EP2484621B1 - Yarn winder - Google Patents

Yarn winder Download PDF

Info

Publication number
EP2484621B1
EP2484621B1 EP10820661.6A EP10820661A EP2484621B1 EP 2484621 B1 EP2484621 B1 EP 2484621B1 EP 10820661 A EP10820661 A EP 10820661A EP 2484621 B1 EP2484621 B1 EP 2484621B1
Authority
EP
European Patent Office
Prior art keywords
yarn
winding
section
spun
spun yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10820661.6A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2484621A4 (en
EP2484621A1 (en
Inventor
Yoshihiro Kino
Isao Fukuda
Yoshifuto Sone
Yuji Imamura
Osamu Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Publication of EP2484621A1 publication Critical patent/EP2484621A1/en
Publication of EP2484621A4 publication Critical patent/EP2484621A4/en
Application granted granted Critical
Publication of EP2484621B1 publication Critical patent/EP2484621B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/20Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage
    • B65H51/22Reels or cages, e.g. cylindrical, with storing and forwarding surfaces provided by rollers or bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/22Guides for filamentary materials; Supports therefor adapted to prevent excessive ballooning of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a yarn winder (yarn winding device), and a method of operating it.
  • Patent Literature 1 recites a yarn winder that includes: a yarn supplying portion for unwinding a yarn from a yearn supplying bobbin; a winding section for winding the unwound yarn to form a package; a yarn joining section that is provided between the yarn supplying portion and the winding section to perform yarn joining when yarn breakage occurs, a yarn defect is detected, or the yarn supplying bobbin runs out of the yearn; and a vessel that is formed between the yarn joining section and the winding section to store the yarn.
  • a yarn unwound from the yarn supplying bobbin is temporarily stored in the aforesaid vessel of the yarn storage section, and the winding section draws out the yarn stored in the vessel and forms a package.
  • This arrangement makes it possible to continue the winding of the yarn by the winding section while the yarn joining section is performing yarn joining.
  • the nearest state of the art regarding the present invention is disclosed in DE 25 53 892 A1 and DE 34 15 447 A1 . These documents disclose an alternative yarn storage section with a breaking ring, whereas the winding of the package in these documents is stopped during a joining operation.
  • Patent Literature 1 U.S. Patent No. 3314621
  • the yarn winder of Patent Literature 1 is disadvantageous in that the yarn stored in the vessel may be entangled.
  • the inventor of the present invention hit on the idea that a yarn storage section storing the yarn in such a way that the yarn unwound from the yarn supplying bobbin was wound thereon was provided in place of the vessel for storing the yarn, and the yarn wound on the yarn storage section was unwound and a package was formed from the yarn by the winding section.
  • This arrangement involves a problem in that, when the yarn is unwound from the yarn storage section, the yarn swells and a balloon is formed. When such a balloon becomes large in size, the tension of the yarn may be fluctuated or a problem may occur as the yarn contacts a part of the yarn winder.
  • An object of the present invention is to provide a yarn winder in which a balloon generated when a yarn is unwound from a yarn storage section does not become large.
  • a yarn winder includes: a yarn supplying portion for unwinding a spun yarn from a yarn supplying bobbin; a winding section for winding the spun yarn so as to form a package; a yarn storage section which is provided between the yarn supplying portion and the winding section to wind and store the spun yarn; and a balloon regulator for regulating a balloon by contacting the spun yarn unwound from the yarn storage section toward the winding section side.
  • the balloon is regulated as the spun yarn unwound from the yarn storage section and running toward the winding section contacts the balloon regulator, it is possible to prevent the unwinding tension from becoming great on account of the enlargement of the balloon.
  • the yarn winder of the first aspect is arranged so that the balloon regulator contacts and imparts resistance to the spun yarn that is unwound from the yarn storage section to the winding section side and tends to swell outward.
  • the present invention because the enlargement of the balloon occurring when the spun yarn is unwound from the yarn storage section is restrained, it is possible to prevent the balloon from becoming large and contacting another component such as the main body of the yarn winder.
  • the yarn winder of the second aspect is arranged so that the balloon regulator is composed of an annular component which is arranged to enclose the spun yarn unwound from the yarn storage section.
  • the balloon regulator is composed of the annular component which is arranged to enclose the spun yarn unwound from the yarn storage section and running toward the winding section, the enlargement of the balloon is certainly restrained.
  • the yarn winder of the third aspect is arranged so that the annular component is made of an elastic material and arranged to contact the yarn storage section, and the spun yarn unwound from the yarn storage section is sandwiched between the annular component and the yarn storage section.
  • the spun yarn unwound from the yarn storage section is sandwiched between the annular component made of an elastic material and the yarn storage section, the broken filaments of the spun yarn unwound from the yarn storage section and running toward the winding section are laid down, and a tension is imparted to the spun yarn.
  • the yarn winder of the fourth aspect is arranged so that the annular component is made of a rubber material.
  • the annular component is made of a rubber material which is easily elastically deformed, the annular component is easily attached and replaced.
  • the yarn winder of the fourth or fifth aspect is arranged so that, because the annular component contacts the yarn storage section while being elastically deformed, at least a part of the annular component surface-contacts, in its entire circumference, the yarn storage section.
  • the annular component contacts the yarn storage section while being elastically deformed and hence at least a part of the component surface-contacts, in its entire circumference, the yarn storage section, it is possible to certainly lay down the broken filaments of the spun yarn sandwiched between the annular component and the yarn storage section.
  • the yarn winder of the sixth aspect is arranged so that an end portion of the yarn storage section on the unwinding side of the spun yarn has a circular curved surface narrowing toward the center of the spun yarn, and the annular component is arranged so that a difference between the radius at the outer circumference and the radius at the inner circumference is longer than the thickness, and a part of the annular components which part is between the outer circumference and the inner circumference is elastically deformed along the circular curved surface of the yarn storage section so as to surface-contact the circular curved surface of the yarn storage section.
  • an end portion of the yarn storage section on the unwinding side of the spun yarn has a circular curved surface and the annular component is arranged so that a difference between the radius at the outer circumference and the radius at the inner circumference is longer than the thickness, and a part of the annular components which part is between the outer circumference and the inner circumference is elastically deformed along the circular curved surface of the yarn storage section so as to surface-contact the circular curved surface of the yarn storage section. For this reason, the area where the annular component surface-contacts the yarn storage section is large. This makes it possible to certainly lay down the broken filaments of the spun yarn unwound from the yarn storage section.
  • the yarn winder of the fifth aspect is arranged so that the yarn storage section has a rotational storage drum which rotates so as to wind and store the spun yarn, and the annular component is smaller in diameter than the rotational storage drum and is attached to the rotational storage drum while being elongated.
  • the annular component which is shorter in diameter than the rotational storage drum and made of a rubber material is attached onto the rotational storage drum while being elongated, the rotational storage drum and the annular component rotate together. This prevents the annular component from being worn away by the rotational storage drum.
  • the yarn winder of the eighth aspect is arranged so that, at a part of the rotational storage drum which part is on the unwinding side of the spun yarn as compared to a part where the annular component is attached, an enlarged portion is formed to be widened toward the unwinding side.
  • the annular component is caught on the enlarged portion, it is possible to prevent the annular component from being pulled by the unwound spun yarn and dropping off from the rotational storage drum.
  • the yarn winder of the third aspect is arranged so that the annular component is distanced from the yarn storage section and encloses the spun yarn which is unwound from the yarn storage section and conveyed to the winding section.
  • the spun yarn can easily pass through gap between the annular component and the yarn storage section at the time of yarn threading, and it is possible to restrain the cotton fly of the spun yarn from remaining in the gap between the annular component and the yarn storage section.
  • the yarn winder of the tenth aspect is arranged so that the annular component is hollow and has a triangular pyramid shape narrowing in diameter toward the winding section side.
  • the annular component has a triangular pyramid shape, it is possible to certainly restrain the enlargement of the balloon.
