EP2470711A2 - Procédé de commande d'un lave-linge - Google Patents
Procédé de commande d'un lave-lingeInfo
- Publication number
- EP2470711A2 EP2470711A2 EP10812322A EP10812322A EP2470711A2 EP 2470711 A2 EP2470711 A2 EP 2470711A2 EP 10812322 A EP10812322 A EP 10812322A EP 10812322 A EP10812322 A EP 10812322A EP 2470711 A2 EP2470711 A2 EP 2470711A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- drum
- control method
- rpm
- laundry
- tub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000001052 transient effect Effects 0.000 claims abstract description 76
- 230000001133 acceleration Effects 0.000 claims abstract description 47
- 238000009987 spinning Methods 0.000 claims abstract description 33
- 230000001788 irregular Effects 0.000 claims description 28
- 239000000725 suspension Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims 2
- 230000007704 transition Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000013016 damping Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 241000239290 Araneae Species 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- -1 Poly Dimethylsiloxane Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F35/00—Washing machines, apparatus, or methods not otherwise provided for
- D06F35/005—Methods for washing, rinsing or spin-drying
- D06F35/007—Methods for washing, rinsing or spin-drying for spin-drying only
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/22—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
- D06F37/225—Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F34/00—Details of control systems for washing machines, washer-dryers or laundry dryers
- D06F34/14—Arrangements for detecting or measuring specific parameters
- D06F34/16—Imbalance
Definitions
- the present invention relates to a control method of a laundry machine.
- a laundry machine may include washing, rinsing and spinning cycles.
- the spinning cycle includes a rotating step of rotating a drum provided in such a laundry machine at the highest RPM. Because of the step, the spinning cycle would generate noise and vibration quite a lot, which is required to be solved in the art the prevent invention pertains to.
- the present invention is directed to a control method of a laundry machine.
- An object of the present invention is to provide a control method of a laundry machine which can solve the above problem.
- an object of the present invention is to provide a control method of a laundry machine comprising a step configured to rotate a drum in an RPM band belonging to a transient region and higher at a predetermined acceleration inclination less than a preset minimum drum speed acceleration inclination of the spinning cycle for a predetermined time period.
- the present invention has following advantageous effects.
- noise and vibration generated in the laundry machine may be reduced and the time of the spinning cycle may be reduced simultaneously.
- FIG. 1 is an exploded perspective view illustrating a laundry machine a spinning cycle control method according to the present invention is applied to;
- FIG. 2 is a sectional view illustrating a connecting state of FIG. 1;
- Fig. 3 is a graph showing a relation of mass vs. a natural frequency ;
- Fig. 4 is a graph illustrating vibration characteristics of the laundry machine
- Figs. 5 to 9 are graphs illustrating RPM change according to the control methods.
- the tub may be fixedly supported to the cabinet or it may be supplied to the cabinet by a flexible supporting structure such as a suspension unit which will be described later. Also, the supporting of the tub may be between the supporting of the suspension unit and the completely fixed supporting.
- the tub may be flexibly supported by the suspension unit which will be described later or it may be complete-fixedly supported to be movable more rigidly.
- the cabinet may not be provided unlike embodiments which will be described later.
- a predetermined space in which the built-in type laundry machine will be installed may be formed by a wall structure and the like, instead of the cabinet.
- the built-in type laundry machine may not include a cabinet configured to define an exterior appearance thereof independently.
- a tub 12 provided in the laundry machine is fixedly supported to a cabinet.
- the tub 12 includes a tub front 100 configured to define a front part of the tub and a tub rear 120 configured to define a rear part of the tub.
- the tub front 100 and the tub rear 120 are assembled to each other by screws, to form a predetermined space big enough to accommodate the drum.
- the tub rear 120 has an opening formed in a rear portion thereof and an inner circumference of the rear portion composing the tub rear 120 is connected with an outer circumference of a rear gasket 250.
- the tub back 130 has a through-hole formed in a center thereof to pass a shaft to pass there through.
- the rear gasket 250 is made of a flexible material not to transmit the vibration of the tub back 130 to the tub rear 120.
- the tub rear 120 has a rear surface 128 and the rear surface 128, the tub back 130 and the rear gasket 250 may define a rear wall of the tub.
- the rear gasket 250 is connectedly sealed with the tub back 130 and the tub rear 120, such that the wash water held in the tub may not leak.
- the tub back 130 is vibrated together with the drum during the rotation of the drum. At this time, the tub back 130 is distant from the tub rear 120 enough not to interfere with the tub rear. Since the rear gasket 250 is made of the flexible material, the tub back 130 is allowed to relative-move, without interference of the tub rear 120.
