EP2497841B1 - Sn-Ag-Cu-Alliages - Google Patents

Sn-Ag-Cu-Alliages Download PDF

Info

Publication number
EP2497841B1
EP2497841B1 EP11157478.6A EP11157478A EP2497841B1 EP 2497841 B1 EP2497841 B1 EP 2497841B1 EP 11157478 A EP11157478 A EP 11157478A EP 2497841 B1 EP2497841 B1 EP 2497841B1
Authority
EP
European Patent Office
Prior art keywords
weight
amalgam
balls
alloy powder
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11157478.6A
Other languages
German (de)
English (en)
Other versions
EP2497841A1 (fr
Inventor
Olivier Hutin
Hans-Martin Ringestein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11157478.6A priority Critical patent/EP2497841B1/fr
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to EP15179281.9A priority patent/EP2975143B1/fr
Priority to PCT/EP2012/053730 priority patent/WO2012119977A1/fr
Priority to CA2829140A priority patent/CA2829140A1/fr
Priority to KR1020137026456A priority patent/KR20140018275A/ko
Priority to BR112013022454A priority patent/BR112013022454A2/pt
Priority to RU2013144956/02A priority patent/RU2013144956A/ru
Priority to CN201280011467.5A priority patent/CN103403200B/zh
Priority to US14/003,697 priority patent/US9263245B2/en
Priority to JP2013557061A priority patent/JP2014513205A/ja
Publication of EP2497841A1 publication Critical patent/EP2497841A1/fr
Priority to ZA2013/06115A priority patent/ZA201306115B/en
Application granted granted Critical
Publication of EP2497841B1 publication Critical patent/EP2497841B1/fr
Priority to US15/000,752 priority patent/US9659762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/26Means for absorbing or adsorbing gas, e.g. by gettering; Means for preventing blackening of the envelope
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C7/00Alloys based on mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/40Closing vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/1209Plural particulate metal components

