipse.
  • the secondary optics may have an asymmetrical cross-section.
  • the secondary optic in plan view along the longitudinal direction has a concave, biconcave, convex, biconvex or rectangular basic shape.
  • an extension and / or an inner dimension of the secondary optics perpendicular to the longitudinal direction, in particular seen in plan view, can assume different values at different points in the secondary optics.
  • the secondary optics are subdivided in a direction perpendicular to the longitudinal direction into a multiplicity of lamellae.
  • Slats are in particular elongated, along the longitudinal direction preferably contiguous, adjacent and / or successive areas, for example, from the inside of the secondary optics, wherein the lamellae may form basic elements of a reflective optics of secondary optics and the lamellae or groups of lamellae of a coherent, in operation
  • the lamp can be rigid material molded. Individual slats can be separated by an edge. Seen in a cross section, the at least one inner side of the secondary optics can then be structured like a sawtooth.
  • the secondary optics along the cross section has between 10 and 30 lamellae.
  • the secondary optics in particular in a direction perpendicular to the longitudinal direction, at least one contiguous side part or is formed perpendicular to the longitudinal direction along the entire cross section by a single, contiguous workpiece.
  • an inside of the side parts and / or the entire contiguous workpiece of the secondary optics is perpendicular to the longitudinal direction by a simple or twice continuously differentiable function writable.
  • the at least one inner side or the function that specifically describes the inside of the cross-section then has a sinusoidal profile.
  • the at least one inner side is preferably subdivided into a plurality of lamellae in the direction perpendicular to the longitudinal direction, wherein individual lamellae are delimited or separated from one another, for example, by a change in the curvature of the function describing the inner surface or by minima of this function.
  • the secondary optics in particular in the direction transverse or perpendicular to the longitudinal direction, have plane-parallel end surfaces to each other.
  • the end surfaces are thus preferably oriented parallel to a plane which is oriented transversely to the longitudinal direction.
  • the end surfaces are designed to be reflective and opaque.
  • the end surfaces are permeable to radiation and then subject preferentially penetrating radiation to small-angle scattering.
  • the laminations have a curved course deviating from a straight line along the longitudinal direction.
  • a plurality of sections are assembled along the longitudinal direction into a lamella, or the lamella has one or more kinks along the longitudinal direction.
  • Such slats are relatively easy to manufacture. It is also possible that the slats are formed along the longitudinal direction of a continuous, one-piece material and can be described by a simple continuous differentiable function. By means of such fins are Discontinuities or unwanted fluctuations in a luminous intensity profile to be generated by the luminaire.
  • the lamellae can have a different width relative to the longitudinal direction than at the end surfaces.
  • one or two main sides of the tertiary optic have a surface profile.
  • the surface profile may be formed by microlenses formed in the main sides.
  • a maximum slope of the surface profile is between 2 ° and 14 °, preferably between 3 ° and 10 °, in particular between 4 ° and 6 °.
  • a beam profile of the radiation emitted by the luminaire in particular in a direction perpendicular to the longitudinal direction of the secondary optics, is asymmetrical.
  • the beam profile in a range of angles between 30 ° and 80 ° inclusive, in particular between 50 ° and 80 ° inclusive, preferably between 60 ° and 75 ° inclusive, a maximum.
  • a maximum radiation intensity is emitted in this angular range.
  • the angle range or the angle is, for example, obtainable on an optical axis of the semiconductor device.
