AU2010287152A1 - Control method of laundry machine - Google Patents

Control method of laundry machine

Info

Publication number
AU2010287152A1
AU2010287152A1 AU2010287152A AU2010287152A AU2010287152A1 AU 2010287152 A1 AU2010287152 A1 AU 2010287152A1 AU 2010287152 A AU2010287152 A AU 2010287152A AU 2010287152 A AU2010287152 A AU 2010287152A AU 2010287152 A1 AU2010287152 A1 AU 2010287152A1
Authority
AU
Australia
Prior art keywords
drum
control method
rpm
laundry
tub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2010287152A
Other versions
AU2010287152B2 (en
Inventor
Jae Hyuk Jang
Bon Kwon Koo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090079912A external-priority patent/KR101741549B1/en
Priority claimed from KR1020090079923A external-priority patent/KR20110022367A/en
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of AU2010287152A1 publication Critical patent/AU2010287152A1/en
Application granted granted Critical
Publication of AU2010287152B2 publication Critical patent/AU2010287152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/005Methods for washing, rinsing or spin-drying
    • D06F35/007Methods for washing, rinsing or spin-drying for spin-drying only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • D06F37/225Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

The control method of a laundry machine is disclosed. The control method of a laundry machine includes a step configured to rotate a drum in an RPM band belonging to a transient region and higher at a predetermined acceleration inclination less than a preset minimum drum speed acceleration inclination of the spinning cycle for a predetermined time period.

