EP2483547A1 - Stahlkolben für verbrennungsmotoren - Google Patents

Stahlkolben für verbrennungsmotoren

Info

Publication number
EP2483547A1
EP2483547A1 EP10750070A EP10750070A EP2483547A1 EP 2483547 A1 EP2483547 A1 EP 2483547A1 EP 10750070 A EP10750070 A EP 10750070A EP 10750070 A EP10750070 A EP 10750070A EP 2483547 A1 EP2483547 A1 EP 2483547A1
Authority
EP
European Patent Office
Prior art keywords
piston
steel
alloy
cylinder
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10750070A
Other languages
English (en)
French (fr)
Inventor
Tilmann Haug
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2483547A1 publication Critical patent/EP2483547A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • F02F3/0092Pistons  the pistons being constructed from specific materials the material being steel-plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/02Pistons  having means for accommodating or controlling heat expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Definitions

  • the invention relates to steel pistons for internal combustion engines and internal combustion engines with steel pistons and internal combustion engines with steel pistons and a
  • Cylinder crankcase made of light metal.
  • DE 10 2006 030 699 A1 likewise discloses a steel piston for internal combustion engines which consists of a density-reduced steel alloy of the composition in% by weight Mn: 12-35 Al: 6-16 Si: 0.3-3 C: 0.8 -1, 1 Ti: to 0.03 remainder Fe as well
  • Thermal expansion coefficients have as steels, there are significant differences in the operation of internal combustion engines in the thermal
  • Piston noise which is one of the main causes for the noise of the crank mechanism in the internal combustion engine, is primarily excited by the piston side forces (piston impact). Due to the rapidly changing piston side force, the piston is pressed from one side of the cylinder bore to the other side. When the engine is cold and with light metal pistons, this effect is particularly noticeable as piston rattling. Therefore, acoustically effective measures for
  • the object is achieved by a steel piston with a
  • Cylinder crankcases made of light metal alloys with the characteristics of Patent claim 1 and with an internal combustion engine with a steel piston having the features of claim 7.
  • CTE Coefficient of expansion
  • Particularly suitable stainless steels include in particular steel alloy with a thermal expansion coefficient in the range of 16 to 19 * 10 "6 / K.
  • the lower piston part comprises the piston skirt or the piston skirt.
  • Diesel piston is the so-called smooth-shaft piston with its closed, interrupted only in the area of the bolt holes shank preferred.
  • Versatile are the designs of the piston stems in pistons for gasoline engines. For reasons of weight, because of the higher speeds their shaft shape is limited only to relatively narrow shaft surfaces.
  • Typical designs are box pistons, window pistons and asymmetrical pistons with different widths of running surfaces. With the selected stainless steel with high CTE can also be a very good
  • Carry out alignment on cylinder crankcase which are constructed of gray cast iron, or which have gray cast iron bushings or gray cast cylinder liners.
  • An embodiment of the invention thus comprises the combination of a steel piston with a CTE in the range of 13 to 16 * 10 "6 / K and a cylinder crankcase made of gray cast iron or a CCG with gray cast iron bushings.
  • the stainless steels with high CTE (thermal expansion coefficient) according to the invention are particularly preferably selected from stainless steels having a Cr content of 15-26% and a Ni content of 8-15%. Unless otherwise indicated, it is always the content in% by weight or% by mass to understand.
  • the Cr content is 17 to 20% and the Ni content is 9 to 13%.
  • Ni contents near the upper limit are particularly suitable.
  • Stainless steel alloys also required high tensile strength and elongation at break.
  • the piston skirt or the piston skirt should absorb the lateral forces without deforming or tearing, on the other hand, it should elastically adapt to the deformations of the cylinder. Preference is therefore given to choosing stainless steels which
  • Particularly suitable stainless steels with high CTE include steels with the following essential alloy components (in% by mass):
  • the stainless steels are with the following essential
  • the steel piston is constructed in one piece from a single steel alloy with a high CTE.
  • a casting method such as a low-pressure casting method is used.
  • the cooling channel is poured by suitable core method.
  • the upper piston part which also includes the piston ring grooves, forged.
  • the piston upper part with cooling channel can be produced more cost-effectively by forging technology than by casting technology. Therefore, assembled forged crowns of a high CTE steel alloy and a high CTE steel alloy cast body are particularly preferred.
  • both parts can be forged or cast both parts.
  • the usual methods in particular welding, induction welding, friction welding, or laser welding can be used.
  • Piston upper part are made less demanding.
  • the lower piston part is typically larger, or longer than the upper part.
  • it usually carries no seals or piston rings or the like.
  • the piston is generally guided in the region of the piston skirt or shaft. But there are also known pistons, both in the area of the piston skirt as well as in the area of
  • Piston shell are performed.
  • the steel alloy with high CTE is used in the area of the piston guide.
  • only the piston lower part, comprising the piston skirt or skirt is formed from a steel alloy with a high CTE. Since the comparatively lower thermal conductivity of the stainless steels can be a disadvantage, as it can lead to overheating of the combustion bowl or the whole piston, and multi-part piston can be manufactured with adapted to upper and lower part different material properties. Only one of the two parts consists of a steel alloy with a high CTE.
  • the Stahlkoben is constructed two or more parts.
  • the piston upper part on a wear-resistant alloyed tempering steel. Since the selected steel alloys for the lower part have only comparatively low thermal conductivities, steels with higher thermal conductivity are also of importance for the upper piston part.
  • Particularly suitable steels of the piston upper part include in particular steels from the group MoCr4, 42CrMo4, CrMo4, 31CrMoV6 or 25MoCr4. The choice of material in the two- or multi-part design is nevertheless not limited to steels for the upper piston part.
  • Piston top and piston bottom can be joined together by welding or soldering. Friction welding, induction welding or laser welding are particularly preferred.
  • FIG. 1 shows a piston (1) in cross section, with upper part (12) and lower part (13),
  • an internal combustion engine which has steel pistons and in which the cylinder crankcase (ZKG)
  • Light metal is formed. It also includes cylinder crankcases whose
  • Runways are formed by other materials, such as cast-cylinder liners or wear protection layers.
  • the steel piston is formed at least in the lower part of a high-WAK stainless steel in the range of 14 to 20 * 10 "6 / K.
  • As light metal alloy in particular AI alloys are used.
  • the socket body is preferably made of a high-strength aluminum alloy or of an aluminum alloy reinforced by reinforcing agent.
  • Particularly suitable AI alloys include eutectic to hypoeutectic Al-Si alloys, in particular from the series AISi5 to AlSil 1.
  • Particularly preferred are Al alloys with a higher Si content, such as. AISM 1, AISi10 or AISi9, since the WAK usually decreases slightly with increasing Si content.
  • the track of the cylinder crankcase can be formed in a known manner by a running Al-Si alloy, metal composite material, wear protection coating or gray cast iron. These can be prefabricated partly as a separate cylinder liner or liner package and in the socket body of light metal alloy
  • the cylinder crankcase may be constructed of an Al alloy or optionally also Mg alloy, while the
  • Al-Si alloy or gray cast alloy is formed.
  • metal composite materials are materials made of metal matrix, in particular of Al alloy, and disperse phase of hard or wear-resistant materials, in particular from silicon particles, ceramic particles or ceramic fibers to understand.
  • Suitable metal composite materials are known, for example, under the names Silitec® or Lokasil®. Particularly preferred is the career of the ZKG by a
  • Spray compacting layer formed on the cylinder liner or directly on the base material of the socket body It is particularly advantageous if this constructively eliminates the production of a separate cylinder liner.
  • the adaptation of the CTE of the steel piston to the light metal alloy of the socket body, or the cylinder crankcase is particularly important because the piston faces as a sliding partner only a thin wear protection coating or spray coating and not a quasi-massive cylinder liner.
  • thermal spray coatings according to the LDS process electric arc wire spraying based on iron alloys. These are preferably applied directly to the inner wall of the cylinder bore made of an Al-Si alloy.
  • the ZKG in monolithic construction, for example, from a
  • hypereutectic AISi alloy such as AISi17Cu4Mg.
  • the entire crankcase is preferably produced in the low-pressure Kokilleng goreas.
  • crankcase made of a hypoeutectic alloy, in particular an Al-Si alloy with Si ⁇ 11%. Die casting is particularly advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Stahlkolben mit einem Kolbenoberteil (12) mit Verbrennungsmulde (11) und Ringwand (5) sowie mit einem Kolbenunterteil (13) mit Kolbenschaft oder Kolbenhemd und mit Pleuellager (8) für Verbrennungsmotoren mit Zylinderkurbelgehäusen aus Leichtmetalllegierungen, wobei zumindest das Kolbenunterteil aus einer Stahllegierung besteht, welche einen thermischen Ausdehnungskoeffizienten im Bereich von 13 bis 20 * 10-6 1/K aufweist.

