EP2462378B1 - Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée - Google Patents

Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée Download PDF

Info

Publication number
EP2462378B1
EP2462378B1 EP10752274.0A EP10752274A EP2462378B1 EP 2462378 B1 EP2462378 B1 EP 2462378B1 EP 10752274 A EP10752274 A EP 10752274A EP 2462378 B1 EP2462378 B1 EP 2462378B1
Authority
EP
European Patent Office
Prior art keywords
steam
working medium
transfer system
preheater
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10752274.0A
Other languages
German (de)
English (en)
Other versions
EP2462378A2 (fr
Inventor
Thoralf Berndt
Qiurong Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2462378A2 publication Critical patent/EP2462378A2/fr
Application granted granted Critical
Publication of EP2462378B1 publication Critical patent/EP2462378B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/325Schematic arrangements or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating

Definitions

  • the invention relates to a method for operating a forced-circulation steam generator operating in sliding pressure and with a steam temperature of over 650 ° C and lowering the forced minimum flow, wherein the forced-circulation steam generator is integrated into the water / steam cycle of a power plant and the economizer of the forced-circulation steam generator in water / Steam cycle direction seen upstream at least one HD preheater and / or a heat transfer system for further preheating of the feed water, wherein the / the HP preheater is heated by turbine steam and the heat transfer system external heat to the circulation medium water / steam is supplied.
  • Continuous or forced circulation steam generators are from the publication " Kraftwerkstechnik”, Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Forced circulation (pages 171 to 174 ), Prof. Dr.-Ing. Karl Strauss known, which are used in power plants for the production of electrical energy by combustion of, for example, fossil fuels.
  • a continuous flow or continuous flow steam generator the heating of the combustion chamber or the throttle cable forming evaporator tubes - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water-steam mixture - leads to evaporation of the flow or working medium in the evaporator tubes in a single pass.
  • the desire for steam generators with higher efficiencies and the resulting with respect to the working medium steam resulting from development of the "700 ° C power plant" to increase efficiency, including the CO2 emissions into the atmosphere help reduce, among other things, to increase the steam parameters of the steam generator.
  • Achieving or realization of higher steam parameters, ie higher pressures and temperatures of the working medium steam at the outlet of the steam generator places high demands on the steam generator itself or on the method for operating such a steam generator.
  • the turbine control valve With further load reduction in forced continuous operation, the turbine control valve would have to be throttled, the pressure loss at 30% load of the continuous steam generator would be about 40-50 bar (energetic loss, wear on the turbine control valve with frequent driving in this load range). If throttling is not desired for the aforementioned reasons, the load range for the forced continuous operation of the continuous steam generator is limited to 40-100% of the full load. When fired with hard coal Power plants is a forced continuous operation of the continuous steam generator with pure coal fire up to a partial load of about 25% theoretically feasible.
  • a forced flow steam generator is known, which is integrated in the water / steam leading working medium circuit of a power plant.
  • An economizer of the once-through steam generator viewed in the working-medium circulation direction, has upstream a heat-displacement system for preheating the working medium.
  • the working medium absorbs heat from a supplied external heat flow in the heat transfer system.
  • the object of the invention is therefore to provide a method for operating a forced-circulation steam generator operating in sliding pressure and with a steam temperature of over 650 ° C and lowering it of the forced passage minimum load, in which the aforementioned disadvantages are avoided or a lowering of the forced passage minimum load is achieved to about 30% of the full load. It is a further object of the invention to provide a forced once-through steam generator for carrying out the method.
