EP0840837B1 - Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage - Google Patents

Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage Download PDF

Info

Publication number
EP0840837B1
EP0840837B1 EP96922762A EP96922762A EP0840837B1 EP 0840837 B1 EP0840837 B1 EP 0840837B1 EP 96922762 A EP96922762 A EP 96922762A EP 96922762 A EP96922762 A EP 96922762A EP 0840837 B1 EP0840837 B1 EP 0840837B1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
turbine
preheater
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96922762A
Other languages
English (en)
French (fr)
Other versions
EP0840837A1 (de
Inventor
Hermann Brückner
Georg Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0840837A1 publication Critical patent/EP0840837A1/de
Application granted granted Critical
Publication of EP0840837B1 publication Critical patent/EP0840837B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a gas and steam turbine plant with one of the gas turbines connected downstream of the exhaust gas Heat recovery steam generator, its high-pressure preheater in the water-steam cycle the one having a low pressure part Steam turbine is switched. It continues to focus on one Plant operated according to this procedure.
  • the water-steam cycle includes several, e.g. two or three, pressure levels, each pressure level a preheater, an evaporator and a super heater having.
  • the invention is therefore based on the object of a gas and Steam turbine plant and a suitable one for its operation To further develop methods such that by a further increase the use of the heat content in the exhaust gas of the gas turbine an increase in system efficiency is achieved.
  • this problem is solved by a heat exchanger arranged outside the heat recovery steam generator, its primary side input to the output and its primary-side outlet to the inlet of the high-pressure preheater are connected, and the secondary side to a overflow line leading into the high pressure part of the steam turbine is switched.
  • the heat exchanger is on the primary side a circulation pump and a control valve.
  • a controller block serves to approximate the temperature of the via the heat exchanger High pressure preheater recirculated feed water to the temperature of the feed water fed directly to the high-pressure preheater with the aim that the temperatures at the mixing point of the high-pressure preheater are at least approximately the same.
  • a first temperature sensor with the controller module Detection of the temperature of the secondary side from the heat exchanger outflowing feed water connected.
  • a second with Temperature sensor connected to the controller module is used for detection the temperature of the high pressure preheater Feed water.
  • a particularly effective adaptation of the heating surface of the high pressure preheater the temperature profile of the exhaust gas from the This turns the gas turbine inside the heat recovery steam generator achieved that the high-pressure preheater has two stages is. Therefore, in a further advantageous embodiment the high pressure preheater and a first high pressure preheater second high-pressure preheater downstream of feed water, the one in the waste heat steam generator on the exhaust side before the first High pressure preheater is arranged.
  • This principle can be built up from three pressure levels Water-steam cycle can be further developed in that to that existing in a three-pressure ZÜ process Reheater a connected to this on the feed water side Medium pressure superheater is provided in the heat recovery steam generator arranged on the exhaust gas side before the reheater is. Furthermore, in order to further develop this principle Heat recovery steam generator arranged low pressure superheater provided be the output side with the secondary side Input of the heat exchanger is connected.
  • the stated task is thereby solved that the steam turbine incoming low pressure steam by indirect heat exchange with a high pressure preheater withdrawn partial flow of preheated feed water overheated becomes.
  • the cooled partial flow becomes the feed water to be preheated preferably mixed again at the inlet of the high pressure preheater, wherein a temperature approximation of the partial flow to the feed water to be preheated by adjusting the partial flow he follows.
  • the advantages achieved with the invention are in particular in that on the one hand by overheating the low pressure steam through indirect heat exchange outside the heat recovery steam generator with feed water preheated in the high-pressure preheater Heat from the exhaust gas from the gas turbine for overheating can be used, and that on the other hand due to the an additional degree of freedom compared to indirect heat exchange a direct heat exchange with the exhaust gas is provided becomes.
  • This additional degree of freedom enables heat transfer particularly favorable to the operating conditions present state of the low pressure steam from the steam turbine be adjusted. This makes it a particularly affordable one Exploitation of the heat content in the exhaust gas from the gas turbine too possible with changing load conditions.
  • the invention also enables an increase the generator clamping power of the steam turbine.
  • FIG. 1 An embodiment of the invention is based on a Drawing explained in more detail.