Description

WO 2011/025309 PCT/IKR21OI/005803 Description Title of Invention: CONTROL METHOD OF LAUNDRY MACHINE Technical Field [1] The present invention relates to a control method of a laundry machine. Background Art [2] In general, a laundry machine may include washing, rinsing and spinning cycles. Here, the spinning cycle includes a rotating step of rotating a drum provided in such a laundry machine at the highest RPM. Because of the step, the spinning cycle would generate noise and vibration quite a lot, which is required to be solved in the art the prevent invention pertains to. Disclosure of Invention Technical Problem [3] Accordingly, the present invention is directed to a control method of a laundry machine. [4] An object of the present invention is to provide a control method of a laundry machine which can solve the above problem. Solution to Problem [5] To solve the problems, an object of the present invention is to provide a control method of a laundry machine comprising a step configured to rotate a drum in an RPM band belonging to a transient region and higher at a predetermined acceleration in clination less than a preset minimum drum speed acceleration inclination of the spinning cycle for a predetermined time period. Advantageous Effects of Invention [6] The present invention has following advantageous effects. [7] In case the spinning cycle is implemented according to the control method of the present invention, noise and vibration generated in the laundry machine may be reduced and the time of the spinning cycle may be reduced simultaneously. Brief Description of Drawings [8] The accompanying drawings, which are included to provide further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate embodiments of the disclosure and together with the description serve to explain the principle of the disclosure. [9] In the drawings: [10] FIG. 1 is an exploded perspective view illustrating a laundry machine a spinning WO 2011/025309 PCT/KR2010/005803 cycle control method according to the present invention is applied to; [11] FIG. 2 is a sectional view illustrating a connecting state of FIG. 1; [12] Fig. 3 is a graph showing a relation of mass vs. a natural frequency; [13] Fig. 4 is a graph illustrating vibration characteristics of the laundry machine; [14] Figs. 5 to 9 are graphs illustrating RPM change according to the control methods. Best Mode for Carrying out the Invention [15] According to a laundry machine according to an embodiment, the tub may be fixedly supported to the cabinet or it may be supplied to the cabinet by a flexible supporting structure such as a suspension unit which will be described later. Also, the supporting of the tub may be between the supporting of the suspension unit and the completely fixed supporting. [16] That is, the tub may be flexibly supported by the suspension unit which will be described later or it may be complete-fixedly supported to be movable more rigidly. Although not shown in the drawings, the cabinet may not be provided unlike em bodiments which will be described later. For example, in case of a built-in type laundry machine, a predetermined space in which the built-in type laundry machine will be installed may be formed by a wall structure and the like, instead of the cabinet. In other words, the built-in type laundry machine may not include a cabinet configured to define an exterior appearance thereof independently. [17] In reference to FIGS. 1 and 2, a tub 12 provided in the laundry machine is fixedly supported to a cabinet. The tub 12 includes a tub front 100 configured to define a front part of the tub and a tub rear 120 configured to define a rear part of the tub. The tub front 100 and the tub rear 120 are assembled to each other by screws, to form a prede termined space big enough to accommodate the drum. The tub rear 120 has an opening formed in a rear portion thereof and an inner circumference of the rear portion composing the tub rear 120 is connected with an outer circumference of a rear gasket 250. The tub back 130 has a through-hole formed in a center thereof to pass a shaft to pass there through. The rear gasket 250 is made of a flexible material not to transmit the vibration of the tub back 130 to the tub rear 120. [18] The tub rear 120 has a rear surface 128 and the rear surface 128, the tub back 130 and the rear gasket 250 may define a rear wall of the tub. The rear gasket 250 is con nectedly sealed with the tub back 130 and the tub rear 120, such that the wash water held in the tub may not leak. The tub back 130 is vibrated together with the drum during the rotation of the drum. At this time, the tub back 130 is distant from the tub rear 120 enough not to interfere with the tub rear. Since the rear gasket 250 is made of the flexible material, the tub back 130 is allowed to relative-move, without interference of the tub rear 120. The rear gasket 250 may include a corrugated portion 252 ex- WO 2011/025309 PCT/KR2010/005803 tendible to a predetermined length to allow the relative-motion of the tub back 130. [19] A foreign substance preventing member 200 configured to prevent foreign substances from drawn between the tub and the drum may be connected to a front portion of the tub front 100. The foreign substance preventing member 200 is made of a flexible material and it is fixed to the tub front 100. Here, the foreign substance preventing member 200 may be made of the flexible material identical to the material composing the rear gasket 250. Hereinafter, the foreign substance preventing member 200 will be referenced to as'front gasket'. [20] The drum 32 includes a drum front 300, a drum center and a drum back 340. Balancers 310 and 330 may be installed in front and rear parts of the drum, re spectively. The drum back 340 is connected with a spider 350 and the spider 350 is connected with the shaft 351. The drum 32 is rotated in the tub 12 by a torque transmitted via the shaft 351. [21] The shaft 351 is directly connected with a motor 170, passing through the tub back 130. Specifically, a rotor 174 composing the motor 170 is directly connected with the shaft 351. a bearing housing 400 is secured to a rear portion of the tub back 130 and the bearing housing 400 rotatably supports the shaft, located between the motor 170 and the tub back 130. [22] A stator 172 composing the motor 170 is secured to the bearing housing 400 and the rotor 174 is located surrounding the stator 172. As mentioned above, the rotor 174 is directly connected with the shaft 351. Here, the motor 170 is an outer rotor type motor and it is directly connected with the shaft 351. [23] The bearing housing 400 is supported via a suspension unit with respect to a cabinet base 600. The suspension unit 180 includes three perpendicular supporters and two oblique supporters configured to support the bearing housing 400 obliquely with respect to a forward and rearward direction. [24] The suspension unit 180 may includes a first cylinder spring 520, a second cylinder spring 510, a third cylinder spring 500, a first cylinder damper 540 and a second cylinder damper 530. [25] The first cylinder spring 520 is connected between a first suspension bracket 450 and the cabinet base 600. The second cylinder spring 510 is connected between a suspension bracket 440 and the cabinet base 600. [26] The third cylinder spring 500 is directly connected between the bearing housing 400 and the cabinet base 600. [27] The first cylinder damper 540 is inclinedly installed between the first suspension bracket 450 and a rear portion of the cabinet base. The second cylinder damper 530 is inclinedly installed between the second suspension bracket 440 and a rear portion of the cabinet base 600.