  • the temperature increase is reduced by the heat absorption of the feedwater after feed water pump on the HP preheater and / or the heat transfer system by up to about 50 Kelvin, so that the water outlet temperature due economizer due to the slightly improved Temperaturgrädtechnik the economizer heating surface falls by up to about 40 Kelvin, thereby ensuring sufficient subcooling at the evaporator inlet.
  • the reduction of heat absorption by means of a control valve which regulates the amount of the HP pre-heater supplied turbine tap steam.
  • the control valve is advantageously arranged in the bleed steam line, by means of which the Turbinenanzapfdampfstrom is guided from the turbine tap to the HD preheater.
  • the amount to the HD preheater and thus at the same time the heat absorption can be changed by the working medium and controlled influence on the medium temperature at the economizer outlet.
  • the same measure can be applied to the heat transfer system, in which the supply of the external heat flow is controlled by means of a control device and at the same time the heat absorption is controlled by the working medium.
  • the control device is advantageously arranged in the supply line or the supply channel, by means of which the external heat flow is conducted from a foreign source to the heat transfer system.
  • bypassing a part of the working medium flow the pressure loss in the HP preheater or in the heat displacement system is reduced.
  • the preheater or the heat transfer system can be switched off and taken out of service.
  • An advantageous embodiment provides that the reduction of the heat absorption by dividing the working medium flow into two partial flows (A T1 , A T2 ), wherein the first partial flow (A T1 ) through the HP preheater and the second partial flow (A T2 ) via a Bypass line is guided and the two partial streams (A T1 , A T2 ) are controlled by means of at least one control valve.
  • a further advantageous embodiment provides that the reduction of the heat absorption by dividing the working medium flow into two partial flows (A T3 , A T4 ), wherein the first partial flow (A T3 ) through the water / steam circuit side component of the heat transfer system and the second partial flow (A T4 ) is guided via a bypass line and the two partial flows (A T3 , A T4 ) are controlled by means of at least one control valve.
  • the amount of partial flow of the working medium flowing through the HP preheater or through the water / steam circuit side component of the heat transfer system can be influenced by the heat absorption thereof by changing the partial flow amount.
  • the predetermined temperature difference T D is 20 Kelvin. This ensures that evaporation on the economizer and segregation of the circulated working medium at the inlet of the evaporator is avoided.
  • An advantageous embodiment provides that 50% of the full load is taken as a predetermined partial load point L T to reduce heat absorption.
  • An advantageous embodiment provides that the heat transfer system is arranged in the direction of circulation of the working medium circuit seen upstream of the HP preheater.
  • a further advantageous embodiment provides for the heat-displacement system to be arranged in the direction of circulation of the working-medium circuit between the high-pressure preheaters.
  • the thermal displacement system is arranged parallel to the HP preheater in a parallel circuit when viewed in the direction of the circulation of the working medium cycle. This measure can easily further heat be supplied to the working medium for preheating or be absorbed by this.
  • FIG. 1 schematically shows the water / steam leading working medium cycle 1 of a continuous flow or continuous flow steam generator (both terms mean the same thing, namely the generation of steam within the steam generator in a single pass) formed power plant on.
  • the steam expanded in the MD / LP steam turbine (medium pressure / low pressure steam turbine) 17 is cooled in at least one condenser 2 and the condensate is then heated in at least one LP preheater (low pressure preheater) 3.1, 3.2 and by means of a feedwater pump 4 returned to the circuit 1 or to the desired operating pressure.
  • the feedwater is then further heated in one or more HD preheaters (high-pressure preheaters) 7.1, 7.2 and the economizer 9 and evaporated in the evaporator 10 and then superheated in the superheater 13 to 700 ° C, for example.
  • the exiting from the superheater 13 700 ° C hot steam is the HP steam turbine (high-pressure steam turbine) 14 is supplied, partially relaxed and then overheated again in a reheater 16 and the MD / LP steam turbine 17 fed, in which the steam is largely relaxed before he is fed back to the aforementioned circuit 1.