  • the beam profile of the lamp may have a maximum or two maxima, which are then preferably arranged symmetrically to the optical axis. If the beam profile has only one maximum, for example between 30 ° and 80 °, then a radiation intensity is then preferably in an angle range between 20 ° and -90 ° at most 40% or at most 30% of the intensity in the one maximum.
  • the traffic route lighting device comprises, for example, at least one light as described in connection with one or more of the above-mentioned embodiments. Characteristics of the luminaire are therefore also disclosed for the traffic route lighting device and vice versa.
  • the latter comprises at least one luminaire, preferably two or more than two luminaires, as indicated in connection with at least one of the abovementioned embodiments.
  • the traffic route lighting device which comprises a plurality or a plurality of lights
  • these lights are arranged like a matrix.
  • At least two of the lights are arranged tilted along a longitudinal direction of one of the lights and / or along a vertical direction relative to one another. As a result, it can be achieved that a large area can be illuminated by the traffic route lighting device.
  • this comprises different, not identical luminaires.
  • Such traffic route lighting devices can be used, for example, to illuminate rails, roads, sidewalks or cycle paths, in particular in the form of fixed lanterns.
  • FIG. 1 an embodiment of a luminaire 1 is illustrated.
  • the luminaire 1 comprises a support 7b, on which a mounting plate 7a is applied.
  • An optoelectronic semiconductor component 4 for example with one or more light-emitting diodes, is mounted on the carrier 7b.
  • a primary optic 11 Spaced apart from the semiconductor device 4, a primary optic 11 is mounted on the mounting plate 7a.
  • a minimum distance between a light entrance surface of the primary optics 11, which is formed as a lens, and a main light-emitting side of the semiconductor component 4 is in particular between 0.5 mm and 30 mm inclusive, preferably between 4 mm and 20 mm inclusive.
  • the semiconductor device 4 and the primary optics 11 can as in the publication WO 2009/098081 A1 be designed described.
  • a luminous flux of the at least one semiconductor component 4 and / or the luminaire 1 is preferably at least 750 Im, in particular at least 1000 Im.
  • an optical axis A of the semiconductor device 4 which represents, for example, an axis of symmetry of a radiation characteristic of the semiconductor device 4 or a solder of a main surface of a semiconductor chip of the semiconductor device 4, is a z-direction
  • the optical axis A of the semiconductor component 4 coincides in particular with an axis of symmetry of the primary optics 11.
  • the optical axis A is also oriented perpendicular to the carrier 7b.
  • the luminaire 1 comprises a secondary optic 22, which has a multiplicity of lamellae 2.
  • the secondary optics 22 is in FIG. 1 only simplified schematic representation.
  • the secondary optics 22 has two side parts 6a, 6b which have inner sides 60a, 60b with the slats 2.
  • the semiconductor component 4 On a side of the secondary optics 22 facing away from the semiconductor component 4, the semiconductor component 4 is covered like a cover by an integral tertiary optic 33, which is designed as a scatter plate. It is also possible that only the secondary optics 22 is set up for a small-angle scattering and that the tertiary optics 33 is then a plane-parallel, non-scattering plate.
  • the tertiary optic 33 is preferably fastened to the secondary optics 22 and has a main side 3 a facing the semiconductor component 4 and a main side 3 b facing away from the semiconductor component 4.
  • Radiation emitted by the semiconductor component 4 is conducted by the primary optics 11 to a proportion of at least 50%, in particular to a proportion of at least 70%, to the secondary optics 22. From the secondary optics 22, the radiation continues to pass to the tertiary optic 33, which is adapted to be traversed by the radiation. Likewise, a proportion of the radiation emitted by the semiconductor component 4 reaches the primary optics 11 directly Tertiäroptik 33, without being reflected by the secondary optics 22.
  • FIG. 2A For example, a three-dimensional representation of only the secondary optics 22 is shown in FIG. 2B a schematic side view and in Figure 2C a schematic plan view.