WO 2011/025309 PCT/KR2010/005803 [28] The cylinder springs 520, 510 and 500 of the suspension unit 180 may be elastically connected to the cabinet base 600 enough to allow a forward/rearward and rightward/ leftward movement of the drum, not connected to the cabinet base 600 fixedly. That is, they are elastically supported by the base 600 to allow the drum to be rotated to a pre determined angle in forward/rearward and rightward/leftward directions with respect to the connected portion. [29] The perpendicular ones of the suspension unit may be configured to suspend the vibration of the drum elastically and the oblique ones may be configured to dampen the vibration. That is, in a vibration system including a spring and damping means, the perpendicular ones are employed as spring and the oblique ones are employed as damping means. [30] The tub front 100 and the tub rear 120 are fixedly secured to the cabinet 110 and the vibration of the drum 32 is suspendedly supported by the suspension unit 180. The supporting structure of the tub 12 and the drum 32 may be called'separated'substantially, such that the tub 12 may not be vibrated even when the drum 32 is vibrated. [31] The bearing housing 400 and the suspension brackets may be connected with each other by first and second weights 431 and 430. [32] In case the drum 30 and 32 is rotated after the laundry 1 is loaded in the drum 30 and 32 of the laundry machine according to the above embodiments, quite severe noise and vibration may be generated according to the position of the laundry 1. For example, when the drum 30 and 32 is rotated in a state of the laundry not distributed in the drum 30 and 32 uniformly (hereinafter,'unbalanced rotation'), much noise and vibration may be generated. Especially, if the drum 30 and 32 is rotated at a high speed to spin the laundry, the noise and vibration may be problematic. [33] FIG. 3 illustrates a graph showing a relation of mass vs. a natural frequency. It is assumed that, in vibration systems of two laundry machines, the two laundry machines have mass of mO and ml respectively and maximum holding laundry amounts are Am, respectively. Then, the transition regions of the two laundry machines can be de termined taking AnfO and Anf 1 into account, respectively. In this instance, amounts of water contained in the laundry will not be taken into account, for the time being. [34] In the meantime, referring to FIG. 3, the laundry machine with smaller mass ml has a range of the transition region greater than the laundry machine with greater mass mO. That is, the range of the transition region having variation of the laundry amount taken into account becomes the greater as the mass of the vibration system becomes the smaller. [35] The ranges of the transition regions will be reviewed on the related art laundry machine and the laundry machine of the embodiment.
WO 2011/025309 PCT/KR2010/005803 [36] The related art laundry machine has a structure in which vibration is transmitted from the drum to the tub as it is, causing the tub to vibrate. Therefore, in taking the vibration of the related art laundry machine into account, the tub is indispensible. However, in general, the tub has, not only a weight of its own, but also substantial weights at a front, a rear or a circumferential surface thereof for balancing. Accordingly, the related art laundry machine has great mass of the vibration system. [37] Opposite to this, in the laundry machine of the embodiment, since the tub, not only has no weight, but also is separated from the drum in view of a supporting structure, the tub may not be put into account in consideration of the vibration of the drum. Therefore, the laundry machine of the embodiment may have relatively small mass of the vibration system. [38] Then, referring to FIG. 3, the related art laundry machine has mass mO and the laundry machine of the embodiment has mass ml, leading the laundry machine of the embodiment to have a greater transition region, at the end. [39] Moreover, if the amounts of water contained in the laundry are taken into account simply, Am in FIG. 3 will become greater, making a range difference of the transition regions even greater. And, since, in the related art laundry machine, the water drops into the tub from the drum even if the water escapes from the laundry as the drum rotates, an amount of water mass reduction come from the spinning is small. Since the laundry machine of the embodiment has the tub and the drum separated from each other in view of vibration, the water escaped from the drum influences the vibration of the drum, instantly. That is, the influence of a mass change of the water in the laundry is greater in the laundry machine of the embodiment than the related art laundry machine. [40] Under above reason, though the related art laundry machine has the transition region of about 200 ~ 270rpm, A start RPM of the transient region of the laundry machine according to this embodiment may be similar to a start RPM of the transient region of the conventional laundry machine. An end RPM of the transient region of the laundry machine according to this embodiment may increase more than a RPM calculated by adding a value of approximately 30% of the start RPM to the start RPM. For example, the transient region finishes at an RPM calculated by adding a value of approximately 80% of the start RPM to the start RPM. According to this embodiment, the transient region may include a RPM band of approximately 200 to 350 rpm. [41] In the meantime, by reducing intensity of the vibration of the drum, unbalance may be reduced. For this, even laundry spreading is performed for spreading the laundry in the drum as far as possible before the rotation speed of the drum enters into the transition region. [42] In a case, a balancer is used, a method may be put into account, in which the rotation WO 2011/025309 PCT/KR2010/005803 speed of the drum passes through the transition region while movable bodies provided in the balancer are positioned on an opposite side of an unbalance of the laundry. In this instance, it is preferable that the movable bodies are positioned at exact opposite of the unbalance in middle of the transition region. [43] However, as described above, the transient region of the laundry machine according to this embodiment is relatively wide in comparison to that of the conventional laundry machine. Because of that, even if the laundry even-spreading step or ball balancing is implemented in a RPM band lower than the transient region, the laundry might be in disorder or balancing might be failed with the drum speed passing the transient region. [44] As a result, balancing may be implemented at least one time in the laundry machine according to this embodiment before and while the drum speed passing the transient region. Here, the balancing may be defined as rotation of the drum at a constant-speed for a predetermined time period. Such the balancing allows the movable body of the balancer to the opposite positions of the laundry, only to reduce the unbalance amount. By extension, the effect of the laundry even-spreading. Eventually, the balancing is im plemented while the drum speed passing the transient region and the noise and vibration generated by the expansion of the transient region may be prevented. [45] Here, when the balancing is implemented before the drum speed passing the transient region, the balancing may be implemented in a different RPM band from the RPM of the conventional laundry machine. For example, if the transient region starts at 200 RPM, the balancing is implemented in the RPM band lower than approximately 150 RPM. Since the conventional laundry machine has a relatively less wide transient region, it