  • the figure shows schematically a gas and steam turbine system with a separate heat exchanger for heating low pressure steam.
  • the gas and steam turbine plant comprises one Gas turbine 2 and a steam turbine 4 and one from the hot Exhaust gas AG from the gas turbine 2 flows through the heat recovery steam generator 6.
  • the steam turbine 4 comprises a high pressure part 4a and a medium pressure part 4b and a low pressure part 4c.
  • the waste heat steam generator 6 is used to generate steam, wherein whose heating surfaces in a water-steam cycle 8 Steam turbine 4 are switched.
  • the heat recovery steam generator 6 has a condensate line 10 connected condensate preheater 12 on the on the input side via a condensate pump 14 with one of the Steam turbine 4 downstream capacitor 16 is connected.
  • the condensate preheater 12 is on the outlet side via a circulation pump 18 connected to its entrance. He is outgoing also via a feed line 20 with a feed water tank 22 connected.
  • the feed water tank 22 is on the output side via a Feed water line 24, into which a pump 26 is connected, connected to a low pressure drum 28.
  • a Feed water line 24 To the low pressure drum 28 is an evaporator via a circulation pump 30 connected.
  • the low-pressure drum 28 is also on the steam side a low pressure superheater 34 connected via a Steam line 36 to an overflow line 38 from the medium pressure part 4b connected to the low pressure part 4c of the steam turbine 4 is.
  • the low pressure drum 28 and the low pressure evaporator 32 together with the low pressure superheater 34 and the low pressure part 4c a low pressure stage of the water-steam cycle 8.
  • the feed water tank 22 is also on the output side a feed water line 40 into which a pump 42 is connected is connected to a first high-pressure preheater 44 which via a connecting line 46 to the input of a second High pressure preheater 48 is connected.
  • a medium pressure drum 52 via a line 50 connected, to which in turn via a circulation pump 54 Medium pressure evaporator 56 is connected.
  • the medium pressure drum 52 is on the steam side with a medium pressure superheater 56 connected, the output side with the input of a reheater 58 is connected.
  • the reheater 58 is on the input side of the high pressure part 4a and on the output side connected to the medium pressure part 4b of the steam turbine 4.
  • the medium pressure drum 52 and the medium pressure evaporator 56 as well as the medium pressure superheater 57 together with the Intermediate superheater 58 and the medium pressure part 4b of the steam turbine 4 a medium pressure stage of the water-steam cycle 8th.
  • the second high-pressure preheater 48 is on the output side via a Connection line 60 and a valve 62 with a high pressure drum 64 connected to the via a circulation pump 66 High pressure evaporator 68 is connected.
  • the high pressure drum 64 is on the steam side via a high-pressure superheater 70 the high pressure part 4a of the steam turbine 4 connected.
  • the High pressure preheaters 44, 48 and the high pressure drum 64 as well the high pressure evaporator 68 and the high pressure superheater 70 together with the high pressure part 4a of the steam turbine 4 a high-pressure stage of the water-steam cycle 8.
  • a heat exchanger 72 switched. Is primary the heat exchanger 72 on the input side via a line 74 the line 60 connected and thus with the output of the second high pressure preheater 48 connected.
  • the primary side Output of the heat exchanger 72 is via a line 76, in a pump 78 and a control valve 80 are connected with connected to the input of the second high pressure preheater 48.
  • the line 76 opens at a mixing point 82 in the the two high pressure preheaters 44 and 48 connecting line 46.
  • the condensate preheater becomes 12 via the pump 14 and the condensate line 10 capacitor K supplied from the capacitor 16. It can all or part of the condensate preheater 12 can be bypassed.
  • the condensate K is warmed up in the condensate preheater 12 and at least partially via the circulation pump 18 circulated.
  • the warmed condensate K is on the line 20 led into the feed water tank 22, where in a manner not shown a warming up of the Feed water takes place by means of bleed steam from the steam turbine 4.
  • the heated feed water S is the one hand Low pressure drum 28 and on the other hand via the first high pressure preheater 44 of the medium pressure drum 52 and the second high pressure preheater 48 fed to the high pressure drum 64.