  • the water / steam working medium which is passed through tubes of heating mediums arranged in the continuous steam generator, is heated in the economizer heating surfaces 9, the evaporator heating surfaces 10, the superheater heating surfaces 13 and the reheater heating surfaces 16 of flue gases the combustion of fossil fuel in the combustion chamber, not shown, of the continuous steam generator arise.
  • the aforementioned heating surfaces 9, 10, 13 and 16 are all arranged in the continuous steam generator either as a radiation or as a contact heating.
  • the HP preheaters 7.1, 7.2 are heated by bleed steam, which is taken at tapping points 15 and / or 18 at the HP steam turbine 14 and / or at the MD / LP steam turbine 17.
  • the LP preheaters 3.1, 3.2 can also be heated by bleed steam from the MD / LP steam turbine 17 (not shown), which can be removed at the tapping point 18.
  • the or between the evaporator 10 and superheater 13 arranged (s) cyclone 11 are only used to separate in the startup and shutdown of the forced flow steam generator and in the load range below the forced minimum flow not evaporated water and upstream of the economizer 9 by means of a circulation pump 12 the water / Supply steam cycle 1 again.
  • a heat transfer system 5 is parallel to (see FIG. 2 ) or upstream (see FIG. 3 ) of the HP preheater 7.1, 7.2 integrated in the circuit 1, wherein the heat transfer system 5 according to the FIG. 2 is arranged in a parallel to the circuit 1 parallel circuit 28.
  • a foreign heat flow 22 for example, steam, flue gas or hot air from a foreign source, not shown, heat for further heating of the feed water to the heat transfer system 5.
  • the heat transfer system 5 uses its own heat transfer medium, which circulates within the heat transfer system 5 by means of a circulation pump 5.3, the heat transfer circulation circuit also comprising a shut-off valve 5.4.
  • the component 5.2 of the heat transfer system 5 is through the supply line or supply channel (in flue gas or hot air as Fremd Anlagenstrom) 31 a Fremdtage 22 is supplied and transferred or moved by means of the heat transfer to the lying in the circuit 1 component 5.1 of the heat transfer system 5, from which the heat transferred to the feed water or to the working fluid of the circuit 1 is discharged.
  • the two components 5.1, 5.2 of the heat transfer system 5 thus each have the function of a heat exchanger.
  • the heat transfer system 5 seen in the direction of circulation of the working medium circuit 1 between the HP preheaters 7.1, 7.2 may be arranged (not shown).
  • FIG. 1 In full load operation as well as in partial load operation down to a predetermined partial load point L T down the water / steam working medium is usually by all in FIG. 1 respectively.
  • FIG. 2 respectively.
  • FIG. 3 listed heating surfaces or heat exchanger of the water / steam circuit 1 passed and heated or heated therein except for the capacitor 2 therein.
  • the predetermined partial load point L T when the predetermined partial load point L T is not reached, the heat absorption of individual or several HP preheaters 7.1, 7.2 and / or the heat transfer system 5 is reduced such that the temperature of the working medium water / steam at the outlet of the economizer is at a predetermined temperature difference T D below which is based on the corresponding economizer outlet pressure boiling temperature.
  • the temperature difference T D is defined as the temperature difference of the determined boiling temperature derived from the measured medium pressure at the economizer outlet minus the measured medium temperature at the economizer outlet.
  • the medium temperature at the economizer outlet has a predetermined temperature difference T D compared to the boiling temperature at the corresponding economizer outlet pressure and the predetermined temperature difference T D represents a positive amount, the working fluid temperature at the economizer outlet below the boiling point is.
  • the predetermined temperature difference T D is preferably 20 Kelvin, ie, that the medium temperature at the economizer outlet is preferably 20 Kelvin below the boiling point based on the corresponding economizer outlet pressure.
  • the temperature difference T D can also be at least 15 Kelvin or more than 20 Kelvin.
  • a control valve 19, 20 is arranged in the tapping steam line 29, 30 by means of which or which tapping steam from the turbine tap 15, 18 to the HP preheater 7.1, 7.2 is performed.