is not so difficult for the drum speed to pass the transient region even with the balancing implemented at the RPM lower than approximately 150 RPM. However, the laundry machine according to this embodiment has the relatively wide expanded transient region as described above. if the balancing is implemented at the such the low RPM like in the conventional laundry machine, the positions of the movable bodies might be in disorder by the balancing implemented with the drum speed passing the transient region. Because of that, the laundry machine according to this embodiment may increase the balancing RPM in comparison to the conventional balancing RPM, when the balancing is implemented before the drum speed enters the transient region. That is, if the start RPM of the transient region is determined, the balancing is im plemented in a RPM band higher than a RPM calculated by subtracting a value of ap proximately 25% of the start RPM from the start RPM. For example, the start RPM of the transient region is approximately 200 RPM, the balancing may be implemented in a RPM band higher than 150RPm lower than 200 RPM. [46] Moreover, the unbalance amount may be measured during the balancing. That is, the control method may further include a step to measure the unbalance amount during the WO 2011/025309 PCT/KR2010/005803 balancing and to compare the measured unbalance amount with an allowable unbalance amount allowing the acceleration of the drum speed. If the measured unbalance amount is less than the allowable unbalance amount, the drum speed is ac celerated after the balancing to be out of the transient region. In contrast, if the measured unbalance amount is the allowable unbalance amount or more, the laundry even-spreading step may be re-implemented. in this case, the allowable unbalance amount may be different from an allowable unbalance amount allowing the initial ac celerating. [47] Meanwhile, vibration characteristics of the laundry machine according to the em bodiment of the present invention will now be described with reference to FIG. 4. [48] As the rotation speed of the drum is increased, a region (hereinafter, referred to as"transient vibration region")where irregular transient vibration with high amplitude occurs is generated. The transient vibration region irregularly occurs with high amplitude before vibration is transited to a steady-state vibration region (hereinafter, referred to as"steady-state region"), and has vibration characteristics determined if a vibration system (laundry machine) is designed. Though the transient vibration region is different according to the type of the laundry machine, transient vibration occurs ap proximately in the range of 200rpm to 270rpm. It is regarded that transient vibration is caused by resonance. Accordingly, it is necessary to design the balancer by considering effective balancing at the transient vibration region. [49] In the mean time, as described above, in the laundry machine according to the em bodiment of the present invention, the vibration source, i.e., the motor and the drum connected with the motor are connected with the tub 12 through the rear gasket 250. Accordingly, vibration occurring in the drum is little forwarded to the tub, and the drum is supported by a damping means and the suspension unit 180 via a bearing housing 400. As a result, the tub 12 can directly be fixed to a cabinet 110 without any damping means. [50] As a result of studies of the inventor of the present invention, vibration charac teristics not observed generally have been found in the laundry machine according to the present invention. According to the general laundry machine, vibration (displacement) becomes steady after passing through the transient vibration region. However, in the laundry machine according to the embodiment of the present invention, a region (hereinafter, referred to as"irregular vibration") where vibration becomes steady after passing through the transient vibration region and again becomes great may be generated. For example, if the maximum drum displacement or more generated in an RPM band lower than the transient region or the maximum drum dis placement or more of steady state step in a RPM band higher than the transient region is generated, it is determined that irregular vibration is generated. Alternatively, if an WO 2011/025309 PCT/KR2010/005803 average drum displacement in the transient region, +20% to -20% of the average drum displacement in the transient region or 1/3 or more of the maximum drum dis placement in the natural frequency of the transient region are generated, it may be de termined that the irregular vibration is generated. [51] However, as a result of the studies, irregular vibration has occurred in a RPM band higher than the transient region, for example has occurred at a region (hereinafter, referred to as"irregular vibration region") in the range of 350 rpm to 1000rpm, ap proximately. Irregular vibration may be generated due to use of the balancer, the damping system, and the rear gasket. Accordingly, in this laundry machine, it is necessary to design the balancer by considering the irregular vibration region as well as the transient vibration region. [52] For example, the balancer is provide with a ball balancer, it is preferable that the structure of the balancer, i.e., the size of the ball, the number of balls, a shape of the race, viscosity of oil, and a filling level of oil are selected by considering the irregular vibration region as well as the transient vibration region. When considering the transient vibration region and/or the irregular vibration region, especially considering the irregular vibration region, the ball balancer has a greater diameter of 255.8mm and a smaller diameter of 249.2. A space of the race, in which the ball is contained, has a sectional area of 411.93mm2. The number of balls is 14 at the front and the rear, re spectively, and the ball has a size of 19.05mm. Silicon based oil such as Poly Dimethylsiloxane (PDMS) is used as the oil. Preferably, oil has viscosity of 300CS at a room temperature, and has a filling level of 350cc. [53] In addition to the structure of the balancer, in view of control, it is preferable that the irregular vibration region as well as the transient vibration region is considered. For example, to prevent the irregular vibration, if the irregular vibration region is de termined, the balancing may be implemented at least one time before, while and after the drum speed passes the irregular vibration region. Here, if the rotation speed of the drum is relatively high, the balancing of the balancer may not be implemented properly and the balancing may be implemented with decreasing the rotation speed of the drum. however, if the rotation speed of the drum is decreased to be lower than the transient region to implement the balancing, it has to pass the transient region again. In de creasing the rotation speed of the drum to implement the balancing, the decreased rotation speed may be higher than the transient region. [54] A control method is required to reduce the noise and vibration while the rotation speed of the drum passes the transient region and/or when it passes the irregular vibration region as described above. As follows, the spinning cycle of he laundry machine having the above configuration will be described and the control method configured to reduce the noise and vibration will be described after that.