- the rear gasket 250 may include a corrugated portion 252 extendible to a predetermined length to allow the relative-motion of the tub back 130.
- a foreign substance preventing member 200 configured to prevent foreign substances from drawn between the tub and the drum may be connected to a front portion of the tub front 100.
- the foreign substance preventing member 200 is made of a flexible material and it is fixed to the tub front 100.
- the foreign substance preventing member 200 may be made of the flexible material identical to the material composing the rear gasket 250.
- the foreign substance preventing member 200 will be referenced to as‘front gasket’.
- the drum 32 includes a drum front 300, a drum center and a drum back 340. Balancers 310 and 330 may be installed in front and rear parts of the drum, respectively.
- the drum back 340 is connected with a spider 350 and the spider 350 is connected with the shaft 351.
- the drum 32 is rotated in the tub 12 by a torque transmitted via the shaft 351.
- the shaft 351 is directly connected with a motor 170, passing through the tub back 130.
- a rotor 174 composing the motor 170 is directly connected with the shaft 351.
- a bearing housing 400 is secured to a rear portion of the tub back 130 and the bearing housing 400 rotatably supports the shaft, located between the motor 170 and the tub back 130.
- a stator 172 composing the motor 170 is secured to the bearing housing 400 and the rotor 174 is located surrounding the stator 172. As mentioned above, the rotor 174 is directly connected with the shaft 351.
- the motor 170 is an outer rotor type motor and it is directly connected with the shaft 351.
- the bearing housing 400 is supported via a suspension unit with respect to a cabinet base 600.
- the suspension unit 180 includes three perpendicular supporters and two oblique supporters configured to support the bearing housing 400 obliquely with respect to a forward and rearward direction.
- the suspension unit 180 may includes a first cylinder spring 520, a second cylinder spring 510, a third cylinder spring 500, a first cylinder damper 540 and a second cylinder damper 530.
- the first cylinder spring 520 is connected between a first suspension bracket 450 and the cabinet base 600.
- the second cylinder spring 510 is connected between a suspension bracket 440 and the cabinet base 600.
- the third cylinder spring 500 is directly connected between the bearing housing 400 and the cabinet base 600.
- the first cylinder damper 540 is inclinedly installed between the first suspension bracket 450 and a rear portion of the cabinet base.
- the second cylinder damper 530 is inclinedly installed between the second suspension bracket 440 and a rear portion of the cabinet base 600.
- the cylinder springs 520, 510 and 500 of the suspension unit 180 may be elastically connected to the cabinet base 600 enough to allow a forward/rearward and rightward/leftward movement of the drum, not connected to the cabinet base 600 fixedly. That is, they are elastically supported by the base 600 to allow the drum to be rotated to a predetermined angle in forward/rearward and rightward/leftward directions with respect to the connected portion.
- the perpendicular ones of the suspension unit may be configured to suspend the vibration of the drum elastically and the oblique ones may be configured to dampen the vibration. That is, in a vibration system including a spring and damping means, the perpendicular ones are employed as spring and the oblique ones are employed as damping means.
- the tub front 100 and the tub rear 120 are fixedly secured to the cabinet 110 and the vibration of the drum 32 is suspendedly supported by the suspension unit 180.
- the supporting structure of the tub 12 and the drum 32 may be called‘separated’substantially, such that the tub 12 may not be vibrated even when the drum 32 is vibrated.
- the bearing housing 400 and the suspension brackets may be connected with each other by first and second weights 431 and 430.
- FIG. 3 illustrates a graph showing a relation of mass vs. a natural frequency. It is assumed that, in vibration systems of two laundry machines, the two laundry machines have mass of m0 and m1 respectively and maximum holding laundry amounts are ⁇ m, respectively. Then, the transition regions of the two laundry machines can be determined taking ⁇ nf0 and ⁇ nf1 into account, respectively. In this instance, amounts of water contained in the laundry will not be taken into account, for the time being.
- the laundry machine with smaller mass m1 has a range of the transition region greater than the laundry machine with greater mass m0. That is, the range of the transition region having variation of the laundry amount taken into account becomes the greater as the mass of the vibration system becomes the smaller.
- the related art laundry machine has a structure in which vibration is transmitted from the drum to the tub as it is, causing the tub to vibrate. Therefore, in taking the vibration of the related art laundry machine into account, the tub is indispensible.
- the tub has, not only a weight of its own, but also substantial weights at a front, a rear or a circumferential surface thereof for balancing. Accordingly, the related art laundry machine has great mass of the vibration system.