  • the supply quantity of the turbine bleed steam flow to the / the HD preheater (s) 7.1, 7.2 and thus the heat absorption of the feedwater or working fluid after feed pump 4 can be controlled and adjusted so that the desired feedwater temperature with the predetermined temperature difference T D is achieved at the economizer outlet or sets. If, in addition to or instead of reducing the heat absorption of the HD preheater (s) 7.1, 7.2, the reduction of the heat absorption of the heat transfer system 5 is regulated, the amount of extraneous heat flow 22 supplied to the heat transfer system 5 can be regulated by a control device 21 arranged in the supply line 31 be managed.
  • the currently determined temperature difference T D at the economizer outlet is such that at the measuring point 23 at the economizer outlet, the current medium temperature and the current medium pressure are measured and these two values are fed to a process computer. From the determined current medium pressure, the process computer determines the associated boiling temperature and compares them with the currently measured medium temperature. By this comparison, the current temperature difference T D is determined, which should have a related to the medium pressure at the economizer outlet predetermined value and, as stated above, should preferably be 20 Kelvin.
  • the process computer can send a corresponding control signal to the control valve (s) 19, 20, 24.1, 24.2, 25.1, 25.2, 26, 27 or control device 21 in order to regulate the reduction of the heat absorption in the HD preheater (s) 7.1, 7.2 and / or in the heat transfer system 5 accordingly.
  • the reduction of the heat absorption on the HD preheater (s) 7.1, 7.2 and / or on the heat transfer system 5 can be so far that by completely closing the / the control valve (s) 19, 20 and / or the control device 21 no more heat supply passes through the Anzapfdampfstrom to / the HD preheater 7.1, 7.2 or by the external heat flow to the heat transfer system 5 and thus no heat absorption takes place.
  • the medium side pressure loss can be reduced by means of the bypass line (s) 8.1, 8.2, 6 Partial flow or the entire mass flow of the working medium is passed past the aforementioned components.
  • the HD preheater 7.1, 7.2 and / or the heat transfer system 5 can be switched off.
  • the control valve 27 is opened and the control valve 26 is closed.
  • the shutdown of the heat transfer system 5 can be done either in addition to or instead of the shutdown of the HP preheater 7.1, 7.2.
  • the two partial flows A T1 , A T2 can be controlled by means of at least one control valve 24.1, 24.2, 25.1, 25.2, either directly upstream or downstream (not shown) of / the HD preheater 7.1, 7.2 is located or in the respective bypass line 8.1 , 8.2 is arranged.
  • the partial flows A T1 can be different with regard to the partial flow quantity in the respective HP preheaters 7.1, 7.2, which consequently also applies to the partial flows A T2 in the respective bypass lines 8.1, 8.2 of the HP preheater 7.1, 7.2 applies.
  • the control valves can receive from a processor, not shown, the corresponding controlled variables that the processor determines or creates from the data that it receives from the measuring point 23 at the economizer outlet.
  • the reduction of the heat absorption within the / the HD preheater 7.1, 7.2 by means of the control valves 24.1, 24.2, 25.1, 25.2 can without or with the inclusion of the control valves 19, 20, the supply amount of the bleed steam to the / the HD preheater (s) 7.1 7.2. Furthermore, the reduction of heat absorption within the component 5.1 of the heat transfer system 5 by means of the control valves 26, 27 without or with the involvement of the control device 21, which controls the supply amount of the external heat flow 22 to the component 5.2 of the heat transfer system 5, take place.
  • control device 21 In addition to the control device 21 is within the heat transfer system 5 the ability to close the shut-off 5.4 of the heat transfer circulation and turn off the circulation pump 5.3 to prevent the supply of heat to the component 5.1 of the heat transfer system 5, which is synonymous with the shutdown of the heat transfer system 5 and the heat absorption by the working medium in the heat transfer system. 5
  • a predetermined partial load point L T for reducing the heat absorption in at least one of the HP preheater 7.1, 7.2 and / or in the heat transfer system 5 preferably 50% of the full load can be taken.
  • the predetermined partial load point L T may also be in the range between 40 and 60% of the full load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Turbines (AREA)