WO 2011/025309 PCT/KR2010/005803 [55] FIG. 5 is a graph illustrating RPM change of the drum as the time passes according to the control method of the spinning cycle. According to FIG. 5, a horizontal axis is'time'and a vertical axis is'rotation speed'of the drum 30 and 32 which is change of RPM. [56] In reference to FIG. 3, the spinning cycle control method according to the present invention includes a laundry distributing step (S 100) and a spinning step (S200). [57] The laundry distributing step (S 100) distributes the laundry uniformly, as rotating the drum at a relatively low speed. The spinning cycle (S200) rotates the drum at a relatively high speed to remove moisture contained in the laundry. Here, such the laundry distributing step and spinning step are named with respect to main functions thereof. The functions of the steps may not be limited to the names. For example, the laundry distributing step may remove the moisture of the laundry by using the rotation of the drum, as well as the laundry distributing. [58] The laundry distributing step (S 100) composing the control method according to the present invention may include a wet laundry sensing step (S 110), a laundry disen tangling step (S 130) and an unbalance sensing step (S 150). The spinning step (S200) may include a transient region passing step (S210) and an accelerating step (S230). As follows, each one of the above steps will be described. [59] Once the rinsing cycle is completed, the laundry located in the drum 30 and 32 is wet by the moisture. A control part senses the amount of the laundry, that is, the amount of the wet laundry located in the drum 30 and 32, when the spinning cycle is put into operation (S1 10). [60] The reason why the amount of the wet laundry is that the amount of the dry laundry measured in an initial stage of the washing cycle is different from the amount of the wet laundry containing the moisture. The sensed amount of the wet laundry may be used as an element configured to determine an allowable condition of the drum ac celerating or to determine to re-implement the laundry distributing step after de creasing the speed of the drum 30 and 32 based on an unbalance condition in the transient region passing step (S210). [61] According to the control method of the present invention, the amount of the wet laundry located in the drum 30 and 32 is measured in case the drum is rotated at a decreased speed after rotated at a constant speed of approximately 100 to 110 RPM reached by the acceleration for a predetermined time period. If the rotation speed of the drum is decreased, rheostatic braking is used. Specifically, the amount of the wet laundry is measured by using the amount of acceleration period rotation in accelerating the motor 40 and 170 configured to rotate the drum 30 and 32, the amount of the ac celeration period rotation in decreasing the speed of the motor 40 and 170, and an applied DC voltage.
WO 2011/025309 PCT/KR2010/005803 [62] After measuring the amount of the wet laundry, the control part may implement the laundry disentangling step (S130) configured to distribute the laundry inside the drum uniformly. [63] The laundry disentangling step distributes the laundry located in the drum 30 and 32 uniformly to prevent the laundry from concentrated on a specific region inside the drum, which might increase the unbalance. If the unbalance is increased, noise and vibration will be increased in case the RPM of the drum is heightened. The laundry disentangling step accelerates the drum in a predetermined single direction with a pre determined oblique and it is implemented until the RPM reaches a rotation speed of the unbalance sensing step which will be described later. [64] Hence, the control part senses the unbalance of the drum (S 150). [65] If the laundry is concentrated on a specific region inside the drum 30 and 32, not dis tributed uniformly, the unbalance is increased and the nose and vibration will be generated when the RPM of the drum 30 and 32 is heightened. Because of that, the control part senses the unbalance of the drum and it determines whether the drum is ac celerated. [66] The unbalance sensing uses difference of the accelerated speeds during the rotation of the drum 30 and 32. That is, there is difference of the accelerated speeds when the drum is rotated downward along the gravity and when it is rotated upward reversely according to the level of the generated unbalance. The control part measures the difference of the accelerated speeds by using a speed sensor, for example, a hall sensor provided in the motor 40 and 170 to sense the amount of the unbalance. In case the unbalance is sensed, the laundry located inside the drum keeps the close contact with the inner circumferential surface of the drum, without dropped from the inner circum ferential surface, even during the rotation of the drum. The case having the drum rotated at approximately 100 to 110 RPM is corresponding to this case. [67] If the drum is accelerated at a high speed in case the sensed unbalance amount of the drum having a predetermined amount of wet laundry is a reference unbalance value or more, the vibration and noise of the drum will increase remarkably and it is difficult to accelerate the speed of the drum. Because of that, the control part may store a reference unbalance value, which allows the acceleration of the speed according to the amount of the wet laundry as a table typed data. After that, the control part applies the sensed wet-laundry amount and the unbalance amount to the table and it determines whether the speed of the drum is accelerated. In other words, in case the unbalance amount sensed according to the sensed wet-laundry amount is the reference unbalance value or more, it can be determined that the unbalance amount is too much to ac celerate the drum speed and the above wet-laundry sensing, laundry disentangling and unbalance sensing steps are repeated.
WO 2011/025309 PCT/KR2010/005803 [68] As mentioned above, the repetition of the wet laundry sensing step, the laundry dis entangling step and the unbalance sensing step may be continued until the sensed unbalance amount meets less than the reference unbalance value. However, if the laundry machine is in an abnormal state or the laundry is entangled severely inside the drum, the sensed unbalance amount cannot meet less tan the reference unbalance value and the steps may be repeated. As a result, it is preferable that the control part controls the drum to stop the rotation and notifies the user that the spinning cycle is not completed normally, if the speed of the drum fails to be accelerated for a prede termined time period, for example, approximately more than 20 to 30 minutes after the spinning cycle starts. [69] In case the unbalance amount sensed according to the sensed wet laundry amount is less than the reference unbalance amount, the RPM accelerating condition is satisfied and the control part implements the transient region passing step (S210). [70] Here, the transient region is a predetermined RPM band including at least one resonance frequency which generates resonance according to the system of the laundry machine. When the system of the laundry machine is determined, the transient region is a unique vibration property generated according to the determined system. The transient region is variable according to the system of the laundry machine. For example, the transient region includes a scope of approximately 200 to 350 RPM in the laundry machine. [71] That is, in case the rotation speed of the drum 32 passes the transient region, the resonance is generated in the laundry machine and noise and vibration of the laundry machine are generated remarkably. The noise and vibration of the laundry machine will give an unpleasant feeling to the user and they will interfere with the acceleration of the drum speed. As a result, in case the rotation speed of the drum passes the transient region, an acceleration inclination may be adjusted