EP2462378A2 - Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger - Google Patents
Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeugerInfo
- Publication number
- EP2462378A2 EP2462378A2 EP10752274A EP10752274A EP2462378A2 EP 2462378 A2 EP2462378 A2 EP 2462378A2 EP 10752274 A EP10752274 A EP 10752274A EP 10752274 A EP10752274 A EP 10752274A EP 2462378 A2 EP2462378 A2 EP 2462378A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- forced
- flow
- working medium
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000010521 absorption reaction Methods 0.000 claims abstract description 32
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 13
- 238000009835 boiling Methods 0.000 claims abstract description 9
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000010079 rubber tapping Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/32—Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
- F22D1/325—Schematic arrangements or control devices therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/34—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
Definitions
- the invention relates to a method for operating a sliding pressure and with a steam temperature of about 650 0 C operating continuous flow steam generator and lowering the forced minimum flow, wherein the forced flow steam generator is integrated into the water / steam cycle of a power plant and the economizer of the once-through steam generator in water / Steam cycle direction seen upstream at least one HD preheater and / or a heat transfer system for further preheating of the feed water, wherein the / the HP preheater is heated by turbine steam and the heat transfer system external heat to the circulation medium water / steam is supplied.
- Continuous flow or continuous flow steam generators are known from the publication "Kraftwerkstechnik", Springer-Verlag, 2nd edition 1994, Chapter 4.4.2.4-Zwang barnelle (page 171 to 174), Prof. Dr.-Ing
- a continuous flow or continuous flow steam generator the heating of the combustion chamber or the gas train forming evaporator tubes - in contrast to a natural circulation or forced circulation steam generator with only partial evaporation of circulating water Vapor mixture - to an evaporation of the flow or working medium in the evaporator tubes in a single pass.
- the turbine control valve With further load reduction in forced operation, the turbine control valve would have to be throttled, the pressure loss at 30% load of the continuous steam generator would be about 40-50 bar (energetic loss, wear on the turbine control valve with frequent driving in this load range). If throttling is not desired for the aforementioned reasons, the load range for the forced continuous operation of the continuous steam generator is limited to 40-100% of the full load. In hard coal-fired power plants, a forced continuous operation of the continuous steam generator with pure coal fire up to a partial load of about 25% is theoretically feasible.
- the object of the invention is therefore to provide a method for operating a forced-circulation steam generator operating in sliding pressure and with a steam temperature of over 65O 0 C and lowering it of the forced passage minimum load, in which the abovementioned disadvantages are avoided or lowering the forced minimum throughput to about 30%. the full load is achieved. It is a further object of the invention to provide a forced once-through steam generator for carrying out the method.
- the solution according to the invention provides a method for operating a forced-circulation steam generator operating in sliding pressure and with a steam temperature of more than 650 ° C. and lowering the forced passage minimum load as well as a forced-circulation steam generator for carrying out the method, which has the following advantages:
- the temperature increase is reduced by the heat absorption of the feedwater after feed water pump on the HD preheater and / or the heat transfer system by up to about 50 Kelvin, so that the water outlet temperature due economizer due to the slightly improved Temperaturgrädtechnik the economizer heating surface falls by up to about 40 Kelvin, thereby ensuring sufficient subcooling at the evaporator inlet.
- the reduction of heat absorption by means of a control valve which regulates the amount of the HP pre-heater supplied turbine tap steam.
- the control valve is advantageously arranged in the bleed steam line, by means of which the Turbinenanzapfdampfstrom is guided from the turbine tap to the HD preheater.
- the amount to the HD preheater and thus at the same time the heat absorption can be changed by the working medium and controlled influence on the medium temperature at the economizer outlet.
- the same measure can be applied to the heat transfer system, in which the supply of the external heat flow is controlled by means of a control device and at the same time the heat absorption is controlled by the working medium.
- the control device is advantageously arranged in the supply line or the supply channel, by means of which the external heat flow is conducted from a foreign source to the heat transfer system.
- An advantageous embodiment provides that the reduction of the heat absorption by dividing the working medium flow into two partial flows (A n , A ⁇ 2 ), wherein the first partial flow (A n ) through the HD preheater and the second partial flow (A T2 ) via a Bypass line is guided and the two partial streams (A n , A T2 ) are controlled by means of at least one control valve.