Claims (15)

  1. Procédé pour faire fonctionner un générateur de vapeur à circulation forcée opérant en pression variable et avec une température de vapeur supérieure à 650 °C et pour sa réduction de la charge minimale de circulation forcée, le générateur de vapeur à circulation forcée étant intégré dans le circuit de fluide de travail conduisant de l'eau/de la vapeur d'une centrale électrique et l'économiseur du générateur de vapeur à circulation forcée, vu dans la direction du circuit de fluide de travail, possédant en amont au moins un préchauffeur HP et/ou un système de déplacement de chaleur servant à préchauffer le fluide de travail,
    le fluide de travail à l'intérieur du/des préchauffeur(s) HP absorbant de la chaleur d'un courant de vapeur soutirée de turbine acheminé et/ou le fluide de travail dans le système de déplacement de chaleur absorbant de la chaleur d'un flux calorifique externe acheminé,
    caractérisé en ce qu'en cas de franchissement vers le bas d'un point de charge partielle (LT) prédéfini, l'absorption de chaleur du fluide de travail à l'intérieur d'au moins un préchauffeur HP et/ou du système de déplacement de chaleur est réduit de telle sorte que la température du fluide de travail eau/vapeur à la sortie de l'économiseur se trouve espacée d'une différence de température (TD) prédéfinie au-dessous de la température d'ébullition en référence à la pression de sortie correspondante de l'économiseur.
  2. Procédé selon la revendication 1, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée au moyen d'une vanne de régulation qui régule la quantité de courant de vapeur soutirée de turbine acheminée au préchauffeur HP.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée au moyen d'une vanne de régulation, l'acheminement de la quantité de courant de vapeur soutirée de turbine au préchauffeur HP étant totalement empêché au moyen de la vanne de régulation et au moins une partie du courant de fluide de travail eau/vapeur étant guidée à côté du préchauffeur HP au moyen d'une conduite de dérivation.
  4. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée en divisant le courant de fluide de travail en deux courants partiels (AT1, AT2), le premier courant partiel (AT1) étant guidé à travers le préchauffeur HP et le deuxième courant partiel (AT2) par le biais d'une conduite de dérivation du préchauffeur HP et les deux courants partiels (AT1, AT2) étant régulés au moyen d'au moins une vanne de régulation.
  5. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée au moyen d'un dispositif de régulation qui régule la quantité de flux calorifique externe acheminée au système de déplacement de chaleur.
  6. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée au moyen d'un dispositif de régulation, l'acheminement du flux calorifique externe au système de déplacement de chaleur étant totalement empêché au moyen du dispositif de régulation et au moins une partie du fluide de travail eau/vapeur étant guidée à côté du composant du système de déplacement de chaleur se trouvant dans le circuit eau/vapeur au moyen d'une conduite de dérivation.
  7. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que la réduction de l'absorption de chaleur est effectuée en divisant le courant de fluide de travail en deux courants partiels (AT3, AT4), le premier courant partiel (AT3) étant guidé à travers le composant du système de déplacement de chaleur du côté du circuit eau/vapeur et le deuxième courant partiel (AT4) par le biais d'une conduite de dérivation du système de déplacement de chaleur et les deux courants partiels (AT3, AT4) étant régulés au moyen d'au moins une vanne de régulation.
  8. Générateur de vapeur à circulation forcée destiné à mettre en oeµvre le procédé selon la revendication 1, comprenant un générateur de vapeur à circulation forcée pouvant fonctionner en pression variable et avec une température de vapeur supérieure à 650 °C et adapté pour une réduction de la charge minimale de circulation forcée,