  • the fins 2 on the inner sides 60a, 60b are in FIG. 2 not shown.
  • the secondary optics 22 has two end surfaces 5, which are arranged plane-parallel to each other and each perpendicular to the longitudinal direction L.
  • slats can be arranged along a longitudinal direction L parallel to each other.
  • the secondary optics 22 and / or the lamp 1 for example, an extent between 60 mm and 100 mm, for example, about 80 mm, on.
  • an extension of the secondary optics 22 and / or the lamp 1 for example, between 30 mm and 100 mm inclusive, in particular approximately 60 mm.
  • An extension along the z-direction can be between 30 mm and 90 mm inclusive, for example at approximately 50 mm.
  • FIGS. 3A and 3B cross sections of the secondary optics 22 are shown.
  • a middle course of the side parts 6 is indicated by a dashed line.
  • the slats 2 are separated from each other at the side parts 6 by edges 20 from each other.
  • the edges 20 may be realized by a kink, for example, in a sheet from which the secondary optics 22 is formed.
  • the inner sides 60 of the side parts 6 can be described by a simple continuous differentiable function.
  • the slats 2 are separated by minima 24 from each other.
  • edges of the secondary optics 22, which delimit the secondary optics 22 along the z direction, are arranged parallel to one another.
  • a recess for example for receiving the semiconductor component 4, in FIG. 3 not shown.
  • FIGS. 4 and 5 more detailed cross sections of the slats 2 of the secondary optics 22 are shown schematically.
  • the lamellae 2a, 2b have the same heights H, but different widths W1, W2.
  • the lamellae 2a, 2b each have a convex shape.
  • the height H is for example between 50 microns and 1000 microns
  • the widths W1, W2 are, for example, between 1.0 mm and 10 mm.
  • the lamellae 2 are sawtooth-shaped.
  • the individual slats 2 are asymmetrically shaped, after FIG. 4C symmetrical.
  • FIGS. 5A and 5B illustrated for modifications a course of the slats 2 by a single or double continuous differentiable function is reproducible.
  • the lamellae are sinusoidally shaped, wherein a fictitious boundary between two adjacent lamellae 2 is given by a minimum 24 of the function.
  • FIG. 5B is the sinusoidal course of the slats 2 compressed.
  • An inner width W * of the lamellae 2 between two turning points of the function 25 representing the lamellae 2 is, for example, between 60% and 85% of the total width W of one of the lamellae 2.
  • FIG. 6A is a schematic plan view of the secondary optics 22 shown.
  • the slats 2 are in FIG. 6A not shown.
  • the secondary optics 22 have a biconcave shape, with curvatures which delimit the secondary optics 22 in the + y direction and in the - y direction differing from one another.
  • FIG. 6B A cross section along the center M of the secondary optics 22 after FIG. 6A , see the dash-dot line, is in FIG. 6B shown a cross section in the y direction near the end faces 5 in FIG. 6C , Along the center M, a cross section of the secondary optics 22 is smaller than at the end surfaces 5.
  • the number of sipes 2 is constant along the entire longitudinal direction L, whereby the sipes 2 have a smaller width W1 in the center M than at the end surfaces 5 where the slats 2 show a greater width W2.
  • the lamellae 2 are preferably writable along the longitudinal direction L by a function which can be simply continuously differentiated. As a result, a very uniform illumination of a range with the lamp 1 can be achieved, especially if the slats perpendicular to the longitudinal direction L analogous to FIG. 3B . 5A or 5B are shaped.
  • FIG. 7 a plan view of a further embodiment of the secondary optics 22 is shown.
  • a plurality of slats 2 are attached or pieced together, so that individual slats 2 a have comparatively simple geometry and are efficiently malleable.
  • the basic form of secondary optics 22 is, as well as according to FIG. 6A , relative to the longitudinal direction L bikonkav.
  • a cross section of the secondary optics 22 according to FIG. 7 can be analogous to the FIGS. 6A, 6C represent. Unlike in the FIGS. 6 and 7 shown, the slats 2 as well as in FIG. 4 be formed illustrated.
  • the number of slats 2 changes along the longitudinal direction L.