  • the feed water S fed to the low pressure stage is evaporated at low pressure in the low-pressure evaporator 32, the one separated in the low pressure drum 28 Low pressure steam ND supplied to the low pressure superheater 34 becomes.
  • the overheated low pressure steam ND is there before Heat exchanger 72 led into the overflow line 38.
  • the feed water fed into the medium pressure drum 52 S evaporated in the medium pressure evaporator 56.
  • the Indian Medium pressure drum 52 separated, under medium pressure Standing steam is passed over the medium pressure superheater 57 and as superheated medium pressure steam MD the medium pressure part 4b of the steam turbine 4 supplied.
  • second high pressure preheater or economizer 48 preheated Feed water S in the high pressure evaporator 68 under high pressure evaporates, the one separated in the high pressure drum 64
  • High pressure steam HD in the high pressure superheater 70 overheated and in overheated state in the high pressure part 4a of the steam turbine 4 is performed.
  • the steam released in the high pressure part 4a becomes overheated again in reheater 58 and in superheated Condition together with that overheated in the medium pressure superheater 56
  • Medium pressure steam MD the medium pressure part 4b of the steam turbine 4 fed.
  • the steam in the medium-pressure part 4b of the steam turbine 4, which is under low pressure, is passed through the overflow line 38 and overheated in the heat exchanger 72 by indirect heat exchange with a partial flow t S of the feed water S preheated in the high-pressure preheater 48.
  • the steam flowing out of the medium-pressure part 4b is mixed with the low-pressure steam ND overheated in the low-pressure superheater 34 before the heat exchanger 72.
  • the low-pressure steam ND overheated in the heat exchanger 72 is expanded in the low-pressure part 4c of the steam turbine 4 and fed to the condenser 16 for condensation.
  • the amount of the partial flow t S of the feed water S preheated in the second high-pressure preheater 48 supplied to the heat exchanger 72 per unit of time is set by means of the control valve 80.
  • the setting is such that the temperature T 1 of the partial flow t S and the temperature T 2 of the feed water S to be preheated at the mixing point 82 are approximated to one another, preferably the same.
  • a controller module 84 is connected to the control valve 80 via a control line 85.
  • the controller module 84 is also connected via a control line 86 to a first temperature sensor 87 for detecting the temperature T 1 and via a control line 88 to a second temperature sensor. 89 connected to the detection of the temperature T 2 .
  • the clamping power which can be drawn from a (not shown) steam turbine generator increases by 1.3% to 2%. If the entire low-pressure steam quantity is correspondingly overheated in a two-pressure process, the increase in steam turbine output which is achieved in this way is more than 2.6%.

Description

Die Erfindung bezieht sich auf eine Gas- und Dampfturbinenanlage mit einem der Gasturbine abgasseitig nachgeschalteten Abhitzedampferzeuger, dessen Hochdruckvorwärmer in den Wasser-Dampf-Kreislauf der einen Niederdruckteil aufweisenden Dampfturbine geschaltet ist. Sie richtet sich weiter auf eine nach diesem Verfahren betriebene Anlage.
Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt mittels einer Anzahl von Heizflächen, die in Form von Rohren oder Rohrbündeln in einem der Gasturbine abgasseitig nachgeschalteten Abhitzedampferzeuger angeordnet sind. Diese wiederum sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfaßt mehrere, z.B. zwei oder drei, Druckstufen, wobei jede Druckstufe einen Vorwärmer, einen Verdampfer und einen Überhitzer aufweist.
Um bei der Wärmeübertragung einen möglichst hohen Wirkungsgrad der Anlage zu erreichen, ist die Anordnung der Heizflächen innerhalb des Abhitzedampferzeugers an den Temperaturverlauf des Abgases angepaßt. Bei einem Dreidruck-Prozeß mit Zwischenüberhitzung, dem sogenannten Dreidruck-ZÖ-Prozeß, wird dabei bei vorgegebener Gasturbinenleistung eine besonders hohe Dampfturbinenleistung und damit ein besonders hoher Gesamtwirkungsgrad der Anlage erreicht. Eine nach dem Dreidruck-ZÜ-Prozeß arbeitende Gas- und Dampfturbinenanlage ist aus der EP 0 436 536 B1 bekannt. Aber auch bei dieser bekannten Anlage ist der Gesamtwirkungsgrad auf etwa 55% begrenzt.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Gas- und Dampfturbinenanlage sowie ein zu deren Betrieb geeignetes Verfahren derart weiterzubilden, daß durch eine weitere Steigerung der Nutzung des Wärmeinhalts im Abgas der Gasturbine eine Steigerung des Anlagenwirkungsgrades erzielt wird.