- a further advantageous embodiment provides that the reduction of the heat absorption by dividing the working medium flow into two partial flows (A T3 , A ⁇ 4 ), wherein the first partial flow (A T3 ) through the water / steam circuit side component of the heat transfer system and the second partial flow (A T4 ) is guided via a bypass line and the two partial flows (A T3 , A T4 ) are controlled by means of at least one control valve.
- the amount of partial flow of the working medium flowing through the HP preheater or through the water / steam circuit side component of the heat transfer system can be influenced by the heat absorption thereof by changing the partial flow amount.
- the predetermined temperature difference T D is 20 Kelvin. This ensures that evaporation on the economizer and segregation of the circulated working medium at the inlet of the evaporator is avoided.
- An advantageous embodiment provides that 50% of the full load is taken as a predetermined partial load point L ⁇ to reduce heat absorption.
- An advantageous embodiment provides that the heat transfer system is arranged in the direction of circulation of the working medium circuit seen upstream of the HP preheater.
- a further advantageous embodiment provides for the heat-displacement system to be arranged in the direction of circulation of the working-medium circuit between the high-pressure preheaters.
- a further advantageous embodiment seen in the direction of circulation of the working medium circuit to arrange the heat transfer system parallel to the HP preheater in a parallel circuit. This measure can easily further heat be supplied to the working medium for preheating or be absorbed by this.
- FIG. 1 schematically shows the water / steam cycle of a power plant designed with a forced once-through steam generator
- Fig. 2 as Figure 1, but alternative embodiment
- Fig. 3 as Figure 1, but alternative design.
- Figure 1 shows schematically illustrated the water / steam leading Hämedium- cycle 1 with a continuous or forced once-through steam generator (both terms mean the same, namely the generation of steam within the steam generator in a single pass) formed power plant.
- the steam expanded in the MD / LP steam turbine (medium-pressure / low-pressure steam turbine) 17 is cooled in at least one condenser 2 and the condensate is subsequently heated in at least one LP preheater (low-pressure preheater) 3.1, 3.2 and by means of a feedwater pump 4 returned to the circuit 1 or to the desired operating pressure.
- the feedwater is then further heated in one or more HD preheaters (high-pressure preheaters) 7.1, 7.2 and the economizer 9 and evaporated in the evaporator 10 and then superheated in the superheater 13 to 700 ° C, for example.
- the exiting from the superheater 13 700 ° C hot steam is the HD steam turbine (high-pressure steam turbine) 14, partially relaxed therein and then reheated in a reheater 16 and fed to the MD / LP steam turbine 17, in which the steam is largely relaxed before he is fed back to the aforementioned circuit 1.
- the water / steam working medium which is passed through tubes of heating mediums arranged in the continuous steam generator, is heated in the economizer heating surfaces 9, the evaporator heating surfaces 10, the superheater heating surfaces 13 and the reheater heating surfaces 16 of flue gases the combustion of fossil fuel in the combustion chamber, not shown, of the continuous steam generator arise.
- the aforementioned heating surfaces 9, 10, 13 and 16 are all arranged in the continuous steam generator either as a radiation or as a contact heating.
- the HP preheaters 7.1, 7.2 are heated by bleed steam, which is taken at tapping points 15 and / or 18 at the HP steam turbine 14 and / or at the MD / LP steam turbine 17.
- the LP preheaters 3.1, 3.2 can also be heated by bleed steam from the MD / LP steam turbine 17 (not shown), which can be removed at the tapping point 18.
- the or between the evaporator 10 and superheater 13 arranged (s) cyclone 1 1 serve only to separate in the startup and shutdown of the forced flow steam generator and in the load range below the forced minimum flow not evaporated water and upstream of the economizer 9 by means of a circulation pump 12 the water / Steam cycle 1 supply again.
- a heat displacement system 5 is additionally integrated parallel to (see FIG. 2) or upstream (see FIG. 3) of the HP preheaters 7.1, 7.2 in the circuit 1, wherein the heat displacement system 5 is arranged in a parallel to the circuit 1 parallel circuit 28 according to the figure 2.
- heat stream 22 such as steam, flue gas or hot air from an unillustrated external source of heat for further heating of the feed water is supplied to the heat displacement system by a foreign 5.
- the heat transfer system 5 uses its own heat transfer medium, which circulates within the heat transfer system 5 by means of a circulation pump 5.3, the heat transfer circulation circuit also comprising a shut-off valve 5.4.
- the component 5.2 of the heat transfer system 5 is through the supply line or supply channel (in flue gas or hot air as Fremd Anlagenstrom) 31 a Fremdtage 22 is supplied and transferred or moved by means of the heat transfer to the lying in the circuit 1 component 5.1 of the heat transfer system 5, from which the heat transferred to the feed water or to the working fluid of the circuit 1 is discharged.