appropriately in the transient region and to noise and vibration may be maintained as little as possible during the acceleration of the drum 32. [72] After the transient region passing step, the control part implements the accelerating step (S230). Once passing the transient region, the RPM of the drum 32 is accelerated at a relatively high speed to remove water elements from the laundry. In other words, the RPM of the drum 32 is increased to a predetermined value and the moisture of the laundry inside the drum 32 is removed, in the accelerating step (S230). However, the accelerating step increases the RPM of the drum 32 at the high speed and noise and vibration will be generated a lot in the laundry machine. Especially, the noise and vibration may be increasing in proportion to the unbalance amount of the drum 32. [73] As described above, a control method configured to reduce the noise and vibration generated by the drum speed passage of the transient region and/or of a higher band WO 2011/025309 PCT/KR2010/005803 thereof, in other words, irregular vibration region will be described. [74] This control method includes a step of reducing noise and vibration generated in the RPM band higher than the transient region, namely, a laundry even-spreading step. this step may be implemented by rotating of the drum at a predetermined acceleration in clination for a predetermined time. that is, once the drum is rotated a rotation speed lower than a rotation speed having a predetermined acceleration inclination, the laundry inside the drum is moved only to achieve a laundry even-spreading effect and the noise and vibration is reduced accordingly. Here, the predetermined acceleration inclination is set to be the minimum acceleration inclination in case the drum speed is accelerated in the spinning cycle. [75] The minimum acceleration inclination of the drum during the spinning cycle may be defined as follows. [76] As described above, the spinning cycle mainly includes the laundry distributing step (S 100) and the spinning step (S200). If the unbalance amount sensed in the unbalance sensing step (S 150) is the reference unbalance value or more, the unbalance is too large to accelerate the drum speed. Because of that, the wet-laundry sensing step, the laundry disentangling step and the unbalance sensing step are repeated. This may cause the increased operation time of the spinning cycle substantially and cause more energy consumption such as electricity consumption. [77] Eventually, it is required in the laundry distributing step (S 100) to reduce the time as much as possible for the repetition of the laundry disentangling step and the others. When the drum speed is accelerated in the laundry distributing step (S100), for example, in the steps of S110 and S130, the drum speed may be accelerated at a relatively large acceleration inclination (speed change ratio). By extension, when the acceleration inclination is determined, it is preferable that the drum speed of the transient region passing step (S210) passes the transient region within a short time even in the spinning step (S200). In the accelerating step (S230) after the drum speed passing the transient region, the drum speed is accelerated to a target RPM. If the ac celeration inclination is increased, the noise and vibration generated by the drum speed accelerating may be increased quite a lot. Because of that, it is preferable that the ac celeration inclination is decreased if the drum speed is accelerated to the target RPM in the accelerating step. [78] As a result, according to the acceleration inclination when the drum speed is ac celerated over the spinning cycle, the acceleration inclination of the laundry dis tributing step and the transient region passing step may be said to be relatively large and that of the accelerating step may be said to be relatively small. Except the case of the regular drum speed, that is, no speed change such as the step of sensing the laundry amount or the unbalance, the minimum acceleration inclination may be the case of the WO 2011/025309 PCT/KR2010/005803 drum speed accelerating in the accelerating step after the drum speed passing the transient region. [79] The control method according to this embodiment may include a step of rotating the drum at the minimum acceleration inclination while the drum speed is passing the transient region, which is implemented at least one time. FIG. 6 illustrates the step of rotating the drum at a predetermined acceleration inclination less than the minimum acceleration inclination in the transient region (S212). In reference FIG. 6, the range of the transient region may be the RPM band of approximately 200 to 350rpm as described above or the transient region may increase more than a RPM calculated by adding a value of approximately 30% of the start RPM to the start RPM. [80] In the meanwhile, the drum may be rotated at the constant speed when rotated at a predetermined acceleration inclination less than the minimum acceleration inclination. That is, the drum may be constantly rotated at a predetermined RPM which belongs to the transient region. If the drum is rotated at the constant RPM, the drum speed is not accelerated and the laundry inside the drum may move more smoothly to result in the laundry even-spreading effect. [81] Even when the drum speed is determined to be in the irregular vibration region, the drum is rotated at the inclination less than the minimum acceleration inclination for the predetermined time period as described above. Because of that, the noise and vibration may be reduced. FIGS. 7 to 9 illustrate a control method including a step of rotating the drum at a predetermined acceleration inclination less than the minimum ac celeration inclination in relation to the irregular vibration. According to the control method according to this embodiment, the drum may be rotated at the inclination less than the minimum acceleration inclination at least one of before, while and after the drum speed passes the irregular vibration region. FIG. 7 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination before the drum speed passing the irregular vibration region (S232). FIG. 8 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination while the drum speed passing the irregular vibration region (S234). FIG. 9 shows a step of rotating the drum at the inclination less than the minimum acceleration inclination after the drum speed passing the irregular vibration region (S236). [82] If the drum is rotated at the acceleration inclination less than the minimum ac celeration inclination for a predetermined time period as shown in FIG. 7, the laundry inside the drum is distributed properly and the noise and vibration in irregular vibration region may be reduced. By extension, if the drum is rotated at a constant RPM, the effect of laundry even-spreading may be huge. Even while the drum speed passing the irregular vibration region, the above effect may be achieved. [83] Noise and vibration may be increased in the step of accelerating the drum speed to WO 2011/025309 PCT/KR2010/005803 the target RPM after the drum speed passing the irregular vibration region. The step of rotating the drum at the predetermined acceleration inclination less than the minimum acceleration inclination (S236) may reduce the noise and vibration. [84] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Industrial Applicability [85] The present invention has an industrial applicability. [86] In case the spinning cycle is implemented according to the control method of the present invention, noise and vibration generated in the laundry machine may be reduced and the time of the spinning cycle may be reduced simultaneously.