Bezüglich der Anlage wird diese Aufgabe gelöst durch einen außerhalb des Abhitzedampferzeugers angeordneten Wärmetauscher, dessen primärseitiger Eingang an den Ausgang und dessen primarseitiger Ausgang an den Eingang des Hochdruck-vorwärmers angeschlossen sind, und der sekundärseitig an eine in den Hochdruckteil der Dampfturbine mündende Überströmleitung geschaltet ist.
In zweckmäßiger Weiterbildung sind dem Wärmetauscher primärseitig eine Umwälzpumpe und ein Regelventil nachgeschaltet.
Zur Einstellung der Menge von dem Wärmetauscher primärseitig pro Zeiteinheit zugeführtem Speisewasser ist zweckmäßigerweise ein Reglerbaustein vorgesehen. Der Reglerbaustein dient zur Annäherung der Temperatur des über den Wärmetauscher zum Hochdruckvorwärmer zurückgeführten Speisewassers an die Temperatur des dem Hochdruckvorwärmer direkt zugeführten Speisewassers mit dem Ziel, daß die Temperaturen an der Mischstelle des Hochdruckvorwärmers mindestens annähernd gleich sind. Dazu ist mit dem Reglerbaustein ein erster Temperatursensor zur Erfassung der Temperatur des aus dem Wärmetauscher sekundärseitig abströmenden Speisewassers verbunden. Ein zweiter mit dem Reglerbaustein verbundener Temperatursensor dient zur Erfassung der Temperatur des dem Hochdruckvorwärmer zugeführten Speisewassers.
Eine besonders effektive Anpassung der Heizfläche des Hochdruckvorwärmers an den Temperaturverlauf des Abgases aus der Gasturbine innerhalb des Abhitzedampferzeugers wird dadurch erreicht, daß der Hochdruckvorwärmer zweistufig ausgebildet ist. Daher ist in einer weiteren vorteilhaften Ausgestaltung der Hochdruckvorwärmer ein einem ersten Hochdruckvorwärmer speisewasserseitig nachgeschalteter zweiter Hochdruckvorwärmer, der im Abhitzedampferzeuger abgasseitig vor dem ersten Hochdruckvorwärmer angeordnet ist.
Dieses Prinzip kann bei einm aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf dadurch weitergebildet werden, daß zusätzlich zu dem bei einem Dreidruck-ZÜ-Prozeß vorhandenen Zwischenüberhitzer ein mit diesem speisewasserseitig verbundener Mitteldruck-Überhitzer vorgesehen ist, der im Abhitzedampferzeuger abgasseitig vor dem Zwischenüberhitzer angeordnet ist. Ferner kann zur Weiterbildung dieses Prinzips ein im Abhitzedampferzeuger angeordneter Niederdruck-Überhitzer vorgesehen sein, der ausgangsseitig mit dem sekundärseitigen Eingang des Wärmetauschers verbunden ist.
Bezüglich des Verfahrens wird die genannte Aufgabe dadurch gelöst, daß der Dampfturbine zuströmender Niederdruckdampf durch indirekten Wärmetausch mit einem dem Hochdruckvorwärmer entnommenen Teilstrom vorgewärmten Speisewassers überhitzt wird.
Der abgekühlte Teilstrom wird dem vorzuwärmenden Speisewasser vorzugsweise am Eingang des Hochdruckvorwärmers wieder zugemischt, wobei eine Temperaturannäherung des Teilstroms an das vorzuwärmende Speisewasser durch Einstellen des Teilstroms erfolgt.