Definitions

  • Modern energy-saving lamps of the TFL (Tube Fluorescent Lamp) or CFL (Compact Fluorescent Lamp) type belong to the low-pressure gas discharge lamps. They consist of a gas discharge flask filled with a mixture of mercury vapor and argon and internally coated with a fluorescent phosphor. The ultraviolet radiation of mercury emitted during operation is converted from fluorescence coating to visible light by the phosphor coating. The lamps are therefore also referred to as fluorescent lamps. Tanning and disinfection lamps work on the same principle, but are optimized for the emission of UV radiation and usually have no phosphor.
  • the US 4,145,634 describes the use of Amalgampellets with 36 at% indium, which contain high liquid content even at room temperature because of the high mercury content.
  • the pellets tend to stick together when they get in contact with each other. By coating the pellets with suitable materials in powder form, this can be prevented.
  • Stable metal oxides titanium oxide, zirconium oxide, silicon dioxide, magnesium oxide and aluminum oxide
  • graphite glass powder
  • phosphors phosphors
  • borax antimony oxide and metal powders that do not form an amalgam with mercury (aluminum, iron and chromium) are suggested.
  • the WO 94/18692 describes the use of pellets of zinc amalgam with 5 to 60, preferably 40 to 60 wt.%, of mercury.
  • For the production of spheroid Amalgampellets is in the US 4,216,178 described method in which the molten amalgam by a vibrationally excited outlet nozzle in split small drops and cooled in a cooling medium below the solidification temperature.
  • the pellets are in accordance with WO 94/18692 not coated.
  • amalgam beads from the melt the amalgam must be heated to a temperature at which the amalgam is completely melted out. This is guaranteed with a zinc amalgam only at a temperature above 420 ° C with certainty. These high processing temperatures necessitate corresponding safety precautions because of the high mercury vapor pressure due to the toxicity of mercury.
  • the JP 2000251836 describes the use of amalgam zinc amalgam pellets for the production of fluorescent lamps.
  • the tin amalgam preferably has only a low mercury content with a tin / mercury atomic ratio of between 90-80: 10-20. This corresponds to a mercury content of 15.8 to 29.7 wt.%.
  • the JP 2000251836 Does not give any information about how the amalgam spherical pellets are made.
  • EP 2145028 shows amalgam balls with higher mercury content, which, however, tend to stick. This problem is reduced by a proposed coating of the amalgam balls with an amalgam-forming metal powder.
  • amalgam balls wherein the balls are coated with an alloy powder, wherein the alloy powder is the composition Silver (Ag) 24% to 75% by weight. Copper (Cu) 5 wt% to 43 wt% or 20 wt% to 30 wt%, tin (Sn) 10 wt% to 48 wt%. Zinc (Zn) 0.1% by weight to 3% by weight.
  • Indium (In) 0 wt .-% to 5 wt .-% and gold.
  • Palladium and platinum (AulPd / Pt) individually or in combination with each other, from 0 wt.% To 5 wt .-%, wherein the proportions of the metals add up to a total of 100 wt .-% , or the alloy powder has the composition silver (Ag) 56 wt .-% to 72 wt .-%, copper (Cu) 12.5 wt .-% to 28 wt .-%, tin (Sn) 0 wt .-% to 35 wt .%, Zinc (Zn) 0 wt .-% to 3 wt .-%.
  • Indium (In) 0 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 0 wt .-% to 5 wt .-%, wherein the proportions of the metals add up to a total of 100% by weight , or the alloy powder has the composition silver (Ag) 56% by weight to 72% by weight, copper (Cu) 12.5% by weight to 28% by weight tin (Sn) 0% by weight to 35% by weight, zinc ( Zn) 0.1% by weight to 3% by weight.
  • Indium (In) 0 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 0 wt .-% to 5 wt .-%, wherein the proportions of the metals add up to a total of 100% by weight, or the alloy powder has the composition silver (Ag) 56% by weight to 72% by weight, copper Cu) 12.5% by weight to 28% by weight, tin (Sn) 0% by weight to 35% by weight , Zinc (Zn) 0 wt .-% to 3 wt .-%.
  • Indium (In) 0 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 0.1 wt .-% to 5 wt .-% , wherein the proportions of the metals add up to a total of 100 wt .-%, or the alloy powder has the composition silver (Ag) 56 wt% to 72 wt%. Copper (Cu) 12.5% to 28% by weight.