Description

Stahlkolben für Verbrennungsmotoren
Die Erfindung betrifft Stahlkolben für Verbrennungsmotoren und Verbrennungsmotoren mit Stahlkolben und Verbrennungsmotoren mit Stahlkolben und einem
Zylinderkurbelgehäuse aus Leichtmetall.
Aufgrund der zunehmenden Anforderungen möglichst hoher Spitzendrücke in Hubkolben- Verbrennungsmotoren die bei bis zu 250 bar liegen, sind die häufig verwendeten
Leichtbau-Aluminiumkolben zunehmend an ihre Leistungsgrenze gestoßen. Dies trifft insbesondere für Dieselmotoren zu. Daher werden für den LKW- aber auch den PKW- Bereich zunehmend wieder Stahlkolben gefordert. Dabei wird die grundsätzlich höhere Festigkeit von Stählen genutzt.
Die Verwendung von Stahlkolben ist im Prinzip bekannt, wobei unterschiedliche
Stahlzusammensetzungen und Fertigungsverfahren beschrieben werden. Aus der DE 102 44 513 A1 ist beispielsweise ein Verfahren zur Herstellung eines mehrteiligen gekühlten Kolbens bekannt. Das Kolbenoberteil ist aus warmfestem Stahl und das Kolbenunterteil aus geschmiedetem AFP-Stahl (ausscheidungshärtender ferritisch- perlitischer Stahl) gefertigt. Das nachfolgende Fügen bzw. Verbinden der Ringrippe des Kolbenoberteils mit der Tragrippe des Kolbenunterteils erfolgt mittels eines Schweiß- oder Lötverfahrens.
In der EP 16 2 395 A1 wird vorgeschlagen, den gesamten Kolben aus Stahl zu gießen. Es sind insbesondere die folgenden Stahlzusammensetzungen (in Massenprozent) als Gusslegierung geeignet: C <0.8%, Si <3%, Mn <3%, S <0.2%, Ni <3%, Cr <6%, Cu 6%, Nb 0.01-3%, Rest Fe mit unvermeidbaren Verunreinigungen oder C <0.1-0.8%, S < 3%, Si <3%, Mn <3%, S <0.2%, Ni <10%, Cr <30%, Cu <6%, Nb <0.05-8% und Rest Fe mit unvermeidbaren Verunreinigungen. Dabei spielen insbesondere die gute
Raumtemperatur Streckgrenze sowie eine hohe Hochtemperatur-Zugfestigkeit und Bruchfestigkeit einer Rolle. Aus der DE 10 2006 030 699 A1 ist ebenfalls ein Stahlkolben für Verbrennungsmotoren bekannt, welcher aus einer dichtereduzierten Stahllegierung der Zusammensetzung in Gew.-% Mn: 12-35 AI: 6-16 Si: 0,3-3 C: 0,8-1 ,1 Ti: bis 0,03 Rest Fe sowie
unvermeidliche Stahlbegleitelemente oder aus einer Edelstahllegierung der
Zusammensetzung in Gew.-% Mn: 3-9 Si: 0,3-1 C: 0,01-0,03 Cr: 15-27 Ni: 1-3 Cu: 0,2- 1 N: 0,05-0,17 Rest Fe sowie unvermeidliche Stahlbegleitelemente besteht, ist.
Beim Einsatz der bekannten Stahlkolben in Zylinderkurbelgehäusen aus Leichtmetallen führt der Unterschied der thermischen Ausdehnungen von Stahl und Leichtmetallen aber zu besonderen Problemen. Der Kolbenschaft oder auch das Kolbenhemd, welcher die den unteren Teil des Kolbens mehr oder weniger umhüllende Partie darstellt, übernimmt die Geradführung des Kolbens im Zylinder. Diese Aufgabe kann er nur bei
ausreichendem Spiel zum Zylinder erfüllen. Durch genügende Schaftlänge und enge Führung wird das so genannte Kolbenkippen beim Anlagewechsel des Kolbens von der einen zur gegenüberliegenden Zylinderwand (Kolbensekundärbewegung) gering gehalten. Da die für Zylinderkurbelgehäuse geeigneten Leichtmetalllegierungen, insbesondere AI-Legierungen, einen bedeutend höheren
Wärmeausdehnungskoeffizienten (WAK oder a) als Stähle aufweisen, gibt es beim Betrieb der Verbrennungsmotoren deutliche Unterschiede in der thermischen
Ausdehnung. Dabei treten im Betrieb Probleme der Kolbenführung auf, was sich unter anderem durch Geräuschbildung, wie Klappern bemerkbar machen kann. Das
Kolbengeräusch, welches eine der Hauptursachen für die Geräuschentwicklung des Kurbeltriebs im Verbrennungsmotor ist, wird in erster Linie durch die Kolbenseitenkräfte angeregt (Kolbenschlag). Durch die schnell wechselnde Kol benseiten kraft wird der Kolben von einer Seite der Zylinderlaufbahn auf die andere Seite gedrückt. Bei kaltem Motor und bei Leichtmetallkolben macht sich dieser Effekt besonders deutlich als Kolbenklappern bemerkbar. Akustisch wirksam sind deshalb Maßnahmen zur
Verbesserung der Kolbenführung durch den Schaft und Maßnahmen zur Verringerung des Kolbenkippens.
Es ist daher Aufgabe der Erfindung Stahlkolben mit verbesserter Kolbenführung für Verbrennungsmotoren mit Leichtmetallzylinderkurbelgehäuse bereit zu stellen.
Die Aufgabe wird erfindungsgemäß gelöst durch einen Stahlkolben mit einem
Kolbenoberteil sowie mit einem Kolbenunterteil für Verbrennungsmotoren mit