Bei einem aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf wird im Abhitzdampferzeuger überhitzter Niederdruckdampf weiter überhitzt, indem dieser dem durch indirekten Wärmetausch zu überhitzenden Niederdruckdampf zugemischt wird.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß einerseits durch die Überhitzung des Niederdruckdampfs durch indirekten Wärmetausch außerhalb des Abhitzedampferzeugers mit im Hochdruckvorwärmer vorgewärmtem Speisewasser Wärme aus dem Abgas der Gasturbine zur Überhitzung herangezogen werden kann, und daß andererseits aufgrund des indirekten Wärmetauschs ein zusätzlicher Freiheitsgrad gegenüber einem direkten Wärmetausch mit dem Abgas bereitgestellt wird. Durch diesen zusätzlichen Freiheitsgrad kann der Wärmetransfer besonders günstig an den jeweils betriebsbedingt vorliegenden Zustand des Niederdruckdampfes aus der Dampfturbine angepaßt werden. Dadurch ist eine besonders günstige Ausnutzung des Wärmeinhalts im Abgas aus der Gasturbine auch bei wechselnden Lastzuständen möglich. Zusätzlich zu der somit erreichbaren Wirkungsgradsteigerung der Gas- und Dampfturbinenanlage ermöglicht die Erfindung aber auch eine Steigerung der Generator-Klemmleistung der Dampfturbine.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine Gas- und Dampfturbinenanlage mit einem separaten Wärmetauscher zur Erhitzung von Niederdruckdampf.
Die Gas- und Dampfturbinenanlage gemäß der Figur umfaßt eine Gasturbine 2 und eine Dampfturbine 4 sowie einen vom heißen Abgas AG aus der Gasturbine 2 durchströmten Abhitzedampferzeuger 6. Die Dampfturbine 4 umfaßt einen Hochdruckteil 4a und einen Mitteldruckteil 4b sowie einen Niederdruckteil 4c. Der Abhitzedampferzeuger 6 dient zur Dampferzeugung, wobei dessen Heizflächen in einen Wasser-Dampf-Kreislauf 8 der Dampfturbine 4 geschaltet sind.
Dazu weist der Abhitzedampferzeuger 6 einen an eine Kondensatleitung 10 angeschlossenen Kondensatvorwärmer 12 auf, der eingangsseitig über eine Kondensatpumpe 14 mit einem der Dampfturbine 4 nachgeschalteten Kondensator 16 verbunden ist. Der Kondensatvorwärmer 12 ist ausgangsseitig über eine Umwälzpumpe 18 mit seinem Eingang verbunden. Er ist ausgangsseigig außerdem über eine Speiseleitung 20 mit einem Speisewasserbehälter 22 verbunden.
Der Speisewasserbehälter 22 ist ausgangsseitig über eine Speisewasserleitung 24, in die eine Pumpe 26 geschaltet ist, mit einer Niederdruck-Trommel 28 verbunden. An die Niederdruck-Trommel 28 ist über eine Umwälzpumpe 30 ein Verdampfer angeschlossen. Die Niederdruck-Trommel 28 ist dampfseitig mit einem Niederdruck-Überhitzer 34 verbunden, der über eine Dampfleitung 36 an eine Überströmleitung 38 von dem Mitteldruckteil 4b zum Niederdruckteil 4c der Dampfturbine 4 angeschlossen ist. Die Niederdruck-Trommel 28 und der Niederdruck-Verdampfer 32 bilden zusammen mit dem Niederdruck-Überhitzer 34 und dem Niederdruckteil 4c eine Niederdruckstufe des Wasser-Dampf-Kreislaufs 8.
Der Speisewasserbehälter 22 ist ausgangsseitig außerdem über eine Speisewasserleitung 40, in die eine Pumpe 42 geschaltet ist, mit einem ersten Hochdruckvorwärmer 44 verbunden, der über eine Verbindungsleitung 46 mit dem Eingang eines zweiten Hochdruckvorwärmers 48 verbunden ist. An die Verbindungsleitung 46 ist über eine Leitung 50 eine Mitteldruck-Trommel 52 angeschlossen, an die wiederum über eine Umwälzpumpe 54 ein Mitteldruck-Verdampfer 56 angeschlossen ist. Die Mitteldruck-Trommel 52 ist dampfseitig mit einem Mitteldruck-Überhitzer 56 verbunden, der ausgangsseitig mit dem Eingang eines Zwischenüberhitzers 58 verbunden ist. Der Zwischenüberhitzer 58 ist eingangsseitig an den Hochdruckteil 4a und ausgangsseitig an den Mitteldruckteil 4b der Dampfturbine 4 angeschlossen. Die Mitteldruck-Trommel 52 und der Mitteldruck-Verdampfer 56 sowie der Mitteldruck-Überhitzer 57 bilden zusammen mit dem Zwischenüberhitzer 58 und dem Mitteldruckteil 4b der Dampfturbine 4 eine Mitteldruckstufe des Wasser-Dampf-Kreislaufs 8.