Claims (14)

  1. A control method of a laundry machine comprising a spinning cycle, the control method comprising:
    a step configured to rotate a drum in an RPM band belonging to a transient region and higher at a predetermined acceleration inclination less than a preset minimum drum speed acceleration inclination of the spinning cycle for a predetermined time period.
  2. The control method as claimed in claim 1, wherein the rotation speed of the drum is accelerated according to the minim acceleration inclination of the drum in an accelerating step of the spinning step after it passes the transient region.
  3. The control method as claimed in claim 1, further comprising:
    a step configured to rotate the drum at a predetermined acceleration inclination less than the minimum drum speed acceleration inclination of the spinning cycle, when the drum speed belongs to the transient region, for a predetermined time period.
  4. The control method as claimed in claim 3, further comprising:
    a step configured to rotate the drum at a constant RPM for a predetermined time period when the drum speed belongs to the transient region.
  5. The control method as claimed in claim 1, wherein the transient region is expanded more than a RPM calculated by adding a value of approximately 30% of the start RPM to the start RPM.
  6. The control method as claimed in claim 1, wherein the transient region comprises an RPM band of 200 to 350 RPM.
  7. The control method as claimed in claim 3, wherein the laundry machine comprises a driving unit comprising a shaft connected to a drum, a bearing housing to rotatably support the shaft, and a motor to rotate the shaft, and a suspension assembly is connected to the driving unit.
  8. The control method as claimed in claim 3, wherein the laundry machine comprises a rear gasket for sealing to prevent washing water from leaking from a space between a driving unit and a tub, and enabling the driving unit movable relative to the tub.
  9. The control method as claimed in claim 3, wherein a tub is supported rigidly more than a drum being supported by a suspension assembly.
  10. The control method as claimed in claim 1, further comprising:
    a step configured to rotate the drum at a predetermined acceleration inclination less than the minimum acceleration inclination of a drum speed for the spinning cycle for a predetermined time period, at least one of before and while and after the drum speed passes an irregular vibration region.
  11. The control method as claimed in claim 10, further comprising:
    a step configured to rotate the drum at a constant RPM for a predetermined time period at least one of before, while and after the drum speed passes the irregular vibration region.
  12. The control method as claimed in claim 10, wherein the laundry machine comprises a driving unit comprising a shaft connected to a drum, a bearing housing to rotatably support the shaft, and a motor to rotate the shaft, and a suspension assembly is connected to the driving unit.
  13. The control method as claimed in claim 10, wherein the laundry machine comprises a rear gasket for sealing to prevent washing water from leaking from a space between a driving unit and a tub, and enabling the driving unit movable relative to the tub.
  14. The control method as claimed in claim 10, wherein a tub is supported rigidly more than a drum being supported by a suspension assembly.
AU2010287152A 2009-08-27 2010-08-27 Control method of laundry machine Active AU2010287152B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020090079912A KR101741549B1 (en) 2009-08-27 2009-08-27 Laundry machine and method for controlling the same
KR10-2009-0079912 2009-08-27
KR1020090079923A KR20110022367A (en) 2009-08-27 2009-08-27 Laundry machine
KR10-2009-0079923 2009-08-27
PCT/KR2010/005803 WO2011025309A2 (en) 2009-08-27 2010-08-27 Control method of laundry machine