Zylinderkurbelgehäusen aus Leichtmetalllegierungen mit den Merkmalen des Patentanspruchs 1 und mit einem Verbrennungsmotor mit einem Stahlkolben mit den Merkmalen des Anspruchs 7.
Für die Erfindung ist es somit von besonderer Bedeutung, dass für den Kolben Edelstahle zum Einsatz kommen, welche einen besonders hohen Wärmeausdehnungskoeffezienten (WAK) besitzen, beziehungsweise einen WAK, der möglichst nahe an denjenigen von Aluminiumlegierungen oder Leichtmetalllegierungen für Zylinderkurbelgehäuse heranreicht. Hierdurch wird im Betrieb das Spiel verringert, mit dem der Kolben durch die wechselnde Kolbenseitenkraft von einer Seite der Zylinderlaufbahn auf die andere Seite gedrückt werden kann. Erfindungsgemäß ist somit vorgesehen, dass zumindest das Kolbenunterteil aus einer Stahllegierung besteht, welche einen thermischen
Ausdehnungskoeffizienten (WAK) im Bereich von 13 bis 20 * 10"6 / K aufweist. Soweit nicht anders angegeben, ist dabei immer der WAK bei 20°C beziehungsweise der WAK bei Raumtemperatur zu verstehen.
Zu den besonders geeigneten Edelstählen zählen insbesondere Stahllegierung mit einem thermischen Ausdehnungskoeffizienten im Bereich von 16 bis 19 * 10"6 /K.
Unter Berücksichtigung des WAK bei Raumtemperatur von in Zylinderkurbelgehäusen üblichen AI-Legierungen von ca. 19 bis 25 * 10"6 / K lässt sich mit den gewählten
Edelstählen eine sehr gute Angleichung der thermischen Ausdehnung in
Leichtmetallzylinderkurbelgehäusen erreichen. Der Spalt zwischen Zylinderlaufbahn und Kolben, beziehungsweise Kolbenschaft oder Kolbenhemd bei Betriebstemperatur kann hierdurch maßgeblich reduziert werden. Dies gilt insbesondere auch für Aluminium- Zylinderkurbelgehäuse mit eingegossenen Zylinderlinern oder Laufflächen aus
Spritzschichten, da der WAK des Zylinderkurbelgehäuses durch letztere nur unwesentlich ungünstig beeinflusst wird.
Das Kolbenunterteil umfasst dabei den Kolbenschaft oder das Kolbenhemd. Bei
Dieselkolben wird der sogenannte Glattschaftkolben mit seinem geschlossenen, nur im Bereich der Bolzenbohrungen unterbrochenen Schaft bevorzugt. Vielseitiger sind die Ausführungen der Kolbenschäfte bei Kolben für Ottomotoren. Aus Gewichtsgründen wegen der höheren Drehzahlen wird ihre Schaftform nur noch auf verhältnismäßig schmale Schaftflächen begrenzt. Typische Bauformen sind Kastenkolben, Fensterkolben und asymmetrischer Kolben mit unterschiedlich breiten Laufflächen. Mit den gewählten Edelstählen mit hohem WAK lässt sich auch eine sehr gute
Angleichung an Zylinderkurbelgehäuse durchführen, welche aus Grauguss aufgebaut sind, oder welche Graugussbuchsen bzw. Graugusszylinderliner aufweisen. Eine Ausgestaltung der Erfindung umfasst somit die Kombination eines Stahlkolbens mit einem WAK im Bereich von 13 bis 16 * 10"6 /K und einem Zylinderkurbelgehäuse aus Grauguss oder einem ZKG mit Graugussbuchsen.
Die Edelstähle mit erfindungsgemäß hohem WAK (Wärmeausdehnungskoeffizienten) werden besonders bevorzugt aus Edelstählen mit einem Cr-Gehalt von 15-26% und einem Ni-Gehalt von 8-15% ausgewählt. Soweit nicht anders bezeichnet ist dabei immer der Gehalt in Gewichts-% oder Masse-% zu verstehen..
Besonders bevorzugt liegen der Cr-Gehalt bei 17 bis 20% und der Ni-Gehalt bei 9 bis 13%.
Besonders geeignet sind Ni-Gehalte nahe der angegebenen Obergrenze, insbesondere bei 11 bis 13 %.
Neben den hohen Wärmeausdehnungskoeffizienten wird von den geeigneten
Edelstahllegierungen auch eine hohe Zugfestigkeit und Bruchdehnung gefordert.
Einerseits soll der Kolbenschaft oder das Kolbenhemd die Seitenkräfte aufnehmen, ohne sich zu verformen oder anzureißen, andererseits soll er sich elastisch den Verformungen des Zylinders anpassen. Bevorzugt werden daher Edelstähle gewählt, welche
Zugfestigkeiten oberhalb 500 N/mm2 und Bruchdehnungen oberhalb 35 % aufweisen.
Zu den besonders geeigneten Edelstählen mit hohem WAK zählen Stähle mit den folgenden wesentlichen Legierungskomponenten (in Massen %):
C: 0,05 bis 0,15; Si: max 1 ,0 ; Mn: 1 bis 3 ; Cr: 15 bis 20; Mo: max. 4 ; Ni: 8 bis 13, N: max. 0,15 und Rest Fe. Insbesondere geeignet sind die Edelstähle der folgenden Bezeichnungen bzw. DIN-Namen: X5CrNi 18-10, DIN 1.14301 , X2CrNi 19-11 , DIN 1.4306, X2CrNi 18-9, DIN 1.4307, X2CrNiMo 17-12-2 oder DIN1.4404.
Ebenso sind auch die Edelstähle mit den folgenden wesentlichen
