EP2462627A1 - Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung - Google Patents

Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung

Info

Publication number
EP2462627A1
EP2462627A1 EP10737343A EP10737343A EP2462627A1 EP 2462627 A1 EP2462627 A1 EP 2462627A1 EP 10737343 A EP10737343 A EP 10737343A EP 10737343 A EP10737343 A EP 10737343A EP 2462627 A1 EP2462627 A1 EP 2462627A1
Authority
EP
European Patent Office
Prior art keywords
phr
solar
vinyl acetate
solar module
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10737343A
Other languages
English (en)
French (fr)
Inventor
Andreas Roos
Michael Herrmann
Rainer Kalkofen
Stefan Kelbch
Hans-Jürgen FROMMONT
Gerd Bergmann
Ralf Tappe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Publication of EP2462627A1 publication Critical patent/EP2462627A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to granules of ⁇ -olefin-vinyl acetate copolymers having a vinyl acetate content of> 40 wt .-%, based on the total weight of the ⁇ -olefin-vinyl acetate copolymer as an embedding material for solar modules, their production process, an adhesive film and a Solar module and its production method and manufacturing device.
  • solar modules which convert the light of the sun directly into electrical energy
  • natural resources are used to generate electricity.
  • the most important component of solar modules is solar cells.
  • Solar modules are often used in outdoor areas, e.g. used on buildings.
  • the solar cells present in the solar modules must therefore be protected from environmental influences. Since penetrating moisture can greatly shorten the life of the solar cells and thus of the solar module due to corrosion, the permanent encapsulation (embedding) of the solar cells is of particular importance.
  • the material used to encapsulate the solar cells must be transparent to the sunlight and at the same time enable the cost-effective production of the solar modules.
  • An often used in the art material for embedding the solar cells are ethylene-vinyl acetate copolymers.
  • WO-A-97/22637 relates to a substantially transparent and colorless potting material which is free of ultraviolet light absorber components and composed of a polymer component and a crosslinking reagent.
  • the polymer component used is preferably ethylene-vinyl acetate according to WO-A-97/22637.
  • Example 1 in WO-A-97/22637 an ethylene-vinyl acetate random copolymer composed of 67% by weight of ethylene and 33% by weight of vinyl acetate is used.
  • EP 1 164 167 A1 discloses encapsulating materials comprising an ethylene-vinyl acetate copolymer (EVA), a crosslinker and a polymerization inhibitor. According to EP 1 164 167
  • the EVA has a vinyl acetate content of 5 to 50% by weight. At levels above
  • EP 1 164 167 A1 50% by weight deteriorates the mechanical properties of the EVA and it becomes difficult to produce EVA films. Concerning the manufacturing process of EP 1
  • EVA 164 167 Al used EVA contains no information in EP 1 164 167 A1. According to Examples 1 and 2 in EP 1 164 167 A1, an EVA copolymer with 26% by weight of vinyl acetate is used.
  • EP 1 184 912 A1 also relates to an embedding material for solar cells, which is composed of an ethylene-vinyl acetate copolymer (EVA).
  • EVA ethylene-vinyl acetate copolymer
  • the vinyl acetate content in the EVA copolymer is 10 to 40% by weight. Contents of more than 40% by weight of vinyl acetate are unfavorable according to EP 1 184 912 A1, since EVA copolymers with contents of more than 40% by weight. % Vinyl acetate flow easily and thus complicate the embedding process of the solar cells.
  • EVA copolymers having a vinyl acetate content of more than 40% by weight according to EP 1 184 912 A1 are characterized by being tacky, so that the EVA film used for the embedding is difficult to handle.
  • the preferred EVA films are crosslinked according to EP 1 184 912 A1.
  • JP-A 2003-051605 discloses a film for a solar module composed of an EVA copolymer blended with an organic peroxide, a silane coupling agent and stabilizers.
  • the vinyl acetate content in the EVA copolymer according to JP-A 2003-051605 is 27% or more.
  • an EVA copolymer with a vinyl acetate content of 28% is used.
  • JP-A 2003-049004 relates to a flexible film which is suitable for embedding solar cells without crosslinking.
  • the flexible film is preferably composed of an ethylene polymer or an ethylene- ⁇ -olefin copolymer or an ethylene-acrylate copolymer.
  • EP-A 1 783 159 A1 describes a resin film of EVA which contains a photoinitiator and a
  • Silane coupling reagent contains; no information was provided on the manufacturing process of the EVA.
  • EP 2 031 662 describes a solar module consisting of at least one layer of at least one ⁇ -olefin-vinyl acetate copolymer having a vinyl acetate content of> 40% by weight (EVM), the layer containing no aging inhibitors and / or adhesion promoters.
  • EVM vinyl acetate content
  • the invention is therefore based on the object to provide granules, which can be used as the basis for an embedding material with which the production of solar modules can be performed time-saving and thus cost-effective.
  • the resulting solar modules should be characterized by a good life and excellent UV resistance.
  • Embedding material and encapsulation material are understood here as synonyms.
  • Solar module and photovoltaic module are understood here as synonyms.
  • granules of the type mentioned are proposed, which are used as embedding material for solar modules, wherein the granules have as aggregates at least one UV activator and at least one silane coupling reagent.
  • Conventional embedding materials consist of ethylene-vinyl acetate copolymers or short EVA with a vinyl acetate content of ⁇ 40 wt .-%, based on the total weight of ⁇ - Olefin-vinyl acetate copolymers.
  • organic peroxides are used, which are thermally crosslinked during vacuum lamination. The vacuum largely avoids the formation of air bubbles. Decomposition products of these peroxides penetrate the conventional processes for the production of photovoltaic modules in the vacuum pumps and thereby cause an increased maintenance costs. Dispensing with this maintenance would lead to failure of the pumps.
  • the UV activators are preferably benzophenone, 2-methylbenzophenone, 3,4-dimethylbenzophenone, 3-methylbenzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-dihydroxybenzophenone, 4,4'-bis [2- (1-propenyl) phenoxy] benzophenone, 4- (diethylamino) benzophenone, 4- (dimethylamino) benzophenone, 4-benzoylbiphenyl, 4-hydroxybenzophenone, 4-methylbenzophenone, benzophenone-3,3 ', 4,4 tetracarboxylic dianhydride, 4,4'-bis (dimethylamino) benzophenone,
  • UV activators are particularly well suited since, for example, benzophenone has a relative UV absorption maximum in the range from 320 to 380 nm.
  • the content of UV activators should be between 0.1 phr and 10 phr, preferably between 0.1 phr and 3.0 phr, preferably between 0.25 phr and 2.5 phr, particularly preferably between 0.5 phr and 2, 0 phr are lying.
  • “Phr” is a technical definition and means "Part per 100 Rubber”.
  • Silane coupling reagents act as adhesion promoters, since these attachment sites are to the glass of the solar module.
  • the content of silane coupling reagent is between 0.05 phr and 10 phr, preferably 0.1 phr to 3.0 phr, preferably 0.25 phr to 2.5 phr, more preferably 0.5 phr to 2, 0 phr.
  • the ⁇ -olefin-vinyl acetate copolymers used are characterized by high vinyl acetate contents of> 40 wt .-%, based on the total weight of the ⁇ -olefin-vinyl acetate copolymer.
  • the vinyl acetate content of the ⁇ -olefin-vinyl acetate copolymers used according to the invention is usually from> 40% by weight to 90% by weight, preferably from 40% by weight to 60% by weight, based on the total weight of the ⁇ Olefin-vinyl acetate copolymers.
  • the ⁇ -olefin-vinyl acetate copolymer used may have, in addition to the ⁇ -olefin and vinyl acetate-based monomer units, one or more other comonomer units (e.g., terpolymers), e.g. based on vinyl esters and / or (meth) acrylates.
  • the other comonomer units are - as far as further comonomer units in the ⁇ -olefin-vinyl acetate-
  • Copolymer present in an amount of up to 10 wt .-%, based on the total weight of the ⁇ -olefin-vinyl acetate copolymer, wherein the proportion of the ⁇ -olefin-based monomer units correspondingly reduced.
  • ⁇ -Olefm vinyl acetate copolymers which from> 40 wt .-% to 98 wt .-% vinyl acetate, 2 wt .-% to ⁇ 60 wt .-% ⁇ -Olefm and 0 to 10 wt .-% at least of a further comonomer are constructed, wherein the total amount of vinyl acetate, ⁇ -olefin and the other comonomer is 100 wt .-%.
  • ⁇ -olefins all known ⁇ -olefins can be used in the ⁇ -olefin-vinyl acetate copolymers used.
  • the ⁇ -olefin is preferably selected from ethene, propene, butene, in particular n-butene and i-butene, pentene, hexene, in particular 1-hexene, heptene and octene, in particular 1-octene.
  • ⁇ -olefins may further bear substituents, in particular C 1 -C 5 -alkyl radicals.
  • the ⁇ -olefins preferably do not carry any further substituents.
  • Preferred ⁇ -olefins are ethene and propene, ethene being particularly preferably used as ⁇ -olefin in the ⁇ -olefin-vinyl acetate copolymers.
  • the preferred ⁇ -olefin-vinyl acetate copolymer used in the granules of the present invention is an ethylene-vinyl acetate copolymer.
  • Particularly preferred ethylene-vinyl acetate copolymers have a vinyl acetate content of> 40 wt .-% to 90 wt .-%. on. Usually, the preferred ethylene-vinyl acetate copolymers are used with high
  • EVM copolymers Vinyl acetate contents referred to as EVM copolymers, wherein the "M" in the name indicates the saturated backbone of the methylene backbone of the EVMs.
  • the ⁇ -olefin-vinyl acetate copolymers used preferably ethylene-vinyl acetate copolymers, generally have MFI values (g / 10 min), measured according to ISO 1133 at 190 ° C. and a load of 21.1 N, from 1 to 40, preferably 1 to 35 on.
  • the Mooney viscosity according to DIN 53 523 ML 1 + 4 at 100 0 C are generally from 3 to 50, preferably 4 to 40 Mooney units.
  • the number-average molecular weight (Mw), as determined by GPC, is generally from 5,000 g / mol to 800,000 g / mol, preferably from 100,000 g / mol to 400,000, more preferably from 500,000 g / mol.
  • inventive solar module ethylene-vinyl acetate copolymers, which are commercially available, for example under the trade names Levapren® ® or Levamelt® ® Lanxess Germany GmbH.
  • additives such as fillers, light stabilizers (especially UV protectants), acid scavengers, coagents or anti-aging agents can be added.
  • light stabilizers can be 2-hydroxybenzophenones of the general formula
  • R H, aryl, alkyl, alkenyl or alkynyl
  • R ' H, aryl, alkylaryl, alkyl, alkenyl, alkynyl, OH or alkoxy
  • the light stabilizer is preferably 2-hydroxy-4-methoxybenzophenone.
  • HALS reagents sodium EDTA, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • R H, alkyl, alkoxy.
  • R '; R "and R '" the tetramethylpiperidine units can be bridged to dimers or oligomers.
  • Tinuvin 770 is used.
  • 0.5 to 2 phr of class 1 are used. Particularly preferred are 0.08 to 1 phr and preferably also 0.09 to 0.6 phr.
  • the amount of class 2 is preferably 0.05 to 1 phr, more preferably 0.05 to 2 and most preferably 0.05 to 0.4 phr.
  • Classes 1 and 2 can be used either individually or together, with the ratio Class 1 to Class 2 preferably 3: 2.
  • UV crosslinking can be ensured despite the presence of UV protectants.
  • the UV protectants develop their protective function during UV crosslinking by keto-enol tautomerism. They are however restored to their original form once the UV irradiation is stopped.
  • the UV protectants "capture” some of the UV light and release it later, so they can continue to function as UV protectors in finished solar panels, whereas UV activators after UV irradiation are still used It is therefore important, on the one hand, to use UV activators which are almost consumed for UV crosslinking and, on the other hand, to use UV protectants which, after UV crosslinking, again have their UV protective function.
  • polycarbodiimides can be used, wherein preferably 0.05 to 5 phr, more preferably 0.05 to 2 phr and very preferably 0.5 to 0.75 phr are used.
  • Conventional anti-aging agents e.g. Naugard TNPP can also be used.
  • the amount to be used is 0.05 to 5 phr, preferably 0.5 to 2 phr and more preferably 0.5 to 1 phr.
  • the coagents are for example
  • Trimethylolpropane trimethacrylate having the structural formula
  • Particularly preferably used ⁇ -olefin copolymers are the ethylene-vinylacetate copoly- mers Levamelt ® 400, Levamelt 450, Levamelt 452, Levamelt 456 ®, ® Levamelt 500, Levamelt 600,
  • MAHg-EVM maleic anhydride
  • compounding refers to the admixture of dyes, fillers, lubricants, processing aids, plasticizers, aging, sunscreen, flame retardants, antistatic agents, etc., to the polymer for producing workable plastics / elastomers; It also includes alloying (blending, blending) with other plastics or recyclates.
  • the molding compound is heated, mixed, optionally degassed as granules, powder, agglomerate or millbase, and then usually extruded under pressure at elevated temperatures.
  • the hot extrudate is withdrawn and calibrated depending on the polymer in the form of, for example, sheets or sheets of different thickness / thickness.
  • the extrudate then runs over a cooling section, is then laterally trimmed and rolled up or stacked as plate goods.
  • steps 1 and 2 can be combined in the film production and in this way cost and time can be saved. It is conceivable that the granules according to the invention contain compounding additives so that they can then be made available as a finished molding composition for film production. Such adhesive films produced have a high weathering stability. In particular, the embedded solar cells are protected against corrosion by barrier action against water vapor and oxygen.