  • the yarn winder of any one of the first to eleventh aspects is arranged so that a yarn joining section which is provided between the yarn supplying portion and the winding section to perform yarn joining of the spun yarn; and a controller for controlling a winding operation performed by the winding section and the yarn joining by the yarn joining section, the controller conducting control so that the yarn joining by the yarn joining section and the yarn winding operation by the winding section are simultaneously performed.
  • the yarn joining is performed without interrupting the winding of the spun yarn onto the winding section.
  • the yarn winder of any one of first to twelfth aspects is arranged so that the yarn supplying portion is provided with a yarn unwinding assisting device which assists unwinding of the spun yarn from the yarn supplying bobbin by lowering the regulator covering the core of the yarn supplying bobbin in sync with the unwinding of the spun yarn from the yarn supplying bobbin.
  • the transmission of the tension of the yarn is blocked by providing the yarn storage section between the yarn supplying bobbin and the winding section, it is possible to prevent a tension change due to the traversal of the winding section from being transferred to the part of the yarn unwound from the yarn supplying bobbin. Since the yarn unwinding from the yarn supplying bobbin is stably performed as the unwinding assist unit is additionally provided on the yarn supplying bobbin, it is possible to prevent yarn breakage and to accelerate the speed of unwinding from the yarn supplying bobbin. The efficiency in the unwinding from the yarn supplying bobbin is therefore improved.
  • the balloon is regulated as the spun yarn unwound from the yarn storage section and running toward the winding section contacts the balloon regulator, it is possible to prevent the unwinding tension from becoming great on account of the enlargement of the balloon.
  • An automatic winder 1 is composed of many, for example, 60 spindles of winding units 2 (yarn winders) shown in Fig. 1 , which are lined up in crosswise directions of the plane of the figure.
  • each winding unit 2 The main components of each winding unit 2 are: a yarn supplying portion 3 arranged to supply a spun yarn Y unwound from the yarn supplying bobbin B; a yarn clearer 4 which is able to detect a yarn defect in the spun yarn Y supplied from the yarn supplying portion 3; a winding section 5 which winds the spun yarn Y to form a package P; and a yarn joining section 6 which is provided between the yarn supplying portion 3 and the winding section 5 and joins the spun yarn Y on the yarn supplying portion 3 side with the spun yarn Y on the winding section 5 side at the time of bobbin change of the yarn supplying bobbin B, yarn cutting carried out when the yarn clearer 4 detects a yarn defect, or yarn breakage.
  • Each winding unit 2 is further provided with an accumulator 7 (yarn storage section) between the yarn joining section 6 and the winding section 5.
  • This accumulator 7 is capable of storing a spun yarn Y for an amount equal to or larger than the amount of yarn wound by the winding section 5 during the yarn joining by the yarn joining section 6, in order to allow the winding section 5 to continue the winding of the spun yarn Y while the yarn joining section 6 carries out the yarn joining.
  • Fig. 1 shows a frame 8 that supports the above-described components of the winding unit 2.
  • This frame 8 contains a controller 9 (see also Fig. 4 ) for controlling the components.
  • the yarn supplying portion 3 above includes: a peg 10 which receives a yarn supplying bobbin B from an unillustrated magazine and supports the yarn supplying bobbin B to keep a suitable posture; a yarn unwinding assisting device 11 which assists the unwinding of the spun yarn Y from the yarn supplying bobbin B; and a yarn detector 12 which detects whether the spun yarn Y exists between the yarn unwinding assisting device 11 and the yarn joining section 6.
  • This yarn detector 12 is electrically connected to the controller 9 above, and sends an empty bobbin signal to the controller 9 when not detecting the spun yarn Y.
  • the yarn clearer 4 above is able to detect defects such as slubs and foreign matters on the spun yarn Y.
  • the yarn clearer 4 is either an electrostatic capacity type that detects a yarn defect by comparing the quantity of the spun yarn Y with a reference value or a photoelectric type that detects a yarn defect by comparing the diameter of the spun yarn Y with a reference value.
  • Such a yarn clearer 4 includes a yarn defect calculator 4b which calculates the length and width of a yarn defect on the spun yarn Y based on the detection result (e.g., output voltage value) of the electrostatic-capacity type or the photoelectric type.
  • the yarn clearer 4 is further provided with a cutter 4a for cutting the spun yarn Y.
  • the cutter 4a cuts the spun yarn Y immediately after receiving a yarn cutting signal from the yarn clearer 4. Based on the arrangement above, when the yarn clearer 4 detects a yarn defect of the spun yarn Y, the yarn defect calculator 4b starts to calculate the length of this yarn defect and obtains the width of the yarn defect by calculation. The yarn clearer 4 comprehensively evaluates the calculation result (length and width of the yarn defect) of the yarn defect calculator 4b from various aspects. When it is determined that the calculation result does not fall within an evaluation reference range set by an operator, the yarn clearer 4 sends a yarn cutting signal to the cutter 4a so as to cut the spun yarn Y and sends a yarn defect detection signal to the controller 9.
  • This yarn defect detection signal includes information of the length of the yarn defect calculated by the yarn defect calculator 4b and the information of a type of the yarn defect, which is determined based on the information of the width of the yarn defect calculated by the yarn defect calculator 4b.
  • the controller 9 stores, in a RAM, the information of the length and type of the yarn defect obtained from the yarn clearer 4.
  • the yarn clearer 4 above is arranged to be able to detect a yarn breakage of the spun yarn Y based on the information of the width of the yarn defect calculated by the yarn defect calculator 4b, and the yarn clearer 4 sends a yarn breakage signal to the controller 9 upon detecting a yarn breakage of the spun yarn Y.
  • the winding section 5 above includes a cradle 13 holding a winding bobbin Bf and a traversing drum 14 for traversing the spun yarn Y.
  • the cradle 13 above is arranged to be able to swing between a contact state where the package P contacts the traversing drum 14 and a non-contact state. As the cradle 13 rotates in accordance with the increase in the diameter of the package P, the contact state between the package P and the traversing drum 14 is suitably adjusted.
  • the cradle 13 above is provided with a package brake 15 (see Fig. 4 ) for braking the rotation of the winding bobbin Bf, whereas the traversing drum 14 is connected to a traversing drum motor 16 (see Fig.
  • the package brake 15 and the traversing drum motor 16 are, as shown in Fig. 4 , electrically connected to the controller 9, allowing the controller 9 to flexibly control the winding speed Va at which the winding section 5 winds the spun yarn Y.
  • the winding unit 2 is further provided with a yarn end drawing mechanism W.
  • This yarn end drawing mechanism W draws out the yarn end of the spun yarn Y, which has already been wound onto the accumulator 7, to the yarn jointing section 6 side, at the time of bobbin change of the yarn supplying bobbin B, yarn cutting carried out when the yarn clearer 4 detects a yarn defect, or yarn breakage, i.e., when yarn joining by the yarn joining section 6 is needed. Details of this will be given later.
  • the yarn joining section 6 above includes: a splicer 17 for joining the spun yarn Y on the yarn supplying portion 3 side with the spun yarn Y on the winding section 5 side; an upper relay pipe 18 that receives the spun yarn Y on the winding section 5 side from the yarn end drawing mechanism W and places the yarn Y on the splicer 17; and a lower relay pipe 19 which places the spun yarn Y on the yarn supplying portion 3 side' on the splicer 17.
  • the upper relay pipe 18 above is supported to be rotatable about an axis 18a, receives a negative pressure from a negative pressure source 20 shown in Fig. 2 , and has a leading end where a suction port 18b for sucking the spun yarn Y is formed.
  • this suction port 18b is provided with an unillustrated clamping section 18c which is able to clamp the spun yarn Y sucked into the suction port 18b by closing the suction port 18b.
  • An upper pipe motor 21 (see Fig. 4 ) for powering the rotation of the upper relay pipe 18 is electrically connected to the controller 9, thereby allowing the controller 9 to flexibly control the rotation of the upper relay pipe 18.
  • the lower relay pipe 19 above is supported to be rotatable about an axis 19a, receives a negative pressure from the negative pressure source 20 shown in Fig. 2 , and has a leading end where a suction port 19b having a clamping section 19c is formed.
  • a lower pipe motor 22 (see Fig.
  • the splicer 17 is provided with a splicer motor 23 which is a power source for yarn joining. This splicer motor 23 (see Fig. 4 ) is also electrically connected to the controller 9, thereby allowing the controller 9 to determine when the splicer 17 starts the yarn joining.
  • a gate-type tensor 24 for providing a desired tension to the spun yarn Y.
  • a gate-type tensor 25 for imparting a desired tension to the spun yarn Y and a waxing device 26 for waxing the spun yarn Y.
  • the gate-type tensor 25 is on the upstream of the spun yarn Y whereas the waxing device 26 is on the downstream of the spun yarn Y.
  • the spun yarn Y unwound from the yarn supplying bobbin B passes through the yarn unwinding assisting device 11, the yarn detector 12, the gate-type tensor 24, and the yarn clearer 4 in this order and is eventually stored in the accumulator 7.