- the tub since the tub, not only has no weight, but also is separated from the drum in view of a supporting structure, the tub may not be put into account in consideration of the vibration of the drum. Therefore, the laundry machine of the embodiment may have relatively small mass of the vibration system.
- the related art laundry machine has mass m0 and the laundry machine of the embodiment has mass m1, leading the laundry machine of the embodiment to have a greater transition region, at the end.
- a start RPM of the transient region of the laundry machine according to this embodiment may be similar to a start RPM of the transient region of the conventional laundry machine.
- An end RPM of the transient region of the laundry machine according to this embodiment may increase more than a RPM calculated by adding a value of approximately 30% of the start RPM to the start RPM.
- the transient region finishes at an RPM calculated by adding a value of approximately 80% of the start RPM to the start RPM.
- the transient region may include a RPM band of approximately 200 to 350 rpm.
- a balancer In a case, a balancer is used, a method may be put into account, in which the rotation speed of the drum passes through the transition region while movable bodies provided in the balancer are positioned on an opposite side of an unbalance of the laundry. In this instance, it is preferable that the movable bodies are positioned at exact opposite of the unbalance in middle of the transition region.
- the transient region of the laundry machine according to this embodiment is relatively wide in comparison to that of the conventional laundry machine. Because of that, even if the laundry even-spreading step or ball balancing is implemented in a RPM band lower than the transient region, the laundry might be in disorder or balancing might be failed with the drum speed passing the transient region.
- balancing may be implemented at least one time in the laundry machine according to this embodiment before and while the drum speed passing the transient region.
- the balancing may be defined as rotation of the drum at a constant-speed for a predetermined time period.
- Such the balancing allows the movable body of the balancer to the opposite positions of the laundry, only to reduce the unbalance amount. By extension, the effect of the laundry even-spreading.
- the balancing is implemented while the drum speed passing the transient region and the noise and vibration generated by the expansion of the transient region may be prevented.
- the balancing when the balancing is implemented before the drum speed passing the transient region, the balancing may be implemented in a different RPM band from the RPM of the conventional laundry machine. For example, if the transient region starts at 200 RPM, the balancing is implemented in the RPM band lower than approximately 150 RPM. Since the conventional laundry machine has a relatively less wide transient region, it is not so difficult for the drum speed to pass the transient region even with the balancing implemented at the RPM lower than approximately 150 RPM. However, the laundry machine according to this embodiment has the relatively wide expanded transient region as described above.
- the laundry machine may increase the balancing RPM in comparison to the conventional balancing RPM, when the balancing is implemented before the drum speed enters the transient region. That is, if the start RPM of the transient region is determined, the balancing is implemented in a RPM band higher than a RPM calculated by subtracting a value of approximately 25% of the start RPM from the start RPM. For example, the start RPM of the transient region is approximately 200 RPM, the balancing may be implemented in a RPM band higher than 150RPm lower than 200 RPM.
- the unbalance amount may be measured during the balancing. That is, the control method may further include a step to measure the unbalance amount during the balancing and to compare the measured unbalance amount with an allowable unbalance amount allowing the acceleration of the drum speed. If the measured unbalance amount is less than the allowable unbalance amount, the drum speed is accelerated after the balancing to be out of the transient region. In contrast, if the measured unbalance amount is the allowable unbalance amount or more, the laundry even-spreading step may be re-implemented. in this case, the allowable unbalance amount may be different from an allowable unbalance amount allowing the initial accelerating.
- transient vibration region a region (hereinafter, referred to as“transient vibration region”)where irregular transient vibration with high amplitude occurs is generated.
- the transient vibration region irregularly occurs with high amplitude before vibration is transited to a steady-state vibration region (hereinafter, referred to as“steady-state region”), and has vibration characteristics determined if a vibration system (laundry machine) is designed.
- the transient vibration region is different according to the type of the laundry machine, transient vibration occurs approximately in the range of 200rpm to 270rpm. It is regarded that transient vibration is caused by resonance. Accordingly, it is necessary to design the balancer by considering effective balancing at the transient vibration region.
- the vibration source i.e., the motor and the drum connected with the motor are connected with the tub 12 through the rear gasket 250. Accordingly, vibration occurring in the drum is little forwarded to the tub, and the drum is supported by a damping means and the suspension unit 180 via a bearing housing 400. As a result, the tub 12 can directly be fixed to a cabinet 110 without any damping means.
- vibration As a result of studies of the inventor of the present invention, vibration characteristics not observed generally have been found in the laundry machine according to the present invention.
- vibration dislacement
- a region hereinafter, referred to as“irregular vibration”
- irregular vibration is generated.