Publications (2)

Publication Number Publication Date
AU2010287152A1 true AU2010287152A1 (en) 2012-03-22
AU2010287152B2 AU2010287152B2 (en) 2013-08-15

Family

ID=43628632

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2010287152A Active AU2010287152B2 (en) 2009-08-27 2010-08-27 Control method of laundry machine

Country Status (6)

Country Link
US (3) US20120151691A1 (en)
EP (3) EP2470704A4 (en)
CN (3) CN102575409A (en)
AU (1) AU2010287152B2 (en)
RU (1) RU2495173C1 (en)
WO (3) WO2011025314A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002048A1 (en) * 2010-02-17 2011-08-18 BSH Bosch und Siemens Hausgeräte GmbH, 81739 Method for setting a spin speed of a drum of a domestic appliance for the care of laundry items
WO2015190659A1 (en) * 2014-06-09 2015-12-17 엘지전자 주식회사 Washing apparatus
JP6507367B2 (en) * 2015-04-09 2019-05-08 パナソニックIpマネジメント株式会社 Drum type washing machine
US9988751B2 (en) 2015-07-29 2018-06-05 Whirlpool Corporation Laundry treating appliance and methods of reducing tub contact therein
US10273621B2 (en) 2015-10-01 2019-04-30 Whirlpool Corporation Laundry treating appliance and methods of operation
US9885135B2 (en) 2015-11-19 2018-02-06 Whirlpool Corporation Laundry treating appliance and methods of operation
US9988753B2 (en) 2015-11-19 2018-06-05 Whirlpool Corporation Laundry treating appliance and methods of operation
US9890490B2 (en) 2015-11-19 2018-02-13 Whirlpool Corporation Laundry treating appliance and methods of operation
US10041202B2 (en) 2015-11-19 2018-08-07 Whirlpool Corporation Laundry treating appliance and methods of operation
US9863080B2 (en) 2015-11-19 2018-01-09 Whirlpool Corporation Laundry treating appliance and methods of operation
US9873968B2 (en) 2015-11-19 2018-01-23 Whirlpool Corporation Laundry treating appliance and methods of operation
KR102401489B1 (en) 2015-12-24 2022-05-24 삼성전자주식회사 Method of reducing vibration during dehydration and washing machine using the same
KR102541172B1 (en) * 2016-09-12 2023-06-08 엘지전자 주식회사 Spinning course control method of laundry machine
JP7311108B2 (en) * 2018-12-26 2023-07-19 青島海爾洗衣机有限公司 vertical washing machine
EP3800288B1 (en) * 2019-08-05 2023-06-21 LG Electronics Inc. Clothing treatment apparatus having camera, and control method therefor
CN112538727B (en) * 2020-11-30 2022-11-01 宁波金帅集团有限公司 Speed reducer for large-capacity washing machine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054412A (en) * 1976-12-09 1977-10-18 General Electric Company Clothes washing machine and method of washing clothes
US4916768A (en) * 1987-12-08 1990-04-17 Ellis Corporation Washing and extracting method
AU8849498A (en) * 1997-08-21 1999-03-16 Eti Technologies Inc Balancing device for use on washing machines
DE19952464C2 (en) * 1999-10-29 2002-05-08 Miele & Cie Method for balancing a rotating body which is set in rotation by a controlled drive, and use of the method
KR100464054B1 (en) * 2002-12-27 2005-01-03 엘지전자 주식회사 Drum type washing machine with united cabinet/tub
KR100504866B1 (en) * 2003-01-15 2005-08-01 엘지전자 주식회사 Method for controlling dehydration speed of drum washing machine
KR100671193B1 (en) * 2003-06-06 2007-01-18 산요덴키가부시키가이샤 Drum type washing machine
KR101052787B1 (en) * 2003-11-18 2011-07-29 삼성전자주식회사 Washing machine and its control method
CN100519882C (en) * 2004-06-28 2009-07-29 乐金电子(天津)电器有限公司 Control method for dewatering of drum washing machine
KR100634802B1 (en) * 2004-07-20 2006-10-16 엘지전자 주식회사 Drum washing machine
RU2362847C2 (en) * 2005-03-25 2009-07-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Washing machine and method of control thereof
KR101095560B1 (en) * 2005-10-06 2011-12-19 삼성전자주식회사 Washing machine and method to control laundry thereof
KR101085495B1 (en) * 2006-11-06 2011-11-23 삼성전자주식회사 Tub Oscillation Control Method Of Drum Type Washing Machine
KR101156713B1 (en) * 2006-11-06 2012-06-15 삼성전자주식회사 Drum Washing machine and control method thereof
NZ552422A (en) * 2006-12-21 2009-09-25 Fisher & Paykel Appliances Ltd Laundry appliance including control means which energises a motor to evenly distribute a load in response to signals from load sensors
KR101428477B1 (en) * 2007-01-24 2014-08-12 삼성전자 주식회사 Washing machine and control method thereof
KR101356645B1 (en) * 2007-04-19 2014-02-03 삼성전자주식회사 Balancer and Drum type washing machine having the same
EP1995366B1 (en) * 2007-05-21 2015-05-06 Samsung Electronics Co., Ltd. Washing machine and control method of maintaining a balanced state of laundry thereof
KR101287534B1 (en) * 2007-05-21 2013-07-18 삼성전자주식회사 Washing machine and control method thereof
KR101287536B1 (en) * 2007-06-05 2013-07-18 삼성전자주식회사 Washing machine and control method thereof
KR101407959B1 (en) * 2008-01-22 2014-06-20 삼성전자주식회사 Drum type washing machine having ball balancer and controlling method of the same of

Also Published As

Publication number Publication date
EP2470701A2 (en) 2012-07-04
RU2495173C1 (en) 2013-10-10
EP2470711A4 (en) 2014-12-03
WO2011025314A3 (en) 2011-04-21
EP2470701A4 (en) 2015-02-18
EP2470704A2 (en) 2012-07-04
EP2470711A2 (en) 2012-07-04
CN102686789A (en) 2012-09-19
US20120151694A1 (en) 2012-06-21
US20120151691A1 (en) 2012-06-21
WO2011025323A2 (en) 2011-03-03
AU2010287152B2 (en) 2013-08-15
WO2011025309A2 (en) 2011-03-03
CN102575409A (en) 2012-07-11
WO2011025323A3 (en) 2011-04-21
EP2470711B1 (en) 2017-05-24
EP2470704A4 (en) 2015-03-04
WO2011025309A3 (en) 2011-04-21
WO2011025314A2 (en) 2011-03-03
EP2470701B1 (en) 2017-08-09
US20120151690A1 (en) 2012-06-21
CN102510916A (en) 2012-06-20

Similar Documents

Publication Publication Date Title
AU2010287152B2 (en) Control method of laundry machine
AU2010287081B2 (en) Control method of laundry machine
US9039786B2 (en) Control method of laundry machine
AU2010287084B2 (en) Control method of laundry machine
AU2010287088B2 (en) Control method of laundry machine
EP2470705B1 (en) Control method of laundry machine
EP2470710B1 (en) Control method of laundry machine
EP2470709B1 (en) Control method of laundry machine
EP2470708B1 (en) Control method of laundry machine
EP2470706B1 (en) Control method of laundry machine
KR101741549B1 (en) Laundry machine and method for controlling the same
KR20110022495A (en) Spinning course control method of laundry machine
KR20110022492A (en) Spinning course control method of laundry machine
KR20110022366A (en) Laundry machine
KR20110022367A (en) Laundry machine

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)