  • the spun yarn Y stored in the accumulator 7 passes through the gate-type tensor 25 and the waxing device 26 in this order, and is wound by the winding section 5 to form a package P while being traversed by the traversing drum 14.
  • the accumulator 7 includes: a yarn storage drum 27 on the outer circumference of which the spun yarn Y is wound; a winding arm 29 which has therein a yarn passage 28 where the spun yarn Y is able to run, is rotatable about the axis C of the yarn storage drum 27, and is arranged to guide a part of the spun yarn Y on the yarn supplying portion 3 side to the outer circumference of the yarn storage drum 27; and a winding arm motor 30 for causing the winding arm 29 to rotate about the axis C of the yarn storage drum 27.
  • the yarn storage drum 27 above has a first end 31 on the yarn supplying portion 3 side (lower side in Fig. 2 ) and a second end 32 on the winding section 5 side (upper side in Fig. 2 ), and is a pipe narrowed from the first end 31 toward the second end 32 in its outer shape.
  • grooves 33 are formed at equal intervals in the circumferential directions to extend in the directions in parallel to the axis C. More specifically, as shown in Fig. 5(a) , on the outer circumference of the yarn storage drum 27, the inclination Alpha of the lower end portion 34 on the first end 31 side is arranged to be larger than the inclination Beta of the upper end portion 35 on the second end 32 side.
  • the inclination Alpha of the lower end portion 34 gently changes from 2 degrees to 60 degrees with respect to the axis C.
  • the inclination Beta of the upper end portion 35 is arranged to be 2 degrees with respect to the axis C.
  • the lower end portion 34 is smoothly connected with the upper end portion 35. As shown in Fig.
  • the yarn storage drum 27 above is supported at a leading end (upper end) of the output shaft 36 of the winding arm motor 30 via an unillustrated bearing, and the rotation of the yarn storage drum 27 with respect to the winding arm motor 30 is regulated by a magnetic coupling force between a magnet 38 adhered to a first magnet supporter 37 fixed to the first end 31 side of the yarn storage drum 27 and a magnet 40 adhered to a second magnet supporter 39 of the winding arm motor 30.
  • the upper end portion of the yarn storage drum 27 which portion includes the second end 32 is formed as a curved surface portion 65 having a circular curved surface narrowing in diameter toward the upper end (i.e., a circular curved surface narrowing toward the center and toward the winding section 5 side).
  • a curved surface portion 65 On the curved surface portion 65 is provided an annular component 66.
  • the annular component 66 is, as shown in Fig. 3(a) and Fig. 3(b) , an annular thin plate made of an elastic material such as rubber, in which the difference R between the radius at the inner circumference and the radius at the outer circumference is longer than the thickness D.
  • the annular component 66 is fixed to a substantially ring shaped fastener 67 at the end portion on the outer circumference side, and is, as shown in Fig. 3(c) , provided on the curved surface portion 65 while the end portion on the outer circumference side is being pushed down by the fastener 67.
  • the end portion of the annular component 66 on the inner circumference side i.e. the part between the outer circumference and the inner circumference
  • the annular component 66 surface-contacts, in its entire circumference, the curved surface portion 65.
  • the spun yarn Y unwound from the yarn storage drum 27 is running toward the winding section 5 through the gap between the annular component 66 and the curved surface portion 65. Furthermore, the fastener 67 is fixed to an unillustrated frame or the like of the winding unit 2 while the end portion of the annular component 66 on the outer circumference side is pushed down, as shown in Fig. 3(c) .
  • only the end portion of the annular component 66 on the inner circumference side contacts the curved surface portion 65.
  • a broader range of the part of the annular component 66 between the outer circumference and the inner circumference may surface-contact the curved surface portion 65, when the end portion of the annular component 66 on the outer circumference side is further pushed down by the fastener 67.
  • the winding arm 29 above is connected to the outer circumference of the output shaft 36 and composed of a linear portion 41 extending radially outward from the outer circumference of the output shaft 36 and a curved portion 42 which circumvents the first magnet supporter 37 and reaches the vicinity of the lower end portion 34 of the yarn storage drum 27. At the leading end of the curved portion 42 is formed an opening 43 that opposes the lower end portion 34. With this arrangement, the winding arm 29 is rotatable about the axis C of the yarn storage drum 27, between the first magnet supporter 37 and the magnet supporter 39 above.
  • a part of the spun yarn Y on the yarn supplying portion 3 side which has been introduced into the yarn passage 28 of the winding arm 29, is wound onto the outer circumference of the yarn storage drum 27. More specifically, because the opening 43 of the winding arm 29 is arranged to oppose the lower end portion 34 of the yarn storage drum 27 on the first end 31 side, a part of the spun yarn Y on the yarn supplying portion 3 side is guided by the winding arm 29 to the lower end portion 34 on the first end 31 side on the outer circumference of the yarn storage drum 27, and is wound onto this outer circumference.
  • the yarn passage 128 of the winding arm 29 is connected to a path 44 which is formed inside the output shaft 36.
  • a balancer 45 integrated with the output shaft 36 is provided on the side opposite to the winding arm 29 over the output shaft 36.
  • the winding arm motor 30 is a DC brushless motor in the present embodiment and is electrically connected to the controller 9, thereby allowing the controller 9 to flexibly control the rotation speed of the winding arm 29, i.e., to flexibly control the winding speed Vb which is the speed of the spun yarn Y wound onto the yarn storage drum 27.
  • blowdown nozzle 48 On the yarn clearer 4 side of the winding arm motor 30 is provided a blowdown nozzle 48.
  • This blowdown nozzle 48 includes a yarn path 46 connected to the path 44 of the output shaft 36 and a blowdown path 47 which is connected to the yarn path 46 and is inclined from the winding arm 29 side to the upper relay pipe 18 side.
  • the blowdown path 47 is connected to a compressed air source 51 via a connection pipe 49 and a connection pipe 50, and a solenoid valve 52 electrically connected to the controller 9 is provided between the connection pipe 49 and the connection pipe 50.
  • an airflow generator X for generating an airflow from the yarn storage drum 27 side to the yarn joining section 6 side in the yarn passage 28 of the winding arm 29 includes at least the blowdown nozzle 48 and the compressed air source 51.
  • the yarn end drawing mechanism W above includes the winding arm 29 above and the airflow generator X. That is to say, the yarn end drawing mechanism W sucks the yarn end of the spun yarn Y stored in the accumulator 7 by using the airflow generated in the winding arm 29 by the airflow generator X and draws out the spun yarn Y to the yarn joining section 6 side (i.e., the yarn supplying portion 3 side). More specifically, the yarn end drawing mechanism W sucks the yarn end of the spun yarn Y stored in the accumulator 7 by using the airflow generated in the winding arm 29 by the airflow generator X, and rotates the winding arm 29 in the direction opposite to the rotational direction at the time of storing the yarn, while keeping the yarn to be sucked. As such, the yarn end drawing mechanism W draws out the spun yarn Y on the outer circumference of the yarn storage drum 27 to the yarn joining section 6 side via the yarn passage 28 of the winding arm 29.
  • the winding arm motor 30 has a rotary encoder 53 capable of detecting the rotation angle of the winding arm 29.
  • This rotary encoder 53 is electrically connected to the controller 9.
  • the rotary encoder 53 transmits, to the controller 9, an angle signal corresponding to the rotation angle of the winding arm 29.
  • a drawing sensor 54 capable of detecting whether the yarn end of the spun yarn Y wound by the accumulator 7 has actually been drawn to the yarn joining section 6 side by the yarn end drawing mechanism W.
  • This drawing sensor 54 is electrically connected to the controller 9, and transmits a drawing detection signal to the controller 9 upon detecting that the yarn end of the spun yarn Y has been drawn to the yarn joining section 6 side. From the perspective of the entire winding unit 2, the drawing sensor 54 of the present embodiment is provided in the accumulator 7 because the sensor is attached to the winding arm motor 30 of the accumulator 7 via the blowdown nozzle 48.
  • the accumulator 7 is further provided with a storage upper limit sensor 55, a storage lower limit sensor 56, and a storage lowest limit sensor 57 for detecting the storage amount of the spun yarn Y.
  • These sensors 55 to 57 are supported by an accumulator attaching frame 58 which is provided for fixing the accumulator 7 to the frame 8, and are electrically connected to the controller 9 as shown in Fig. 4 .
  • the storage upper limit sensor 55 is positioned to oppose the upper end of the spun yarn Y wound on the outer circumference of the yarn storage drum 27 when the storage amount of the yarn Y in the accumulator 7 reaches 300m.
  • This length, 300m indicates the length longer than the length of the spun yarn Y wound by the winding section 5 while later-described yarn joining is repeated for, for example, three times. With this, as described later, a shortage of spun yarn Y is less likely to occur in the accumulator 7 even if the winding of the spun yarn Y by the winding section 5 is continued while the yarn joining is carried out.
