EP2385223A1 - Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur - Google Patents

Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur Download PDF

Info

Publication number
EP2385223A1
EP2385223A1 EP10004673A EP10004673A EP2385223A1 EP 2385223 A1 EP2385223 A1 EP 2385223A1 EP 10004673 A EP10004673 A EP 10004673A EP 10004673 A EP10004673 A EP 10004673A EP 2385223 A1 EP2385223 A1 EP 2385223A1
Authority
EP
European Patent Office
Prior art keywords
steam
gas
water
steam turbine
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10004673A
Other languages
German (de)
English (en)
Inventor
Mustafa Dr.Ing. Youssef
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermal PowerTec GmbH
Original Assignee
Thermal PowerTec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal PowerTec GmbH filed Critical Thermal PowerTec GmbH
Priority to EP10004673A priority Critical patent/EP2385223A1/fr
Publication of EP2385223A1 publication Critical patent/EP2385223A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • Thermal power plants are used to generate electricity. These include steam turbine plants (DTA) and gas and steam turbine plants (GDTA) or combi plants.
  • DTA steam turbine plants
  • GDTA gas and steam turbine plants
  • a gas and steam turbine plant or combination plant consists of at least one gas turbine group, a water / steam cycle with a steam generator, steam turbines and a generator, wherein the steam generator is connected downstream of the gas turbine to the gas turbine.
  • the invention relates to water / steam cycles with heat recovery steam generators and steam turbines in combined systems.
  • a heat recovery steam generator the evaporation and steam superheating of the secondary-side feed water takes place by the cooling of the primary-side hot gas.
  • the invention is limited to gas and steam turbine plants (GDTA) or combi plants and relates to the circuits in such plants.
  • GDTA gas and steam turbine plants
  • combi plants relates to the circuits in such plants.
  • the gas turbine is connected to a heat recovery steam generator (HRSG).
  • HRSG heat recovery steam generator
  • the steam process uses the flue gas heat and dissipates the waste heat from the process to near ambient temperature.
  • the thermal efficiency of combined plants is mainly determined by the exhaust and evaporation losses. Therefore, a lower exhaust gas temperature from the steam generator and a lower turbine exhaust steam flow are always desired.
  • the pursuit of the lower exhaust gas temperature at the outlet of the steam generator (HRSG) requires the use of a larger heat flow at a lower gas temperature range.
  • the feed water evaporation, superheated steam and intermediate steam superheating require a larger heat flow at a higher temperature range and cool the primary-side gases to lower gas temperatures. Furthermore, no large heat flow in the lower temperature range is needed for the warming of the feedwater flow. Therefore, a temperature difference problem occurs in the supercooled feed water area.
  • the temperature difference problem "pinch point problem" is today solved by the use of ND and MD steam cycles.
  • the ND water vapor stream uses the heat flow in the lower temperature range and is circulated through the LP evaporator, the LP turbine and the condenser.
  • the gas heat in the lower temperature range ie at the end of the steam generator, used to evaporate the LP water flow.
  • the ND-W / D cycle solves the problem of the low temperature difference at the start of evaporation (pinch point) and leads to a small improvement in the thermal efficiency of the combination plant.
  • the steam flows of the LP and MD circuits are circulated through the LP turbine and the condenser and lead to the increase of the exhaust steam flow and the evaporation losses in the condenser, whereby the advantage is limited.
  • the invention is based on the object to provide an improvement of the steam turbine process by a corresponding W / D cycle in order to increase the thermal efficiency and the performance of combined systems as possible.
  • the idea of the present invention is to reduce the exhaust steam flow as much as possible by means of greater steam extraction or by condensate removal from the turbine steam.
  • Greater tapping of turbine steam for the purpose of feedwater heating requires the use of several preheaters, which is not practical in waste heat boilers of combi systems, however, since the feed water is to be preheated by the gas cooling in order to achieve the desired exhaust gas temperature.
  • Separation of the condensate from the turbine steam is possible when the expansion line of the steam turbine at lower Entropie Suite (ie shifted to the left in the Ts diagram) and the expansion without a Dampfschreibschreibhitzung to a lower ND in the wet steam area.
  • a supercritical pressure is applied to the feed water in steam generators of combination plants and the reheat is shifted to a lower gas temperature range.
  • the use of gas heat in the low gas temperature range can be achieved by a HD-W / D cycle "single-pressure cycle" without the use of ND and MD circuits. This reduces the evaporation losses and increases the thermal efficiency of the steam turbine process and thus also of the entire combined plant.