- the two components 5.1, 5.2 of the heat transfer system 5 thus each have the function of a heat exchanger.
- the heat transfer system 5 seen in the direction of circulation of the working medium circuit 1 between the HP preheaters 7.1, 7.2 may be arranged (not shown).
- the feedwater temperature before economizer 9 is lowered by up to about 50 Kelvin, so that a pressure throttling via the turbine control valve, not shown to achieve sufficient supercooling of the guided in the circuit 1 working fluid at the economizer outlet is no longer necessary and the live steam pressure can slide further down and
- a forced continuous operation of the continuous steam generator down to a partial load range of 25% down with sufficient subcooling of the guided in the circuit 1 working fluid is made possible at the economizer outlet for all possible operating conditions.
- the temperature difference T D is defined as the temperature difference of the determined boiling temperature derived from the measured medium pressure at the economizer outlet minus the measured medium temperature at the economizer outlet.
- the method according to the invention it is ensured that with regard to the prevention of evaporation on the economizer 9 and a separation of the im Kreisl ⁇ uf 1 guided working medium at the inlet of the evaporator 10 is given sufficient security, since the medium temperature at the economizer outlet has a predetermined temperature difference T D compared to the boiling temperature at the corresponding economizer outlet pressure and the predetermined temperature difference T D represents a positive amount, the working fluid temperature at the economizer outlet below the boiling point is.
- the predetermined temperature difference T D is preferably 20 Kelvin, ie, that the medium temperature at the economizer outlet is preferably 20 Kelvin below the boiling point based on the corresponding economizer outlet pressure.
- the temperature difference T D can also be at least 15 Kelvin or more than 20 Kelvin.
- a control valve 19, 20 is arranged in the tapping steam line 29, 30 by means of which or which tapping steam from the turbine tap 15, 18 to the HD preheater 7.1, 7.2 is performed.
- the supply quantity of the turbine bleed steam flow to the / the HD preheater (s) 7.1, 7.2 and thus the heat absorption of the feedwater or working fluid after feed pump 4 can be controlled and adjusted so that the desired feedwater temperature with the predetermined temperature difference T D is achieved at the economizer outlet or sets. If, in addition to or instead of reducing the heat absorption of the HD preheater (s) 7.1, 7.2, the reduction of the heat absorption of the heat transfer system 5 is regulated, the amount of extraneous heat flow 22 supplied to the heat transfer system 5 can be regulated by a control device 21 arranged in the supply line 31 be managed.
- the currently determined temperature difference T D at the economizer outlet is such that at the measuring point 23 at the economizer outlet, the current medium temperature and the current medium pressure are measured and these two values are fed to a process computer. From the determined current medium pressure, the process computer determines the The associated boiling temperature and compares it with the currently measured medium temperature. By this comparison, the current temperature difference T D is determined, which should have a related to the medium pressure at the economizer outlet predetermined value and, as stated above, should preferably be 20 Kelvin.
- the process computer can send a corresponding control signal to the control valve (s) 19, 20, 24.1, 24.2, 25.1, 25.2, 26, 27 or control device 21 in order to regulate the reduction of the heat absorption in the HD preheater (s) 7.1, 7.2 and / or in the heat transfer system 5 accordingly.
- the reduction of the heat absorption on the HD preheater (s) 7.1, 7.2 and / or on the heat transfer system 5 can be so far that by completely closing the / the control valve (s) 19, 20 and / or the control device 21 no more heat through the tap as mpfstrom to the / the HD preheater 7.1, 7.2 or passes through the external heat flow to the heat transfer system 5 and thus no heat absorption takes place.
- the medium side pressure loss can be reduced by means of the bypass line (s) 8.1, 8.2, 6 Partial flow or the entire mass flow of the working medium is passed past the aforementioned components.
- the HD preheater 7.1, 7.2 and / or the heat transfer system 5 can be switched off.
- the control valve 27 is opened and the control valve 26 is closed.
- the shutdown of the heat transfer system 5 can be done either in addition to or instead of the shutdown of the HP preheater 7.1, 7.2.
- the two partial flows A n , A T2 can be controlled by means of at least one control valve 24.1, 24.2, 25.1, 25.2, either directly upstream or downstream (not shown) of / the HD preheater 7.1, 7.2 or in the respective bypass line 8.1 , 8.2 is arranged.