  • the storage lower limit sensor 56 is positioned to oppose the upper end of the spun yarn Y when the storage amount of the yarn Y in the accumulator 7 reaches 200m. Furthermore, the storage lowest limit sensor 57 is positioned to oppose the upper end of the spun yarn Y when the storage amount of the yarn Y in the accumulator 7 reaches 40m.
  • the storage upper limit sensor 55 sends a storage amount upper limit signal to the controller 9 while detecting the existence of the spun yarn Y at the opposing position.
  • the storage lower limit sensor 56 sends a storage amount lower limit signal to the controller 9 while detecting the existence of the spun yarn Y at the opposing position.
  • a storage amount detector for detecting the storage amount of the spun yarn Y in the accumulator 7 includes the storage upper limit sensor 55, the storage lower limit sensor 56, and the storage lowest limit sensor 57.
  • the controller 9 shown in Fig. 4 includes a CPU (Central Processing Unit) which is a processor, a ROM (Read Only Memory) which stores a control program executed by the CPU and data used by the control program, and a RAM (Random Access Memory) which temporarily stores data at the time of the execution of a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the traversing drum motor controller 60 reduces the winding speed Va at which the winding section 5 winds the spun yarn Y, when the storage amount detected by the storage amount detector falls below a predetermined value. More specifically, when the storage amount lower limit signal is no longer transmitted from the storage lower limit sensor 56, the traversing drum motor controller 60 gently reduces the winding speed Va to the extent that yarn layers of the package P are not disturbed. Furthermore, when the storage amount lowest limit signal is no longer transmitted from the storage lowest limit sensor 57, the traversing drum motor controller 60 quickly reduces the winding speed Va and eventually stops the winding by the winding section 5.
  • the traversing drum motor controller 60 reduces the winding speed Va when the storage amount of the spun yarn Y in the accumulator 7 becomes low, and stops the winding by the winding section 5 when the storage amount of the spun yarn Y of the accumulator 7 becomes extremely low. A shortage of the spun yarn Y in the accumulator 7 is therefore prevented.
  • the winding arm motor controller 61 controls the winding arm motor 30 so that the winding arm 29 rotates in the direction opposite to the direction of the rotation at the time of storing the yarn, when the yarn end drawing mechanism W draws out the yarn end of the spun yarn Y on the outer circumference of the yarn storage drum 27 to the yarn joining section 6 side.
  • the drawn yarn length calculation unit 63 calculates the drawn yarn length which indicates the length of the spun yarn Y drawn out from the accumulator 7 to the yarn j joining section 6 side by the yarn end drawing mechanism W, based on the rotation angle of the winding arm 29 detected by the rotary encoder 53 since the drawing sensor 54 detects the yarn Y. That is to say, the drawn yarn length calculation unit 63 calculates the drawn yarn length based on the diameter Phi of the yarn storage 27 stored in a ROM in advance and the rotation angle of the rotation of the winding arm 29 after the drawing sensor 54 detects the spun yarn Y, and stores the drawn yarn length which is the calculation result in a RAM.
  • the upper pipe controller 64 compares the yarn defect length obtained from a yarn defect detection signal with the drawn yarn length calculated by the drawn yarn length calculation unit 63, and rotates the upper relay pipe 18 while keeping the clamping state so as to guide the spun yarn Y which is on the winding section 5 side to the splicer 17 and places the spun yarn Y, when it is determined that the drawn yarn length reaches the yarn defect length.
  • An operator of the automatic winder 1 shown in Fig. 1 unwinds the spun yarn Y from the yarn supplying bobbin B, places the spun yarn Y onto the yarn unwinding assisting device 11, the yarn detector 12, the yarn clearer 4, the accumulator 7, the gate-type tensor 25, and the waxing device 26, and fixes the spun yarn 7 to the winding bobbin Bf.
  • the yarn path of the spun yarn Y in the accumulator 7 is arranged as shown in Fig. 2 . That is to say, the operator causes the spun yarn Y to pass through the drawing sensor 54, the yarn path 46 of the blowdown nozzle 48, the path 44 of the output shaft 36, and the yarn passage 28 of the winding arm 29 in this order.
  • the operator draws out the spun yarn Y on the opening 43 side of the winding arm 29 and winds the spun yarn Y onto the yarn storage drum 27 for about five to twenty times, lets the spun yarn Y to pass through the gap between the yarn storage drum 27 (curved surface portion 65) and the annular component 66, and places the spun yarn Y onto a gate-type tensor 25 and a waxing device 26.
  • the spun yarn shown in Fig. 2 is thick for convenience of explanation, The yarn storage drum 27 in reality always store the bundle of yarn Y wound for about 600 times.
  • the controller 9 starts the rotation of the traversing drum 14 so that the winding speed Va of the spun yarn Y wound by the winding section 5 is 1200m/min and starts the driving of the winding arm 29 so that the winding speed Vb of the spun yarn Y wound onto the accumulator 7 is 1500m/min (S310).
  • the bundle of the spun yarn Y wound onto the outer circumference of the yarn storage drum 27 is unwound by the winding section 5 from the upper end, and the spun yarn Y is wound to form a package P while being traversed by the traversing drum 14.
  • the spun yarn Y on the yarn supplying portion 3 side is, as shown in Fig. 2 , guided to the lower end portion 34 of the yarn storage drum 27 by the winding arm 29, and the winding arm 29 rotates about the axis C of the yarn storage 29 clockwise in plan view, so that the spun yarn Y is wound onto the lower end portion of the yarn storage drum 27 on the first end 31 side.
  • the guide position A of the spun yarn part Y1 guided by the winding arm 29 is arranged to oppose the lower end portion 34.
  • the spun yarn part Y1 guided to this guide position A and wound onto the lower end portion 34 receives a winding force F which is exerted in the direction toward the axis C of the yarn storage drum 27.
  • This winding force F and the steep inclination Alpha of the lower end portion 34 produce a running-up force f1 which is a component of force, and the spun yarn part Y1 receiving the running-up force f1 actively moves from the first end 31 side to the second end 32 on the outer circumference of the yarn storage drum 27, as indicated by the thick arrows in Fig. 5(b) . Therefore, as shown in Fig.
  • the spun yarn part Y1 moves from the first end 31 side to the second end 32 side each time the spun yarn part Y1 is guided to the guide position A, with the result that the spun yarn parts Y1 and Y0 do not overlap each other at the guide position A and hence a spun yarn part Y3 is smoothly unwound on the yarn storage drum 27.
  • the inclination Alpha of the lower end portion 34 on the first end 31 side is arranged to be larger than the inclination Beta of the upper end portion 35 on the second end 32 side.
  • the spun yarn part Y1 wound onto the guide position A opposing the lower end portion 34 on the first end 31 side on the outer circumference of the yarn storage drum 27 starts to move to the second end 32 immediately after being wound, and the movement slows down as the inclination becomes gentle at the upper end portion 35.
  • the spun yarn part Y2 wound on the outer circumference of the yarn storage drum 27 stays at the boundary between the lower end portion 34 and the upper end portion 35.
  • the spun yarn part Y1 receiving a faint running-up force f1 contacts this spun yarn part Y2, and pushes up the spun yarn part Y2 and the spun yarn part Y3 to the second end 32 side as shown in Fig. 4(c).
  • the spun yarn parts Y1 to Y3 are densely provided on the outer circumference of the yarn storage drum 27, and this makes it possible to achieve smooth unwinding of the spun yarn Y on the yarn storage drum 27 and a large storage amount off the yarn at the same time.
  • the controller 9 checks, as shown in Fig. 9 , whether a yarn breakage signal has been supplied (S320), whether a yarn defect detection signal has been supplied (S330), whether an empty bobbin signal has been supplied (S340), and whether a storage amount upper limit signal has been supplied (S350).
  • S320 yarn breakage signal
  • S330 yarn defect detection signal
  • S340 empty bobbin signal
  • S350 storage amount upper limit signal
  • the controller 9 executes the control flow shown in Fig. 12 (S335) and then the process returns to the control flow of Fig. 8 , and upon receiving the empty bobbin signal (S340: YES), the controller 9 executes the control flow shown in Fig. 13 (S345) and then the process returns to the control flow of Fig. 9 .
  • the storage upper limit sensor 55 sends a storage amount upper limit signal to the controller 9.
  • the controller 9 receives the storage amount upper limit signal from the storage upper limit sensor 55 as shown in Fig. 9 (S350: YES)
  • the controller 9 changes the winding speed Vb from 1500m/min to 1200m/min (S360).
  • the winding speed Va becomes identical with the winding speed Vb as a result, and the storage amount of the accumulator 7 is kept constant.
  • the controller 9 first of all stops rotation of the winding arm 29 (S410) while simultaneously executing a control flow for preventing yarn storage (detailed later) shown in Fig. 11 by means of a known multitask technology (S400). Subsequently, the controller 9 opens the solenoid valve 52 shown in Fig. 6 to generate an airflow from the yarn storage drum 27 side to the upper relay pipe 18 side in the yarn passage 28 of the winding arm 29 or the like, as indicated by thick arrows a and b (S420). At the same time, the controller 9 slightly rotates the upper relay pipe 18 shown in Fig. 5 to operate the clamping section 18c, with the result that the suction port 18b is changed from the closed state to the open state.