  • the prior art discloses a process for the preparation of the ⁇ -olefin polymers in question.
  • Vinyl acetate copolymers having a vinyl acetate content of> 40 wt -.%, Based on the total weight of the ⁇ -olefin-vinyl acetate copolymer known, which by a solution polymerization process at a pressure of 100 to 700 bar, preferably at a pressure of 100 to 400 bar, is carried out at temperatures of 50 to 150 0 C, which radical initiators are generally used.
  • Suitable preparation processes are mentioned, for example, in EP-A 0 341 499, EP-A 0 510 478 and DE-A 38 25 450.
  • the produced by the solution polymerization process at a pressure of 100 to 700 bar ⁇ -olefin-vinyl acetate copolymers with high vinyl acetate contents are characterized in particular by low degrees of branching and thus low viscosities. Furthermore, they have a statistically uniform distribution of their building blocks ( ⁇ -olefin and vinyl acetate).
  • the selection of the appropriate solvent is of particular importance. Usually, the solvent is removed after evaporation by evaporation in vacuo, while the added during production or workup additives, namely the UV activators and silane coupling reagents are not removed. For this reason, it is necessary that the boiling point of the solvent is below the boiling points of the aggregates.
  • the solvent must also be selected taking into account the boiling points of these additives, so that they are not removed.
  • the solvents used are preferably tert-butanol, methanol, benzene, toluene, methyl acetate or dialkyl sulfoxide. These solvents have the lowest radical transfer tendency and can thus be used in the continuous process of solution polymerization.
  • Another invention relates to a solar module comprising at least one adhesive film of the granules according to the invention.
  • the solar module according to the invention can be any solar module known to the person skilled in the art. Suitable solar modules are mentioned below.
  • the solar module according to the invention is made up of the following layers: i) a glass substrate having a front and a back side, the front side being the side facing the sun in the finished solar module; ii) a transparent adhesive film applied to the back surface of the glass substrate; iii) one or more solar cells applied to the adhesive film; iv) another, applied to the solar cells transparent adhesive film; and v) a protective layer; or again a glass substrate for glass-glass laminates. wherein the solar cells are embedded in the transparent adhesive films, wherein one of the transparent adhesive films is composed at least of the adhesive film according to the invention.
  • the solar module according to the invention additionally comprises a junction box and a connection terminal and, if it is a rigid solar module, a frame, preferably an aluminum profile frame.
  • a junction box and a connection terminal and, if it is a rigid solar module, a frame, preferably an aluminum profile frame.
  • a frame preferably an aluminum profile frame.
  • glass substrate glass panes are suitable, whereby preferably a so-called single-pane
  • Glass substrate is to be understood as including other transparent substrates, such as polycarbonate, for example.
  • Glass substrates may also have a structured surface here Adhesive films are ⁇ -olefin-vinyl acetate copolymers, in particular ethylene
  • Vinyl acetate copolymers wherein at least one adhesive film, preferably both adhesive films, from the adhesive films of the invention, which are defined above, are constructed.
  • Suitable solar cells are silicon cells, which may be thick-film cells (monocrystalline or polycrystalline cells) or thin-film cells (amorphous silicon or crystalline silicon); III-V semiconductors
  • Solar cells (GaAs cells); II-VI-HaIb ladder solar cells (CdTe cells); CIS cells (copper indium diselenide or copper indium disulfide) or CIGS cells (copper indium gallium diselenide); organic solar cells, dye cells (Grätzel cells) or semiconductor electrolyte cells (eg, copper oxide / NaCl solution); wherein silicon cells are preferably used.
  • silicon cells are preferably used.
  • all known to the expert types of silicon cells can be used, for.
  • Mono- crystalline cells, polycrystalline cells, amorphous cells, microcrystalline cells or tandem solar cells, the z. B. are constructed of a combination of polycrystalline and amorphous cells.
  • the solar module according to the invention contains a plurality of solar cells, which are electrically interconnected, for example, by so-called solder ribbons.
  • the solar cells are embedded in the transparent adhesive films.
  • Suitable processes for producing the solar cells are known to the person skilled in the art.
  • the solar module according to the invention contains a protective layer which is applied to one of the transparent adhesive films.
  • the protective layer is generally a weather-resistant protective layer, which forms the back side (back side covering) of the solar module.
  • This is usually a plastic film, in particular a plastic composite film, for example composed of polyvinyl fluoride, e.g. Tedlar from DuPont, or polyester or glass.
  • the junction box preferably additionally present in the solar module according to the invention is, for example, a junction box with free-wheeling diode or bypass diode. These freewheeling or bypass diodes are required to protect the solar module when, for example, due to shading or a defect, no power is supplied through the solar module.
  • the solar module preferably has a connection terminal, which allows the connection of the solar module to a solar power system.
  • the solar module according to the invention is prepared by customary methods known to the person skilled in the art.
  • the appropriate, generally cleaned glass Substrate provided, whereupon the transparent adhesive film, which is preferably made of the erfmdungs- according to granules, is applied.
  • the transparent adhesive film is cut to size prior to application to the glass substrate.
  • the solar cells are positioned on the transparent adhesive film, wherein they are generally previously connected by means of so-called Lötbändchen to individual strands (strings).
  • the further transparent adhesive film which is likewise preferably produced from the granules according to the invention, and is generally cut to size before application, is applied.
  • the application of the protective layer takes place.
  • the solar module according to the invention is laminated.
  • the lamination is carried out by methods known in the art, for example at reduced pressure and elevated temperature (for example 100 to 200 ° C.).
  • elevated temperature for example 100 to 200 ° C.
  • junction box is set and the module framed.
  • the known EVA hot melt adhesive is melted under heat and thermally crosslinked by free radical generating peroxides. Due to the relatively slow crosslinking of the EVA hot melt adhesive, cycle times of about 20 to 30 minutes per module occur.
  • the cycle time can be significantly reduced, resulting in cost savings. Cycle time reduction is made possible by the elimination of thermally induced peroxidic crosslinking.
  • the erfmdungshacke process for producing a solar module is characterized in that the solar module is subjected to UV irradiation. UV irradiation cross-links the embedding material so that the solar cells are protected against environmental influences.
  • the UV irradiation is carried out directly after lamination.
  • the module is already preheated and the diffusion speed of the UV activator is optimally adapted to the UV
  • the duration of the irradiation is preferably between 10 and 600 seconds, preferably between 10 and 180 seconds. This significantly shortens the production of the solar modules, because the relatively long curing time during the lamination of a conventional EVA adhesive film can be dispensed with.
  • the temperature during the UV irradiation is preferably 50 ° C. to 200 ° C. This can be achieved by preferably using the modules directly after the lamination or during the UV crosslinking, but this prolongs the irradiation time accordingly.
  • the irradiation time depends on the power of the UV radiator, on the distance between the UV radiator and the module and on the irradiation surface.
  • UV protection agents are added, it should be noted that the irradiation time is set so that the UV light is sufficient for UV crosslinking, as part of the UV light is "intercepted" by the UV protection agents, such as described above.
  • the method according to the invention is therefore suitable for the production of solar modules both with the adhesive films according to the invention and with conventional EVA films as embedding material, these having at least one UV activator and at least one silane coupling reagent.
  • the solar modules according to the invention may have a structure according to the above-mentioned examples or else a different construction.
  • Other types of solar modules are known in the art. Examples are laminated glass-glass modules, glass-glass modules in cast resin technology, glass-glass modules in laminated safety film technology, thin-film modules behind glass or as a flexible coating, for example on copper tape, concentrator modules, wherein the sunlight with Help of optics is focused on smaller solar cells, as well as fluorescence collectors.
  • Another object of the present invention is the device for the production of solar modules, which has a UV lamp.
  • UV lamps which are suitable for UV crosslinking of the granules or adhesive films are used here. Particularly advantageous here is the simple and cost-effective upgrade of conventional solar module manufacturing devices. It is conceivable to equip an already existing semi-automatic or fully automatic module production line additionally with a UV emitter. It requires neither a costly conversion of the existing device nor the establishment of a completely new device, which means a significant economic or financial advantage in terms of time and cost factor.
  • the UV emitter is placed directly after the lamination device, such as a vacuum laminator.
  • the lamination device such as a vacuum laminator.
  • the already heated solar modules are fed directly to the UV irradiation.
  • the irradiation temperature is thus predetermined by the lamination, which in turn is reflected in time and cost savings.
  • the device according to the invention is therefore suitable for the production of solar modules both with the inventive adhesive films and with conventional EVA films as embedding material, these having at least one UV activator and at least one silane coupling reagent. It is conceivable that the solar modules according to the invention are used for stationary and mobile power generation.
  • the power is generated in a solar power system having at least one inventive solar module, wherein the light energy of the sun is converted into electrical energy and at least one electrical load.
  • a further subject of the present invention is thus a solar power system containing at least one solar module according to the invention.
  • Suitable electrical consumers depend on the type of solar power system.
  • the consumer may be a DC consumer or an AC consumer.
  • an AC load When an AC load is connected, it is necessary to supply the DC power obtained from the solar modules by means of an inverter
  • the solar power system can also be a stand-alone system that has no (direct) connection to a power grid.
  • the electricity obtained in an island system is buffered in accumulators as energy storage (consumers in the sense of the present application).
  • Suitable island systems are known to the person skilled in the art.
  • the solar power systems can be grid-connected systems, wherein the solar power system is connected to an independent power grid and the electrical energy is fed into this power grid. In this case, the consumer is thus the power grid.
  • Suitable grid-connected systems are also known to the person skilled in the art.
  • Table 1 shows the stress-strain behavior of granules according to the invention before and after UV irradiation.
  • the exposure setting of the irradiated sample was 3 minutes.
  • the sample was 10 min. preheated at 140 0 C, then for a period of 3 min. irradiated with a UV lamp Fe @ 2kW Fa. Hönle, with a distance of 10 cm to the UV lamp.
  • Tab. 2 shows an increase in the Mooney viscosity as a function of the irradiation time of the Levapren 400 with the addition of 1.0 phr of UV crosslinking agent, this being determined by means of a UV lamp Fe @ 2kW from Hönle at a distance of 10 cm irradiated to the UV lamp.
  • Table 3 shows the change in the tensile-elongation behavior with different amounts of UV crosslinker at 1 min. Irradiation, using a UV lamp Fe @ 2kW Fa. Hönle with a distance of 10 cm to the UV lamp.
  • Table 4 shows the change in the tensile-elongation behavior at different exposure times of the composition from Tab. 2, with a UV lamp Fe @ 2kW Fa. Hönle at a distance of 10 cm to the UV lamp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Adhesive Tapes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die Erfindung betrifft Granulate aus α-Olefin-Vinylacetat-Copolymeren mit einem Vinylacetat-Gehalt von > 40 Gew.-%, bezogen auf das Gesamtgewicht des α-Olefin-Vinylacetat-Copolymeren als Einbettungsmaterial für Solarmodule, wobei die Granulate als Zuschlagstoffe mindestens ein UV-Aktivator und mindestens ein Silan-Kopplungsreagenz aufweisen, deren Verwendung für die Folienherstellung von Solarmodulen.