  • the secondary optics 22 according to FIG. 7 at the end surfaces 5 more or less lamellae 2 than along the center M.
  • the number of lamellae 2 in different areas along the longitudinal direction L then deviates by at most a factor of 2 and in particular by at least a factor of 1.2 from each other.
  • tertiary optics 33 Exemplary embodiments of tertiary optics 33 are shown. It is possible that the tertiary optic 33 is integrally formed and / or the two main surfaces 3a, 3b are plane-parallel to one another on average.
  • the tertiary optic 33 may be formed of or consist of a glass or a plastic.
  • the tertiary optics 33 may have microlenses 30 on the main side 3 a facing the semiconductor component 4 and / or on the main side 3 b facing away from the semiconductor component 4.
  • a maximum pitch of the microlenses 30 is preferably between 4 ° and 6 ° inclusive.
  • the height H of the microlenses 30 is in particular between 25 ⁇ m and 250 ⁇ m inclusive.
  • the width W of the microlenses 30 is, for example, between 0.2 mm and 5 mm inclusive.
  • the tertiary optics 33 has a matrix-like arrangement of the microlenses 30.
  • the microlenses 30 have different widths W1, W2.
  • adjacent microlenses 30 can have a sinusoidal profile, analogously FIG. 5A or 5B , or by sharp edges, analog FIG. 4A to be separated from each other.
  • the microlenses 30 of the tertiary optics 33 and / or the slats 2 of the secondary optics 22 can have a spherical, aspherical, round, elliptical or linearly extruded shape in the L direction or y direction, as surface waves in the y direction and / or along the longitudinal direction L be sinusoidal shaped. It is also possible that the microlenses 30 and / or the lamellae 2 are designed as free-form surfaces or free-form optics.
  • FIG 10A the small-angle scattering of tertiary optics 33 is illustrated.
  • An incident, parallel beam is, for example, expanded by scattering centers in the plane-parallel tertiary optics 33 into a scattering cone K with a mean opening angle ⁇ .
  • the opening angle ⁇ is preferably between 1 ° and 5 °.
  • the small-angle scattering takes place upon reflection on one of the inner sides 60 of the secondary optics 22.
  • Beam expansion also preferably takes place in the scattering cone K with the average opening angle ⁇ between 1 ° and 3 °.
  • FIG. 10C It is illustrated that an incident parallel beam at one of the microlenses 30 a Scattering or beam expansion undergoes. It is the beam spread over the microlenses 30 away, for example, between 2 ° and 3 ° inclusive.
  • FIG 10D a possible structuring of the inner sides 60 of the secondary optics 22 or also a roughening of one of the main sides 3a, 3b of the tertiary optics 33 is shown.
  • the roughening may be a statistical roughening formed, for example, by a kind of statistically distributed, elongated trenches oriented along a particular direction.
  • a scattering cone K can be realized which has, for example, different opening angles along the longitudinal direction L and along the y-direction.
  • FIG. 11A Beam profiles are illustrated, which can be generated by a lamp 1 described here. Plotted is an intensity I as a function of an emission angle ⁇ , cf.
  • the intensity I is at most 30% of the maximum intensity.
  • FIG. 12 exemplary embodiments of a traffic route lighting device 100 are indicated.
  • three of the lights 1 are arranged linearly.
  • To FIG. 12B are the lights 1 in the yL-plane against each other tilted arranged in a matrix.
  • To FIG. 12C the lights 1 are rotated in the zL-plane against each other.
  • the traffic route lighting device 100 may include differently designed lights 1.
  • the secondary optics 22 have no termination surfaces.
  • termination surfaces are present only at the ends of the module 100 along the longitudinal direction L, so that the entire module 100 then only has a total of two termination surfaces.
  • Such luminaires 1 or modules 100 can save on end areas and a modular arrangement of the luminaires 1 can be simplified.
  • FIG. 13 is a beam profile of the traffic route lighting device 100, for example according to FIG. 12C , illustrated.
  • a road 8 is illuminated with uniform intensity I.
  • the intensity I decreases linearly, for example.