  • the yarn end of the spun yarn Y on the lower end portion 34 is sucked into the opening 43 of the winding arm 29, and reaches the suction port 18b of the upper relay pipe 18 via the yarn passage 28 of the winding arm 29 or the like as shown in Fig. 7 .
  • the drawing sensor 54 sends a drawing detection signal to the controller 9.
  • the controller 9 upon receiving the drawing detection signal from the drawing sensor 54 (S440: YES), the controller 9 slightly rotates the upper relay pipe 18 while continuing the low-speed rotation of the winding arm 29 so as to operate the clamping section 18c, with the result that the suction port 18b is changed from the open state to the closed state.
  • the controller 9 clamps the spun yarn Y by the clamping section 18c and rotates the upper relay pipe 18 downward, so as to guide the spun yarn Y drawn out from the accumulator 7 to the splicer 17 of the yarn joining section 6 which is on the yarn supplying portion 3 side as compared to the accumulator 7 (S450).
  • the length of a newly drawn part of the yarn Y drawn out from the accumulator 7 by the rotation of the upper relay pipe 18 is about 60cm.
  • the controller 9 synchronizes the rotation of the upper relay pipe 18 with the rotation of the winding arm 29.
  • the controller 9 After the completion of the guide of the spun yarn Y to the splicer 17 by the upper relay pipe 18 (S450), the controller 9 stops the rotation of the winding arm 29 (S460). In the meanwhile, the lower relay pipe 19 sucks and captures the yarn end of the spun yarn Y around the yarn detector 12 and guides this spun yarn Y to the splicer 17, in the same manner as the upper relay pipe 18.
  • the controller 9 drives the splicer motor 23 shown in Fig. 4 to execute the yarn joining by the splicer 17 (S470). Thereafter, the controller 9 starts, as shown in Fig.
  • the controller 9 executes the control flow shown in Fig. 12 (S335). That is to say, the controller 9 stops the rotation of the winding arm 29 (S530) while at the same time executing a control flow for preventing yarn shortage shown in Fig. 11 by means of a known multitask technology (S500), so as to form, in the same manner as in the case of the yarn breakage, airflows in the yarn passage 28 or the like as indicated by, for example, thick arrows a, b, c, and d in Fig. 6 by controlling the solenoid valve 52 and the upper pipe motor 21 (S540).
  • the winding arm motor controller 61 controls the winding arm motor 30 to drive the winding arm 29 at a slow speed in the direction opposite to the direction of storing the yarn, i.e., anticlockwise in plan view in Fig. 6 (S550), and a drawing detection signal from the drawing sensor 54 is waited for (S560: NO).
  • S560: NO a drawing detection signal from the drawing sensor 54 is waited for.
  • the yarn end of the spun yarn Y on the lower end portion 34 is sucked into the opening 43 of the winding arm 29, and reaches the suction port 18b of the upper relay pipe 18 via the yarn passage 28 of the winding arm 29 or the like as shown in Fig. 7 .
  • the drawing sensor 54 sends a drawing detection signal to the controller 9.
  • the drawn yarn length calculation unit 63 obtains the rotation angle of the winding arm 29 detected by the rotary encoder 53, which indicates how many angles the winding arm 29 rotates after the detection of the spun yarn Y by the drawing sensor 54 (S570), and the drawn yarn length is calculated based on this rotation angle (S580).
  • the upper pipe controller 64 compares the length of the yarn defect obtained from the yarn defect detection signal with the drawn yarn length calculated by the drawn yarn length calculation unit 63 (S590).
  • the upper pipe controller 64 is on standby until the drawn yarn length reaches the yarn defect length (S590: NO) . When the drawn yarn length reaches the yarn defect length as shown in Fig.
  • the controller 9 slightly rotates the upper relay pipe 18 while continuing the low-speed rotation of the winding arm 29 so as to operate the clamping section 18c, with the result that the suction port 18b is changed from the open state to the closed state. Furthermore, the controller 9 clamps the spun yarn Y by the clamping section 18c and rotates the upper relay pipe 18 downward, so as to guide the spun yarn Y drawn out from the accumulator 7 to the splicer 17 of the yarn joining section 6 (S600).
  • the two-dot chain line Y6 in Fig. 8 indicates a spun yarn with a yarn defect.
  • the controller 9 synchronizes the rotation of the upper relay pipe 18 with the rotation of the winding arm 29. After the completion of the guide of the spun yarn Y to the splicer 17 by the upper relay pipe 18 (S600), the controller 9 stops the rotation of the winding arm 29 (S610).
  • the controller 9 drives the splicer motor 23 shown in Fig. 4 to execute the yarn joining by the splicer 17 (S620). Thereafter, the controller 9 starts, as shown in Fig. 2 , to rotate the winding arm 29 clockwise in plan view (S630), and hence the normal winding state is resumed from the yarn breakage state shown in Fig. 6 (S640).
  • the number of rotations of the winding arm 29 at this time is arranged so that the winding speed Vb is 1500m/min (S630).
  • the yarn detector 12 sends an empty bobbin signal to the signal controller 9.
  • the controller 9 executes the control flow show in Fig. 13 (S345).
  • the controller 9 exhausts the currently-attached yarn supplying bobbin B and attaches a new yarn supplying bobbin B to the peg 10 while executing the control flow for preventing yarn shortage shown in Fig. 11 by means of a known multitask technology (S700), guides the spun yarn Y of the yarn supplying bobbin B to allow the lower relay pipe 19 to be able to capture and suck the spun yarn Y (S710), and almost at the same time stops the rotation of the winding arm 29 (S720).
  • S700 multitask technology
  • the controller 9 controls the solenoid valve 52 and the upper pipe motor 21 to form an airflow in the yarn passage 28 or the like, as indicated by thick arrows a, b, c, and d in Fig. 6 (S730).
  • the winding arm motor controller 61 controls the winding arm motor 30 to drive the winding arm 29 at a slow speed in the direction opposite to the direction of storing the yarn, i.e., anticlockwise in plan view in Fig. 6 (S740), and a drawing detection signal from the drawing sensor 54 is waited for (S750: NO).
  • the yarn end of the spun yarn Y on the lower end portion 34 is sucked into the opening 43 of the winding arm 29, and reaches the suction port 18b of the upper relay pipe 18 via the yarn passage 28 of the winding arm 29 or the like as shown in Fig. 7 .
  • the drawing sensor 54 sends a drawing detection signal to the controller 9.
  • the controller 9 slightly rotates the upper relay pipe 18 while continuing the low-speed rotation of the winding arm 29 so as to operate the clamping section 18c, with the result that the suction port 18b is changed from the open state to the closed state.
  • the controller 9 clamps the spun yarn Y by the clamping section 18c and rotates the upper relay pipe 18 downward, so as to guide the spun yarn Y drawn out from the accumulator 7 to the splicer 17 of the yarn joining section 6 (S760).
  • the length of a newly drawn part of the yarn Y drawn out from the accumulator 7 by the rotation of the upper relay pipe 18 is about 60cm.
  • the controller 9 synchronizes the rotation of the upper relay pipe 18 with the rotation of the winding arm 29.
  • the controller 9 After the completion of the guide of the spun yarn Y to the splicer 17 by the upper relay pipe 18 (S760), the controller 9 stops the rotation of the winding arm 29 (S770). In the meanwhile, the lower relay pipe 19 sucks and captures the yarn end of the spun yarn Y around the yarn detector 12 and guides this spun yarn Y to the splicer 17, in the same manner as the upper relay pipe 18.
  • the controller 9 drives the splicer motor 23 shown in Fig. 4 to execute the yarn joining by the splicer 17 (S780). Thereafter, the controller 9 starts, as shown in Fig.
  • the control flow for preventing yarn shortage will be described.
  • the winding speed Va is reduced until the winding speed Va becomes lower than the 500m/min (S910: YES) so gradually that the yarn layers of the package P are not disrupted, e.g., by 100m/min in each 0.5 second (S920).
  • the traversing drum motor controller 60 reduces the winding speed Va when the amount of the spun yarn Y stored in the accumulator 7 becomes small, and this prevents the yarn shortage of the spun yarn Y in the accumulator 7.
  • the controller 9 increases the winding speed Va until the winding speed Va reaches 1200m/min (S970: NO), so gradually that the yarn layers of the package P are not disrupted, e.g., by 100m/min in each 0. 5 second (S980).
  • the controller 9 completes the control flow for preventing yarn shortage shown in Fig. 13 (S990).
  • the winding of the yarn Y onto the package P in the winding section 5 is continued at least until the yarn joining operation is conducted once, as the spun yarn Y stored in the yarn storage drum 27 is unwound during the yarn joining in the yarn joining section 6. To put it differently, it is possible to conduct the yarn joining by the yarn joining section 6 without interrupting the winding of the spun yarn Y onto the package P in the winding section 5.
  • the accumulator 7 stores the spun yarn Y such that the spun yarn Y is wound onto the yarn storage drum 27.
  • the spun yarn Y wound on the yarn storage drum 27 is unwound and running toward the winding section 5.
  • the spun yarn Y unwound from the yarn storage drum 27 swells radially outward of the yarn storage drum 27, with the result that a balloon is formed.
  • This balloon of the present embodiment indicates the movement of the spun yarn Y occurring between the yarn storage drum 27 and the gate-type tensor 25, in other words, the unwound spun yarn Y is swung by a centrifugal force.
  • the balloon becomes large and the tension of the spun yarn Y may be fluctuated or a problem may occur because the spun yarn Y contacts a part of the winding unit 2.