  • the amalgam beads according to the invention are amalgams of the metals tin (Sn), zinc (Zn), bismuth (Bi), indium (In) and their alloys with each other.
  • these are amalgams with a mercury content between 30 and 70 wt .-%, in further embodiments of the invention have 40 to 60 and in particular from 40 to 55 wt .-% mercury content.
  • Amalgam spheres containing these mercury contents are in particular tin amalgam spheres, but also zinc amalgam spheres, ie SnHg30 to SnHg70, or SnHg40 to SnHg60, or SnHg45 to SnHg55 or SnHg50 or ZnHg30 to ZnHg70, or ZnHg40 to ZnHg60, or ZnHg45 to ZnHg55, or Bi ad 100% by weight, 10% by weight to 30% by weight, Sn 10% by weight to 40% by weight of mercury (BiSn10-30Hg10-40).
  • amalgam spheres which contain far smaller quantities of mercury, such as amalgams of bismuth, indium or mixtures thereof and mercury.
  • the proportions of the metals of the alloy complement each other to 100 wt .-%.
  • amalgam spheres with diameters between 50 ⁇ m and 3000 ⁇ m, in particular 100 ⁇ m to 2500 ⁇ m, or 200 ⁇ m to 2000 ⁇ m or between 500 ⁇ m and 1500 ⁇ m are particularly suitable.
  • the alloy powder used for the coating should contain less or no particles with a core diameter greater than 100 microns. Particles with larger grain diameters only partially amalgamate and phillluen to a rough surface of the balls, which makes it difficult to meter the balls. It is better in this aspect to use an alloy powder whose powder particles have a particle diameter of less than 80 microns. In addition, alloy powders having an average particle diameter d 50 of 2 ⁇ m to 20 ⁇ m or of 5 ⁇ m to 15 ⁇ m or of 2 ⁇ m to 15 ⁇ m or of 5 ⁇ m to 20 ⁇ m or of 2 ⁇ m to 5 ⁇ m are well suited. No special requirements are placed on the shape of the powder particles in general, so that spherical, angular, platelet-shaped flake-shaped, needle-shaped, granular alloy powders or combinations thereof can be used.
  • the alloy powders have the composition silver (Ag) 56 wt .-% to 72 wt .-%, copper (Cu) 12.5 wt .-% to 28 wt .-%, tin (Sn) 0 Wt .-% to 35 wt .-%, zinc (Zn) 0 wt .-% to 3 wt .-%, indium (In) 0.1 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 0 wt .-% to 5 wt .-%, wherein the proportions of the metals add up to a total of 100 wt .-%.
  • the alloy powders have the composition silver (Ag) 56 wt .-% to 72 wt .-%, copper (Cu) 12.5 wt .-% to 28 wt .-%, Zim (Sn) 0 Wt .-% to 35 wt .-%, zinc (Zn) 0 wt .-% to 3 wt .-%, indium (In) 0 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 0.1 wt .-% to 5 wt .-%, wherein the proportions of the metals add up to a total of 100 wt .-%.
  • the alloy powders have the composition silver (Ag) 56 wt .-% to 72 wt .-%, copper (Cu) 12.5 wt .-% to 28 wt .-%, tin (Sn) 0 Wt .-% to 35 wt .-%, zinc (Zn) 0 wt .-% to 3 wt .-%, indium (In) 0 wt .-% to 5 wt .-% and gold, palladium and platinum (Au / Pd / Pt), individually or in combination with each other, from 1 wt .-% to 8 wt .-%, wherein the proportions of the metals add up to a total of 100 wt .-%.
  • Suitable combinations of the elements silver, zinc, indium and gold, palladium and platinum are described in Table 1 below.
  • Suitable compositions of the alloy powders are listed in the following Tables 3, 12 and 15, where also the copper and silver contents are given. Individual combinations are designated by the number of the table followed by the number of the respective combination of the elements silver, zinc, indium and gold, palladium and platinum (individually or in combination) from Table 1.
  • the alloy composition 3.013 means the combination of Elements silver, zinc, indium and also gold, palladium and platinum as in Table 1, Item No.
  • Table 3 consists of 12 alloy compositions 3.013 to 3.024, wherein the contents of the elements silver, zinc, indium and gold, palladium and platinum (individually or in combination with each other) in weight percent are given in Table 1, respectively, and the contents of tin (Sn) are 0 Wt .-% to 35 wt .-% and copper (Cu) 12.5 wt .-% to 28 wt .-% amount and the proportions of the metals add up to 100 wt .-%.
  • Table 12 consists of 24 alloy compositions 12.001 to 12.024, wherein the contents of the elements silver, zinc, indium and gold, palladium and platinum (individually or in combination with each other) in weight percent are given in Table 1, respectively, and the contents of tin (Sn) are 10 Wt .-% to 48 wt .-% and copper (Cu) 5 wt .-% to 43 wt .-% amount and the proportions of the metals to 100 wt .-% complementary.