Description

EVM-GRANULAT ALS EINBETTUNGSMATERIAL FÜR SOLARMODULE, DEREN
HERSTELLUNGSVERFAHREN, EINE KLEBEFOLIE SOWIE EIN SOLARMODUL UND DESSEN HERSTELLUNGSVERFAHREN UND HERSTELLUNGSVORRICHTUNG
Die vorliegende Erfindung betrifft Granulate aus α-Olefin-Vinylacetat-Copolymeren mit einem Vinylacetat-Gehalt von > 40 Gew.-%, bezogen auf das Gesamtgewicht des α-Olefin-Vinylacetat- Copolymeren als Einbettungsmaterial für Solarmodule, deren Herstellungsverfahren, eine Klebefolie sowie ein Solarmodul und dessen Herstellungsverfahren und Herstellungsvorrichtung.
Mit Hilfe von Solarmodulen, die das Licht der Sonne direkt in elektrische Energie umwandeln, werden natürliche Ressourcen zur Stromerzeugung genutzt. Der wichtigste Bestandteil von Solarmodulen sind Solarzellen. Solarmodule werden häufig in Außenbereichen, z.B. an Gebäuden, eingesetzt. Die in den Solarmodulen vorhandenen Solarzellen müssen daher vor Umwelteinflüssen geschützt werden. Da eindringende Feuchtigkeit die Lebensdauer der Solarzellen und somit des Solarmoduls durch Korrosion stark verkürzen kann, kommt der dauerhaften Verkapselung (Einbettung) der Solarzellen eine besondere Bedeutung zu. Das zur Verkapselung der Solarzellen verwendete Material muss für das Sonnenlicht transparent sein und gleichzeitig die kostengünstige Herstellung der Solarmodule ermöglichen. Ein im Stand der Technik häufig eingesetztes Material zur Einbettung der Solarzellen sind Ethylen-Vinylacetat-Copolymere.
Beispielsweise betrifft WO-A-97/22637 ein im Wesentlichen transparentes und farbloses Einbettungsmaterial, das frei von Absorberkomponenten für ultraviolettes Licht ist und aus einer Polymerkomponente und einem Vernetzungsreagenz aufgebaut ist. Als Polymerkomponente wird gemäß WO-A-97/22637 bevorzugt Ethylen-Vinylacetat eingesetzt. Gemäß Beispiel 1 in WO-A- 97/22637 wird ein statistisches Ethylen-Vinylacetat-Copolymer, aufgebaut aus 67 Gew.-% Ethylen und 33 Gew.-% Vinylacetat, eingesetzt.
In EP 1 164 167 Al sind Verkapselungsmaterialien, umfassend ein Ethylen- Vinylacetat-Copoly- mer (EVA), einen Vernetzer und einen Polymerisationsinhibitor, offenbart. Gemäß EP 1 164 167
Al weist das EVA einen Vinylacetat-Gehalt von 5 bis 50 Gew.-% auf. Bei Gehalten oberhalb von
50 Gew.-% verschlechtern sich gemäß EP 1 164 167 Al die mechanischen Eigenschaften des EVA und es wird schwierig, EVA-Filme herzustellen. Bezüglich des Herstellungsverfahrens des in EP 1
164 167 Al eingesetzten EVA enthält EP 1 164 167 Al keine Angaben. Gemäß den Beispielen 1 und 2 in EP 1 164 167 Al wird ein EVA-Copolymer mit 26 Gew.-% Vinylacetat eingesetzt.
EP 1 184 912 Al betrifft ebenfalls ein Einbettungsmaterial für Solarzellen, das aus einem Ethylen- Vinylacetat-Copolymer (EVA) aufgebaut ist. Gemäß EP 1 184 912 Al beträgt der Vinylacetat- Gehalt in dem EVA-Copolymer 10 bis 40 Gew.-%. Gehalte von mehr als 40 Gew.-% Vinylacetat sind gemäß EP 1 184 912 Al ungünstig, da EVA-Copolymere mit Gehalten von mehr als 40 Gew.- % Vinylacetat leicht fließen und so den Einbettungsprozess der Solarzellen erschweren. Des Weiteren zeichnen sich EVA-Copolymere mit einem Vinylacetat-Gehalt von mehr als 40 Gew.-% gemäß EP 1 184 912 Al dadurch aus, dass sie klebrig sind, so dass die für die Einbettung verwendete EVA-Folie schwierig zu handhaben ist. Die bevorzugt eingesetzten EVA-Filme werden gemäß EP 1 184 912 Al vernetzt.
In JP-A 2003-051605 ist eine Folie für ein Solarmodul offenbart, aufgebaut aus einem EVA- Copolymer, das mit einem organischen Peroxid, einem Silan-Kopplungsreagenz und Stabilisatoren vermischt ist. Der Vinylacetat-Gehalt in dem EVA-Copolymer gemäß JP-A 2003-051605 beträgt 27 % oder mehr. In den Beispielen wird ein EVA-Copolymer mit einem Vinylacetat-Gehalt von 28 % eingesetzt.
JP-A 2003-049004 betrifft einen flexiblen Film, der ohne Vernetzung zur Einbettung von Solarzellen geeignet ist. Der flexible Film ist bevorzugt aus einem Ethylen-Polymer oder einem Ethylen- α-Olefm-Copolymer oder einem Ethylen-Acrylat-Copolymer aufgebaut. Gemäß der Beschreibung in JP-A 2003-049004 sollen zu EVA-Systemen alternative Systeme bereitgestellt werden. EP-A 1 783 159 Al beschreibt eine Harzfolie aus EVA, welche einen Photoinitiatior und einen
Silan-Kopplungsreagenz enthält; über das Herstellungsverfahren des EVA wurden keine Angaben gemacht.
EP 2 031 662 beschreibt ein Solarmodul, bestehend aus mindestens einer Schicht aus mindestens einem α-Olefm-Vinylacetat-Copolymeren mit einem Vinylacetat-Gehalt > 40 Gew.-% (EVM), wobei die Schicht keine Alterungsschutzmittel und/oder keine Haftvermittler enthält.
Der Erfindung liegt daher die Aufgabe zugrunde, Granulate bereitzustellen, welche sich als Basis für ein Einbettungsmaterial verwenden lassen, mit dem die Herstellung von Solarmodulen zeitsparend und somit auch kostengünstig durchgeführt werden kann. Die daraus resultierten Solarmodule sollen sich durch eine gute Lebensdauer und hervorragende UV-Beständigkeit auszeichnen.
Einbettungsmaterial und Kapselungsmaterial werden hier als Synonyme verstanden. Solarmodul und Photovoltaikmodul werden hier als Synonyme verstanden.
Zur Lösung dieser Aufgabe werden Granulate der eingangs genannten Art vorgeschlagen, welche als Einbettungsmaterial für Solarmodule verwandt werden, wobei die Granulate als Zuschlagsstoffe mindestens einen UV- Aktivator sowie mindestens ein Silan-Kopplungsreagenz aufweisen.
Herkömmliche Einbettungsmaterialien bestehen aus Ethylen-vinylacetat-copolymeren oder kurz EVA mit einem Vinylacetat-Gehalt von < 40 Gew.-%, bezogen auf das Gesamtgewicht des α- Olefin-Vinylacetat-Copolymeren. Für die Vernetzung werden hier organische Peroxide verwandt, welche bei der Vakuumlaminierung thermisch vernetzt werden. Durch das Vakuum wird weitgehend die Bildung von Luftblasen vermieden. Zersetzungsprodukte dieser Peroxide dringen bei den herkömmlichen Prozessen zur Herstellung von Photovoltaikmodulen in die Vakuumpumpen ein und verursachen dadurch einen erhöhten Wartungs aufwand. Ein Verzicht auf diese Wartungsarbeiten würde zum Ausfall der Pumpen führen.
Überraschenderweise wurde nun gefunden, dass auf den Einsatz von organischen Peroxiden verzichtet werden kann. Um eine Vernetzung der α-Olefm-Vinylacetat-Copolymeren trotzdem zu gewährleisten, wird daher mindestens ein UV-Aktivator zugesetzt. Als Haftvermittler kommt zudem mindestens ein Silan-Kopplungsreagenz zum Einsatz.
Als UV- Aktivator kommen vorzugsweise Benzophenon, 2-Methylbenzophenon, 3,4-Dimethyl- benzophenon, 3-Methylbenzophenon, 4,4'-Bis(diethylamino)benzophenon, 4,4'-Dihydroxy- benzophenon, 4,4'-Bis[2-(l-propenyl)phenoxy]benzophenon, 4-(Diethylamino)benzophenon, 4- (Dimethylamino)benzophenon, 4-Benzoylbiphenyl, 4-Hydroxybenzophenon, 4-Methylbenzo- phenon, Benzophenon-3,3',4,4'-tetracarboxyldianhydrid, 4,4'-Bis(dimethylamino)benzophenon,
Acetophenon, 1 -Hydro xycyclohexylphenylketon, 2,2-Diethoxyacetophenon, 2,2-Dimethoxy-2- phenylacetophenon, 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenon, 2-Hydroxy-2- methylpropiophenon, 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenon, 3'-Hydroxy- acetophenon, 4'-Ethoxyacetophenon, 4'-Hydroxyacetophenon, 4'-Phenoxyacetophenon, A'-tert- Butyl-2',6'-dimethylacetophenon, 2-Methyl-4'-(methylthio)-2-morpholinopropiophenon, Diphenyl-
(2,4,6-trimethylbenzoyl)-phosphinoxid, Phenylbis(2,4,6-trimethylbenzoyl)phosphinoxid, Methyl- benzoylformat, Benzoin, 4,4'-Dimethoxybenzoin, Benzoinmethylether, Benzoinethylether, Benzoinisopropylether, Benzoinisobutylether, 4,4'-Dimethylbenzil, Hexachlorocyclopentadiene, allein oder in Kombination zum Einsatz. Diese UV- Aktivatoren sind besonders gut geeignet, da beispielsweise Benzophenon ein relatives UV- Absorptionsmaximum im Bereich 320 bis 380 nm besitzt.
Der Gehalt an UV- Aktivatoren soll zwischen 0,1 phr und 10 phr, vorzugsweise zwischen 0,1 phr und 3,0 phr, bevorzugt zwischen 0,25 phr und 2,5 phr, besonders bevorzugt zwischen 0,5 phr und 2,0 phr liegen. „phr" stellt eine fachliche Definition dar und bedeutet„Part per 100 Rubber".
Darüber hinaus können als Silan-Kopplungsreagenz Vinyltriethoxysilan, Vinyltrimethoxysilan, Vinyltris(ß-methoxyethoxy)silan, (Methacryloxymethyl)methyldimethoxysilan, Methacryloxy- methyltrimethoxysilan, (Methacryloxymethyl)methyldiethoxysilan, Methacryloxymethyltriethoxy- silan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, 3-Methacryl- oxypropyltriacetoxysilan, 3 -Methacryloxypropyltris-(trimethylsiloxy)silan, Vinyltriacetoxysilan, Vinyldimethoxymethylsilan, allein oder in Kombination, eingesetzt werden. Silan-Kopplungs- reagenzien fungieren als Haftvermittler, da diese Anbindungsstellen zum Glas des Solarmoduls aufweisen. Der Gehalt an Silan-Kopplungsreagenz liegt zwischen 0,05 phr und 10 phr, vorzugsweise bei 0,1 phr bis 3,0 phr, bevorzugt bei 0,25 phr bis 2,5 phr, besonders bevorzugt bei 0,5 phr bis 2,0 phr.