  • the present invention is particularly suitable for combination systems with gaseous gas turbine fuel with low sulfur content and an exhaust gas cooling to a temperature up to about 100 ° C.
  • Fig. 3a is a common water / steam circuit of a combined system with three water / steam circuits (HD, MD and LP cycle) and an MD steam reheat shown. This circuit was chosen as the basis for comparing the efficiencies.
  • Fig. 1a represents a water / steam circuit according to the invention a combination plant with an HD water / steam cycle, in which a water separator, a LP intermediate evaporator and a LP reheater are used.
  • the condensate flows out of the condenser (3) through the condensate pump (4) into the mixing preheater degasser (7).
  • the steam flow (29) is tapped by the LP turbine (2) and serves for preheating and degassing of the condensate.
  • the condensate flows through the LP feed water pump (5) and is heated by the heating surface (16) and introduced into the W / D tank (17).
  • the live steam flow (35) has a supercritical pressure and expands through the HP / MD steam turbine (1) without reheating to a state in the wet steam zone below the water vapor boundary line with a steam content of about 90%.
  • the expansion line is shown in the Ts diagram from point TFD to point (d) below the W / D boundary line (see 1b shows ).
  • the steam turbine (1) actually works as a HP and MD steam turbine and can be carried out in two turbine parts.
  • the ND wet steam (8) flows out of the steam turbine (1) into a water separator (9), whereby the steam wetness is reduced ( 1a ).
  • the reduction of the vapor wetness is also in the Ts diagram ( 1b shows ) can be seen by the line between (d) and (f).
  • the water separation can also be done by several apparatuses.
  • a partial stream (27) of the separated condensate is introduced into the feedwater stream via the W / D vessel (17).
  • the remainder of the separated condensate is circulated and evaporated in a circuit through the circulation pump (13), the intermediate evaporator (10) and the water separator (9), wherein the intermediate evaporator (10) is arranged in the low gas temperature range of the steam generator (15).
  • the LP saturated steam (11) flows from the water separator (9) in the reheater (12) and is superheated to a reheating temperature, which practically below the critical steam temperature of 374.12 ° C.
  • the superheated LP steam expands through the LP steam turbine (2) to the exhaust steam pressure in the condenser (3).
  • the overheating of the LP saturated steam (11) in the reheater (12) takes place by a heating water flow as a partial flow (24) from the HP feed water.
  • the colder SchuMapstrom from the reheater (12) is circulated by a circulation pump (14), mixed with the preheated feed water and by the heating surface (23) (from a temperature Tz1 to Tz2 in Fig. 1b and 1c ) heated.
  • the hot heating water flow (24) is tapped to the appropriate point from the feed water and circulated through the superheater.
  • a compensation line (18) connects the two steam chambers of the water separator (9) and the W / D container (17) and leads to the compensation of the vapor pressure of the two steam rooms.
  • the level in the steam tank (17) can be regulated by the LP feedwater pump (5).
  • a bypass water flow (25) from the HP feed water is tapped and passed through the GT air cooler (31).
  • the cooling of the GT cooling air takes place at a supercritical cooling water pressure. This is an advantage for the operation of the GT air cooler, since the evaporation phase and the instability of the water flow distribution in the individual air cooler tubes are suppressed.
  • the bypass water flow heated in the GT air cooler (from Tk1 to Tk2 in Fig. 1b and 1c ) is added to the main W / D stream at the appropriate point and further overheated in the final superheater section.
  • HD and ND air cooler In a gas turbine with sequential or two-stage combustion air side HD and ND air cooler are connected in parallel.
  • the HD cooling water flow (25) cools the GT cooling air of the two HD and ND air coolers in parallel.
  • Fig. 1c shows the temperature-energy diagram for the energy transfer between gas and water vapor in the HRSG of the new combined plant in Fig. 1a ,
  • the diagram shows the condensate preheat by the steam tap in the mixed preheater degasser from a to b. From b to c, the condensate heating and the gas cooling through the heating surface (16) in the HRSG. From c to f, the evaporation of the separated condensate takes place through the intermediate evaporator (10). From f to Tz1, the HD feed water is heated by the gas cooling in the HRSG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP10004673A 2010-05-04 2010-05-04 Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur Withdrawn EP2385223A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10004673A EP2385223A1 (fr) 2010-05-04 2010-05-04 Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10004673A EP2385223A1 (fr) 2010-05-04 2010-05-04 Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur

Publications (1)

Publication Number Publication Date
EP2385223A1 true EP2385223A1 (fr) 2011-11-09

Family

ID=43798330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10004673A Withdrawn EP2385223A1 (fr) 2010-05-04 2010-05-04 Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur

Country Status (1)

Country Link
EP (1) EP2385223A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666978A1 (fr) * 2012-05-25 2013-11-27 Alstom Technology Ltd Installation de Rankine à vapeur
EP3048366A1 (fr) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Générateur de vapeur à récupération de chaleur
US11274575B2 (en) 2016-03-29 2022-03-15 Mitsubishi Power, Ltd. Gas turbine plant and operation method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663146A (en) * 1946-04-26 1953-12-22 Robert G Legendre Combined gas and steam power plant
US3087304A (en) * 1958-12-22 1963-04-30 Walter Hellmuth Method and device for propelling submarine vehicles
DE3731627A1 (de) * 1987-09-19 1989-03-30 Klaus Prof Dr Ing Dr In Knizia Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk
DE19808596A1 (de) * 1998-02-28 1999-09-02 Babcock Kraftwerksrohrleitungs Verfahren und Vorrichtung zum Anwärmen und Entwässern einer Hochdruckdampfleitung
WO1999057421A1 (fr) * 1998-05-06 1999-11-11 Siemens Aktiengesellschaft Installations a turbine a gaz et a turbine a vapeur
EP0981681B1 (fr) 1997-05-16 2002-02-20 Siemens Aktiengesellschaft Systeme de turbines a gaz et a vapeur et procede de refroidissement de l'agent refrigerant de la turbine a gaz d'un tel systeme
US20030043952A1 (en) * 2001-08-31 2003-03-06 Shuuichi Itou Steam turbine power plant
WO2008113482A2 (fr) * 2007-03-20 2008-09-25 Siemens Aktiengesellschaft Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
US20090064656A1 (en) * 2007-09-07 2009-03-12 Gijsbertus Oomens Method for operating a combined-cycle power plant, and combined-cycle power plant useful for carrying out the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663146A (en) * 1946-04-26 1953-12-22 Robert G Legendre Combined gas and steam power plant
US3087304A (en) * 1958-12-22 1963-04-30 Walter Hellmuth Method and device for propelling submarine vehicles
DE3731627A1 (de) * 1987-09-19 1989-03-30 Klaus Prof Dr Ing Dr In Knizia Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk
EP0981681B1 (fr) 1997-05-16 2002-02-20 Siemens Aktiengesellschaft Systeme de turbines a gaz et a vapeur et procede de refroidissement de l'agent refrigerant de la turbine a gaz d'un tel systeme
DE19808596A1 (de) * 1998-02-28 1999-09-02 Babcock Kraftwerksrohrleitungs Verfahren und Vorrichtung zum Anwärmen und Entwässern einer Hochdruckdampfleitung
WO1999057421A1 (fr) * 1998-05-06 1999-11-11 Siemens Aktiengesellschaft Installations a turbine a gaz et a turbine a vapeur
US20030043952A1 (en) * 2001-08-31 2003-03-06 Shuuichi Itou Steam turbine power plant
WO2008113482A2 (fr) * 2007-03-20 2008-09-25 Siemens Aktiengesellschaft Procédé et dispositif de surchauffe intermédiaire par mise à feu lors de l'évaporation directe solaire dans une centrale thermique solaire
US20090064656A1 (en) * 2007-09-07 2009-03-12 Gijsbertus Oomens Method for operating a combined-cycle power plant, and combined-cycle power plant useful for carrying out the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. KEHLHOFER; R. BACHMANN: "nCombined-Cycle Gas & Steam Turbine Power Plants", DIESER DRUCKSCHRIFT SIND DIE VERSCHIEDENEN EINZEL-, ZWEI- UND DREI-DAMPFDRUCK-KREISLÄUFE DARGESTELLT, 1999