Legierungskomponenten (in Massen %) besonders geeignet:
C: 0,2 bis 0,45; Si: 1 ,5 bis 1 ,75; Mn: 0,5 bis 1 ,0; Cr:18 bis 22; Ni: 10,5 bis 14; Rest Fe. Insbesondere geeignet sind die Edelstähle der folgenden Bezeichnungen bzw. DIN- Namen: GX40CrNiSi 27-4, DIN 1.4832, GX40CrNiSi 22-10 oder DIN 1.4826. In einer ersten erfindungsgemäßen Ausgestaltung ist der Stahlkolben einteilig aus einer einzigen Stahllegierung mit hohem WAK aufgebaut. Als Herstellungsverfahren wird insbesondere ein Gießverfahren, wie beispielsweise ein Niederdruckgussverfahren angewendet. Bevorzugt wird dabei durch geeignete Kernverfahren auch der Kühlkanal gegossen.
Ebenso ist es möglich den Kolben mehrteilig aus derselben oder auch aus
unterschiedlichen Stahllegierungen mit hohem WAK aufzubauen. Dabei sind
insbesondere diejenigen Herstellungsvarianten von Vorteil, bei denen das Kolbenoberteil, welches auch die Kolbenringnuten umfasst, geschmiedet ist. In der Regel lässt sich das Kolbenoberteil mit Kühlkanal durch Schmiedetechnik kostengünstiger herstellen als durch Gießtechnik. Daher sind zusammengefügte Kolben mit geschmiedetem Oberteil aus einer Stahllegierung mit hohem WAK und einem gegossenen Unterteil aus einer Stahllegierung mit hohem WAK besonders bevorzugt.
Je nach konstruktiver Ausgestaltung des Kolbens und Gieß- bzw. Schmiedefähigkeit der gewählten Stahllegierung mit hohem WAK können aber auch beide Teile geschmiedet oder beide Teile gegossen sein.
Zur Verbindung der beiden Teile können die üblichen Verfahren, insbesondere das Schweißen, Induktionsschweißen, Reibschweißen, oder Laserschweißen angewendet werden.
Überraschenderweise hat sich gezeigt, dass der Auswahl eines Stahls mit angepasstem WAK beim Kolbenunterteil gegenüber dem Kolbenoberteil eine maßgebliche Rolle zukommt. Bei optimaler Ausgestaltung des Kolbenunterteils müssen an das
Kolbenoberteil weniger hohe Ansprüche gestellt werden. Das Kolbenunterteil ist dabei typischerweise größer, bzw. länger ausgebildet als das Oberteil. Im Gegensatz zum Kolbenoberteil trägt es in der Regel auch keine Dichtringe bzw. Kolbenringe oder dergleichen. Bei den bekannten Kolbenkonstruktionen wird der Kolben im Allgemeinen im Bereich des Kolbenhemdes, bzw. -Schaftes geführt. Es sind aber auch Kolben bekannt, die sowohl im Bereich des Kolbenhemdes als auch im Bereich des
Kolbenoberteils geführt werden. Um das Ziel zu erreichen, den Druckverlust zu verringern und eine Geräuschbildung zu unterbinden, ist es daher von besonderer Bedeutung, dass die Stahllegierung mit hohem WAK im Bereich der Kolbenführung eingesetzt wird. In einer weiteren erfindungsgemäßen Ausgestaltung ist nur das Kolbenunterteil, umfassend Kolbenschaft oder -hemd, aus einer Stahllegierung mit hohem WAK ausgebildet. Da die vergleichsweise geringere Wärmeleitfähigkeit der Edelstahle einen Nachteil darstellen kann, da es zu Überhitzung der Verbrennungsmulde bzw. des ganzen Kolbens kommen kann, können auch mehrteilige Kolben mit an Ober- und Unterteil angepassten unterschiedlichen Werkstoffeigenschaften hergestellt werden. Dabei besteht nur einer der beiden Teile aus einer Stahllegierung mit hohem WAK. Somit wird der Stahlkoben zwei oder mehrteilig aufgebaut. Hierbei sind Kolbenoberteil mit
Verbrennungsmulde und Ringwand sowie Kolbenunterteil mit Kolbenhemd und
Pleuellager zu unterscheiden.
In bevorzugter zwei- oder mehrteiliger Ausführung weist das Kolbenoberteil einen verschleißfesten legierten Vergütungsstahl auf. Da die gewählten Stahllegierungen für das Unterteil nur vergleichsweise geringe Wärmeleitfähigkeiten aufweisen, sind für das Kolbenoberteil bevorzugt auch Stähle mit höherer Wärmeleitfähigkeit von Bedeutung. Zu den besonders geeigneten Stählen des Kolbenoberteils gehören insbesondere Stähle aus der Gruppe MoCr4, 42CrMo4, CrMo4, 31CrMoV6 oder 25MoCr4. Die Werkstoffwahl bei der zwei- oder mehrteiligen Ausführung ist für das Kolbenoberteil gleichwohl nicht auf Stähle beschränkt.
Kolbenoberteil und Kolbenunterteil können durch Schweiß- oder Lötverfahren aneinander gefügt werden. Besonders bevorzugt sind Reibschweißen, Induktionsschweißen oder Laserschweißen.
Die Erfindung wird anhand einer schematischen Zeichnung des prinzipiellen Aufbaus eines Kolbens näher erläutert.
Dabei zeigt:
Fig. 1 einen Kolben (1 ) im Querschnitt, mit Oberteil (12) und Unterteil (13),