Die eingesetzten α-Olefm- Vinylacetat-Copolymere zeichnen sich durch hohe Vinylacetat-Gehalte von > 40 Gew.-%, bezogen auf das Gesamtgewicht des α-Olefm- Vinylacetat-Copolymeren aus. Üblicherweise beträgt der Vinylacetat-Gehalt der erfindungsgemäß eingesetzten α-Olefin-Vinyl- acetat-Copolymere > 40 Gew.-% bis 90 Gew.-%, bevorzugt von 40 Gew.-% bis 60 Gew.-% bezogen auf das Gesamtgewicht der α-Olefm- Vinylacetat-Copolymere.
Das eingesetzte α-Olefm- Vinylacetat-Copolymer kann neben den auf dem α-Olefm und Vinyl- acetat basierenden Monomereinheiten ein oder mehrere weitere Comonomereinheiten aufweisen (z.B. Terpolymere), z.B. basierend auf Vinylestern und/oder (Meth)acrylaten. Die weiteren Comonomereinheiten sind - sofern weitere Comonomereinheiten in dem α-Olefm- Vinylacetat-
Copolymer vorliegen - in einem Anteil von bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht des α-Olefm- Vinylacetat-Copolymeren vorhanden, wobei sich der Anteil der auf dem α-Olefm basierenden Monomereinheiten entsprechend verringert. Somit können z.B. α-Olefm- Vinylacetat- Copolymere eingesetzt werden, die aus > 40 Gew.-% bis 98 Gew.-% Vinylacetat, 2 Gew.-% bis < 60 Gew.-% α-Olefm und 0 bis 10 Gew.-% mindestens eines weiteren Comonomeren aufgebaut sind, wobei die Gesamtmenge an Vinylacetat, α-Olefm und dem weiteren Comonomeren 100 Gew.-% beträgt.
Als α-Olefme können in den eingesetzten α-Olefm- Vinylacetat-Copolymeren alle bekannten α- Olefine eingesetzt werden. Bevorzugt ist das α-Olefm ausgewählt aus Ethen, Propen, Buten, insbe- sondere n-Buten und i-Buten, Penten, Hexen, insbesondere 1 -Hexen, Hepten und Octen, insbesondere 1-Octen.
Es können auch höhere Homologe der genannten α-Olefme als α-Olefme in den α-Olefm- Vinylacetat-Copolymeren eingesetzt werden. Die α-Olefme können des Weiteren Substituenten tragen, insbesondere Ci-C5-Alkylreste. Bevorzugt tragen die α-Olefme jedoch keine weiteren Substi- tuenten. Des Weiteren ist es möglich, in den α-Olefm- Vinylacetat-Copolymeren Mischungen zweier oder mehrerer verschiedener α-Olefme einzusetzen. Bevorzugt ist es jedoch, keine Mischungen verschiedener α-Olefme einzusetzen. Bevorzugte α-Olefme sind Ethen und Propen, wobei Ethen besonders bevorzugt als α-Olefm in den α-Olefm- Vinylacetat-Copolymeren eingesetzt wird. Somit handelt es sich bei den bevorzugt in den erfindungsgemäßen Granulaten eingesetzten α-Olefin-Vinylacetat-Copolymer um ein Ethylen-Vinylacetat-Copolymer.
Besonders bevorzugte Ethylen-Vinylacetat-Copolymere weisen einen Vinylacetat-Gehalt von > 40 Gew.-% bis 90 Gew.-%. auf. Üblicherweise werden die bevorzugt eingesetzten Ethylen-Vinylacetat-Copolymere mit hohen
Vinylacetat-Gehalten als EVM-Copolymere bezeichnet, wobei das„M" in der Bezeichnung das gesättigte Rückgrat der Methylen-Hauptkette des EVMs andeutet.
Die verwendeten α-Olefin-Vinylacetat-Copolymere, bevorzugt Ethylen-Vinylacetat-Copolymere, weisen im Allgemeinen MFI-Werte (g/10 min), gemessen nach ISO 1133 bei 190 0C und einer Last von 21,1 N, von 1 bis 40, bevorzugt 1 bis 35 auf.
Die Mooney- Viskositäten gemäß DIN 53 523 ML 1+4 bei 100 0C betragen im Allgemeinen 3 bis 50, bevorzugt 4 bis 40 Mooney-Einheiten.
Das zahlenmittlere durchschnittliche Molekulargewicht (Mw), bestimmt mittels GPC, beträgt im Allgemeinen von 5000 g/mol bis 800000 g/mol, bevorzugt 100000 g/mol bis 400000, besonders bevozugt bis 500000 g/mol.
Besonders bevorzugt werden in dem erfindungsgemäßen Solarmodul Ethylen-Vinylacetat- Copolymere eingesetzt, die zum Beispiel unter den Handelsnamen Levapren® oder Levamelt® der Lanxess Deutschland GmbH kommerziell erhältlich sind.
Weitere herkömmliche Zusätze, wie etwa Füllstoffe, Lichtschutzmittel (insbesondere UV-Schutz- mittel), Säurefänger, Coagentien oder Alterungsschutzmittel können beigemengt werden.
Beispiele für Lichtschutzmittel können 2-Hydroxybenzophenone der allgemeinen Formel
sein, wobei R= H, Aryl, Alkyl, Alkenyl oder Alkinyl, R' = H, Aryl, Alkylaryl, Alkyl, Alkenyl, Alkinyl, OH oder Alkoxy; R" = H oder OH und R'" = H, Aryl, Alkyl, Alkylaryl, Alkenyl, Alkinyl, OH oder Alkoxy sein können.
Bevorzugt ist das Lichtschutzmittel 2-Hydroxy-4-methoxybenzophenon. Des Weiteren können 2-Hydroxyphenylbenzotriazole der allgemeinen Formel in Betracht kommen, wobei R = H, Alkyl, Aryl, Alkenyl oder Alkinyl, R' = H, Aryl, Alkylaryl, Alkyl, Alkenyl, Alkinyl, OH oder Alkoxy und R" = H, Aryl, Alkyl, Alkylaryl, Alkenyl, Alkinyl, OH oder Alkoxy sein können.
Weitere Beispiele sind auch 4,6-Diphenylhydroxyphenyltriazine der allgemeinen Formel
wobei R = H, Alkyl oder Alkoxy und R' = H oder Alkyl ist. Diese Lichtschutzmittel werden der Klasse 1 zugeordnet.
Ein weiteres Beispiel für Lichtschutzmittel sind HALS-Reagentien (sog. Hindered Amine Light Stabilizer) mit der Formeln:
wobei R = H, Alkyl, Alkoxy ist. Über R'; R" und R'" können die Tetramethylpiperidin- einheiten zu Dimeren oder Oligomeren verbrückt werden.
Diese werden im weiteren als Klasse 2 definiert. Bevorzugt wird Tinuvin 770 eingesetzt.
Vorzugsweise werden 0,5 bis 2 phr der Klasse 1 eingesetzt. Besonders bevorzugt sind 0,08 bis 1 phr und vorzugsweise auch 0,09 bis 0,6 phr.
Die Menge an Klasse 2 beträgt bevorzugt 0,05 bis 1 phr, besonders bevorzugt 0,05 bis 2 und ganz besonders bevorzugt 0,05 bis 0,4 phr.
Idealerweise können die Klasse 1 und 2 entweder einzeln oder zusammen eingesetzt werden, wobei das Verhältnis Klasse 1 zu Klasse 2 bevorzugt 3 : 2 beträgt.
Überraschend wurde festgestellt, dass trotz der Anwesenheit von UV-Schutzmitteln die UV- Vernetzung gewährleistet werden kann. Zwar entfalten die UV-Schutzmittel während der UV- Vernetzung ihre Schutzfunktion durch Keto-Enol-Tautomerie. Sie werden aber wieder in ihre ursprüngliche Form zurückgesetzt, sobald die UV-Bestrahlung beendet wird. Die UV-Schutzmittel „fangen" sozusagen einen Teil des UV-Lichts ab und geben diesen später wieder ab. Somit können sie in fertig hergestellten Solarmodulen weiterhin als UV-Schutzmittel fungieren. Im Gegensatz dazu werden die UV- Aktivatoren nach der UV-Bestrahlung für die UV- Vernetzung verbraucht. Es ist daher wichtig, einerseits UV- Aktivatoren einzusetzen, die für die UV- Vernetzung annähernd verbraucht werden, andererseits UV-Schutzmittel einzusetzen, die nach der UV- Vernetzung wieder ihre UV-Schutzfunktion innehaben.
Es kommen daher alle UV-Schutzmittel in Frage, die diese Eigenschaften aufweisen.
Bei den Säurefängern können Polycarbodiimide (PCD) eingesetzt werden, wobei bevorzugt 0,05 bis 5 phr, besonders bevorzugt 0,05 bis 2 phr und sehr bevorzugt 0,5 bis 0,75 phr verwendet werden.
Herkömmliche Alterungsschutzmittel, wie z.B. Naugard TNPP, können ebenso eingesetzt werden. Die einzusetzende Menge beträgt 0,05 bis 5 phr, bevorzugt 0,5 bis 2 phr und besonders bevorzugt 0,5 bis 1 phr. Bei den Coagentien handelt es sich beispielsweise um
Triallylisocyanurat oder l,3,5-Triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trion (TAIC) mit der Strukturformel:
oder
Triallylcyanurat, 2,4,6-Triallyloxy-l,3,5-triazin (TAC) mit der Strukturformel
oder
Trimethylolpropantrimethacrylat (TRIM) mit der Strukturformel
Besonders bevorzugt eingesetzte α-Olefm-Copolymerisate sind die Ethylen-Vinylacetat-Copoly- mere Levamelt® 400, Levamelt 450, Levamelt 452, Levamelt® 456, Levamelt® 500, Levamelt 600,
Levamelt 686, Levamelt 700, Levamelt 800 und Levamelt® 900 mit 40 + 1,5%, 45 + 1,5%, 50 + 1,5%, 60±l,5 Gew.-% Vinylacetat, 70±l,5 Gew.-% Vinylacetat, 80±2 Gew.-% Vinylacetat bzw. 90±2 Gew.-% Vinylacetat. Es ist vorstellbar, ein Blend aus α-Olefm-Copolymerisaten und Maleinsäureanhydrid gegraft (MAHg-EVM) zu EVM einzusetzen. Der Gehalt an MAHg-EVM kann bis zu 40 Gew. -Teile betragen, bezogen auf die Gesamtmenge des Blends. Es hat sich herausgestellt, dass die Haftung der Elemente für das Solarmodul verbessert werden kann. Eine weitere Erfindung betrifft die Verwendung der erfindungsgemäßen Granulate zur Herstellung einer Klebefolie und eine Klebefolie für Solarmodule als solche.
Bei der Herstellung von Folien sind drei wesentliche Schritte zu nennen, nämlich
1. die Herstellung der Polymere,
2. die Aufbereitung der Polymere zu extrudierbaren Formmassen und 3. die Verarbeitung der Formmassen zu Folien und Platten.
Unter Aufbereitung (Compoundieren) wird das Zumischen von Farbstoffen, Füllstoffen, Gleitmitteln, Verarbeitungshilfsmitteln, Weichmachern, Alterungs-, Lichtschutz-, Flammschutzmitteln, Antistatika usw. zum Polymer zur Herstellung verarbeitungsfähiger Kunststoffe/Elastomere verstanden; auch das Legieren (Mischen, Blenden) mit anderen Kunststoffen oder Rezyklaten gehört dazu.
Beispielsweise wird im Extruder die Formmasse als Granulat, Pulver, Agglomerat oder Mahlgut erwärmt, gemischt, ggf. entgast, und dann üblicherweise bei erhöhten Temperaturen unter Druck extrudiert. Das heiße Extrudat wird abhängig vom Polymer in Form von zum Beispiel Folien oder Platten verschiedener Dicke/Stärke abgezogen und kalibriert. Das Extrudat läuft dann über eine Kühlstrecke, wird anschließend seitlich beschnitten und aufgerollt oder als Plattenware gestapelt.