  • Table 15 consists of 12 alloy compositions 15.013 to 15.024, wherein the contents of the elements silver, zinc, indium and gold, palladium and platinum (individually or in combination with each other) in weight percent are given in Table 1, respectively, and the contents of tin (Sn) are 20 Wt .-% to 35 wt .-% and copper (Cu) 12.5 wt .-% to 28 wt .-% amount and the proportions of the metals add up to 100 wt .-%.
  • compositions of the alloy powders can be found in Tables 3, 12 and 15, to which Table 20 refers.
  • Individual combinations are designated with the number of Table 20, followed by the number of the respective combination of amalgam, ball diameter and the coating table to be applied.
  • the combination 20.005 means the combination of a binary Zinnamalgams with 30 to 70 wt .-% mercury and a diameter of 50 to 2000 microns with the coatings of Table 15.
  • the amalgam balls can after a in the EP 1381485 B1 described method are prepared from a melt of the amalgam.
  • the completely melted amalgam is dropped into a cooling medium having a temperature below the solidification temperature of the amalgam.
  • the temperature of the cooling medium is 10 to 20 ° C below the liquidus temperature of the amalgam.
  • the melted amalgam is dripped into the cooling medium via a vibrating nozzle, wherein in a further embodiment of the invention the nozzle is immersed in the cooling medium.
  • the effort to ensure job security in the production of amalgam balls is therefore significantly reduced.
  • Another advantage is that Zinnamalgame completely melt at temperatures below 230 ° C.
  • the kithl medium used is preferably a mineral, an organic or a synthetic oil.
  • Well proven has a silicone oil. After formation of the amalgam beads in the cooling medium, they are separated from the cooling medium and degreased.
  • the balls can be presented after degreasing, for example in a rotating vessel and sprinkled with constant circulation with the metal or alloy powder until no sticking of the balls is more noticeable.
  • Well suitable devices for carrying out this method step are e.g. V-Blender, Tubularmixer or Dragierkessel.
  • the amount of metal or alloy powder applied here to the amalgam beads is between 1 and 10, preferably between 2 and 4,% by weight, based on the weight of the amalgam beads.
  • a further reduction in the tendency to sticking is obtained when the amalgam spheres are additionally coated, after coating with the metal or alloy powder, with a powder of a metal oxide in an amount of 0.001 to 1, preferably 0.01 to 0.5 and in particular in an amount of 0, 1 wt.%, Based on the weight of the amalgam balls are coated.
  • a powder of a metal oxide in an amount of 0.001 to 1, preferably 0.01 to 0.5 and in particular in an amount of 0, 1 wt.%, Based on the weight of the amalgam balls are coated.
  • Suitable metal oxides for this coating are, for example, titanium oxide, zirconium oxide, silicon oxide and alumina.
  • Preference is given to using an aluminum oxide produced by flame pyrolysis with an average particle size of less than 5, preferably less than 1 micron.
  • the coating of the amalgam balls thus takes place in that the amalgam beads are degreased after separation from the cooling medium and sprinkled at room temperature with constant circulation with an alloy powder described above until no sticking of the balls is more detectable.
  • a further reduction in the tendency to sticking can be achieved by additionally coating the amalgam balls with a powder of a metal oxide in a further step.
  • a further reduction in the tendency to sticking can be achieved by subjecting the amalgam balls to a heat treatment after being sprinkled with alloy powder be subjected. This heat treatment can be carried out by tempering the amalgam beads at a temperature of 35 ° C to 100 ° C for a period of 2 to 20 hours.
  • one of the steps selected from the group consisting of sprinkling the amalgam spheres with alloy powder, coating with a metal oxide, or heat treating the amalgam spheres may be repeated.
  • the desired coating with alloy powder or metal oxide is not achieved in one step, but it is applied in a first step, the alloy powder and (optionally after the separation of excess alloy powder) in a further step again coated with an alloy powder, as above described.
  • metal oxide can also be applied in several steps.