Claims (15)

  1. Lampe (1) présentant
    au moins un composant optoélectronique semi-conducteur (2),
    au moins une optique primaire (11) qui suit le composant semi-conducteur (4) et maintenue à distance du composant semi-conducteur (4),
    une optique secondaire (22) et une optique tertiaire (33) qui suivent l'optique primaire (11), une fraction d'au moins 50 % du rayonnement émis par le composant semi-conducteur (4) aboutissant sur l'optique secondaire (22) et sur l'optique tertiaire (33), caractérisée en ce que
    l'optique secondaire (22) et/ou l'optique tertiaire (33) sont conçues pour diffuser le rayonnement sous un petit angle de telle sorte que le cône central de diffusion (K) du rayonnement diffusé par l'optique secondaire (22) et/ou l'optique tertiaire (33) présente un angle d'ouverture (α) compris entre 1° et 5°, ces valeurs incluses,
    en ce que l'optique secondaire (22) est de plus divisée dans la direction perpendiculaire au sens de sa longueur (L) en plusieurs lamelles (2) et certaines des lamelles (2) sont délimitées les unes des autres par un bord (20), et
    en ce qu'au moins une partie des lamelles (2) situées au milieu (M) dans le sens de la longueur (L) présente une autre largeur (W) que des surfaces (5) de clôture de l'optique secondaire (22).
  2. Lampe (1) selon la revendication précédente, dans laquelle les côtés intérieurs (60), tournés vers le composant semi-conducteur (4), de l'optique secondaire (22) et/ou les côtés principaux (3a, 3b) de l'optique tertiaire (33) sont dotés d'une rugosité statistique, les bords (20) étant des plis formés dans une tôle de laquelle l'optique secondaire (22) est formée.
  3. Lampe (1) selon l'une des revendications précédentes, dans laquelle l'optique secondaire (22) est un réflecteur et l'optique tertiaire (33) une plaque de diffusion.
  4. Lampe (1) selon l'une des revendications précédentes, dans laquelle l'optique secondaire (22) entoure latéralement sur tous les côtés le composant semi-conducteur (4) et l'optique primaire (11) et dans laquelle l'optique secondaire (22) et l'optique tertiaire (33) entourent de tout côté le composant semi-conducteur (2) et l'optique primaire (11).
  5. Lampe (1) selon l'une des revendications précédentes, dans laquelle l'optique secondaire (22) présente dans une coupe transversale perpendiculaire au sens de la longueur (L) une forme de base en paraboloïde ou en ellipsoïde et dans laquelle l'optique secondaire (22) présente dans une vue en plan dans le sens de la longueur (L) une forme de base concave ou biconcave.
  6. Lampe (1) selon l'une des revendications 1 à 4, dans laquelle l'optique secondaire (22) présente dans une coupe perpendiculaire au sens de sa longueur (L) une forme de base en paraboloïde ou en ellipsoïde et dans laquelle l'optique secondaire (22) présente dans une vue en plan dans le sens de la longueur (L) une forme de base convexe ou biconvexe.
  7. Lampe (1) selon l'une des revendications précédentes, dans laquelle dans le sens de la longueur (L), l'optique secondaire (22) et la lampe (1) présentent une extension comprise entre 60 mm et 100 mm, ces valeurs incluses, l'extension de l'optique secondaire (22) et de la lampe (1) dans une direction z et comprise entre 30 mm et 90 mm, ces valeurs incluses, la direction z coïncidant avec l'axe de symétrie de l'optique primaire (11) et dans la direction y perpendiculaire au sens de la longueur et à la direction z, l'extension de l'optique secondaire (22) et de la lampe (1) est comprise entre 30 mm et 100 mm, ces valeurs incluses.
  8. Lampe (1) selon l'une des revendications précédentes, dans laquelle l'optique secondaire (22) présente des surfaces de clôture (5) planes et mutuellement parallèles.
  9. Lampe (1) selon l'une des revendications précédentes, dans laquelle les lamelles (2a, 2b) présentent dans une évolution centrale de parties latérales (6) de l'optique secondaire (22) différentes largeurs (W1, W2) et la même hauteur (H) dans la direction perpendiculaire à cette dernière, les hauteurs (H) étant situées entre 50 µm et 1 000 µm, ces valeurs incluses, et la largeur (W1, W2) entre 1,0 mm et 10 mm, ces valeurs incluses.
  10. Lampe (1) selon l'une des revendications précédentes, dans laquelle un ou deux côtés principaux (3) de l'optique tertiaire (33) sont doté d'un profil de surface, la pente maximale (ϕ) du profil de surface étant comprise entre 2° et 14°, ces valeurs incluses.
  11. Lampe (1) selon l'une des revendications 1 à 9, dans laquelle un ou deux des côtés principaux (3) de l'optique tertiaire (33) sont dotés de microlentilles (30).
  12. Lampe (1) selon l'une des revendications précédentes, dans laquelle un profil de rayonnement dans une direction (y) perpendiculaire au sens de la longueur (L) présente un maximum dans une plage angulaire comprise entre 30° et 80°, ces valeurs incluses, tandis que dans une plage angulaire comprise entre 20° et -90°, ces valeurs incluses, l'intensité du rayonnement représente au plus 30 % du maximum.
  13. Lampe (1) selon l'une des revendications précédentes, dans laquelle l'optique secondaire (22) est conçue pour diffuser le rayonnement sous un petit angle et dans laquelle l'optique tertiaire (33) n'a pas d'action de diffusion.
  14. Dispositif (100) d'éclairage de voie de circulation présentant au moins une lampe (1) selon l'une des revendications précédentes.
  15. Dispositif (100) d'éclairage de voie de circulation selon la revendication précédente, ou plus de deux lampes (1), les lampes (1) étant disposées en matrice et au moins deux des lampes (1) sont inclinées l'une par rapport à l'autre dans le sens de la longueur (L) et/ou dans une direction verticale (z).
EP10782615.8A 2009-11-30 2010-11-25 Appareil d'éclairage, et dispositif d'éclairage de voie de circulation Not-in-force EP2507542B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009056385A DE102009056385A1 (de) 2009-11-30 2009-11-30 Leuchte und Verkehrswegbeleuchtungseinrichtung
PCT/EP2010/068247 WO2011064313A1 (fr) 2009-11-30 2010-11-25 Appareil d'éclairage, et dispositif d'éclairage de voie de circulation