- an average drum displacement in the transient region +20% to -20% of the average drum displacement in the transient region or 1/3 or more of the maximum drum displacement in the natural frequency of the transient region are generated, it may be determined that the irregular vibration is generated.
- irregular vibration has occurred in a RPM band higher than the transient region, for example has occurred at a region (hereinafter, referred to as“irregular vibration region”) in the range of 350 rpm to 1000rpm, approximately. Irregular vibration may be generated due to use of the balancer, the damping system, and the rear gasket. Accordingly, in this laundry machine, it is necessary to design the balancer by considering the irregular vibration region as well as the transient vibration region.
- the balancer is provide with a ball balancer
- the structure of the balancer i.e., the size of the ball, the number of balls, a shape of the race, viscosity of oil, and a filling level of oil are selected by considering the irregular vibration region as well as the transient vibration region.
- the ball balancer has a greater diameter of 255.8mm and a smaller diameter of 249.2.
- a space of the race, in which the ball is contained, has a sectional area of 411.93mm2.
- the number of balls is 14 at the front and the rear, respectively, and the ball has a size of 19.05mm.
- Silicon based oil such as Poly Dimethylsiloxane (PDMS) is used as the oil.
- PDMS Poly Dimethylsiloxane
- oil has viscosity of 300CS at a room temperature, and has a filling level of 350cc.
- the irregular vibration region as well as the transient vibration region is considered.
- the balancing may be implemented at least one time before, while and after the drum speed passes the irregular vibration region.
- the rotation speed of the drum is relatively high, the balancing of the balancer may not be implemented properly and the balancing may be implemented with decreasing the rotation speed of the drum.
- the rotation speed of the drum is decreased to be lower than the transient region to implement the balancing, it has to pass the transient region again. In decreasing the rotation speed of the drum to implement the balancing, the decreased rotation speed may be higher than the transient region.
- a control method is required to reduce the noise and vibration while the rotation speed of the drum passes the transient region and/or when it passes the irregular vibration region as described above.
- the spinning cycle of he laundry machine having the above configuration will be described and the control method configured to reduce the noise and vibration will be described after that.
- FIG. 5 is a graph illustrating RPM change of the drum as the time passes according to the control method of the spinning cycle. According to FIG. 5, a horizontal axis is‘time’and a vertical axis is‘rotation speed’of the drum 30 and 32 which is change of RPM.
- the spinning cycle control method includes a laundry distributing step (S100) and a spinning step (S200).
- the laundry distributing step (S100) distributes the laundry uniformly, as rotating the drum at a relatively low speed.
- the spinning cycle (S200) rotates the drum at a relatively high speed to remove moisture contained in the laundry.
- the laundry distributing step and spinning step are named with respect to main functions thereof.
- the functions of the steps may not be limited to the names.
- the laundry distributing step may remove the moisture of the laundry by using the rotation of the drum, as well as the laundry distributing.
- the laundry distributing step (S100) composing the control method according to the present invention may include a wet laundry sensing step (S110), a laundry disentangling step (S130) and an unbalance sensing step (S150).
- the spinning step (S200) may include a transient region passing step (S210) and an accelerating step (S230). As follows, each one of the above steps will be described.
- a control part senses the amount of the laundry, that is, the amount of the wet laundry located in the drum 30 and 32, when the spinning cycle is put into operation (S110).
- the reason why the amount of the wet laundry is that the amount of the dry laundry measured in an initial stage of the washing cycle is different from the amount of the wet laundry containing the moisture.
- the sensed amount of the wet laundry may be used as an element configured to determine an allowable condition of the drum accelerating or to determine to re-implement the laundry distributing step after decreasing the speed of the drum 30 and 32 based on an unbalance condition in the transient region passing step (S210).
- the amount of the wet laundry located in the drum 30 and 32 is measured in case the drum is rotated at a decreased speed after rotated at a constant speed of approximately 100 to 110 RPM reached by the acceleration for a predetermined time period. If the rotation speed of the drum is decreased, rheostatic braking is used. Specifically, the amount of the wet laundry is measured by using the amount of acceleration period rotation in accelerating the motor 40 and 170 configured to rotate the drum 30 and 32, the amount of the acceleration period rotation in decreasing the speed of the motor 40 and 170, and an applied DC voltage.
- control part may implement the laundry disentangling step (S130) configured to distribute the laundry inside the drum uniformly.
- the laundry disentangling step distributes the laundry located in the drum 30 and 32 uniformly to prevent the laundry from concentrated on a specific region inside the drum, which might increase the unbalance. If the unbalance is increased, noise and vibration will be increased in case the RPM of the drum is heightened.