    le générateur de vapeur à circulation forcée étant intégré dans le circuit de fluide de travail (1) conduisant de l'eau/de la vapeur d'une centrale électrique et l'économiseur (9) du générateur de vapeur à circulation forcée, vu dans la direction du circuit de fluide de travail, possédant en amont au moins un préchauffeur HP (7.1, 7.2) et/ou un système de déplacement de chaleur (5) servant à préchauffer le fluide de travail,
    de la chaleur pouvant être absorbée du côté du fluide de travail à l'intérieur du/des préchauffeur(s) HP (7.1, 7.2) d'un courant de vapeur soutirée de turbine acheminé à travers au moins une conduite à vapeur soutirée (29, 30) et/ou de la chaleur d'un flux calorifique externe (22) acheminé à travers une conduite d'acheminement (31) pouvant etre absorbée dans le système de déplacement de chaleur (5),
    caractérisé en ce que le générateur de vapeur à circulation forcée est configuré pour, en cas de franchissement vers le bas d'un point de charge partielle (LT) prédéfini, réduire l'absorption de chaleur du fluide de travail à l'intérieur d'au moins un préchauffeur HP (7.1, 7.2) et/ou du système de déplacement de chaleur (5) de telle sorte que la température du fluide de travail eau/vapeur à la sortie de l'économiseur se trouve espacée d'une différence de température (TD) prédéfinie au-dessous de la température d'ébullition en référence à la pression de sortie correspondante de l'économiseur.
  9. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce que la conduite à vapeur soutirée (29, 30), pour réguler le courant de vapeur soutirée de turbine, est configurée avec une vanne de régulation (19, 20) et/ou la conduite d'acheminement (31) de chaleur externe (22), pour réguler le courant de vapeur externe, avec un dispositif de régulation (21).
  10. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce que le système de déplacement de chaleur (5), vu dans la direction du circuit de fluide de travail (1), est disposé en amont du préchauffeur HP (7.1, 7.2).
  11. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce qu'en présence de plusieurs préchauffeurs HP (7.1, 7.2), le système de déplacement de chaleur (5), vu dans la direction du circuit de fluide de travail (1), est disposé entre les préchauffeurs HP (7.1, 7.2).
  12. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce que le système de déplacement de chaleur (5), vu dans la direction du circuit de fluide de travail (1), est disposé en parallèle des préchauffeurs HP (7.1, 7.2) dans un circuit parallèle (28).
  13. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce que le préchauffeur HP (7.1, 7.2) possède une conduite de dérivation (8.1, 8.2) et/ou en ce que le système de déplacement de chaleur (5) possède une conduite de dérivation (6).
  14. Générateur de vapeur à circulation forcée selon la revendication 8, caractérisé en ce que le préchauffeur HP (7.1, 7.2) et/ou le système de déplacement de chaleur (5), vu dans la direction du circuit de fluide de travail (1, 28), possède une vanne de régulation (24.1, 24.2 ; 26) en amont ou en aval du préchauffeur HP (7.1, 7.2) ou du système de déplacement de chaleur (5).
  15. Générateur de vapeur à circulation forcée selon la revendication 13, caractérisé en ce que la conduite de dérivation (6, 8.1, 8.2) possède une vanne de régulation (25.1, 25.2, 27).
EP10752274.0A 2009-08-04 2010-07-30 Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée Active EP2462378B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009036064A DE102009036064B4 (de) 2009-08-04 2009-08-04 rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
PCT/DE2010/000906 WO2011015185A2 (fr) 2009-08-04 2010-07-30 Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée

Publications (2)

Publication Number Publication Date
EP2462378A2 EP2462378A2 (fr) 2012-06-13
EP2462378B1 true EP2462378B1 (fr) 2016-04-06

Family

ID=43430085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752274.0A Active EP2462378B1 (fr) 2009-08-04 2010-07-30 Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée

Country Status (10)

Country Link
US (1) US8959917B2 (fr)
EP (1) EP2462378B1 (fr)
CN (1) CN102575840B (fr)
DE (1) DE102009036064B4 (fr)
HU (1) HUE028706T2 (fr)
IN (1) IN2012DN01926A (fr)
PL (1) PL2462378T3 (fr)
RU (1) RU2538994C2 (fr)
WO (1) WO2011015185A2 (fr)
ZA (1) ZA201200762B (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546476A1 (fr) * 2011-07-14 2013-01-16 Siemens Aktiengesellschaft Installation de turbines à vapeur et procédé pour opérer l'installation de turbines à vapeur
EP2589760B1 (fr) 2011-11-03 2020-07-29 General Electric Technology GmbH Centrale thermique à vapeur avec réservoir de chaleur haute température
EP2682568B1 (fr) * 2012-01-19 2016-03-30 Alstom Technology Ltd Système de chauffage pour un circuit d'eau de centrale électrique thermique
DE202012100381U1 (de) 2012-02-05 2012-02-20 Untha Recyclingtechnik Gmbh Gerät zur Ermittlung von mindestens einer Kategorie von mindestens einem Isoliermedium
DE102012100922B4 (de) 2012-02-05 2018-12-13 Urt Umwelt- Und Recyclingtechnik Gmbh Verfahren und Gerät zur Ermittlung von mindestens einer Kategorie von mindestens einem Isoliermedium und/oder zum Ermitteln mindestens eines Treibmittels in einem Isoliermedium
US9617874B2 (en) * 2013-06-17 2017-04-11 General Electric Technology Gmbh Steam power plant turbine and control method for operating at low load
JP6230344B2 (ja) * 2013-09-06 2017-11-15 株式会社東芝 蒸気タービンプラント
KR20150083374A (ko) * 2014-01-09 2015-07-17 두산중공업 주식회사 증기터빈 발전설비의 출력 제어장치 및 제어방법
EP2980475A1 (fr) 2014-07-29 2016-02-03 Alstom Technology Ltd Procédé pour le fonctionnement à faible charge d'une centrale électrique dotée d'une chaudière à passage forcé unique
US20160102926A1 (en) 2014-10-09 2016-04-14 Vladimir S. Polonsky Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation
WO2016068837A1 (fr) 2014-10-27 2016-05-06 Siemens Aktiengesellschaft Marge de réglage à faible charge pour centrales à cycle combiné
PT3086032T (pt) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Gerador de vapor de passagem única de sal fundido
DE102015118098A1 (de) * 2015-10-23 2017-04-27 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren zur Speisewasservorwärmung eines Dampferzeugers eines Kraftwerks
JP6737611B2 (ja) 2016-03-25 2020-08-12 三菱日立パワーシステムズ株式会社 火力発電システム及び火力発電システムの制御方法
JP6224858B1 (ja) * 2017-03-17 2017-11-01 三菱日立パワーシステムズ株式会社 発電プラント及びその運転方法
JP6891090B2 (ja) * 2017-10-04 2021-06-18 三菱パワー株式会社 発電プラント及びその運転方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016712A (en) * 1960-07-14 1962-01-16 Foster Wheeler Corp Method and apparatus for preheating boiler feed water for steam power plants
US3411300A (en) * 1967-05-31 1968-11-19 Combustion Eng Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JPS5124438A (en) * 1974-08-09 1976-02-27 Hitachi Ltd Karyokuburantono kyusokufukaseigensochi
CH599504A5 (fr) * 1975-09-26 1978-05-31 Sulzer Ag
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator
JPS61205309A (ja) * 1985-03-08 1986-09-11 Hitachi Ltd 給水加熱器の保護運転方法及びその装置
DE4142376A1 (de) 1991-12-20 1993-06-24 Siemens Ag Fossil befeuerter durchlaufdampferzeuger
US5564269A (en) 1994-04-08 1996-10-15 Westinghouse Electric Corporation Steam injected gas turbine system with topping steam turbine
DE19721854A1 (de) * 1997-05-26 1998-12-03 Asea Brown Boveri Verbesserung des Abscheidegrades von Dampfverunreinigungen in einem Dampf-Wasser-Separator
CA2294710C (fr) * 1997-06-30 2007-05-22 Siemens Aktiengesellschaft Generateur de vapeur par recuperation de chaleur perdue
DK1086339T3 (da) * 1998-06-10 2002-04-15 Siemens Ag Fossilt fyret gennemløbsdampgenerator
JP2000240405A (ja) 1999-02-19 2000-09-05 Hitachi Ltd 再熱発電プラントの運転装置
EP1443268A1 (fr) * 2003-01-31 2004-08-04 Siemens Aktiengesellschaft Générateur de vapeur
EP1512907A1 (fr) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Procédé pour le demarrage d'un générateur de vapeur à passage unique et le générateur de vapeur à passage unique pour la mise en oeuvre du procédé