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666978A1 (fr) * 2012-05-25 2013-11-27 Alstom Technology Ltd Installation de Rankine à vapeur
US9739178B2 (en) 2012-05-25 2017-08-22 General Electric Technology Gmbh Steam Rankine plant
EP3048366A1 (fr) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Générateur de vapeur à récupération de chaleur
WO2016116509A1 (fr) * 2015-01-23 2016-07-28 Siemens Aktiengesellschaft Générateur de vapeur à récupération de chaleur
JP2018503054A (ja) * 2015-01-23 2018-02-01 シーメンス アクティエンゲゼルシャフト 排熱回収蒸気発生器
US10451267B2 (en) 2015-01-23 2019-10-22 Siemens Aktiengesellschaft Waste-heat steam generator
US11274575B2 (en) 2016-03-29 2022-03-15 Mitsubishi Power, Ltd. Gas turbine plant and operation method therefor

Similar Documents

Publication Publication Date Title
DE69927925T2 (de) Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
DE4212336C1 (fr)
EP1649146B1 (fr) Procede pour augmenter le rendement d'une installation de turbine a gaz, et installation de turbine a gaz conçue a cet effet
EP2368021B1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
EP0674099A1 (fr) Méthode pour le refroidissement des éléments d'une installation de turbine à gaz chargés thermiquement
DE102008045450A1 (de) Verfahren zum Betreiben eines thermodynamischen Kreislaufes sowie thermodynamischer Kreislauf
DE2227435A1 (de) Verfahren zum Verdampfen eines strömenden kryogenen Mediums
WO2010054911A1 (fr) Procédé et dispositif pour le surchauffage intermédiaire dans une centrale solaire thermique avec vaporisation indirecte.
WO2008067855A2 (fr) Procédé et dispositif d'augmentation de la puissance et du rendement d'un processus de centrale orc
DE19506787B4 (de) Verfahren zum Betrieb einer Dampfturbine
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
EP2423465A2 (fr) Procédé de fonctionnement d'une centrale à turbine à vapeur et dispositif de production de vapeur
WO1994027089A2 (fr) Centrale thermique a vapeur permettant de produire de l'energie electrique
EP1105624B1 (fr) Installation de turbine a gaz et a vapeur
EP3420202B1 (fr) Recirculation de condensat
EP1154127B1 (fr) Procédé de fonctionnement d'une centrale combinée et centrale combinée pour la mise en oeuvre du procédé
EP0595009B1 (fr) Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
EP1801363A1 (fr) Centrale électrique
DE102016214447B4 (de) Kraftwerk mit Phasenwechselmaterial-Wärmespeicher und Verfahren zum Betreiben eines Kraftwerks mit Phasenwechselmaterial-Wärmespeicher
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP2385223A1 (fr) Procédé d'augmentation du degré d'efficacité d'installations de turbines à gaz et à vapeur
EP1425079B1 (fr) Procede et dispositif de degazage thermique de la substance active d'un processus a deux phases
WO2007144285A2 (fr) Centrale à vapeur

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120510