- the laundry disentangling step accelerates the drum in a predetermined single direction with a predetermined oblique and it is implemented until the RPM reaches a rotation speed of the unbalance sensing step which will be described later.
- control part senses the unbalance of the drum (S150).
- the control part senses the unbalance of the drum and it determines whether the drum is accelerated.
- the unbalance sensing uses difference of the accelerated speeds during the rotation of the drum 30 and 32. That is, there is difference of the accelerated speeds when the drum is rotated downward along the gravity and when it is rotated upward reversely according to the level of the generated unbalance.
- the control part measures the difference of the accelerated speeds by using a speed sensor, for example, a hall sensor provided in the motor 40 and 170 to sense the amount of the unbalance.
- a speed sensor for example, a hall sensor provided in the motor 40 and 170 to sense the amount of the unbalance.
- the laundry located inside the drum keeps the close contact with the inner circumferential surface of the drum, without dropped from the inner circumferential surface, even during the rotation of the drum.
- the case having the drum rotated at approximately 100 to 110 RPM is corresponding to this case.
- the control part may store a reference unbalance value, which allows the acceleration of the speed according to the amount of the wet laundry as a table typed data. After that, the control part applies the sensed wet-laundry amount and the unbalance amount to the table and it determines whether the speed of the drum is accelerated.
- the unbalance amount sensed according to the sensed wet-laundry amount is the reference unbalance value or more, it can be determined that the unbalance amount is too much to accelerate the drum speed and the above wet-laundry sensing, laundry disentangling and unbalance sensing steps are repeated.
- the repetition of the wet laundry sensing step, the laundry disentangling step and the unbalance sensing step may be continued until the sensed unbalance amount meets less than the reference unbalance value.
- the control part controls the drum to stop the rotation and notifies the user that the spinning cycle is not completed normally, if the speed of the drum fails to be accelerated for a predetermined time period, for example, approximately more than 20 to 30 minutes after the spinning cycle starts.
- the control part implements the transient region passing step (S210).
- the transient region is a predetermined RPM band including at least one resonance frequency which generates resonance according to the system of the laundry machine.
- the transient region is a unique vibration property generated according to the determined system.
- the transient region is variable according to the system of the laundry machine. For example, the transient region includes a scope of approximately 200 to 350 RPM in the laundry machine.
- the control part implements the accelerating step (S230).
- the RPM of the drum 32 is accelerated at a relatively high speed to remove water elements from the laundry.
- the RPM of the drum 32 is increased to a predetermined value and the moisture of the laundry inside the drum 32 is removed, in the accelerating step (S230).
- the accelerating step increases the RPM of the drum 32 at the high speed and noise and vibration will be generated a lot in the laundry machine.
- the noise and vibration may be increasing in proportion to the unbalance amount of the drum 32.
- This control method includes a step of reducing noise and vibration generated in the RPM band higher than the transient region, namely, a laundry even-spreading step.
- this step may be implemented by rotating of the drum at a predetermined acceleration inclination for a predetermined time. that is, once the drum is rotated a rotation speed lower than a rotation speed having a predetermined acceleration inclination, the laundry inside the drum is moved only to achieve a laundry even-spreading effect and the noise and vibration is reduced accordingly.
- the predetermined acceleration inclination is set to be the minimum acceleration inclination in case the drum speed is accelerated in the spinning cycle.
- the minimum acceleration inclination of the drum during the spinning cycle may be defined as follows.
- the spinning cycle mainly includes the laundry distributing step (S100) and the spinning step (S200). If the unbalance amount sensed in the unbalance sensing step (S150) is the reference unbalance value or more, the unbalance is too large to accelerate the drum speed. Because of that, the wet-laundry sensing step, the laundry disentangling step and the unbalance sensing step are repeated. This may cause the increased operation time of the spinning cycle substantially and cause more energy consumption such as electricity consumption.
- the drum speed is accelerated in the laundry distributing step (S100), for example, in the steps of S110 and S130, the drum speed may be accelerated at a relatively large acceleration inclination (speed change ratio).
- the acceleration inclination it is preferable that the drum speed of the transient region passing step (S210) passes the transient region within a short time even in the spinning step (S200).
- the accelerating step (S230) after the drum speed passing the transient region the drum speed is accelerated to a target RPM. If the acceleration inclination is increased, the noise and vibration generated by the drum speed accelerating may be increased quite a lot. Because of that, it is preferable that the acceleration inclination is decreased if the drum speed is accelerated to the target RPM in the accelerating step.