Publications (2)

Publication Number Publication Date
EP2507542A1 EP2507542A1 (fr) 2012-10-10
EP2507542B1 true EP2507542B1 (fr) 2015-06-24

Family

ID=43481036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10782615.8A Not-in-force EP2507542B1 (fr) 2009-11-30 2010-11-25 Appareil d'éclairage, et dispositif d'éclairage de voie de circulation

Country Status (8)

Country Link
US (1) US8840270B2 (fr)
EP (1) EP2507542B1 (fr)
JP (1) JP2013512549A (fr)
KR (1) KR20120102730A (fr)
CN (1) CN102667319B (fr)
CA (1) CA2782230A1 (fr)
DE (1) DE102009056385A1 (fr)
WO (1) WO2011064313A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20120184A1 (it) * 2012-12-20 2014-06-21 Muteki S R L Gruppo ottico, apparato e lente per illuminazione
DE102012224345A1 (de) * 2012-12-21 2014-06-26 Osram Gmbh Fahrzeug-Leuchtvorrichtung
JP6277604B2 (ja) * 2013-05-31 2018-02-14 岩崎電気株式会社 照明器具
DE102013105612B4 (de) * 2013-05-31 2016-12-15 BöSha Technische Produkte GmbH & Co. KG Beleuchtungskörper einer Leuchte, insbesondere einer Straßenleuchte, und Leuchte mit mindestens einem Beleuchtungskörper
JP5797241B2 (ja) * 2013-08-19 2015-10-21 東洋鋼鈑株式会社 街路灯
US9797564B2 (en) * 2013-10-29 2017-10-24 Philips Lighting Holding B.V. Lighting unit, especially for road illumination
TWI589964B (zh) * 2013-12-26 2017-07-01 鴻海精密工業股份有限公司 發光裝置及背光模組
JP6398476B2 (ja) * 2014-08-29 2018-10-03 岩崎電気株式会社 光源ユニット、及び照明器具
CN104406109A (zh) * 2014-10-11 2015-03-11 昆山博文照明科技有限公司 一种反射式led路灯
US20170268747A1 (en) * 2014-10-29 2017-09-21 Ronald G. Holder LED Optic for Offset Beam Generation
DE102016115918A1 (de) 2016-08-26 2018-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil mit einem Streuelement
NL2019706B1 (en) * 2017-10-11 2019-04-19 Etap Nv A lighting unit
IT201800003646A1 (it) * 2018-03-16 2019-09-16 Fael Spa Riflettore asimmetrico per LED con migliorata diffusione del fascio luminoso
CN110454751A (zh) * 2019-07-23 2019-11-15 广东德洛斯照明工业有限公司 偏光透镜、led灯具、隧道侧壁照明系统及布灯方法
WO2021094574A1 (fr) * 2019-11-15 2021-05-20 Valeo Vision Module d'éclairage pour partie latérale d'un véhicule
FR3104673B1 (fr) * 2019-12-16 2022-01-21 Valeo Vision Module d’éclairage pour l’éclairage d'une zone latérale d’un véhicule