Ringwand (5), Kühlkanal (4), Öffnung des Kühlkanals (7), Pleuellager (8), Pleuellagerwand (9) und Verbrennungsmulde (11 ).
Eine mögliche Herstellungsvariante für mehrteilige Kolben ist dabei:
1 ) Herstellung des Kolbenoberteils (12) aus einem Schmiedestahl, wie bspw. 25MoCr4, durch Schmiedetechnik, wobei die erforderlichen mechanischen und thermischen
Eigenschaften im Bereich der Verbrennungsmulde (11 ) sichergestellt werden. 2) Herstellung des Kolbenunterteils (13) mit Pleuellager (8) und Kolbenhemd aus Edelstahl mit einem WAK von 13 bis 20 * 10"6 / K durch Gießtechnik, um im Warmbetrieb den Spalt zwischen Kolbenhemd und Zylinderlaufbahn möglichst klein zu halten.
3) Verbindung der beiden Kolbenteile über Schweißen, insbesondere
Induktionsschweißen oder Reibschweißen.
Als Herstellungsverfahren für das Kolbenunterteil ist der Niederdruckguss besonders bevorzugt.
In weiterer Ausgestaltung der Erfindung ist ein Verbrennungsmotor vorgesehen, welcher Stahlkolben aufweist und bei welchem das Zylinderkurbelgehäuse (ZKG) aus
Leichtmetall gebildet ist. Dabei sind auch Zylinderkurbelgehäuse umfasst, deren
Laufbahnen durch andere Werkstoffe, wie beispielsweise eingegossene Zylinderbuchsen oder Verschleißschutzschichten gebildet werden. Der Stahlkolben ist zumindest im Unterteil aus einem Edelstahl mit hohem WAK im Bereich von 14 bis 20 * 10"6 / K gebildet. Als Leichtmetalllegierung werden insbesondere AI-Legierungen verwendet.
Der Buchsenkörper besteht bevorzugt aus einer hochfesten Aluminiumlegierung oder aus einer durch Verstärkungsmittel verstärkten Aluminiumlegierung. Zu den besonders geeigneten AI-Legierungen zählen eutektische bis untereutektische Al-Si-Legierungen insbesondere aus der Reihe AISi5 bis AlSil 1. Besonders bevorzugt sind dabei AI- Legierungen mit höherem Si-Gehalt, wie bspw. AISM 1 , AISi10 oder AISi9, da der WAK in der Regel mit steigendem Si-Gehalt leicht abnimmt.
Die Laufbahn des Zylinderkurbelgehäuses kann dabei in bekannter Weise durch eine lauffähige Al-Si-Legierung, Metall-Verbundmaterial, Verschleißschutzbeschichtung oder durch Grauguss gebildet werden. Diese können teils als gesonderter Zylinderliner oder Liner-Paket vorgefertigt und in den Buchsenkörper aus Leichtmetalllegierung
eingegossen werden. Beispielsweise kann das Zylinderkurbelgehäuse aus einer AI- Legierung oder gegebenenfalls auch Mg-Legierung aufgebaut sein, während die
Zylinderlauffläche durch einen eingegossenen Zylinderliner aus AI-Legierung,
insbesondere Al-Si-Legierung oder Graugusslegierung gebildet ist.
Unter den Metall-Verbundmaterialien sind Materialien aus Metallmatrix, insbesondere aus AI-Legierung, und aus disperser Phase aus harten oder verschleißfesten Stoffen, insbesondere aus Siliziumpartikeln, Keramikpartikeln oder Keramikfasern zu verstehen. Geeignete Metall-Verbundmaterialien sind beispielsweise unter den Namen Silitec ®, oder Lokasil® bekannt. Besonders bevorzugt wird die Laufbahn des ZKG durch eine
Verschleißschutzbeschichtung aus thermischer Spritzschicht oder
Sprühkompaktierschicht auf die Zylinderlaufbuchse oder direkt auf das Grundmaterial des Buchsenkörpers gebildet. Besonders vorteilhaft ist es, wenn hierdurch konstruktiv die Herstellung eines gesonderten Zylinderliners entfällt. Bei dieser Vorgehensweise ist die Anpassung des WAK des Stahlkolbens an die Leichtmetalllegierung des Buchsenkörpers, bzw. des Zylinderkurbelgehäuses besonders wichtig, da dem Kolben als Gleitpartner nur eine dünne Verschleißschutzbeschichtung, bzw. Spritzschicht und nicht ein quasi massiver Zylinderliner gegenübersteht.
Als besonders geeignet sind hier thermische Spritzschichten nach dem LDS-Verfahren (Lichtbogendrahtspritzen) auf der Basis von Eisenlegierungen zu nennen. Diese sind bevorzugt unmittelbar auf die Innenwand der Zylinderbohrung aus einer Al-Si-Legierung aufgetragen.
Die ZKG in monolithischer Bauweise werden dabei beispielsweise aus einer
übereutektischen AISi-Legierung, wie bspw. AISi17Cu4Mg hergstellt. Das gesamte Kurbelgehäuse wird bevorzugt im Niederdruck-Kokillengießprozess hergestellt.
Aus wirtschaftlicher Sicht ist die Anwendung mit einem Kurbelgehäuse aus einer untereutektischen Legierung, insbesondere eine Al-Si-Legierung mit Si < 11%, hergestellt. Druckguss ist besonders vorteilhaft.