- control valve 24.1, 24.2 or the partial flow A T2 be regulated by the arranged in the bypass line 8.1, 8.2 control valve 25.1, 25.2 or both streams A n , A T2 through the control valves 24.1, 24.2, 25.1, 25.2.
- the partial flows A n can be different with regard to the partial flow quantity in the respective HP preheaters 7.1, 7.2, which consequently also applies to the partial flows A T2 in the respective bypass lines 8.1, 8.2 of the HP preheater 7.1, 7.2 applies.
- the control valves can receive from a processor, not shown, the corresponding controlled variables that the processor determines or creates from the data that it receives from the measuring point 23 at the economizer outlet.
- the reduction of the heat absorption within the / the HD preheater 7.1, 7.2 by means of the control valves 24.1, 24.2, 25.1, 25.2 can without or with the inclusion of the control valves 19, 20, the supply amount of the bleed steam to the / the HD preheater (s) 7.1, 7.2. Furthermore, the reduction of heat absorption within the component 5.1 of the heat transfer system 5 by means of the control valves 26, 27 without or with the involvement of the control device 21, which controls the supply amount of the external heat flow 22 to the component 5.2 of the heat transfer system 5, take place.
- control device 21 In addition to the control device 21 is within the heat transfer system 5 the ability to close the shut-off 5.4 of the heat transfer circulation and turn off the circulation pump 5.3 to prevent the supply of heat to the component 5.1 of the heat transfer system 5, which is synonymous with the shutdown of the heat transfer system 5 and the heat absorption by the working medium in the heat transfer system. 5
- a predetermined partial load point L ⁇ for reducing the heat absorption in at least one of the HP preheater 7.1, 7.2 and / or in the heat transfer system 5 preferably 50% of the full load can be taken.
- this partial load point L ⁇ is then according to the invention as described above, the heat absorption in one or more of the HP preheater 7.1, 7.2 and / or reduced in the heat transfer system 5.
- the predetermined partial load point L ⁇ can also be in the range between 40 and 60% of the full load.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009036064A DE102009036064B4 (de) | 2009-08-04 | 2009-08-04 | rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger |
PCT/DE2010/000906 WO2011015185A2 (de) | 2009-08-04 | 2010-07-30 | Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2462378A2 true EP2462378A2 (de) | 2012-06-13 |
EP2462378B1 EP2462378B1 (de) | 2016-04-06 |
Family
ID=43430085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10752274.0A Active EP2462378B1 (de) | 2009-08-04 | 2010-07-30 | Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger |
Country Status (10)
Country | Link |
---|---|
US (1) | US8959917B2 (de) |
EP (1) | EP2462378B1 (de) |
CN (1) | CN102575840B (de) |
DE (1) | DE102009036064B4 (de) |
HU (1) | HUE028706T2 (de) |
IN (1) | IN2012DN01926A (de) |
PL (1) | PL2462378T3 (de) |
RU (1) | RU2538994C2 (de) |
WO (1) | WO2011015185A2 (de) |
ZA (1) | ZA201200762B (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2546476A1 (de) * | 2011-07-14 | 2013-01-16 | Siemens Aktiengesellschaft | Dampfturbinenanlage und Verfahren zum Betreiben der Dampfturbinenanlage |
EP2589760B1 (de) * | 2011-11-03 | 2020-07-29 | General Electric Technology GmbH | Dampfkraftwerk mit Hochtemperatur-Wärmespeicher |
EP2682568B1 (de) * | 2012-01-19 | 2016-03-30 | Alstom Technology Ltd | Heizsystem für den Wasserkreislauf eines thermischen Kraftwerks |
DE202012100381U1 (de) | 2012-02-05 | 2012-02-20 | Untha Recyclingtechnik Gmbh | Gerät zur Ermittlung von mindestens einer Kategorie von mindestens einem Isoliermedium |
DE102012100922B4 (de) | 2012-02-05 | 2018-12-13 | Urt Umwelt- Und Recyclingtechnik Gmbh | Verfahren und Gerät zur Ermittlung von mindestens einer Kategorie von mindestens einem Isoliermedium und/oder zum Ermitteln mindestens eines Treibmittels in einem Isoliermedium |