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859043A (en) * 1987-05-07 1989-08-22 Cibie Projecteurs High efficiency signal light, in particular for a motor vehicle
US6582103B1 (en) * 1996-12-12 2003-06-24 Teledyne Lighting And Display Products, Inc. Lighting apparatus
FR2771797A1 (fr) * 1997-11-28 1999-06-04 Teleflex Syneravia Bloc optique pour projecteur et notamment pour aeronef
TW504557B (en) 1999-11-29 2002-10-01 Koninkl Philips Electronics Nv Luminaire
JP2001307508A (ja) * 2000-03-30 2001-11-02 Nsi Enterprises Inc 改良型戸外パネル照明器具
JP2003100114A (ja) 2001-09-19 2003-04-04 Koito Mfg Co Ltd 車両用灯具
US6773138B2 (en) * 2002-04-09 2004-08-10 Osram Sylvania Inc. Snap together automotive led lamp assembly
JP4153370B2 (ja) * 2002-07-04 2008-09-24 株式会社小糸製作所 車両用灯具
US20060007692A1 (en) * 2004-07-07 2006-01-12 Hsien Chen S Lamp assembly
CA2620144A1 (fr) * 2005-04-06 2006-10-12 Tir Technology Lp Module d'eclairage dote de composants optiques de melange et de collimation de couleurs
US20080232132A1 (en) 2007-03-22 2008-09-25 General Electric Company Low-absorptive diffuser sheet and film stacks for direct-lit backlighting
DE102007056402A1 (de) 2007-11-23 2009-05-28 Osram Gesellschaft mit beschränkter Haftung Optisches Bauelement und Beleuchtungsvorrichtung
DE102008007723A1 (de) * 2008-02-06 2009-08-20 Osram Gesellschaft mit beschränkter Haftung Beleuchtungsmodul, Leuchte und Verfahren zur Beleuchtung
ATE535944T1 (de) 2008-10-16 2011-12-15 Osram Ag Beleuchtungsvorrichtung mit leuchtdiode und mikrolinsen
EP2182275A1 (fr) 2008-10-31 2010-05-05 Osram Gesellschaft mit Beschränkter Haftung Module d'éclairage et procédé correspondant
DE102008063369B4 (de) 2008-12-30 2016-12-15 Erco Gmbh Leuchte und Modulsystem für Leuchten