Claims

Patentansprüche
1. Stahlkolben mit einem Kolbenoberteil (12) mit Verbrennungsmulde (11 ) und
Ringwand (5) sowie mit einem Kolbenunterteil (13) mit Kolbenschaft oder
Kolbenhemd und mit Pleuellager (8) für Verbrennungsmotoren mit
Zylinderkurbelgehäusen aus Leichtmetalllegierungen,
dadurch gekennzeichnet, dass
zumindest das Kolbenunterteil aus einer Stahllegierung besteht, welche einen thermischen Ausdehnungskoeffizienten im Bereich von 13 bis 20 * 10"6 1/K aufweist.
2. Stahlkolben nach Anspruch 1 ,
dadurch gekennzeichnet, dass
zumindest die Stahllegierung des Kolbenunterteils einen thermischen
Ausdehnungskoeffizienten im Bereich von 15 bis 19 * 10"6 1/K aufweist.
3. Stahlkolben nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
zumindest die Stahllegierung des Kolbenunterteils aus einem Edelstahl mit einem Cr-Gehalt von 15-26% und einem Ni-Gehalt von 8-15% besteht.
4. Stahlkolben nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
der Stahlkolben aus einer einzigen Stahllegierung aufgebaut ist, insbesondere einteilig gegossen ist.
5. Stahlkolben nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
der Stahlkolben mehrteilig aufgebaut ist, wobei das Kolbenoberteil aus einem verschleißfesten legierten Vergütungsstahl besteht, insbesondere aus einem Stahl aus der Gruppe MoCr4, 42CrMo4, CrMo4, 31 CrMoV6 oder 25MoCr4.
6. Stahlkolben nach einem Anspruch 5,
dadurch gekennzeichnet, dass
Kolbenoberteil und Kolbenunterteil durch Reibschweißen, Laserschweißen oder Induktionsschweißen miteinander gefügt sind.
7. Verbrennungsmotor mit einem Stahlkolben nach einem der Ansprüche 1 bis 6 und einem Zylinderkurbelgehäuse, das im Wesentlichen aus Leichtmetall gebildet ist.
8. Verbrennungsmotor nach Anspruch 7,
dadurch gekennzeichnet, dass
das Zylinderkurbelgehäuse aus einer Aluminiumlegierung besteht und die
Zylinderlauffläche durch eine thermisch gespritzte Schicht, einen Zylinderliner aus Grauguss oder aus einem Metall-Verbundmaterial gebildet ist.
9. Verbrennungsmotor nach Anspruch 7 oder 8,
dadurch gekennzeichnet, dass
das Zylinderkurbelgehäuse aus einer Aluminiumlegierung besteht und die
Zylinderlauffläche durch einen eingegossenen Zylinderliner aus AI-Legierung oder Graugusslegierung gebildet ist.
10. Verbrennungsmotor nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet, dass
die Aluminiumlegierung einen hohen Si-Gehalt im Bereich von 7 bis 12 Gew.% aufweist.
11. Verwendung eines Stahlkobens nach einem der Ansprüche 1 bis 6
in einem Verbrennungsmotor mit Kurbelgehäuse aus einer Al-Si-Legierung und Graugussbuchsen oder mit Kurbelgehäuse aus Grauguss.
EP10750070A 2009-10-02 2010-09-03 Stahlkolben für verbrennungsmotoren Withdrawn EP2483547A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910048124 DE102009048124A1 (de) 2009-10-02 2009-10-02 Stahlkolben für Verbrennungsmotoren
PCT/EP2010/005417 WO2011038823A1 (de) 2009-10-02 2010-09-03 Stahlkolben für verbrennungsmotoren