US9617874B2 (en) * | 2013-06-17 | 2017-04-11 | General Electric Technology Gmbh | Steam power plant turbine and control method for operating at low load |
JP6230344B2 (ja) * | 2013-09-06 | 2017-11-15 | 株式会社東芝 | 蒸気タービンプラント |
KR20150083374A (ko) * | 2014-01-09 | 2015-07-17 | 두산중공업 주식회사 | 증기터빈 발전설비의 출력 제어장치 및 제어방법 |
EP2980475A1 (de) * | 2014-07-29 | 2016-02-03 | Alstom Technology Ltd | Verfahren für den Schwachlastbetrieb einer Kraftwerksanlage mit Durchlaufkessel |
US20160102926A1 (en) | 2014-10-09 | 2016-04-14 | Vladimir S. Polonsky | Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation |
WO2016068837A1 (en) | 2014-10-27 | 2016-05-06 | Siemens Aktiengesellschaft | Low load turndown for combined cycle power plants |
PT3086032T (pt) * | 2015-04-21 | 2021-01-29 | General Electric Technology Gmbh | Gerador de vapor de passagem única de sal fundido |
DE102015118098A1 (de) * | 2015-10-23 | 2017-04-27 | Mitsubishi Hitachi Power Systems Europe Gmbh | Verfahren zur Speisewasservorwärmung eines Dampferzeugers eines Kraftwerks |
JP6737611B2 (ja) * | 2016-03-25 | 2020-08-12 | 三菱日立パワーシステムズ株式会社 | 火力発電システム及び火力発電システムの制御方法 |
JP6224858B1 (ja) * | 2017-03-17 | 2017-11-01 | 三菱日立パワーシステムズ株式会社 | 発電プラント及びその運転方法 |
JP6891090B2 (ja) * | 2017-10-04 | 2021-06-18 | 三菱パワー株式会社 | 発電プラント及びその運転方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3016712A (en) * | 1960-07-14 | 1962-01-16 | Foster Wheeler Corp | Method and apparatus for preheating boiler feed water for steam power plants |
US3411300A (en) * | 1967-05-31 | 1968-11-19 | Combustion Eng | Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure |
JPS5124438A (en) * | 1974-08-09 | 1976-02-27 | Hitachi Ltd | Karyokuburantono kyusokufukaseigensochi |
CH599504A5 (de) * | 1975-09-26 | 1978-05-31 | Sulzer Ag | |
US4290389A (en) * | 1979-09-21 | 1981-09-22 | Combustion Engineering, Inc. | Once through sliding pressure steam generator |
JPS61205309A (ja) * | 1985-03-08 | 1986-09-11 | Hitachi Ltd | 給水加熱器の保護運転方法及びその装置 |
DE4142376A1 (de) * | 1991-12-20 | 1993-06-24 | Siemens Ag | Fossil befeuerter durchlaufdampferzeuger |
US5564269A (en) | 1994-04-08 | 1996-10-15 | Westinghouse Electric Corporation | Steam injected gas turbine system with topping steam turbine |
DE19721854A1 (de) * | 1997-05-26 | 1998-12-03 | Asea Brown Boveri | Verbesserung des Abscheidegrades von Dampfverunreinigungen in einem Dampf-Wasser-Separator |
UA42888C2 (uk) * | 1997-06-30 | 2001-11-15 | Сіменс Акціенгезелльшафт | Парогенератор, який працює на відхідному теплі |
WO1999064787A1 (de) * | 1998-06-10 | 1999-12-16 | Siemens Aktiengesellschaft | Fossilbeheizter dampferzeuger |
JP2000240405A (ja) | 1999-02-19 | 2000-09-05 | Hitachi Ltd | 再熱発電プラントの運転装置 |
EP1443268A1 (de) * | 2003-01-31 | 2004-08-04 | Siemens Aktiengesellschaft | Dampferzeuger |
EP1512907A1 (de) * | 2003-09-03 | 2005-03-09 | Siemens Aktiengesellschaft | Verfahren zum Anfahren eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens |
-
2009
- 2009-08-04 DE DE102009036064A patent/DE102009036064B4/de not_active Expired - Fee Related
-
2010
- 2010-07-30 US US13/387,033 patent/US8959917B2/en not_active Expired - Fee Related
- 2010-07-30 PL PL10752274.0T patent/PL2462378T3/pl unknown
- 2010-07-30 IN IN1926DEN2012 patent/IN2012DN01926A/en unknown
- 2010-07-30 CN CN201080045664.XA patent/CN102575840B/zh not_active Expired - Fee Related
- 2010-07-30 HU HUE10752274A patent/HUE028706T2/en unknown
- 2010-07-30 EP EP10752274.0A patent/EP2462378B1/de active Active
- 2010-07-30 RU RU2012108101/06A patent/RU2538994C2/ru active
- 2010-07-30 WO PCT/DE2010/000906 patent/WO2011015185A2/de active Application Filing
-
2012
- 2012-01-31 ZA ZA2012/00762A patent/ZA201200762B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2011015185A2 * |
Also Published As
Publication number | Publication date |
---|---|
HUE028706T2 (en) | 2016-12-28 |
EP2462378B1 (de) | 2016-04-06 |
US20120272649A1 (en) | 2012-11-01 |
ZA201200762B (en) | 2013-05-29 |
WO2011015185A2 (de) | 2011-02-10 |
IN2012DN01926A (de) | 2015-07-24 |
CN102575840A (zh) | 2012-07-11 |
DE102009036064A1 (de) | 2011-02-10 |
RU2538994C2 (ru) | 2015-01-10 |
CN102575840B (zh) | 2014-12-17 |