Der zweite Hochdruckvorwärmer 48 ist ausgangsseitig über eine Verbindungsleitung 60 und ein Ventil 62 mit einer Hochdruck-Trommel 64 verbunden, an die über eine Umwälzpumpe 66 ein Hochdruckverdampfer 68 angeschlossen ist. Die Hochdruck-Trommel 64 ist dampfseitig über einen Hochdruck-Überhitzer 70 an den Hochdruckteil 4a der Dampfturbine 4 angeschlossen. Die Hochdruck-Vorwärmer 44, 48 und die Hochdruck-Trommel 64 sowie der Hochdruck-Verdampfer 68 und der Hochdruck-Überhitzer 70 bilden zusammen mit dem Hochdruckteil 4a der Dampfturbine 4 eine Hochdruckstufe des Wasser-Dampf-Kreislaufs 8.
In die Überströmleitung 38 zwischen dem Mitteldruckteil 4b und dem Niederdruckteil 4c der Dampfturbine 4 ist die Sekundärseite eines Wärmetauschers 72 geschaltet. Primärseitig ist der Wärmetauscher 72 eingangsseitig über eine Leitung 74 an die Leitung 60 angeschlossen und somit mit dem Ausgang des zweiten Hochdruck-Vorwärmers 48 verbunden. Der primärseitige Ausgang des Wärmetauschers 72 ist über eine Leitung 76, in die eine Pumpe 78 und ein Regelventil 80 geschaltet sind, mit dem Eingang des zweiten Hochdruck-Vorwärmers 48 verbunden. Dabei mündet die Leitung 76 an einer Mischstelle 82 in die die beiden Hochdruck-Vorwärmer 44 und 48 verbindende Leitung 46.
Beim Betrieb der Gas- und Dampfturbinenanlage wird dem Kondensatvorwärmer 12 über die Pumpe 14 und die Kondensatleitung 10 Kondensator K aus dem Kondensator 16 zugeführt. Dabei kann der Kondensat-Vorwärmer 12 ganz oder teilweise umführt werden. Das Kondensat K wird in dem Kondensat-Vorwärmer 12 aufgewärmt und dazu mindestens teilweise über die Umwälzpumpe 18 umgewälzt. Das aufgewärmte Kondensat K wird über die Leitung 20 in den Speisewasserbehälter 22 geführt, wobei dort in nicht näher dargestellter Art und Weise eine Aufwärmung des Speisewassers mittels Anzapfdampf aus der Dampfturbine 4 erfolgt. Das aufgewärmte Speisewasser S wird einerseits der Niederdruck-Trommel 28 und andererseits über den ersten Hochdruck-Vorwärmer 44 der Mitteldruck-Trommel 52 sowie über den zweiten Hochdruck-Vorwärmer 48 der Hochdruck-Trommel 64 zugeführt. Das der Niederdruckstufe zugeführte Speisewasser S wird im Niederdruck-Verdampfer 32 bei niedrigem Druck verdampft, wobei der in der Niederdruck-Trommel 28 abgetrennte Niederdruckdampf ND dem Niederdruck-Überhitzer 34 zugeführt wird. Der dort überhitzte Niederdruckdampf ND wird vor dem Wärmetauscher 72 in die Überströmleitung 38 geführt.