Mit den erfmdungsgemäßen Granulaten können bei der Folienherstellung die Schritte 1 und 2 zusammengefasst und auf diese Weise Kosten und Zeit eingespart werden. Es ist nämlich vorstellbar, dass die erfmdungsgemäßen Granulate compoundierende Zusätze enthalten, so dass sie dann als fertige Formmasse für die Folienherstellung zur Verfügung gestellt werden können. Derartige hergestellte Klebefolien weisen eine hohe Witterungsstabilität auf. Insbesondere werden die eingebetteten Solarzellen durch Barrierewirkung gegen Wasserdampf und Sauerstoff vor Korrosion geschützt.
Aus dem Stand der Technik ist ein Verfahren zur Herstellung der in Frage kommenden α-Olefm-
Vinylacetat-Copolymeren mit einem Vinylacetat-Gehalt von > 40 Gew. - %, bezogen auf das Gesamtgewicht des α-Olefm-Vinylacetat-Copolymeren bekannt, welches nach einem Lösungs- polymerisationsverfahren bei einem Druck von 100 bis 700 bar, bevorzugt bei einem Druck von 100 bis 400 bar, bei Temperaturen von 50 bis 1500C durchgeführt wird, wobei im allgemeinen radikalische Initiatoren verwendet werden.
Geeignete Herstellungsverfahren sind zum Beispiel in EP-A 0 341 499, EP-A 0 510 478 und DE-A 38 25 450 genannt. Die nach dem Lösungspolymerisations-Verfahren bei einem Druck von 100 bis 700 bar hergestellten α-Olefin-Vinylacetat-Copolymere mit hohen Vinylacetat-Gehalten zeichnen sich insbesondere durch niedrige Verzweigungsgrade und damit niedrige Viskositäten aus. Des Weiteren weisen sie eine statistisch gleichmäßige Verteilung ihrer Bausteine (α-Olefm und Vinylacetat) auf.
Für die Herstellung der erfmdungsgemäßen Granulate wird ein herkömmliches Lösungspolymeri- sationsverfahren, wie oben beschrieben, verwandt, wobei der Siedepunkt des Lösungsmittels kleiner sein soll als die Siedepunkte des UV- Aktivators und des Silan-Kopplungsreagenz.
Die Auswahl des geeigneten Lösungsmittels ist von besonderer Bedeutung. Üblicherweise wird das Lösungsmittel nach der Polymerisation durch Abdampfen im Vakuum entfernt, dabei sollen die während der Produktion bzw. Aufarbeitung beigefügten Zuschlagstoffe, nämlich die UV-Aktivato- ren und Silan-Kopplungsreagenzien nicht mit entfernt werden. Aus diesem Grund ist es erforderlich, dass der Siedepunkt des Lösungsmittels unterhalb der Siedepunkte der Zuschlagstoffe liegt.
Sollten weitere Zusätze während der Produktion beigemengt werden, so ist die Auswahl des Lösungsmittels ebenfalls unter Berücksichtigung der Siedepunkte dieser Zusätze zu treffen, damit diese nicht mitenfernt werden. Vorzugsweise werden als Lösungsmittel tert.-Butanol, Methanol, Benzol, Toluol, Essigsäuremethylester oder Dialkylsulfoxid eingesetzt. Diese Lösungsmittel weisen die geringste Radikal- Übertragungstendenz auf und können somit im kontinuierlichen Prozess der Lösungspolymerisation eingesetzt werden.
Es ist ebenso vorstellbar, die erfindungsgemäßen EVM-Granulate derart herzustellen, dass die Zuschlagstoffe erst nach der Polymerisation bzw. nach der Aufarbeitung der Lösungspolymerisate zugegeben werden.
Eine weitere Erfindung betrifft ein Solarmodul, enthaltend mindestens einer Klebefolie aus den erfindungsgemäßen Granulaten.
Bei dem erfmdungsgemäßen Solarmodul kann es sich um ein beliebiges, dem Fachmann bekanntes Solarmodul handeln. Geeignete Solarmodule sind nachstehend erwähnt. In einer bevorzugten Ausführungsform ist das erfindungsgemäße Solarmodul aus den folgenden Schichten aufgebaut: i) einem Glas-Substrat mit einer Vorder- und Rückseite, wobei die Vorderseite die in dem fertigen Solarmodul zur Sonne gewandte Seite ist; ii) einer auf die Rückseite des Glas-Substrats aufgebrachten transparenten Klebefolie; iii) eine oder mehrere auf die Klebefolie aufgebrachte Solarzellen; iv) einer weiteren, auf die Solarzellen aufgebrachten transparenten Klebefolie; und v) einer Schutzschicht; bzw. wieder ein Glas-Substrat bei Glas-Glas-Laminaten. wobei die Solarzellen in die transparenten Klebefolien eingebettet sind, wobei eine der transparenten Klebefolien mindestens aus der erfindungsgemäßen Klebefolie aufgebaut ist.
Bevorzugt weist das erfindungsgemäße Solarmodul zusätzlich eine Anschlussdose und ein Anschlussterminal sowie - wenn es sich um ein starres Solarmodul handelt - einen Rahmen, bevorzugt einen Aluminiumprofil-Rahmen, auf. Als Glas-Substrat sind Glasscheiben geeignet, wobei bevorzugt ein so genanntes Einscheiben-
Sicherheits-Glas (ESG) eingesetzt wird. Es sind alle dem Fachmann bekannten Glas-Substrate geeignet, wobei des Weiteren unter„Glas-Substrat" auch andere transparente Substrate, wie z.B. Polycarbonat, zu verstehen sind. Die "Glas-Substrate" können hier ebenfalls über eine strukturierte Oberfläche verfügen. Geeignete transparente Klebefolien sind α-Olefm-Vinylacetat-Copolymere, insbesondere Ethylen-
Vinylacetat-Copolymere, wobei mindestens eine Klebefolie, bevorzugt beide Klebefolien, aus den erfindungsgemäßen Klebefolien, die vorstehend definiert wurden, aufgebaut sind.
Als Solarzellen sind alle dem Fachmann bekannten Solarzellen geeignet. Geeignete Solarzellen sind Siliziumzellen, wobei es sich um Dickschichtzellen (mono- oder polykristalline Zellen) oder Dünnschichtzellen (amorphes Silizium oder kristallines Silizium) handeln kann; III-V-Halbleiter
Solarzellen (Ga- As-Zellen); II- VI-HaIb leiter Solarzellen (CdTe-Zellen); CIS-Zellen (Kupfer- Indium-Diselenid oder Kupfer-Indium-Disulfid) oder CIGS-Zellen (Kupfer-Indium-Gallium- Diselenid); organische Solarzellen, Farbstoffzellen (Grätzel-Zellen) oder Halbleiter-Elektrolytzellen (z. B. Kupferoxid/NaCl-Lösung); wobei Siliziumzellen bevorzugt eingesetzt werden. Dabei können alle dem Fachmann bekannten Typen von Siliziumzellen eingesetzt werden, z. B. mono- kristalline Zellen, polykristalline Zellen, amorphe Zellen, mikrokristalline Zellen oder Tandem- Solarzellen, die z. B. aus einer Kombination von polykristallinen und amorphen Zellen aufgebaut sind.
Neben Dickschichtzellen können Dünnschichtzellen, Konzentratorzellen, elektrochemische Farb- stoff-Solarzellen, organische Solarzellen oder Fluoreszenz-Zellen eingesetzt werden. Des Weiteren können flexible Solarzellen eingesetzt werden. Die verwendeten α-Olefin-Vinylacetat-Copolymere sind - im Gegensatz zu üblicherweise in Solarzellen eingesetzten EVA-Copolymeren - Elastomere und daher besonders gut für den Einsatz in flexiblen Solarzellen geeignet. Die Strukturen der vorstehend genannten Solarzellen sind dem Fachmann bekannt. Üblicherweise enthält das erfindungsgemäße Solarmodul mehrere Solarzellen, die zum Beispiel durch so genannte Lötbändchen elektrisch miteinander verschaltet sind. Die Solarzellen sind in die transparenten Klebefolien eingebettet.
Geeignete Verfahren zur Herstellung der Solarzellen sind dem Fachmann bekannt.
Des Weiteren enthält das erfindungsgemäße Solarmodul eine Schutzschicht, die auf eine der trans- parenten Klebefolien aufgebracht ist. Bei der Schutzschicht handelt es sich im Allgemeinen um eine witterungsfeste Schutzschicht, die die Rückseite (Rucks eitenkaschierung) des Solarmoduls bildet. Dabei handelt es sich üblicherweise um eine Kunststofffolie, insbesondere eine Kunststoffverbundfolie, zum Beispiel aufgebaut aus Polyvinylfluorid, z.B. Tedlar von DuPont, oder Polyester bzw. Glas. Die bevorzugt zusätzlich in dem erfindungsgemäßen Solarmodul vorliegende Anschlussdose ist zum Beispiel eine Anschlussdose mit Freilaufdiode bzw. Bypass-Diode. Diese Freilauf- oder Bypass-Dioden sind zum Schutz des Solarmoduls erforderlich, wenn zum Beispiel durch Verschattung oder einen Defekt kein Strom durch das Solarmodul geliefert wird.
Weiterhin weist das Solarmodul bevorzugt ein Anschlussterminal auf, das den Anschluss des Solarmoduls an eine Solarstromanlage ermöglicht.
Schließlich weist das Solarmodul - wenn es sich um ein starres Solarmodul handelt - in einer bevorzugten Ausführungsform einen Rahmen, zum Beispiel einen Aluminiumprofil-Rahmen, zur Erhöhung der Stabilität des Solarmoduls auf.
Die einzelnen vorstehend genannten Elemente des Solarmoduls und bevorzugte Ausführungs- formen dieser Elemente sind dem Fachmann bekannt.
Das erfindungsgemäße Solarmodul wird nach üblichen, dem Fachmann bekannten Verfahren hergestellt. Im Allgemeinen wird zunächst das entsprechende, im Allgemeinen gereinigte Glas- Substrat bereitgestellt, worauf die transparente Klebefolie, die bevorzugt aus den erfmdungs- gemäßen Granulaten hergestellt ist, aufgebracht wird. Üblicherweise wird die transparente Klebefolie vor der Aufbringung auf das Glas-Substrat zugeschnitten. Anschließend werden die Solarzellen auf der transparenten Klebefolie positioniert, wobei sie im Allgemeinen vorher mittels so genannter Lötbändchen zu einzelnen Strängen (strings) verbunden werden. Anschließend werden üblicherweise Querverbinder, die die einzelnen Stränge miteinander verbinden und zur Anschlussdose führen, positioniert und gegebenenfalls verlötet. Schließlich wird die weitere transparente Klebefolie, die ebenfalls bevorzugt aus den erfmdungsgemäßen Granulaten hergestellt ist, und im Allgemeinen vor Aufbringung zugeschnitten wird, aufgebracht. Anschließend erfolgt die Aufbringung der Schutzschicht.