Publications (1)

Publication Number Publication Date
EP2483547A1 true EP2483547A1 (de) 2012-08-08

Family

ID=43386042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10750070A Withdrawn EP2483547A1 (de) 2009-10-02 2010-09-03 Stahlkolben für verbrennungsmotoren

Country Status (5)

Country Link
US (1) US9051896B2 (de)
EP (1) EP2483547A1 (de)
JP (1) JP5859440B2 (de)
DE (1) DE102009048124A1 (de)
WO (1) WO2011038823A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045221B4 (de) 2010-09-13 2017-10-05 Daimler Ag Stahlkolben für Verbrennungsmotoren
DE102010051681B4 (de) 2010-11-17 2019-09-12 Daimler Ag Verfahren zur Herstellung eines Kühlkanalkolbens
DE102011112244B4 (de) * 2011-09-01 2013-09-05 Daimler Ag Leichtbau-Kolben für Verbrennungsmotoren und Halbzeug sowie Verfahren zu dessen Herstellung
DE102011118297A1 (de) 2011-11-10 2013-05-16 Daimler Ag Kolben für Verbrennungsmotoren und Halbzeug sowie Verfahren zu dessen Herstellung
DE102012000694A1 (de) * 2012-01-16 2013-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Kolbens für eine Brennkraftmaschine und Kolben
GB2498591A (en) * 2012-01-23 2013-07-24 Gm Global Tech Operations Inc Internal Combustion Engine with a Variable Compression Ratio
WO2013138261A1 (en) 2012-03-12 2013-09-19 Federal-Mogul Corporation Engine piston
DE102012009030A1 (de) * 2012-05-05 2013-11-07 Mahle International Gmbh Anordnung aus einem Kolben und einem Kurbelgehäuse für einen Verbrennungsmotor
CN103742263B (zh) * 2014-01-26 2015-11-18 尹建 连杆活塞式组合燃烧室无死点往复型内燃机
US9915222B2 (en) * 2014-03-26 2018-03-13 Cummins Inc. Diesel piston with semi-hemispherical crown
JP6296045B2 (ja) * 2015-12-08 2018-03-20 トヨタ自動車株式会社 内燃機関の制御装置
US10662892B2 (en) 2016-09-09 2020-05-26 Caterpillar Inc. Piston for internal combustion engine having high temperature-capable crown piece
WO2019230938A1 (ja) * 2018-05-31 2019-12-05 日本製鉄株式会社 スチールピストン
CN111412075B (zh) * 2020-04-27 2024-06-11 西安交通大学 一种缸内直喷甲醇发动机及甲醇发动机燃烧系统的工作方法
US20240167134A1 (en) * 2021-06-17 2024-05-23 Dean T. Pierce Steel alloy and method of manufacture exhibiting enhanced combination of high temperature strength, oxidation resistance, and thermal conductivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816211A (en) * 1995-08-16 1998-10-06 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite piston and cylinder/sleeve for an internal combustion engine
WO2006048153A1 (de) * 2004-10-30 2006-05-11 Ks Kolbenschmidt Gmbh Verfahren zur herstellung eines kolbens einer brennkraftmaschine zur bildung einer bewehrung einer brennraummulde des kolbens
DE102006030699A1 (de) * 2006-06-30 2008-01-03 Daimlerchrysler Ag Gegossener Stahlkolben für Verbrennungsmotoren