- the acceleration inclination of the laundry distributing step and the transient region passing step may be said to be relatively large and that of the accelerating step may be said to be relatively small.
- the minimum acceleration inclination may be the case of the drum speed accelerating in the accelerating step after the drum speed passing the transient region.
- the control method according to this embodiment may include a step of rotating the drum at the minimum acceleration inclination while the drum speed is passing the transient region, which is implemented at least one time.
- FIG. 6 illustrates the step of rotating the drum at a predetermined acceleration inclination less than the minimum acceleration inclination in the transient region (S212).
- the range of the transient region may be the RPM band of approximately 200 to 350rpm as described above or the transient region may increase more than a RPM calculated by adding a value of approximately 30% of the start RPM to the start RPM.
- the drum may be rotated at the constant speed when rotated at a predetermined acceleration inclination less than the minimum acceleration inclination. That is, the drum may be constantly rotated at a predetermined RPM which belongs to the transient region. If the drum is rotated at the constant RPM, the drum speed is not accelerated and the laundry inside the drum may move more smoothly to result in the laundry even-spreading effect.
- FIGS. 7 to 9 illustrate a control method including a step of rotating the drum at a predetermined acceleration inclination less than the minimum acceleration inclination in relation to the irregular vibration.
- the drum may be rotated at the inclination less than the minimum acceleration inclination at least one of before, while and after the drum speed passes the irregular vibration region.
- FIG. 7 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination before the drum speed passing the irregular vibration region (S232).
- FIG. 8 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination while the drum speed passing the irregular vibration region (S234).
- FIG. 9 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination after the drum speed passing the irregular vibration region (S236).
- the drum is rotated at the acceleration inclination less than the minimum acceleration inclination for a predetermined time period as shown in FIG. 7, the laundry inside the drum is distributed properly and the noise and vibration in irregular vibration region may be reduced.
- the drum is rotated at a constant RPM, the effect of laundry even-spreading may be huge. Even while the drum speed passing the irregular vibration region, the above effect may be achieved.
- Noise and vibration may be increased in the step of accelerating the drum speed to the target RPM after the drum speed passing the irregular vibration region.
- the step of rotating the drum at the predetermined acceleration inclination less than the minimum acceleration inclination (S236) may reduce the noise and vibration.
- the present invention has an industrial applicability.
- noise and vibration generated in the laundry machine may be reduced and the time of the spinning cycle may be reduced simultaneously.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090079912A KR101741549B1 (ko) | 2009-08-27 | 2009-08-27 | 세탁장치 및 그 제어방법 |
KR1020090079923A KR20110022367A (ko) | 2009-08-27 | 2009-08-27 | 세탁장치 |
PCT/KR2010/005803 WO2011025309A2 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2470711A2 true EP2470711A2 (fr) | 2012-07-04 |
EP2470711A4 EP2470711A4 (fr) | 2014-12-03 |
EP2470711B1 EP2470711B1 (fr) | 2017-05-24 |
Family
ID=43628632
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10812322.5A Active EP2470711B1 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
EP10812327.4A Active EP2470701B1 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
EP10812336.5A Withdrawn EP2470704A4 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10812327.4A Active EP2470701B1 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
EP10812336.5A Withdrawn EP2470704A4 (fr) | 2009-08-27 | 2010-08-27 | Procédé de commande d'un lave-linge |