  • the annular component 66 is provided on the curved surface portion 65 at the upper end portion of the yarn storage drum 27, and the spun yarn Y unwound from the yarn storage drum 27 passes through the gap between the annular component 66 and the curved surface portion 65 and runs toward the winding section 5. For this reason, the spun yarn Y which is unwound and tends to swell outward is sandwiched between the annular component 66 and the curved surface portion 65 (i.e., contacts the annular component 66) , and therefore resistance is imparted to the spun yarn Y. This restrains the balloon from becoming large. Furthermore, because the spun yarn Y unwound from the yarn storage drum 27 contacts the annular component 66 provided to enclose the spun yarn Y, the enlargement of the balloon is certainly restrained.
  • the spun yarn Y unwound from the yarn storage drum 27 and running toward the winding section 5 rotates and runs while being sandwiched between the annular component 66 and the curved surface portion 65, broken filaments of the spun yarn Y are laid down. Furthermore, because the end portion of the annular component 66 on the inner circumference side is elastically deformed along the curved surface portion 65 as the component is a thin plane made of an elastic material such as rubber and hence the component surface-contacts, in its entire circumference, the curved surface portion 65, the spun yarn Y rotates and runs for a long distance while being sandwiched between the annular component 66 and the curved surface portion 65. This ensures that the broken filaments of the spun yarn Y are laid down.
  • annular component 66 when the annular component 66 is made of a rubber material, it is easy to attach the annular component 66 to the yarn storage drum 27 and to replace the annular component 66.
  • the yarn winding unit 2 having the above-described structure, because the transmission of the tension of the yarn Y is blocked by providing the accumulator 7 between the yarn supplying bobbin B and the winding section 5, it is possible to prevent a tension change due to the traversal of the winding section 5 from being transferred to the part of the yarn unwound from the yarn supplying bobbin B. Furthermore, since the yarn unwinding from the yarn supplying bobbin 21 is stably performed because the unwinding assist unit 12 is attached to the yarn supplying bobbin B, it is possible to prevent yarn breakage and to increase the speed of unwinding from the yarn supplying bobbin B. The efficiency in the unwinding from the yarn supplying bobbin B is therefore improved.
  • the annular component 66 which is a thin plate in which the difference R between the radius at the outer circumference and the radius at the inner circumference is longer than the thickness D is provided on the curved surface portion 65 while being elastically deformed, and hence the end portion of the component on the inner circumference side surface-contacts the curved surface portion 65.
  • This arrangement is not a prerequisite.
  • the annular component may be an annular component having a different shape from the annular component 66, such as an O-ring made of an elastic material. Also in this case, it is possible to cause the annular component to surface-contact the curved surface portion 65 by elastically deforming and providing the annular component on the curved surface portion 65.
  • the upper end portion of the yarn storage drum 27 may have not a circular curved shape but another shape.
  • the annular component may be provided to contact the yarn storage drum 27 without being elastically deformed. Also in this case, because the spun yarn Y unwound from the yarn storage drum 27 is sandwiched between the yarn storage drum 27 and the annular component, the broken filaments of the spun yarn Y unwound from the yarn storage drum 27 are laid down and a tension is imparted to this spun yarn Y.
  • the annular component made of an elastic material may not be provided to contact the yarn storage drum 27.
  • an O-ring 71 annular component, balloon regulator
  • the O-ring 71 is provided above the yarn storage drum 27 to be distanced from the yarn storage drum 27. Note that, in Fig. 14 and later-described Fig. 15 and Fig. 16 , the O-ring 71 and a later-described umbrella-shaped component 76, 81 are depicted in cross section taken along the axial directions, for easy comprehension.
  • the spun yarn Y is placed onto the winding unit 2, the spun yarn Y is placed on the gate-type tensor 25 (running toward the winding section 5) after passing through the gap between the yarn storage drum 27 and the O-ring 71.
  • the O-ring 71 is provided to be distanced from the yarn storage drum 27, it is easy to cause the spun yarn Y to pass through the gap between the yarn storage drum 27 and the O-ring 71.
  • the formation of a balloon is restrained in this case because the spun yarn Y unwound from the yarn storage drum 27, which tends to swell outward, contacts the inner circumference 71a of the O-ring 71.
  • the O-ring 71 and the yarn storage drum 27 are distanced from each other, it is possible to prevent the cotton fly of the spun yarn Y from remaining in the gap between these components.
  • an umbrella-shaped component 76 (annular component, balloon regulator) is provided above the yarn storage drum 27 to be distanced from the yarn storage drum 27.
  • This umbrella-shaped component 76 is an annular component being hollow and having a triangular pyramid shape narrowing upward in diameter.
  • the formation of a balloon is restrained because the spun yarn Y which is unwound from the yarn storage drum 27 and tends to swell contacts the inner circumference 76a of the umbrella-shaped component 76. Furthermore, because in the case above the contact area between the spun yarn Y and the inner circumference 76a of the umbrella-shaped component 76 is large as compared to the contact area between the spun yarn Y and the inner circumference 71a of the O-ring 71 in the modification 1, the spun yarn Y rotates and runs for a long distance while contacting the umbrella-shaped component 76, with the result that the formation of the balloon is certainly restrained.
  • an umbrella-shaped component 81 (annular component, balloon regulator) is provided in place of the umbrella-shaped component 76 (see Fig. 15 ).
  • the umbrella-shaped component 81 is an annular component being hollow and having a triangular pyramid, and extends to be higher than the umbrella-shaped component 76.
  • the upper end of this component is more or less as high as the lower end of the gate-type tensor 24.
  • the accumulator 7 stores the spun yarn Y in such a way that the spun yarn Y is wound onto the yarn storage drum 27, the accumulator may be differently arranged as long as it can store the spun yarn by winding the spun yarn Y thereon.
  • an accumulator 161 is provided in place of the accumulator 7.
  • the accumulator 161 includes components such as six rollers 171, a base 172, a rotation plate 173, three winding assist members 174, and the winding arm 29 and the winding arm motor 30 identical with those of the accumulator 7.
  • the base 172 is a substantially circular plate that is supported via an unillustrated bearing at the leading end (upper end) of the output shaft 36 of the winding arm motor 30 and is provided on the upper surface of the first magnet supporter 37.
  • the six rollers 171 are provided on the upper surface of the base 172 along a circle, and the lower end portions thereof are pivoted on the upper surface of the base 172 whereas the upper end portions thereof are supported by the rotation plate 173.
  • the rotation plate 173 is arranged to be rotatable about the rotation axis D of the winding arm motor 30. As the rotation plate 173 is rotated, the upper end portions of the rollers 171 supported by the rotation plate 73 move, in the circumferential direction, for a distance equivalent to the same central angle. As the upper end portions of the rollers 171 are moved in the virtual circumferential direction by the rotation of the rotation plate 173, the rollers 171 are inclined in the circumferential direction.
  • the rotation plate 173 has a circular curved shape narrowing toward the upper end in diameter in the same manner as the curved surface portion 65 (see Fig. 2 ), and an annular component 181 (balloon regulator) is provided on the rotation plate 173.
  • the annular component 181 is similar to the annular component 66 (see Fig. 2 ), and its end portion on the inner circumference side is elastically deformed along the rotation plate 173 having a circular curved shape, with the result that the component 181 surface-contacts, in its entire circumference, the rotation plate 173.
  • the spun yarn Y unwound from the roller 171 passes through the gap between the rotation plate 173 and the annular component 181, and runs toward the winding section 5. As such, the spun yarn Y is sandwiched between the annular component 181 and the rotation plate 173.
  • pulleys 182 are connected to the output shaft 36 of the winding arm motor 30 via: the speed reducer 177 that reduces the rotation speed of the winding arm motor 30 at a predetermined reduction ratio and transmits the rotation; the pulley 178a connected to the speed reducer 177; the pulley 178b connected to the pulley 178a; the pulley 178c connected to the pulley 182; and the shaft 179 connecting the pulley 178b with the pulley 178c.
  • the winding arm motor 30 functions also as a roller drive motor for rotating the rollers 171.
  • all of the rollers 171 may be drive rollers rotated by the winding arm motor 30, or only some of the rollers 171 are drive rollers whereas the remaining rollers may be driven rollers.
  • the three winding assist members 174 are attached to the base 172 to surround the lower end portions of the rollers 171 and to be away from one another at about angles of 120 degrees.
  • the winding assist member 174 has, at a part between neighboring rollers 171, a winding assist surface 174a for smoothly connecting the outer circumferences of the rollers 171 with each other.