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2255006A (en) * 1936-09-28 1941-09-02 Specialloid Ltd Piston for internal combustion engines
JPS58224153A (ja) * 1982-06-22 1983-12-26 Daido Steel Co Ltd 耐熱鋼
JPS61126357A (ja) * 1984-11-26 1986-06-13 Toyota Motor Corp 軽金属製内燃機関用シリンダブロツク及びその製造方法
JPH01116052A (ja) * 1987-10-28 1989-05-09 Mazda Motor Corp エンジン本体構造
JPH02296075A (ja) * 1989-05-10 1990-12-06 Mazda Motor Corp 内燃機関のピストンピン
JPH042702A (ja) * 1990-04-20 1992-01-07 Isuzu Motors Ltd ピストンの製造方法
US5466906A (en) * 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
JP3527777B2 (ja) * 1994-06-28 2004-05-17 富士重工業株式会社 シリンダブロック構造
US5775892A (en) * 1995-03-24 1998-07-07 Honda Giken Kogyo Kabushiki Kaisha Process for anodizing aluminum materials and application members thereof
JP2000145963A (ja) * 1998-11-06 2000-05-26 Nippon Piston Ring Co Ltd ピストンリング
US6244161B1 (en) * 1999-10-07 2001-06-12 Cummins Engine Company, Inc. High temperature-resistant material for articulated pistons
JP2001234806A (ja) * 2000-02-21 2001-08-31 Toyota Motor Corp 鋳ぐるみ方法および鋳ぐるみ製品
JP2003090432A (ja) * 2001-09-18 2003-03-28 Nippon Piston Ring Co Ltd 冷却空洞付き耐摩環およびその製造方法
DE10150999C2 (de) * 2001-10-16 2003-08-07 Peak Werkstoff Gmbh Verfahren zum Profilieren der äußeren Umfangsfläche von Zylinderlaufbuchsen
DE10244513A1 (de) 2002-09-25 2004-04-08 Mahle Gmbh Mehrteiliger gekühlter Kolben für einen Verbrennungsmotor und Verfahren zu dessen Herstellung
CN100535423C (zh) 2003-03-31 2009-09-02 日立金属株式会社 内燃机用活塞及其制造方法
JP2005155600A (ja) * 2003-10-31 2005-06-16 Toyota Motor Corp 水冷式エンジン及びそのシリンダブロック
JP4375359B2 (ja) 2006-05-24 2009-12-02 トヨタ自動車株式会社 内燃機関のピストン
DE102007021101A1 (de) 2007-05-03 2008-11-06 Mahle International Gmbh Legierter Stahl und dessen Verwendung
JPWO2009069762A1 (ja) * 2007-11-30 2011-04-21 日本ピストンリング株式会社 ピストンリング用鋼材およびピストンリング
US7814879B2 (en) * 2008-04-23 2010-10-19 Techtronic Outdoor Products Technology Limited Monolithic block and valve train for a four-stroke engine
US8631573B2 (en) * 2010-08-10 2014-01-21 Mahle International Gmbh Piston for an internal combustion engine and method for its production
DE102010045221B4 (de) * 2010-09-13 2017-10-05 Daimler Ag Stahlkolben für Verbrennungsmotoren
DE102011013141A1 (de) * 2011-03-04 2012-09-06 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816211A (en) * 1995-08-16 1998-10-06 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite piston and cylinder/sleeve for an internal combustion engine
WO2006048153A1 (de) * 2004-10-30 2006-05-11 Ks Kolbenschmidt Gmbh Verfahren zur herstellung eines kolbens einer brennkraftmaschine zur bildung einer bewehrung einer brennraummulde des kolbens
DE102006030699A1 (de) * 2006-06-30 2008-01-03 Daimlerchrysler Ag Gegossener Stahlkolben für Verbrennungsmotoren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ASM ready reference: thermal properties of metals (#06702G)", 1 January 2002, ASM INTERNATIONAL, US, ISBN: 978-0-87170-768-0, article FRAN CVERNA: "Passage Chapter 2: Thermal Expansion", pages: i-vi, 9 - 16, XP055233442 *
JOSEPH W MCENERNEY: "Experience manufacturing alloy 19D (UNS S32001)", 1 January 2001 (2001-01-01), XP055354805, Retrieved from the Internet <URL:http://www.stainless-steel-world.net/pdf/SSWCE01_duplex_McEnerney.pdf?resourceId=200> [retrieved on 20170314] *
See also references of WO2011038823A1 *

Also Published As

Publication number Publication date
JP5859440B2 (ja) 2016-02-10
WO2011038823A1 (de) 2011-04-07
DE102009048124A1 (de) 2011-04-07
JP2013506085A (ja) 2013-02-21
US9051896B2 (en) 2015-06-09
US20120174899A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
EP2483547A1 (de) Stahlkolben für verbrennungsmotoren
EP2616565B1 (de) Stahlkolben für verbrennungsmotoren
DE102006030699B4 (de) Gegossener Stahlkolben für Verbrennungsmotoren
EP2411709B1 (de) Nitrierfähige stahlkolbenringe und stahlzylinderlaufbuchsen sowie giessverfahren zu deren herstellung
DE19861160C1 (de) Schichtverbundwerkstoff für Gleitelemente
DE102009010727B3 (de) Stahlgusswerkstoffzusammensetzung zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
EP0867517B1 (de) Aluminiummatrix-Verbundwerkstoff und Verfahren zu seiner Herstellung
DE19532252C2 (de) Verfahren zur Herstellung von Laufbuchsen
EP2214850B1 (de) Verfahren zur herstellung von zylinderlaufbuchsen zum eingiessen in einen motorblock
DE102009010728B4 (de) Kolbenringe und Zylinderlaufbuchsen
EP2401533B1 (de) Stahlwerkstoffzusammensetzung zur herstellung von kolbenringen und zylinderlaufbuchsen
WO2010108528A1 (de) Nitrierfähige stahlwerkstoffzusammensetzung zur herstellung von kolbenringen und zylinderlaufbuchsen
DE102004013181B3 (de) Kolben für einen Verbrennungsmotor, Verfahren zur Herstellung eines Kolbens sowie Verwendung einer Kupferlegierung zur Herstellung eines Kolbens
WO2007036447A1 (de) Hebel einer schaltbaren schlepphebelvorrichtung und verfahren zur herstellung desselben
WO2022053483A1 (de) Kolben für einen verbrennungsmotor, verbrennungsmotor mit einem kolben und verwendung einer eisenbasierten legierung
EP2864617B1 (de) Anordnung aus einem kolben und einem kurbelgehäuse für einen verbrennungsmotor
DE102010039208B4 (de) Kolbenring mit nichtmetallischem Kern
WO2006034850A1 (de) Verfahren zum herstellen von gussteilen und insert für gussteile
DE102017119437A1 (de) Stahllegierungen und zylinderlaufbuchsen aus selbigen
JP2017179475A (ja) 破断分離型コネクティングロッド用成型部品、及びコネクティングロッド、並びに該コネクティングロッドの製造方法
WO2022053484A1 (de) Kolben für einen verbrennungsmotor, verbrennungsmotor mit einem kolben und verwendung einer eisenbasierten legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170808