Country Status (6)
Country | Link |
---|---|
US (3) | US20120151691A1 (fr) |
EP (3) | EP2470711B1 (fr) |
CN (3) | CN102686789A (fr) |
AU (1) | AU2010287152B2 (fr) |
RU (1) | RU2495173C1 (fr) |
WO (3) | WO2011025309A2 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010002048A1 (de) * | 2010-02-17 | 2011-08-18 | BSH Bosch und Siemens Hausgeräte GmbH, 81739 | Verfahren zur Einstellung einer Schleuderdrehzahl einer Trommel eines Hausgeräts zur Pflege von Wäschestücken |
US10344417B2 (en) * | 2014-06-09 | 2019-07-09 | Lg Electronics Inc. | Washing apparatus |
JP6507367B2 (ja) * | 2015-04-09 | 2019-05-08 | パナソニックIpマネジメント株式会社 | ドラム式洗濯機 |
US9988751B2 (en) | 2015-07-29 | 2018-06-05 | Whirlpool Corporation | Laundry treating appliance and methods of reducing tub contact therein |
US10273621B2 (en) | 2015-10-01 | 2019-04-30 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US9885135B2 (en) | 2015-11-19 | 2018-02-06 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US9988753B2 (en) | 2015-11-19 | 2018-06-05 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US9890490B2 (en) | 2015-11-19 | 2018-02-13 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US9873968B2 (en) | 2015-11-19 | 2018-01-23 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US10041202B2 (en) | 2015-11-19 | 2018-08-07 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
US9863080B2 (en) | 2015-11-19 | 2018-01-09 | Whirlpool Corporation | Laundry treating appliance and methods of operation |
KR102401489B1 (ko) | 2015-12-24 | 2022-05-24 | 삼성전자주식회사 | 탈수 시 진동 저감 방법 및 이를 이용한 세탁기 |
KR102541172B1 (ko) | 2016-09-12 | 2023-06-08 | 엘지전자 주식회사 | 세탁장치의 탈수행정 제어방법 |
JP7311108B2 (ja) * | 2018-12-26 | 2023-07-19 | 青島海爾洗衣机有限公司 | 縦型洗濯機 |
KR20220038552A (ko) * | 2019-08-05 | 2022-03-29 | 엘지전자 주식회사 | 카메라를 구비하는 의류처리장치 및 이의 제어방법 |
CN112538727B (zh) * | 2020-11-30 | 2022-11-01 | 宁波金帅集团有限公司 | 一种用于大容量洗衣机的减速器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916768A (en) * | 1987-12-08 | 1990-04-17 | Ellis Corporation | Washing and extracting method |
EP1995366A1 (fr) * | 2007-05-21 | 2008-11-26 | Samsung Electronics Co., Ltd. | Machine à laver et procédé de commande pour y maintenir le linge à l'état équilibré |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4054412A (en) * | 1976-12-09 | 1977-10-18 | General Electric Company | Clothes washing machine and method of washing clothes |
WO1999010583A1 (fr) * | 1997-08-21 | 1999-03-04 | Eti Technologies Inc. | Dispositif de contrepoids pour machines a laver |
DE19952464C2 (de) * | 1999-10-29 | 2002-05-08 | Miele & Cie | Verfahren zum Auswuchten eines rotierenden Körpers, der durch einen geregelten Antrieb in Rotation versetzt wird, und Verwendung des Verfahrens |
KR100464054B1 (ko) * | 2002-12-27 | 2005-01-03 | 엘지전자 주식회사 | 일체형 캐비넷/터브를 구비한 드럼 세탁기 |
KR100504866B1 (ko) * | 2003-01-15 | 2005-08-01 | 엘지전자 주식회사 | 드럼 세탁기의 탈수속도 제어방법 |
KR100671193B1 (ko) * | 2003-06-06 | 2007-01-18 | 산요덴키가부시키가이샤 | 드럼식 세탁기 |
KR101052787B1 (ko) * | 2003-11-18 | 2011-07-29 | 삼성전자주식회사 | 세탁기 및 그 제어 방법 |
CN100519882C (zh) * | 2004-06-28 | 2009-07-29 | 乐金电子(天津)电器有限公司 | 滚筒洗衣机脱水控制方法 |
KR100634802B1 (ko) * | 2004-07-20 | 2006-10-16 | 엘지전자 주식회사 | 드럼 세탁기 |
RU2362847C2 (ru) * | 2005-03-25 | 2009-07-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Стиральная машина и способ управления ею |
KR101095560B1 (ko) * | 2005-10-06 | 2011-12-19 | 삼성전자주식회사 | 세탁기 및 그 세탁제어방법 |
KR101156713B1 (ko) * | 2006-11-06 | 2012-06-15 | 삼성전자주식회사 | 드럼 세탁기 및 그 제어방법 |
KR101085495B1 (ko) * | 2006-11-06 | 2011-11-23 | 삼성전자주식회사 | 드럼 세탁기의 터브 진동제어방법 |
NZ552422A (en) * | 2006-12-21 | 2009-09-25 | Fisher & Paykel Appliances Ltd | Laundry appliance including control means which energises a motor to evenly distribute a load in response to signals from load sensors |
KR101428477B1 (ko) * | 2007-01-24 | 2014-08-12 | 삼성전자 주식회사 | 세탁기 및 그 제어방법 |
KR101356645B1 (ko) * | 2007-04-19 | 2014-02-03 | 삼성전자주식회사 | 밸런서와 이를 구비하는 드럼세탁기 |
KR101287534B1 (ko) * | 2007-05-21 | 2013-07-18 | 삼성전자주식회사 | 세탁기 및 그 제어방법 |
KR101287536B1 (ko) * | 2007-06-05 | 2013-07-18 | 삼성전자주식회사 | 세탁기 및 그 제어방법 |
KR101407959B1 (ko) * | 2008-01-22 | 2014-06-20 | 삼성전자주식회사 | 볼 밸런서를 구비한 드럼 세탁기 및 그 제어방법 |
-
2010
- 2010-08-27 EP EP10812322.5A patent/EP2470711B1/fr active Active