Im Anschluss an die Aufbringung der einzelnen Schichten erfolgt ein Laminieren des erfindungsgemäßen Solarmoduls. Das Laminieren erfolgt nach dem Fachmann bekannten Verfahren, zum Beispiel bei Unterdruck und erhöhter Temperatur (zum Beispiel 100 bis 200 0C). Durch das Laminieren wird erreicht, dass die Solarzellen in die transparenten Klebefolien eingebettet werden und fest mit dem Glas-Substrat und der Schutzschicht verbunden sind. Anschließend wird im
Allgemeinen die Anschlussdose gesetzt und das Modul gerahmt.
Bei dem herkömmlichen Laminierungsprozess wird der bekannte EVA-Schmelzklebstoff unter Hitzezufuhr aufgeschmolzen und thermisch durch radikalbildende Peroxide vernetzt. Aufgrund des relativ langsamen Vernetzens des EVA-Schmelzklebers kommt es zu Zykluszeiten von etwa 20 bis 30 Minuten pro Modul.
Mit dem erfmdungsgemäßen Verfahren zur Herstellung von Solarmodulen bei der Verwendung von Klebefolien, die mindestens ein UV-Aktivator und mindestens ein Silan-Kopplungsreagenz aufweisen, kann die Zykluszeit erheblich gemindert werden, was zu Kostenersparnis führt. Möglich wird die Zykluszeitverkürzung durch den Wegfall der thermisch induzierten peroxidischen Ver- netzung.
Das erfmdungsgemäße Verfahren zur Herstellung eines Solarmoduls ist dadurch gekennzeichnet, dass das Solarmodul einer UV-Bestrahlung unterzogen wird. Durch die UV-Bestrahlung wird das Einbettungsmaterial vernetzt, so dass die Solarzellen vor Umwelteinflüssen geschützt werden.
Bevorzugt wird die UV-Bestrahlung direkt nach dem Laminieren durchgeführt. Dadurch ist das Modul bereits vorgeheizt und die Diffusiongeschwindigkeit des UV- Aktivators optimal an die UV-
Vernetzung angepasst.
Die Dauer der Bestrahlung beträgt vorzugsweise zwischen 10 und 600 Sekunden, bevorzugt zwischen 10 und 180 Sekunden. Dadurch wird die Herstellung der Solarmodule deutlich verkürzt, denn auf die relativ lange Vernetzungszeit während der Laminierung einer herkömmlichen EVA- Klebefolie kann verzichtet werden.
Die Temperatur während der UV-Bestrahlung beträgt vorzugsweise 50 0C bis 200 0C. Diese kann erreicht werden, indem vorzugsweise die Module direkt nach dem Laminieren eingesetzt werden oder während der UV- Vernetzung, dadurch verlängert sich jedoch die Bestrahlungsdauer entsprechend.
Es ist aber auch vorstellbar, die Module erst vorzuheizen und danach mittels der UV-Bestrahlung zu vernetzen. Dies ist nur dann sinnvoll, wenn aus technischen Gründen das Laminieren nicht direkt vor der UV-Bestrahlung durchgeführt werden kann. Es sei hier anzumerken, dass für die optimale Vernetzung der Module die Bestrahlungsdauer von der Leistung des UV-Strahlers, von dem Abstand zwischen dem UV-Strahler und dem Modul sowie von der Bestrahlungsfläche abhängig ist.
Sofern UV-Schutzmittel beigemengt werden, ist zusätzlich darauf zu beachten, dass die Bestrahlungsdauer so eingestellt ist, dass das UV-Licht für die UV- Vernetzung ausreicht, da einen Teil des UV-Lichts von den UV-Schutzmitteln„abgefangen" wird, wie oben beschrieben.
Es dürfte jedoch für den Fachmann ohne weiteres durch verschiedene Testreihen möglich sein, die optimale Bestrahlungsdauer herauszufinden.
Das erfindungsgemäße Verfahren eignet sich daher für die Herstellung von Solarmodulen sowohl mit den erfindungsgemäßen Klebefolien als auch mit herkömmlichen EVA-Folien als Einbettungsmaterial, wobei diese mindestens ein UV- Aktivator und mindestens ein Silan-Kopp- lungsreagenz aufweisen.
Die erfindungsgemäßen Solarmodule können einen Aufbau entsprechend der oben genannten Beispiele oder auch einen davon abweichenden Aufbau aufweisen. Weitere Arten von Solarmodulen sind dem Fachmann bekannt. Beispiele sind laminierte Glas-Glas-Module, Glas-Glas- Module in Gießharztechnik, Glas-Glas-Module in Verbundsicherheitsfolien-Technologie, Dünnschicht-Module hinter Glas oder als flexible Beschichtung, zum Beispiel auf Kupferband, Konzentrator-Module, worin das Sonnenlicht mit Hilfe einer Optik auf kleinere Solarzellen konzentriert wird, sowie Fluoreszenzkollektoren.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Vorrichtung zur Herstellung von Solarmodulen, wobei diese einen UV-Strahler aufweist.
Hierbei kommen handelsübliche UV-Strahler, die für die UV- Vernetzung der Granulate bzw. Klebefolien geeignet sind, zur Anwendung. Besonders vorteilhaft hierbei ist die einfache und kostengünstige Aufrüstung herkömmlicher Solarmodul-Herstellungsvorrichtungen. Es ist vorstellbar, eine bereits vorhandene semiautomatische oder vollautomatische Modulproduktionslinie zusätzlich mit einem UV-Strahler zu bestücken. Dabei bedarf es weder einem aufwändigen Umbau der bestehenden Vorrichtung noch der Errichtung einer gänzlich neuen Vorrichtung, was hinsichtlich des Zeit- und Kostenfaktors einen erheblichen wirtschaftlichen bzw. finanziellen Vorteil bedeutet.
Bevorzugt wird der UV-Strahler direkt nach der Laminationsvorrichtung, wie etwa einem Vakuumlaminator, angebracht. Hierbei werden die bereits aufgeheizten Solarmodule direkt der UV-Bestrahlung zugeführt. Die Bestrahlungstemperatur ist somit durch die Lamination vorgegeben, was sich wiederum in Zeit- und Kostenersparnis widerspiegelt.
Die erfmdungsgemäße Vorrichtung eignet sich daher für die Herstellung von Solarmodulen sowohl mit den erfmdungsgemäßen Klebefolien als auch mit herkömmlichen EVA-Folien als Einbettungsmaterial, wobei diese mindestens ein UV- Aktivator und mindestens ein Silan-Kopplungs- reagenz aufweisen. Es ist vorstellbar, dass die erfmdungsgemäßen Solarmodule zur stationären und mobilen Stromerzeugung verwendet werden.
Üblicherweise erfolgt die Stromerzeugung in einer Solarstromanlage, die mindestens ein erfmdungsgemäßes Solarmodul aufweist, worin die Lichtenergie der Sonne in elektrische Energie umgewandelt wird sowie mindestens einem elektrischen Verbraucher. Ein weiterer Gegenstand der vorliegenden Erfindung ist somit eine Solarstromanlage enthaltend mindestens ein erfmdungsgemäßes Solarmodul.
Geeignete elektrische Verbraucher sind von dem Typ der Solarstromanlage abhängig. Zum Beispiel kann es sich bei dem Verbraucher um einen Gleichstromverbraucher oder um einen Wechselstromverbraucher handeln. Wenn ein Wechselstromverbraucher angeschlossen ist, ist es erforderlich, den aus den Solarmodulen erhaltenen Gleichstrom mittels eines Wechselrichters in
Wechselstrom umzuwandeln. Es ist ebenfalls möglich, dass Solarstromanlagen eingesetzt werden, die sowohl Gleichstromverbraucher als auch Wechselstromverbraucher enthalten.
Die Solarstromanlage kann des Weiteren ein Inselsystem sein, die keine (direkte) Verbindung zu einem Stromnetz aufweist. Üblicherweise wird der in einem Inselsystem gewonnene Strom in Akkumulatoren als Energiespeicher (Verbraucher im Sinne der vorliegenden Anmeldung) gepuffert. Geeignete Inselsysteme sind dem Fachmann bekannt. Des Weiteren kann es sich bei den Solarstromanlagen um netzgekoppelte Anlagen handeln, wobei die Solarstromanlage an ein eigenständiges Stromnetz angeschlossen ist und die elektrische Energie in dieses Stromnetz eingespeist wird. In diesem Fall ist der Verbraucher somit das Stromnetz. Geeignete netzgekoppelte Anlagen sind dem Fachmann ebenfalls bekannt.
Nachstehend wird die Erfindung anhand von Beispielen näher erläutert. Rezepturbeispiel für das erfindungs gemäße Granulat:
100 phr Levamelt
1,5 phr Benzophenon
1,5 phr Silan
Tab. 1
Tab. 1 zeigt das Spannungs-Dehnungs-Verhalten von erfindungsgemäßen Granulaten vor und nach einer UV-Bestrahlung. Die Belichtungseinstellung der bestrahlten Probe betrug 3 Minuten. Die Probe wurde 10 min. bei 1400C vorgewärmt, anschließend für die Dauer von 3 min. mit einer UV- Lampe Fe@2kW der Fa. Hönle bestrahlt, mit einem Abstand von 10 cm zur UV-Lampe.
Tab. 2
Tab. 2 zeigt eine Erhöhung der Mooney- Viskosität in Abhängigkeit von der Bestrahlungsdauer der Levapren 400 bei einem Zusatz von 1,0 phr UV- Vernetzer, wobei diese mittels einer UV-Lampe Fe@2kW der Fa. Hönle bei einem Abstand von 10 cm zur UV-Lampe bestrahlt wird.
Tab.3
Tab. 3 zeigt die Änderung des Zug-Dehnungsverhalten bei unterschiedlichen Mengen an UV- Vernetzers bei 1 min. Bestrahlung, mittels einer UV-Lampe Fe@2kW der Fa. Hönle mit einem Abstand von 10 cm zur UV-Lampe.
Tab. 4
Tab. 4 zeigt die Änderung des Zug-Dehnungsverhaltens bei unterschiedlichen Belichtungszeiten der Zusammensetzung aus Tab. 2, mit einer UV-Lampe Fe@2kW der Fa. Hönle bei einem Abstand von 10 cm zur UV-Lampe.