  • the alloy powders or metal oxides which are applied in the various steps may be the same or different, so that multilayer coatings, if appropriate also alternating alloy powder and metal oxide layers are obtainable, whereby the alloy powders and metal oxide may each differ from one another.
  • a coating with two different alloy powders according to the invention thus also exists if, for example, in a first step, a coating with an alloy powder having an average particle diameter d 50 of 50 microns and in a subsequent step, a coating with an alloy powder of the same chemical composition and a mean particle diameter dso of 15 microns are applied.
  • the amalgam spheres coated with alloy powder according to the invention are provided as described above.
  • the glass body of the gas discharge or fluorescent lamp is in the simplest case a glass tube, which can be bent one or more times and often has a diameter of about 4 mm to 80 mm, in particular from 6 mm to 40 mm.
  • a simple, straight glass tube can be used, for energy-saving lamps usually multi-curved glass tubes are used with a diameter of 4 to 10 mm.
  • the amalgam beads according to the invention are then introduced into the glass tube. These are usually placed at certain locations, which are provided with a receptacle for the amalgam balls or fixed at a designated location, so that the amalgam remain in this place. At this location, the amalgam balls can also be heated during the later use of the fluorescent lamp.
  • the introduction can also be done by fixing the amalgam ball or amalgam balls according to the invention in the receptacle and then introduced.
  • the recording can also be a part which is attached to or in the fluorescent lamp, such as a closure for the glass body.
  • the desired atmosphere is then produced in the glass body, if not already done, which can be effected, for example, by purging with a gas (such as argon), evacuating the glass body, or a combination thereof.
  • a gas such as argon
  • evacuating the glass body or a combination thereof.
  • For the production of visible light of the glass body be provided with a fluorescent phosphor. As phosphors, calcium halophosphates are often used. The procedure in detail for this purpose is known to the person skilled in the art and is generally carried out in the case of fluorescent lamps.
  • Post-processing may include several subsequent steps, such as cleaning, providing electrical contacts or sockets, or mounting a clarifier container. These options for post-processing are known as such and include, for example, steps such as post-cleaning, attaching contacts or sockets or even attaching electrical and / or electronic components, such as the attachment of ballasts.
  • the present invention also relates to amalgam beads which are coated with an alloy powder according to the invention, even if these amalgam balls without coating are not prone to stick together.
  • the invention therefore also relates to a method of controlling the reabsorption of mercury in amalgam spheres by coating the amalgam spheres with an alloy powder having a composition as described above.
  • the powder layers applied to the amalgam balls improve the handling of the amalgam balls with dosing machines.
  • the amalgam spheres can be on average for up to three hours at room temperature before they are filled in a fluorescent lamp. It has been shown that the amalgam spheres according to the invention survive the average residence time of 24 hours at temperatures of up to 40 ° C in dosing without complaint.
  • Amalgam spheres of the compositions specified below are prepared with a diameter of about 1 mm ⁇ 0.1 mm, classified and coated after degreasing with an alloy powder indicated in the table by a one-minute circulation in a tubular mixer.
  • the service life is evaluated in accordance with the scheme given below, each determining the time at which production had to be interrupted either due to sticking of the balls or if such a large amount of dissolved alloy powder contamination is detected by visual inspection that there is a break for cleaning of the dosing machine and the loading of new amalgam balls is required.
  • ad 100 50 0 44.5 30 26.5 - Second ad 100 50 ++ 70 12 18 - Third ad 100 50 0 43.1 26.1 30.8 - 4th ad 100 50 ++ 69.3 10.9 19.4 Zn: 0.4 5th ad 100 50 0 42 26 32 - 6th ad 100 60 + 50 20 30 - 7th ad 100 50 0 40.5 27.6 31.9 - 8th.