  • the lower end portions of the rollers 171 and the winding assist surface 174a form a surface that substantially continuously extends in the circumferential directions.
  • the winding assist surface 174a is inclined inward from bottom to top, with respect to the circumferential directions.
  • the spun yarn Y is guided to the lower end portions of the rollers 171 by the winding arm 29 and wound onto the. lower end portions of the rollers 171.
  • the winding assist member 174 is provided to surround the lower end portions of the rollers 171 as described above, and the lower end portions of the rollers 171 and the winding assist surface 174a form a surface extending substantially continuously along the virtual circumferential directions.
  • the spun yarn Y is therefore wound across the rollers 171 and the winding assist surface 174a. For this reason, it is possible to smoothly wind the spun yarn Y onto the rollers 171.
  • the roller 171 also rotates at this time, and therefore the spun yarn Y wound onto the roller 171 by the winding arm 29 is conveyed by the roller 171.
  • the rollers 171 are inclined in the circumferential directions as described above, the spun yarn Y conveyed by the rollers 171 moves upward (in the transportation direction).
  • the load (friction force) on the spun yarn Y is small when moving upward.
  • the broken filaments of the spun yarn Y are laid down.
  • the spun yarn Y wound across the lower end portions of the rollers 171 and the winding assist member 174 moves upward not only by the rotation of the drive rollers 171 but also by the inclination of the winding assist surface 174a of the winding assist member 174.
  • a component such as the O-ring 71 and the umbrella-shaped component 76, 81 of the modifications 1 to 3 may be provided in place of the annular component 181 provided on the rotation plate 173.
  • the accumulator is not limited to those arranged such that the spun yarn Y is wound onto the yarn storage drum 27 or the roller 171 by the winding arum 29.
  • an accumulator 261 is provided in place of the accumulator 7.
  • the accumulator 261 includes components such as a rotational storage drum 271, a rotational storage drum motor 272, a yarn guiding member 273, a blowdown nozzle 274, and a yarn passage forming member 275.
  • the rotational storage drum 271 is a drum rotated about the axis E by the rotational storage drum motor 272.
  • the respective end portions of the drum 271 are enlarged portions 271a and 271b each of which is narrowed toward the other end portion, and a part of the drum 271 between the enlarged portion 271a and the enlarged portion 271b is a linear portion 271c having a substantially constant diameter.
  • the spun yarn Y is wound onto substantially a half of the linear portion 271c on the enlarged portion 271a side, so that the spun yarn Y is stored.
  • annular component 281 Balloon regulator
  • This annular component 281 is made of a rubber material and its diameter in the case where no external force is applied is shorter than the diameter of the linear portion 271c.
  • the annular component 281 wraps up the linear portion 271c while being elongated to have more or less the same diameter as the linear portion 271c.
  • the spun yarn Y wound onto the linear portion 271c passes through the gap between the annular component 281 and the linear portion 271b and then runs toward the gate-type tensor 24. As such, the spun yarn Y is sandwiched between the annular component 281 and the linear portion 271c.
  • the yarn guiding member 273 is a linear pipe and is disposed so that the upper left end portion shown in Fig. 18 opposes the enlarged portion 271a. With this, the spun yarn Y having reached the yarn guiding member 273 from the yarn supplying portion 3 side is guided to the enlarged portion 271a by the yarn guiding member 273.
  • the blowdown nozzle 274 is attached to the right edge of the yarn guiding member 273.
  • the blowdown nozzle 274 has the same structure as the blowdown nozzle 74 (see Fig. 2 ), and includes a yarn path 246 similar to the yarn path 46 (see Fig. 2 ) and a blowdown path 247 which is connected to a compressed air source 51 via connection pipes 49 and 50 in the same manner as the blowdown path 47 (see Fig. 2 ).
  • the upper left end portion of the yarn path 246 in the figure is connected to the internal space of the yarn guiding member 273.
  • the yarn passage forming member 275 forms a yarn passage 228 and is provided between the suction port 18b of the upper yarn guide pipe 18 and the blowdown nozzle 274.
  • the yarn passage 228 extends substantially vertically upward from its lower end which is immediately above the suction port 18b of the upper yarn guide pipe 18.
  • the yarn passage 228 bends toward the upper left of Fig. 18 at its upper end portion, so that the upper end of the yarn passage 228 opposes the lower right end portion of the yarn path 246.
  • a yarn drawing sensor 54 is provided at the lower end of the yarn passage forming member 275.
  • the yarn Y is wound onto the enlarged portion 271a by the rotation of the rotational storage drum 271 and moves rightward and upward along the slope of the enlarged portion 271a, with the result that the spun yarn Y is stored in the rotational storage drum 271.
  • the yarn guiding member 273 is only required to guide the spun yarn Y to that point of the enlarged portion 271a. It is therefore possible to relatively easily dispose the yarn guiding member 273 irrespective of the position and orientation of the rotational storage drum 271. For this reason, the rotational storage drum 271 can be disposed with relatively high design freedom in consideration of an unused space in the winding unit 2.
  • the solenoid valve 52 is switched to the open state so that an airflow flowing from the rotational storage drum 271 side to the upper yarn guide pipe 18 side is generated in the internal space of the yarn guiding member 273, the yarn passage 228, or the like, and the rotational storage drum 271 is rotated in the direction opposite to the direction at the time of winding the spun yarn Y so that the yarn end of the spun yarn Y on the rotational storage drum 271 is sucked into the opening of the yarn guiding member 273 and drawn out to the suction port 18b of the upper yarn guide pipe 18 via the yarn passage 228 or the like.
  • the spun yarn Y guided from the yarn guiding member 273 to the rotational storage drum 271 moves from the upper right end side toward the lower left end side with respect to the axial directions of the rotational storage drum 271.
  • This arrangement prevents the spun yarn Y guided to the enlarged portion 271a from moving to the upper right end side of the rotational storage drum 271 due to the inertia generated by the movement from the yarn guiding member 273 to the rotational storage drum 271.
  • the yarn end of the spun yarn Y is certainly placed at around the enlarged portion 271a of the rotational storage drum 271, strictly speaking, above the lower left end portion of the linear portion 271c, and hence the yarn Y is certainly sucked into the opening of the yarn guiding member 273.
  • the spun yarn Y which is unwound from the rotational storage drum 271 (linear portion 271c) and tends to swell outward passes through the gap between the annular component 281 and the linear portion 271c and then runs toward the winding section 5. It is therefore possible to restrain the balloon from becoming large and to lay down the broken filaments of the spun yarn Y.
  • the annular component 281 is shorter in diameter than the linear portion 271c when no external force is applied, and is attached to the linear portion 271c while it is elongated to have more or less the same diameter as the linear portion 271c.
  • the annular component 281 and the linear portion 271c therefore sandwich the spun yarn Y with a stronger force, and hence the broken filaments of the spun yarn Y are certainly laid down.
  • the annular component 281 rotates together with the rotational storage drum 271, it is possible to prevent the annular component 281 from being worn away by the rotational storage drum 271.
  • the spun yarn Y unwound from the rotational storage drum 271 rotates and runs on a part between the part of the linear portion 271c where the spun yarn Y is wound and the part of the linear portion 271c where the annular component 81 is attached, i.e., on substantially a half of the surface of the linear portion 271c on the enlarged portion 271b side, and this also contributes to the effect of laying down the broken filaments of the spun yarn Y.
  • the enlarged portion 271b may not be provided because, thanks to the frictional force with the spun yarn Y, the annular component 281 does not drop off from the rotational storage drum 271.
  • the annular component 281 is made of a rubber material, it is easy to attach the annular component 281 to the rotational storage drum 271 and to replace the annular component 281.
  • a component such as the annular component 66, the O-ring 71, and the umbrella-shaped component 76, 81 of the embodiment above and the modifications 1 to 3 may be provided in place of the annular component 281 wrapping up the rotational storage drum 271.
  • the balloon regulator of the resent invention us an annular component disposed to enclose the spun yarn Y unwound from the accumulator such as the annular components 66, 181, and 261, the o-ring 71, and the umbrella-shaped components 76 and 81
  • the balloon regulator may not be an annular component.
  • the balloon regulator may be a component which is provided only on a part of the region enclosing the spun yarn Y unwound from the accumulator, as long as the regulator is capable of regulating the ballooning of the spun yarn Y by contacting the spun yarn Y that is unwound from the accumulator and tends to swell outward.
EP10820661.6A 2009-09-30 2010-09-30 Yarn winder Active EP2484621B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009228888 2009-09-30
JP2009228941 2009-09-30
JP2009228787 2009-09-30
PCT/JP2010/067117 WO2011040546A1 (ja) 2009-09-30 2010-09-30 糸巻取装置