Claims

Patentansprüche
1. Granulate aus α-Olefm-Vinylacetat-Copolymeren mit einem Vinylacetat-Gehalt von > 40 Gew.-%, bezogen auf das Gesamtgewicht des α-Olefm-Vinylacetat-Copolymeren als Einbettungsmaterial für Solarmodule, dadurch gekennzeichnet, dass die Granulate als Zuschlagstoffe mindestens ein UV-Aktivator und mindestens ein Silan-Kopplungsreagenz aufweisen.
2. Granulate nach Anspruch 1, dadurch gekennzeichnet, dass der UV- Aktivator ausgewählt ist aus Benzophenon, 2-Methylbenzophenon, 3,4-Dimethylbenzophenon, 3-Methylbenzo- phenon, 4,4'-Bis(diethylamino)benzophenon, 4,4'-Dihydroxybenzophenon, 4,4'-Bis[2-(l- propenyl)phenoxy]benzophenon, 4-(Diethylamino)benzophenon, 4-(Dimethylamino)- benzophenon, 4-Benzoylbiphenyl, 4-Hydroxybenzophenon, 4-Methylbenzophenon, Benzo- phenon-3,3',4,4'-tetracarboxyldianhydrid, 4,4'-Bis(dimethylamino)benzophenon, Aceto- phenon, 1 -Hydroxycyclohexylphenylketon, 2,2-Diethoxyacetophenon, 2,2-Dimethoxy-2- phenylacetophenon, 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenon, 2-Hydroxy- 2-methylpropiophenon, 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenon, 3'-
Hydroxyacetophenon, 4'-Ethoxyacetophenon, 4'-Hydroxyacetophenon, 4'-Phenoxy- acetophenon, 4'-tert-Butyl-2',6'-dimethylacetophenon, 2-Methyl-4'-(methylthio)-2-morpho- linopropiophenon, Diphenyl-(2,4,6-trimethylbenzoyl)-phosphinoxid, Phenylbis(2,4,6- trimethylbenzoyl)phosphinoxide, Methylbenzoylformat, Benzoin, 4,4'-Dimethoxybenzoin, Benzoinmethylether, B enzoinethy lether, Benzoinisopropylether, Benzoinisobutylether, 4,4'-
Dimethylbenzil, Hexachlorocyclopentadiene, allein oder in Kombination.
3. Granulate nach Anspruch 1 , dadurch gekennzeichnet, dass der Silan- Kopplungsreagenz ausgewählt ist aus Vinyltriethoxysilan, Vinyltrimethoxysilan, Vinyltris(ß-methoxy- ethoxy)silan, (Methacryloxymethyl)m ethyldimethoxysilan, M ethacryloxymethyl-tri- methoxysilan, (Methacryloxymethyl)methyldiethoxysilan, Methacryloxymethyl-triethoxy- silan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, 3-Meth- acryloxypropyltriacetoxysilan, Methacryloxypropyltris-(trimethylsiloxy)silan, Vinyl- triacetoxysilan, Vinyldimethoxy-methylsilan, allein oder in Kombination.
4. Granulate nach Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an UV- Aktivator zwischen 0,1 phr und 10 phr, vorzugsweise zwischen 0,1 phr und 3,0 phr, bevorzugt zwischen 0,25 phr und 2,5 phr, besonders bevorzugt zwischen 0,5 phr und 2,0 phr liegt.
5. Granulate nach Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an Silan- Kopplungsreagenz zwischen 0,05 phr und 10 phr, vorzugsweise zwischen 0,1 phr bis 3,0 phr, bevorzugt zwischen 0,25 phr bis 2,5 phr, besonders bevorzugt zwischen 0,5 phr bis 2,0 phr liegt.
6. Verwendung der Granulate gemäß einem der vorstehenden Ansprüche zur Herstellung einer Klebefolie.
7. Klebefolie für Solarmodule, enthaltend Granulate gemäß Ansprüchen 1 - 5.
8. Verfahren zur Herstellung der Granulate nach Ansprüchen 1 - 5, wobei diese mittels eines Lösungspolymerisationsverfahrens bei einem Druck von 100 bis 700 bar hergestellt werden, dadurch gekennzeichnet, dass der Siedepunkt des Lösungsmittels kleiner ist als die Siedepunkte des UV- Aktivators und des Silan-Kopplungsreagenz.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Lösungsmittel durch Abdampfen entfernt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Lösungsmittel tert. Butanol,
Methanol, Benzol, Toluol, Essigsäuremethylester oder Dialkylsulfoxid ist.
11. Verfahren zur Herstellung der Granulate nach Ansprüchen 1 - 5, wobei diese mittels eines Lösungspolymerisationsverfahrens bei einem Druck von 100 bis 700 bar hergestellt werden, dadurch gekennzeichnet, dass die Zuschlagstoffe nach der Polymerisation oder nach der Aufarbeitung des Lösungspolymerisats zugegeben werden.
12. Solarmodul, enthaltend mindestens eine Klebefolie gemäß Anspruch 7.
13. Verfahren zur Herstellung eines Solarmoduls, dadurch gekennzeichnet, dass das Solarmodul einer UV-Bestrahlung unterzogen wird, wobei die Klebefolie mindestens ein UV- Aktivator und mindestens ein Silan-Kopplungsreagenz aufweist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die UV-Bestrahlung bevorzugt direkt nach dem Laminieren durchgeführt wird
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Dauer der Bestrahlung zwischen 10 - 600 Sekunden, bevorzugt zwischen 10 und 180 Sekunden beträgt.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Bestrahlungstemperatur vorzugsweise 50 - 200 0C beträgt.
17. Verfahren nach Anspruch 16 zur Herstellung eines Solarmoduls nach Anspruch 12.
18. Vorrichtung zur Herstellung eines Solarmoduls, dadurch gekennzeichnet, dass diese einen UV-Strahler aufweist.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass der UV-Strahler bevorzugt direkt nach der Laminationsvorrichtung angebracht ist.
20. Vorrichtung nach Anspruch 19 zur Herstellung eines Solarmoduls nach Anspruch 12.
21. Solarstromanlage, enthaltend mindestens ein Solarmodul gemäß Anspruch 12.
EP10737343A 2009-08-07 2010-08-03 Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung Withdrawn EP2462627A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009036534A DE102009036534A1 (de) 2009-08-07 2009-08-07 EVM-Granulat
PCT/EP2010/061287 WO2011015579A1 (de) 2009-08-07 2010-08-03 Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung

Publications (1)

Publication Number Publication Date
EP2462627A1 true EP2462627A1 (de) 2012-06-13

Family

ID=42731914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10737343A Withdrawn EP2462627A1 (de) 2009-08-07 2010-08-03 Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung

Country Status (13)

Country Link
US (1) US20120190766A1 (de)
EP (1) EP2462627A1 (de)
JP (1) JP2013500889A (de)
KR (1) KR20120048005A (de)
CN (1) CN102473783A (de)
AU (1) AU2010280819A1 (de)
BR (1) BR112012002750A2 (de)
DE (1) DE102009036534A1 (de)
MX (1) MX2012001606A (de)
SG (1) SG178284A1 (de)
TW (1) TW201109352A (de)
WO (1) WO2011015579A1 (de)
ZA (1) ZA201200877B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612056A (zh) * 2013-10-15 2016-05-25 梅耶博格公司 用于形成层压板的方法和系统
CN104031567B (zh) * 2013-12-27 2015-06-17 杭州福斯特光伏材料股份有限公司 一种双重引发的快速交联eva胶膜
CN104795465A (zh) * 2015-04-10 2015-07-22 杭州福斯特光伏材料股份有限公司 一种太阳能电池组件的封装方法
JP7145122B2 (ja) * 2019-06-06 2022-09-30 信越化学工業株式会社 シロキサン及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635575B2 (ja) * 1984-04-24 1994-05-11 株式会社ブリヂストン 封止用組成物及び該組成物による封止方法
JPS62158509A (ja) * 1985-12-28 1987-07-14 Ishikawajima Harima Heavy Ind Co Ltd 圧延機
DE3815946A1 (de) 1988-05-10 1989-11-23 Bayer Ag Loesungspolymerisation zur herstellung von gelfreien ethylen/vinylacetat-copolymerisaten
DE3825450C2 (de) 1988-07-27 1997-07-10 Bayer Ag Verfahren zur Herstellung von Ethylen/Vinylacetat-Copolymerisaten mit verringerter Klebeneigung
DE3843563A1 (de) * 1988-12-23 1990-06-28 Bayer Ag Verfahren zur herstellung von ethylen/vinylacetat-copolymerisaten mit erhoehter festigkeit, neue ethylen/vinylacetat-copolymerisate und ihre verwendung
DE4113291A1 (de) 1991-04-24 1992-10-29 Bayer Ag Herstellung von ethylen-vinylacetat-copolymeren
WO1997022637A1 (en) 1995-12-19 1997-06-26 Midwest Research Institute Encapsulating material for photovoltaic devices
JPH11317475A (ja) * 1998-02-27 1999-11-16 Canon Inc 半導体用封止材樹脂および半導体素子
AU7960200A (en) 1999-11-01 2001-05-14 Bridgestone Corporation Sealing composition and sealing method
JP2000183386A (ja) * 2000-01-01 2000-06-30 Bridgestone Corp 太陽電池封止材
EP1184912A4 (de) 2000-02-18 2006-08-30 Bridgestone Corp Versiegelungsschicht für solarzelle und solarzellen-herstellungsmethode
JP2003049004A (ja) 2001-08-06 2003-02-21 Mitsubishi Plastics Ind Ltd 軟質樹脂シート、太陽電池用充填材及びそれを用いた太陽電池
JP2003051605A (ja) 2001-08-06 2003-02-21 Haishiito Kogyo Kk 太陽電池封止用シート
JP4779074B2 (ja) * 2003-10-03 2011-09-21 三井・デュポンポリケミカル株式会社 太陽電池封止材用シート
WO2005121227A1 (ja) 2004-06-08 2005-12-22 Bridgestone Corporation 樹脂フィルム
JP2006198922A (ja) * 2005-01-21 2006-08-03 Mitsui Chemicals Inc 太陽電池モジュール用保護シートおよび太陽電池モジュール。
JP4616388B2 (ja) * 2006-04-05 2011-01-19 株式会社ブリヂストン 太陽電池用封止膜及びこの封止膜を用いた太陽電池
DE102007041055A1 (de) 2007-08-29 2009-03-05 Lanxess Deutschland Gmbh EVM in Solarmodulen
JP4755667B2 (ja) * 2008-04-09 2011-08-24 旭化成イーマテリアルズ株式会社 樹脂封止シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011015579A1 *

Also Published As

Publication number Publication date
AU2010280819A1 (en) 2012-03-15
US20120190766A1 (en) 2012-07-26
ZA201200877B (en) 2013-04-24
MX2012001606A (es) 2012-03-29
WO2011015579A1 (de) 2011-02-10
DE102009036534A1 (de) 2011-02-10
TW201109352A (en) 2011-03-16
CN102473783A (zh) 2012-05-23
JP2013500889A (ja) 2013-01-10
BR112012002750A2 (pt) 2019-09-24
KR20120048005A (ko) 2012-05-14
SG178284A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
DE112009002670B4 (de) Mehrschichtige Folie und deren Verwendung als Dichtungsmaterial für ein Solarzellenelement sowie Solarzellenmodul
US8350147B2 (en) Process for producing encapsulating material for solar cell
JP4662151B2 (ja) 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法
DE10394373B4 (de) Zwischenfolie für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenfolie eingesetzt wird
DE112009001580B4 (de) Ethylen-Copolymer-Zusammensetzung, Folie zum Versiegeln eines Solarzellenelements und ihre Verwendung
EP2031662B1 (de) EVM in Solarmodulen
CN102668124A (zh) 具有包含还原剂的聚合物包封材料的太阳能电池模块
EP2462627A1 (de) Evm-granulat als einbettungsmaterial für solarmodule, deren herstellungsverfahren, eine klebefolie sowie ein solarmodul und dessen herstellungsverfahren und herstellungsvorrichtung
KR20110124235A (ko) 태양 전지 모듈에 대한 힌더드 아민을 포함하는 폴리(비닐 부티랄) 밀봉제
CN102292827A (zh) 用于太阳能电池模块的包含螯合剂的聚(乙烯醇缩丁醛)包封剂
JP5374807B2 (ja) 太陽電池モジュールおよびその製造方法
EP2462628B1 (de) Verfahren zur herstellung von solarmodulen
EP3164892B1 (de) Koextrudierte solarzellenrückseitenmodule
EP3164891B1 (de) Mono-rückseitenfolie für solarzellenmodule
CN117511425B (zh) 一种防发粘的光伏组件用封装胶膜及其制备方法和应用
EP4079520A1 (de) Harzzusammensetzung für solarzellendichtungsmaterial, solarzellendichtungsmaterial, verfahren zur herstellung von solarzellendichtungsmaterial und solarzellenmodul
DE102019214394A1 (de) Eine verbund-klebefolie für eine photovoltaische zelle
CN117736656A (zh) 一种钙钛矿电池封装用poe胶膜及其制备方法
DE112020004111T5 (de) Harzzusammensetzung für Solarzellen-Einkapselungsmaterial, Solarzellen-Einkapselungsmaterial, Herstellungsverfahren für Solarzellen-Einkapselungsmaterial und Solarzellenmodul
AU2013205059A1 (en) EVM granulated material as embedding material for solar modules, method for its production, adhesive foil as well as a solar module, method for its production and production device
DE102019127105A1 (de) Ein verbundklebefilm für eine photovoltaikzelle
KR20100079901A (ko) 에틸렌-비닐아세테이트 필름 및 이를 포함하는 태양전지 모듈

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150303