Claims (15)

  1. Billes d'amalgame, qui sont revêtues d'une poudre d'alliage, caractérisées en ce que la poudre d'alliage présente la composition suivante: argent (Ag) 24 % en poids à 75 % en poids, cuivre (Cu) 5 % en poids à 43 % en poids ou 20 % en poids à 30 % en poids, étain (Sn) 10 % en poids à 48 % en poids, zinc (Zn) 0,1 % en poids à 3 % en poids, indium (In) 0,1 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0,1 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 20 % en poids à 35 % en poids, zinc (Zn) 0 % en poids à 3 % en poids, indium (In) 0 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 0 % en poids à 35 % en poids, zinc (Zn) 0 % en poids à 3 % en poids, indium (In) 0 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 0 % en poids à 35 % en poids, zinc (Zn) 0,1 % en poids à 3 % en poids, indium (In) 0 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 0 % en poids à 35 % en poids, zinc (Zn) 0 % en poids à 3 % en poids, indium (In) 0,1 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 0 % en poids à 35 % en poids, zinc (Zn) 0 % en poids à 3 % en poids, indium (In) 0 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 0,1 % en poids à 5 % en poids, les proportions des métaux totalisant ensemble 100 % en poids, ou
    la poudre d'alliage présente la composition suivante: argent (Ag) 56 % en poids à 72 % en poids, cuivre (Cu) 12,5 % en poids à 28 % en poids, étain (Sn) 0 % en poids à 35 % en poids, zinc (Zn) 0 % en poids à 3 % en poids, indium (In) 0 % en poids à 5 % en poids et or, palladium et platine (Au/Pd/Pt), isolément ou en combinaison entre eux, 1 % en poids à 8 % en poids, les proportions des métaux totalisant ensemble 100 % en poids.
  2. Billes d'amalgame selon la revendication 1, caractérisées en ce que les particules de poudre présentent un diamètre de grain inférieur à 100 µm.
  3. Billes d'amalgame selon la revendication 1 ou 2, caractérisées en ce que l'amalgame est un amalgame d'étain ou un amalgame de zinc avec une teneur en mercure de 30 % en poids à 70 % en poids ou un amalgame présentant la composition suivante: bismuth (Bi) pour 100 % en poids, étain (Sn) 10 % en poids à 30 % en poids, mercure (Hg) 10 % en poids à 40 % en poids, ou un amalgame présentant la composition suivante: bismuth (Bi) pour 100 % en poids, indium (In) 25 % en poids à 35 % en poids, mercure (Hg) 1 % en poids à 20 % en poids, ou un amalgame présentant la composition suivante: bismuth (Bi) pour 100 % en poids, mercure (Hg) 3 % en poids à 30 % en poids, les proportions totalisant ensemble 100 % en poids.
  4. Billes d'amalgame selon une ou plusieurs des revendications 1 à 3, caractérisées en ce que les billes d'amalgame sont revêtues avec la poudre d'alliage en une quantité de 1 à 10 % en poids, rapportée à leur poids.
  5. Billes d'amalgame selon une ou plusieurs des revendications 1 à 4, caractérisées en ce que les billes d'amalgame sont revêtues en plus avec une poudre d'un oxyde métallique en une quantité de 0,001 à 1 % en poids.
  6. Billes d'amalgame selon une ou plusieurs des revendications 1 à 5, caractérisées en ce que l'amalgame est un des métaux étain (Sn), zinc (Zn), bismuth (Bi), indium (In) et de leurs alliages entre eux.
  7. Billes d'amalgame selon une ou plusieurs des revendications 1 à 6, caractérisées en ce que les billes présentent un diamètre compris entre 50 et 3000 µm.
  8. Procédé de production des billes d'amalgame selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que l'on fond entièrement l'amalgame et on le fait égoutter dans un milieu réfrigérant à une température inférieure à la température de solidification de l'amalgame et ensuite on sépare les billes d'amalgame formées du milieu réfrigérant.
  9. Procédé selon la revendication 8, caractérisé en ce que l'on dégraisse les billes d'amalgame après la séparation du milieu réfrigérant et on disperse sur elles, à la température ambiante et sous un mouvement de circulation continu, une poudre d'alliage selon une ou plusieurs des revendications 1 ou 2, jusqu'à ce que l'on ne puisse plus observer de collage des billes.
  10. Procédé selon une ou plusieurs des revendications 8 à 9, dans lequel on soumet les billes à un traitement thermique après la dispersion de la poudre d'alliage.
  11. Procédé selon une ou plusieurs des revendications 8 à 10, dans lequel on répète au moins une des étapes sélectionnée dans le groupe comprenant la dispersion de poudre d'alliage sur les billes d'amalgame, le revêtement avec un oxyde métallique ou le traitement thermique des billes d'amalgame.
  12. Procédé pour le contrôle de la réabsorption de mercure dans des billes d'amalgame pour des lampes à décharge à basse pression par revêtement des billes d'amalgame avec une poudre d'alliage, qui présente une composition selon la revendication 1.
  13. Utilisation des billes d'amalgame selon l'une quelconque des revendications 1 à 7 pour la fabrication de lampes à décharge à basse pression.
  14. Lampe à décharge à basse pression, contenant au moins une bille d'amalgame selon l'une quelconque des revendications 1 à 7, qui est incorporée dans la lampe à décharge à basse pression.
  15. Procédé de fabrication de lampes à décharge à basse pression, qui présente au moins les étapes suivantes:
    - préparation de billes d'amalgame par un procédé selon l'une quelconque des revendications 8 à 11;
    - préparation d'un corps de verre pour la lampe à décharge à basse pression;
    - introduction d'une ou de plusieurs billes d'amalgame dans le corps de verre;
    - fermeture du corps de verre.
EP11157478.6A 2011-03-09 2011-03-09 Sn-Ag-Cu-Alliages Active EP2497841B1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP15179281.9A EP2975143B1 (fr) 2011-03-09 2011-03-09 Procédé de préparation de sphères d'amalgame
EP11157478.6A EP2497841B1 (fr) 2011-03-09 2011-03-09 Sn-Ag-Cu-Alliages
JP2013557061A JP2014513205A (ja) 2011-03-09 2012-03-05 合金被膜を有するアマルガム球
KR1020137026456A KR20140018275A (ko) 2011-03-09 2012-03-05 합금 코팅을 갖는 아말감 볼
BR112013022454A BR112013022454A2 (pt) 2011-03-09 2012-03-05 esferas de amálgama tendo um revestimento de liga
RU2013144956/02A RU2013144956A (ru) 2011-03-09 2012-03-05 Амальгамные шарики с покрытием из сплава
PCT/EP2012/053730 WO2012119977A1 (fr) 2011-03-09 2012-03-05 Sphères d'amalgame dotées d'un revêtement d'alliage
US14/003,697 US9263245B2 (en) 2011-03-09 2012-03-05 Amalgam balls having an alloy coating
CA2829140A CA2829140A1 (fr) 2011-03-09 2012-03-05 Spheres d'amalgame dotees d'un revetement d'alliage
CN201280011467.5A CN103403200B (zh) 2011-03-09 2012-03-05 具有合金涂层的汞齐球
ZA2013/06115A ZA201306115B (en) 2011-03-09 2013-08-14 Amalgam balls having an alloy coating
US15/000,752 US9659762B2 (en) 2011-03-09 2016-01-19 Amalgam balls having an alloy coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11157478.6A EP2497841B1 (fr) 2011-03-09 2011-03-09 Sn-Ag-Cu-Alliages