Publications (3)

Publication Number Publication Date
EP2484621A1 EP2484621A1 (en) 2012-08-08
EP2484621A4 EP2484621A4 (en) 2013-06-19
EP2484621B1 true EP2484621B1 (en) 2016-09-14

Family

ID=43826358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10820661.6A Active EP2484621B1 (en) 2009-09-30 2010-09-30 Yarn winder

Country Status (4)

Country Link
EP (1) EP2484621B1 (ja)
JP (1) JP5365698B2 (ja)
CN (1) CN102574657B (ja)
WO (1) WO2011040546A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471923B2 (ja) * 2010-07-15 2014-04-16 村田機械株式会社 糸巻取装置
EP2774883B1 (de) * 2013-03-08 2016-06-08 Gebrüder Loepfe AG Verfahren zum Spulen und Reinigen eines Garns
JP2016016969A (ja) * 2014-07-10 2016-02-01 村田機械株式会社 糸貯留装置、糸巻取ユニット及び糸巻取機
JP2016044016A (ja) 2014-08-21 2016-04-04 村田機械株式会社 糸巻取装置及び自動ワインダ
DE102019116671A1 (de) * 2019-06-19 2020-12-24 Maschinenfabrik Rieter Ag Spinnmaschine sowie Verfahren zum Betreiben einer Spinnstelle einer Spinnmaschine
CN110541236B (zh) * 2019-08-31 2020-12-29 嘉兴科禾能源科技有限公司 一种帆布生产用同步进线且带有提醒的设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2553892A1 (de) * 1975-11-29 1977-06-02 Skf Kugellagerfabriken Gmbh Offen-end-spinnmaschine
DE3415447A1 (de) * 1983-06-24 1985-01-10 Výzkumný ústav bavlnářský, Ustí nad Orlicí Vorrichtung zum abziehen und aufwickeln von garn

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT236136B (de) * 1961-10-31 1964-10-12 Alberto Gustavo Sarfati Vorrichtung zur Präzisionsmessung der Länge eines laufenden Fadens oder Garnes
AT244814B (de) * 1963-08-14 1966-01-25 Elitex Zavody Textilniho Verfahren und Vorrichtung zur Herstellung eines Garnvorrates beim Garnspulen
DE2056593A1 (de) * 1970-11-17 1972-06-15 Zinser-Textilmaschinen Gmbh, 7333 Ebersbach Vorrichtung zum Transportieren von Fäden
DE2542824C2 (de) * 1975-09-25 1977-11-17 Ab Iro, Ulricehamn (Schweden) Fadenliefervorrichtung
JPS5516888A (en) * 1978-04-06 1980-02-05 Du Pont Canada Method of and apparatus for winding bulked yarn
DE2907242A1 (de) * 1979-02-23 1980-09-04 Iro Ab Texturieranlage
DE3116683C2 (de) * 1981-04-28 1984-01-26 Hacoba Textilmaschinen Gmbh & Co Kg, 5600 Wuppertal Verfahren und Vorrichtung zur Längenmessung textiler Fäden
JP2519792Y2 (ja) * 1991-11-06 1996-12-11 村田機械株式会社 自動ワインダの巻取ユニット
DE4310951A1 (de) * 1993-04-02 1994-10-27 Zinser Textilmaschinen Gmbh Verfahren und Vorrichtung zum selbsttätigen Beheben von Fadenbrüchen an Ringspinnmaschinen
IT1265459B1 (it) * 1993-12-29 1996-11-22 Roj Electrotex Nuova Srl Dispositivo di contenimento del filo in uscita da alimentatori di filo
JP2001089955A (ja) * 1999-09-24 2001-04-03 Tsudakoma Corp 緯糸貯留装置
NL1013672C1 (nl) * 1999-11-25 2001-05-28 Te Strake Bv Draadafloopinrichting.
IT1320321B1 (it) * 2000-04-28 2003-11-26 Lgl Electronics Spa Dispositivo antiballoon o simile tipicamente ma non esclusivamente per apparecchi alimentatori di trama a telai di tessitura,particolarmente
JP4244131B2 (ja) * 2002-11-08 2009-03-25 村田機械株式会社 特殊な絣糸の製造方法とその巻糸パッケージ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2553892A1 (de) * 1975-11-29 1977-06-02 Skf Kugellagerfabriken Gmbh Offen-end-spinnmaschine
DE3415447A1 (de) * 1983-06-24 1985-01-10 Výzkumný ústav bavlnářský, Ustí nad Orlicí Vorrichtung zum abziehen und aufwickeln von garn

Also Published As

Publication number Publication date
JPWO2011040546A1 (ja) 2013-02-28
CN102574657A (zh) 2012-07-11
WO2011040546A1 (ja) 2011-04-07
EP2484621A4 (en) 2013-06-19
CN102574657B (zh) 2016-01-20
JP5365698B2 (ja) 2013-12-11
EP2484621A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
EP2484621B1 (en) Yarn winder
EP2484620B1 (en) Yarn winder
EP2377793B1 (en) Yarn winding device and automatic winder
EP2284300B1 (en) Spinning machine and yarn removing method for removing yarn remaining on yarn accumulating roller
EP2664572B1 (en) Yarn winding device and yarn winding method
EP3028977B1 (en) Yarn winder
EP2407406B1 (en) Fluff binding device, tension applying unit, and automatic winder
CN101994174B (zh) 纺纱机械
JP2006306588A (ja) 繊維機械における糸の弛み取り装置
WO2012127939A1 (ja) 糸巻取装置及び糸巻取方法
JP2010047360A (ja) 繊維機械
EP2484618B1 (en) Yarn winder
JP2010174421A (ja) 紡績機
JP2016016957A (ja) 糸巻取機及び糸巻取方法
JP5804306B2 (ja) 糸貯留装置及び糸巻取機
JP2014125349A (ja) 糸貯留装置及び紡績ユニット
JP2016044016A (ja) 糸巻取装置及び自動ワインダ
CN105568453B (zh) 导纱器、芯纱供给装置及纺纱机械
WO2012120963A1 (ja) 糸貯留引出装置及び糸巻取装置
EP3447015A1 (en) Yarn guide, yarn accumulating device, and yarn winding machine
CN108286093A (zh) 一种纺纱机
CN112110281A (zh) 纱线卷绕装置及包头纱形成方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130523

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 69/04 20060101ALI20130516BHEP

Ipc: B65H 57/22 20060101ALI20130516BHEP

Ipc: B65H 51/22 20060101AFI20130516BHEP

17Q First examination report despatched

Effective date: 20150105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160229

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 828734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010036473

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 828734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010036473

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230822

Year of fee payment: 14