Also Published As

Publication number Publication date
KR20120102730A (ko) 2012-09-18
CA2782230A1 (fr) 2011-06-03
US20120299464A1 (en) 2012-11-29
DE102009056385A1 (de) 2011-06-01
WO2011064313A1 (fr) 2011-06-03
US8840270B2 (en) 2014-09-23
JP2013512549A (ja) 2013-04-11
EP2507542A1 (fr) 2012-10-10
CN102667319A (zh) 2012-09-12
CN102667319B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2507542B1 (fr) Appareil d'éclairage, et dispositif d'éclairage de voie de circulation
DE602004011186T2 (de) Einheit zur Projektion eines Lichtbündels, eine optische Vorrichtung für die Einheit, und Fahrzeug Frontlichteinrichtung
EP2587125B1 (fr) Module de projection de phare pour un véhicule automobile
EP1903275B1 (fr) Unité d'éclairage dotée d'une diode d'éclairage, corps d'éclairage et lentille secondaire
EP2344362B1 (fr) Élément de guidage de lumière pour dispositif d'éclairage
EP1818600B1 (fr) Feu de croisement doté d'une production d'un point chaud
WO2006128422A1 (fr) Dispositif d'eclairage
DE4305585A1 (de) Signalleuchte für Kraftfahrzeuge
EP2505910A2 (fr) Phare de véhicule automobile équipé d'une source lumineuse semi-conductrice
EP3301350B1 (fr) Module d'éclairage pour phare de véhicule automobile
EP3168657A1 (fr) Optique auxiliaire et système d'optique auxiliaire comprenant plusieurs optiques auxiliaires
DE102011112285A1 (de) Lichtformung mittels LED-Lichtquelle
EP2901072B1 (fr) Module d'éclairage annulaire
DE202013012202U1 (de) Optisches Element mit einem TIR-Flächenabschnitt für verbesserte räumliche Lichtverteilung
DE102008061032A1 (de) Beleuchtungseinrichtung
EP3037719A1 (fr) Corps de lentille del destine a produire une quantite de lumiere directe et indirecte
EP3477189A1 (fr) Lentille, dispositif lentille et module lumineux
DE102016109647B4 (de) Linse und Leuchte mit einer solchen Linse
EP3477193B1 (fr) Couvercle pour un module lumineux et module lumineux
EP1400747A2 (fr) Projecteur avec des structures de réflexion frustopyramidales
EP3477192A1 (fr) Couvercle pour un module lumineux, module lumineux et luminaire
DE102017125212B4 (de) Linse und leuchtmodul
DE102017208241A1 (de) Lichtleiter zum erzeugen eines vorgegebenen lichtbilds eines pixels einer matrixleuchte
DE102010049436B4 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
DE102017110767A1 (de) Optisches system für dekoratives beleuchtungselement für innen- und aussenleuchten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010009744

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008000000

Ipc: F21S0008080000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 5/08 20060101ALN20141212BHEP

Ipc: F21V 7/09 20060101ALN20141212BHEP

Ipc: F21V 7/00 20060101ALN20141212BHEP

Ipc: F21Y 101/02 20060101ALN20141212BHEP

Ipc: F21V 13/04 20060101ALI20141212BHEP

Ipc: F21S 8/08 20060101AFI20141212BHEP

Ipc: F21V 5/04 20060101ALI20141212BHEP

Ipc: F21V 5/00 20150101ALN20141212BHEP

Ipc: F21W 131/103 20060101ALN20141212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 733070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010009744

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSKANZLEI NUECKEL, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150924

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150925

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010009744

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151125

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: OBERDORFSTRASSE 16, 8820 WAEDENSWIL (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F21Y 101/02 20000101ALN20141212BHEP

Ipc: F21S 8/08 20060101AFI20141212BHEP

Ipc: F21V 7/00 20060101ALN20141212BHEP

Ipc: F21V 5/04 20060101ALI20141212BHEP

Ipc: F21V 13/04 20060101ALI20141212BHEP

Ipc: F21V 5/08 20060101ALN20141212BHEP

Ipc: F21V 5/00 20180101ALN20141212BHEP

Ipc: F21W 131/103 20060101ALN20141212BHEP

Ipc: F21V 7/09 20060101ALN20141212BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010009744

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191017

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010009744

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010009744

Country of ref document: DE

Owner name: SITECO GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191119

Year of fee payment: 10

Ref country code: CH

Payment date: 20191125

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010009744

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 733070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601