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP15179281.9A Division EP2975143B1 (fr) 2011-03-09 2011-03-09 Procédé de préparation de sphères d'amalgame

Publications (2)

Publication Number Publication Date
EP2497841A1 EP2497841A1 (fr) 2012-09-12
EP2497841B1 true EP2497841B1 (fr) 2015-09-02

Family

ID=44314217

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11157478.6A Active EP2497841B1 (fr) 2011-03-09 2011-03-09 Sn-Ag-Cu-Alliages
EP15179281.9A Not-in-force EP2975143B1 (fr) 2011-03-09 2011-03-09 Procédé de préparation de sphères d'amalgame

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15179281.9A Not-in-force EP2975143B1 (fr) 2011-03-09 2011-03-09 Procédé de préparation de sphères d'amalgame

Country Status (10)

Country Link
US (2) US9263245B2 (fr)
EP (2) EP2497841B1 (fr)
JP (1) JP2014513205A (fr)
KR (1) KR20140018275A (fr)
CN (1) CN103403200B (fr)
BR (1) BR112013022454A2 (fr)
CA (1) CA2829140A1 (fr)
RU (1) RU2013144956A (fr)
WO (1) WO2012119977A1 (fr)
ZA (1) ZA201306115B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE514797T1 (de) 2007-04-28 2011-07-15 Umicore Ag & Co Kg Amalgamkugeln für energiesparlampen und ihre herstellung
EP2497841B1 (fr) * 2011-03-09 2015-09-02 Umicore AG & Co. KG Sn-Ag-Cu-Alliages
CN104148628B (zh) * 2013-05-13 2017-02-08 上海亚尔光源有限公司 一种汞齐涂粉工艺
ITUB20152876A1 (it) 2015-08-05 2017-02-05 Bluclad S R L Leghe stagno/rame contenenti palladio, metodo per la loro preparazione e loro uso.
PT3150744T (pt) * 2015-09-30 2020-05-12 Coventya S P A Banho de galvanoplastia para deposição eletroquímica de uma camada de liga de cu-sn-zn-pd, método para a deposição eletroquímica da referida camada de liga, substrato que compreende a referida camada de liga e utilizações do substrato revestido
CN110752376B (zh) * 2019-11-04 2021-12-03 天津理工大学 一种原位形成金属-汞齐活性集流体的制备方法与应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015162A (en) 1975-07-07 1977-03-29 Westinghouse Electric Corporation Fluorescent lamp having implanted amalgamative metal for mercury vapor regulation
US4216178A (en) 1976-02-02 1980-08-05 Scott Anderson Process for producing sodium amalgam particles
US4145634A (en) 1978-02-17 1979-03-20 Westinghouse Electric Corp. Fluorescent lamp having integral mercury-vapor pressure control means
GB2069228B (en) * 1979-01-02 1983-02-23 Gen Electric Stabilised high intensity discharge lamp
AR223024A1 (es) 1980-01-31 1981-07-15 Macrodent Sa Un producto para ser utilizado en amalgamas dentales comprimidos o pastillas desintegrables obtenidos por aglomeracion de dicho producto y amalgamas obtenidas a partir de este ultimo
EP0136866B1 (fr) 1983-09-30 1991-12-27 Kabushiki Kaisha Toshiba Procédé de fabrication d'un alliage à bas point de fusion pour fermer hermétiquement une lampe fluorescente
JPS61186408A (ja) 1985-02-13 1986-08-20 Toshiba Corp 螢光ランプ用アマルガムの製造方法
JPS62281249A (ja) 1986-05-30 1987-12-07 Toshiba Corp 大出力殺菌ランプ
DE3717048C1 (de) 1987-05-21 1988-11-03 Degussa Verfahren zur Herstellung von Legierungspulvern fuer Dentalamalgame
EP0683919B1 (fr) 1993-02-12 2000-08-16 Advanced Lighting Technologies, Inc. Lampe fluorescente contenant un amalgame de zinc et de mercure et procede de fabrication
IT1273338B (it) 1994-02-24 1997-07-08 Getters Spa Combinazione di materiali per dispositivi erogatori di mercurio metodo di preparazione e dispositivi cosi' ottenuti
US5882237A (en) 1994-09-01 1999-03-16 Advanced Lighting Technologies, Inc. Fluorescent lamp containing a mercury zinc amalgam and a method of manufacture
CA2177108C (fr) 1996-05-22 2002-10-22 Minoru Myojo Lampe a decharge a vapeur de mercure basse pression
JPH09320520A (ja) * 1996-05-24 1997-12-12 Matsushita Electron Corp 蛍光ランプ
JP4228046B2 (ja) 1999-02-27 2009-02-25 松垣薬品工業株式会社 蛍光灯用のアマルガムペレット及びこれを用いた蛍光灯
US6312499B1 (en) 1999-05-07 2001-11-06 Institute Of Gas Technology Method for stabilization of liquid mercury
JP2001076667A (ja) * 1999-06-30 2001-03-23 Toshiba Lighting & Technology Corp 電球形蛍光ランプ
US6427492B1 (en) 2000-03-31 2002-08-06 Owens Corning Fiberglas Technology, Inc. Bushing including a terminal ear
DE10120612A1 (de) 2001-04-26 2002-11-21 Omg Ag & Co Kg Verfahren und Vorrichtung zur Herstellung von kugelförmigen Metallteilchen
KR100726035B1 (ko) * 2003-02-17 2007-06-08 도시바 라이텍쿠 가부시키가이샤 형광램프, 전구형 형광램프, 및 조명기구
CN1694221A (zh) 2004-05-07 2005-11-09 东芝照明技术株式会社 灯泡型荧光灯及照明装置
ITMI20041494A1 (it) * 2004-07-23 2004-10-23 Getters Spa Composizioni per il rilascio di mercurio e processo per la loro produzione
JP4077448B2 (ja) * 2004-07-30 2008-04-16 松下電器産業株式会社 蛍光ランプ、照明装置及び蛍光ランプの製造方法
WO2007146196A2 (fr) 2006-06-09 2007-12-21 Advanced Lighting Technologies, Inc. Amalgame de bismuth-zinc-mercure, lampes fluorescentes, et procédés associés
ATE514797T1 (de) * 2007-04-28 2011-07-15 Umicore Ag & Co Kg Amalgamkugeln für energiesparlampen und ihre herstellung
EP2556182A1 (fr) * 2010-04-09 2013-02-13 Advanced Lighting Technologies, Inc. Pastilles plaquées par voie mécanique et procédé de fabrication associé
EP2497841B1 (fr) * 2011-03-09 2015-09-02 Umicore AG & Co. KG Sn-Ag-Cu-Alliages