Also Published As

Publication number Publication date
ZA201200762B (en) 2013-05-29
RU2012108101A (ru) 2013-09-10
IN2012DN01926A (fr) 2015-07-24
CN102575840A (zh) 2012-07-11
EP2462378A2 (fr) 2012-06-13
PL2462378T3 (pl) 2016-10-31
CN102575840B (zh) 2014-12-17
DE102009036064A1 (de) 2011-02-10
DE102009036064B4 (de) 2012-02-23
US8959917B2 (en) 2015-02-24
WO2011015185A2 (fr) 2011-02-10
WO2011015185A3 (fr) 2012-03-29
HUE028706T2 (en) 2016-12-28
RU2538994C2 (ru) 2015-01-10
US20120272649A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
EP2462378B1 (fr) Procédé pour faire fonctionner un générateur de vapeur à circulation forcée fonctionnant à une température de vapeur supérieure à 650°c et générateur de vapeur à circulation forcée
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
DE2632777C2 (de) Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
DE1170423B (de) Verfahren und Anordnung zur Regelung der Dampftemperaturen in einem Zwangdurchlauf-dampferzeuger mit zwei im Rauchgaszug angeordneten Zwischenueberhitzern
WO2008067855A2 (fr) Procédé et dispositif d'augmentation de la puissance et du rendement d'un processus de centrale orc
WO2010069671A1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
EP0515911B1 (fr) Méthode pour opérer une installation à turbines à gaz et à vapeur et une installation correspondante
EP2255076A2 (fr) Procédé de régulation d'un générateur de vapeur et circuit de régulation pour générateur de vapeur
EP1390606B2 (fr) Dispositif de refroidissement du fluide de refroidissement d'une turbine a gaz et ensemble turbine a gaz et turbine a vapeur comportant un tel dispositif
EP0523466B1 (fr) Procédé de fonctionnement d'une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE1426698B2 (de) Vorrichtung zum anfahren eines zwangsdurchlaufdampferzeugers
EP0840837B1 (fr) Procede d'exploitation d'une installation de turbines a gaz et a vapeur et installation exploitee selon ce procede
EP1050667A1 (fr) Centrale combinée avec brûleur auxiliaire
DE4300192C2 (de) Verfahren zum Betrieb von mindestens zwei miteinander verknüpften Abhitzeprozessen und Dampferzeugungsanlage zur Durchführung des Verfahrens
DE102014226837A1 (de) Variabel einsetzbares Wärmetauschersystem und Verfahren zum Betreiben eines Wärmetauschersystems
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP2385223A1 (fr) Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur
WO2010102869A2 (fr) Évaporateur continu
WO2015024886A1 (fr) Centrale thermique à vapeur et procédé permettant de faire fonctionner une centrale thermique à vapeur
EP2564117B1 (fr) Générateur de vapeur
EP0898054B1 (fr) Générateur de vapeur et méthode d'exploitation
CH613255A5 (en) System for the utilisation of waste heat from a gas flow to drive electrical generators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/22 20060101ALI20151102BHEP

Ipc: F22D 1/32 20060101ALI20151102BHEP

Ipc: F01K 7/34 20060101ALI20151102BHEP

Ipc: F22B 29/00 20060101AFI20151102BHEP

INTG Intention to grant announced

Effective date: 20151202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 788239

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011396

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160406

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160808

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E028706

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011396

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010011396

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160401519

Country of ref document: GR

Effective date: 20170130

26N No opposition filed

Effective date: 20170110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 788239

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20170707

Year of fee payment: 8

Ref country code: GR

Payment date: 20170728

Year of fee payment: 8

Ref country code: CZ

Payment date: 20170720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170714

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220630

Year of fee payment: 13

Ref country code: PL

Payment date: 20220621

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523