US8959917B2 (en) | 2015-02-24 |
PL2462378T3 (pl) | 2016-10-31 |
WO2011015185A3 (de) | 2012-03-29 |
RU2012108101A (ru) | 2013-09-10 |
DE102009036064B4 (de) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2462378B1 (de) | Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger | |
DE3882794T2 (de) | Wärmewiedergewinnungskessel vom Zwischenüberhitzertyp und diesen verwendende Krafterzeugungsanlage. | |
EP1848925B1 (de) | Dampferzeuger in liegender bauweise | |
DE2632777C2 (de) | Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung | |
DE3782314T2 (de) | Sperrdamppfsystem fuer eine dampfturbine. | |
EP1588095B1 (de) | Dampferzeuger | |
DE1170423B (de) | Verfahren und Anordnung zur Regelung der Dampftemperaturen in einem Zwangdurchlauf-dampferzeuger mit zwei im Rauchgaszug angeordneten Zwischenueberhitzern | |
EP0898641B1 (de) | Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb | |
EP0515911B1 (de) | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage | |
EP2442061B1 (de) | Verfahren zum Kühlen des Rauchgases einer Feuerungsanlage in einem Wärmetauschers einer Dampfzeugungsanlage | |
WO2008067855A2 (de) | Verfahren und vorrichtung zur erhöhung von leistung und wirkungsgrad eines orc-kraftwerkprozesses | |
DE10001995A1 (de) | Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens | |
DE1426701B2 (de) | Anfahreinrichtung fuer zwangsdurchlaufdampferzeuger | |
EP1262638A1 (de) | Vorrichtung zur Kühlmittelkühlung einer Gasturbine und Gas- und Dampfturbinenanlage mit einer derartigen Vorrichtung | |
EP0523466A1 (de) | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens | |
EP0840837B1 (de) | Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage | |
DE19720789B4 (de) | Verfahren und Vorrichtung zur Erzeugung von Dampf | |
WO2015039831A2 (de) | Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger | |
EP1050667A1 (de) | Kombianlage mit Zusatzfeuerung | |
DE4300192C2 (de) | Verfahren zum Betrieb von mindestens zwei miteinander verknüpften Abhitzeprozessen und Dampferzeugungsanlage zur Durchführung des Verfahrens | |
EP2409078B1 (de) | Verfahren zur Auslegung eines Durchlaufverdampfers | |
EP0794320A1 (de) | Vorrichtung und Verfahren zur Energieerzeugung | |
DE2654192B1 (de) | Anlage zur Nutzung von Abwaerme eines Gasstromes | |
DE102010043683A1 (de) | Fossil befeuerter Dampferzeuger | |
DE102012102115A1 (de) | Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120228 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 7/22 20060101ALI20151102BHEP Ipc: F22D 1/32 20060101ALI20151102BHEP Ipc: F01K 7/34 20060101ALI20151102BHEP Ipc: F22B 29/00 20060101AFI20151102BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 788239 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010011396 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160406 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160808 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E028706 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010011396 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010011396 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20160401519 Country of ref document: GR Effective date: 20170130 |
|
26N | No opposition filed |
Effective date: 20170110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160730 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160730 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 788239 Country of ref document: AT Kind code of ref document: T Effective date: 20160730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160730 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20170707 Year of fee payment: 8 Ref country code: GR Payment date: 20170728 Year of fee payment: 8 Ref country code: CZ Payment date: 20170720 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20170714 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180730 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190207 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220630 Year of fee payment: 13 Ref country code: PL Payment date: 20220621 Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230730 |