- 2010-08-27 WO PCT/KR2010/005803 patent/WO2011025309A2/fr active Application Filing
- 2010-08-27 EP EP10812327.4A patent/EP2470701B1/fr active Active
- 2010-08-27 RU RU2012111654/12A patent/RU2495173C1/ru active
- 2010-08-27 CN CN2010800429479A patent/CN102686789A/zh active Pending
- 2010-08-27 AU AU2010287152A patent/AU2010287152B2/en active Active
- 2010-08-27 WO PCT/KR2010/005819 patent/WO2011025323A2/fr active Application Filing
- 2010-08-27 US US13/392,648 patent/US20120151691A1/en not_active Abandoned
- 2010-08-27 WO PCT/KR2010/005810 patent/WO2011025314A2/fr active Application Filing
- 2010-08-27 EP EP10812336.5A patent/EP2470704A4/fr not_active Withdrawn
- 2010-08-27 US US13/392,693 patent/US20120151694A1/en not_active Abandoned
- 2010-08-27 CN CN2010800422198A patent/CN102575409A/zh active Pending
- 2010-08-27 CN CN2010800422037A patent/CN102510916A/zh active Pending
- 2010-08-27 US US13/392,628 patent/US20120151690A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916768A (en) * | 1987-12-08 | 1990-04-17 | Ellis Corporation | Washing and extracting method |
EP1995366A1 (fr) * | 2007-05-21 | 2008-11-26 | Samsung Electronics Co., Ltd. | Machine à laver et procédé de commande pour y maintenir le linge à l'état équilibré |
Non-Patent Citations (1)
Title |
---|
See also references of WO2011025309A2 * |
Also Published As
Publication number | Publication date |
---|---|
EP2470704A4 (fr) | 2015-03-04 |
CN102575409A (zh) | 2012-07-11 |
EP2470701A2 (fr) | 2012-07-04 |
WO2011025323A3 (fr) | 2011-04-21 |
EP2470711B1 (fr) | 2017-05-24 |
US20120151694A1 (en) | 2012-06-21 |
EP2470704A2 (fr) | 2012-07-04 |
US20120151691A1 (en) | 2012-06-21 |
CN102686789A (zh) | 2012-09-19 |
WO2011025309A3 (fr) | 2011-04-21 |
WO2011025309A2 (fr) | 2011-03-03 |
WO2011025323A2 (fr) | 2011-03-03 |
RU2495173C1 (ru) | 2013-10-10 |
WO2011025314A2 (fr) | 2011-03-03 |
EP2470701B1 (fr) | 2017-08-09 |
CN102510916A (zh) | 2012-06-20 |
WO2011025314A3 (fr) | 2011-04-21 |
EP2470711A4 (fr) | 2014-12-03 |
AU2010287152B2 (en) | 2013-08-15 |
AU2010287152A1 (en) | 2012-03-22 |
EP2470701A4 (fr) | 2015-02-18 |
US20120151690A1 (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011025309A2 (fr) | Procédé de commande d'un lave-linge | |
WO2011025317A1 (fr) | Procédé de commande d'un lave-linge | |
WO2011025312A2 (fr) | Procédé de commande d'un lave-linge | |
WO2011025320A2 (fr) | Procédé de commande d'un lave-linge | |
WO2010077025A2 (fr) | Lave-linge | |
US9587343B2 (en) | Control method of laundry machine | |
WO2011025315A2 (fr) | Procédé de commande d'un lave-linge | |
WO2011025321A1 (fr) | Procédé de commande d'un lave-linge | |
WO2011025319A1 (fr) | Procédé de commande d'un lave-linge | |
WO2011025313A1 (fr) | Procédé de commande d'un lave-linge | |
WO2011025318A1 (fr) | Procédé de commande d'un lave-linge | |
KR20110022367A (ko) | 세탁장치 | |
KR20110022366A (ko) | 세탁장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120307 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20141030 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06F 37/22 20060101AFI20141024BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170103 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LG ELECTRONICS INC. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 896081 Country of ref document: AT Kind code of ref document: T Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010042589 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170524 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 896081 Country of ref document: AT Kind code of ref document: T Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170825 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170824 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010042589 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
26N | No opposition filed |
Effective date: 20180227 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170827 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220705 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220705 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230827 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240705 Year of fee payment: 15 |