Also Published As

Publication number Publication date
EP2975143B1 (fr) 2018-12-19
KR20140018275A (ko) 2014-02-12
CA2829140A1 (fr) 2012-09-13
US9659762B2 (en) 2017-05-23
US9263245B2 (en) 2016-02-16
EP2975143A1 (fr) 2016-01-20
CN103403200A (zh) 2013-11-20
US20140055026A1 (en) 2014-02-27
WO2012119977A1 (fr) 2012-09-13
CN103403200B (zh) 2017-03-01
US20160133453A1 (en) 2016-05-12
RU2013144956A (ru) 2015-04-20
JP2014513205A (ja) 2014-05-29
ZA201306115B (en) 2014-04-30
EP2497841A1 (fr) 2012-09-12
BR112013022454A2 (pt) 2016-12-06

Similar Documents

Publication Publication Date Title
EP2145028B1 (fr) Billes d&#39;amalgame pour lampes à économie d&#39;énergie et leur production
EP2497841B1 (fr) Sn-Ag-Cu-Alliages
DE3804469C2 (fr)
EP1720806B1 (fr) Verre opaque aux rayons x, son procede de fabrication et son utilisation
EP2189426A1 (fr) Procédé pour préparer de nanopoudre de verre
DE102006062428B4 (de) Verfahren zur Herstellung eines mit einem bleifreien Glas passiviertenelektronischen Bauelements sowie elektronisches Bauelement mit aufgebrachtem bleifreien Glas und dessen Verwendung
AU5598599A (en) Barium-free, X-ray-opaque dental glass and dental glass/polymer composite, and the use thereof
DE2805154A1 (de) Anode fuer roentgenroehre, ueberzug dafuer, und verfahren zu deren herstellung
DE112019001608T5 (de) Phosphor und Licht-emittierende Vorrichtung unter dessen Verwendung
DE1011348B (de) Verglasbares Flussmittel sowie keramischer Gegenstand
EP2737003B1 (fr) Luminophore et lampe à luminophore contenant celui-ci
DE69915966T2 (de) Niederdruck-Quecksilberdampfentladungslampe
DE60022315T2 (de) Niederdruck-Quecksilberdampfentladungslampe
DE202011110608U1 (de) Legierungen
DE60012106T2 (de) Niederdruckquecksilberdampfentladungslampe
EP4298070A1 (fr) Vitrocéramique comprenant des phases cristallines à mélange de quartz
DE903971C (de) Photowiderstaende, beispielsweise zur Fernbilduebertragung mittels Sekundaeremission von Photowiderstaenden und Verfahren zu deren Herstellung
DE60300468T2 (de) Kontrolle von löslichem Quecksilber in Leuchtstoffröhren
DE846265C (de) Sonnenlichtlampe
EP0226192B1 (fr) Méthode de fabrication d&#39;un élément de stockage pour doser et introduire du mercure dans une lampe à décharge
WO2020079003A2 (fr) Substance luminescente à base de silicate de métaux alcalino-terreux et procédé permettant d&#39;améliorer la stabilité à long terme d&#39;une substance luminescente à base de silicate de métaux alcalino-terreux
DE2526544A1 (de) Zahnaerztlicher fuellungswerkstoff auf amalgamgrundlage
DD287589A5 (de) Verfahren zur herstellung eines quecksilberhaltigen dosierkoerpers fuer eine entladungslampe

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: DE

Ref legal event code: R138

Ref document number: 502011007742

Country of ref document: DE

Free format text: GERMAN DOCUMENT NUMBER IS 502011007742

Ref country code: DE

Ref legal event code: R138

Ref document number: 202011110608

Country of ref document: DE

Free format text: GERMAN DOCUMENT NUMBER IS 502011007742

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130312

17Q First examination report despatched

Effective date: 20130415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150402

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 746679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007742

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160309

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 746679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160309

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011007742

Country of ref document: DE

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007742

Country of ref document: DE

Owner name: SAXONIA TECHNICAL MATERIALS GMBH, DE

Free format text: FORMER OWNER: UMICORE AG & CO. KG, 63457 HANAU, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 13

Ref country code: DE

Payment date: 20230320

Year of fee payment: 13