Ebenso wird das in die Mitteldruck-Trommel 52 geführte Speisewasser S im Mitteldruck-Verdampfer 56 verdampft. Der in der Mitteldruck-Trommel 52 abgetrennte, unter mittlerem Druck stehende Dampf wird über den Mitteldruck-Überhitzer 57 geführt und als überhitzter Mitteldruckdampf MD dem Mitteldruckteil 4b der Dampfturbine 4 zugeführt. Analog wird das im zweiten Hochdruck-Vorwärmer oder -Economizer 48 vorgewärmte Speisewasser S im Hochdruck-Verdampfer 68 unter hohem Druck verdampft, wobei der in der Hochdruck-Trommel 64 abgetrennte Hochdruckdampf HD im Hochdruck-Überhitzer 70 überhitzt und im überhitzten Zustand in den Hochdruckteil 4a der Dampfturbine 4 geführt wird. Der im Hochdruckteil 4a entspannte Dampf wird im Zwischenüberhitzer 58 erneut überhitzt und in überhitztem Zustand zusammen mit dem im Mitteldruck-Überhitzer 56 überhitzten Mitteldruckdampf MD dem Mitteldruckteil 4b der Dampfturbine 4 zugeführt.
Der im Mitteldruckteil 4b der Dampfturbine 4 entspannte, unter niedrigem Druck stehende Dampf wird über die Überströmleitung 38 geführt und im Wärmetauscher 72 durch indirekten Wärmetausch mit einem über die Leitung 74 geführten Teilstrom tS des im Hochdruck-Vorwärmers 48 vorgewärmten Speisewassers S überhitzt. Dabei wird dem aus dem Mitteldruckteil 4b abströmenden Dampf vor dem Wärmetauscher 72 der im Niederdruck-Überhitzer 34 überhitzte Niederdruckdampf ND zugemischt. Der im Wärmetauscher 72 überhitzte Niederdruckdampf ND wird im Niederdruckteil 4c der Dampfturbine 4 entspannt und zur Kondensation dem Kondensator 16 zugeführt.
Die Menge des dem Wärmetauscher 72 pro Zeiteinheit zugeführten Teilstroms tS des im zweiten Hochdruck-Vorwärmer 48 vorgewärmten Speisewassers S wird mittels des Regelventils 80 eingestellt. Dabei erfolgt die Einstellung derart, daß die Temperatur T1 des Teilstroms tS und die Temperatur T2 des vorzuwärmenden Speisewassers S an der Mischstelle 82 einander angenähert, vorzugsweise einander gleich, sind. Dazu ist ein Reglerbaustein 84 über eine Steuerleitung 85 mit dem Regelventil 80 verbunden. Der Reglerbaustein 84 ist dazu außerdem über eine Steuerleitung 86 mit einem ersten Temperatursensor 87 zur Erfassung der Temperatur T1 und über eine Steuerleitung 88 mit einem zweiten Temperatursensor. 89 zur Erfassung der Temperatur T2 verbunden.
Durch die Einschaltung des Wärmetauschers 72 in die Überströmleitung 38 zur Überhitzung des Niederdruckdampfes ND mittels des dem Hochdruck-Vorwärmer 48 entnommenen Teilstroms tS erhöht sich die an einem (nicht dargestellten) Dampfturbinen-Generator entnehmbare Klemmleistung um 1,3% bis 2%. Wird in einem Zwei-Druck-Prozeß die gesamte Niederdruck-Dampfmenge in entsprechender Weise überhitzt, so beträgt die damit erreichte Steigerung der Dampfturbinenleistung mehr als 2,6%.

Claims (10)

  1. Gas- und Dampfturbinenanlage mit einem der Gasturbine (2) abgasseitig nachgeschalteten Abhitzedampferzeuger (6), dessen Hochdruck-Vorwärmer (48) in den Wasser-Dampf-Kreislauf (8) der einen Niederdruckteil (4c) aufweisenden Dampfturbine (4) geschaltet ist, gekennzeichnet durch einen außerhalb des Abhitzedampferzeugers (6) angeordneten Wärmetauscher (72), dessen primärseitiger Eingang an den Ausgang und dessen primärseitiger Ausgang an den Eingang des Hochdruck-Vorwärmers (48) angeschlossen sind, und der sekundärseitig in eine in den Niederdruckteil (4c) der Dampfturbine (4) mündende Überströmleitung (38) geschaltet ist.
  2. Anlage nach Anspruch 1,
    dadurch gekennzeichnet, daß dem Wärmetauscher (72) primärseitig eine Umwälzpumpe (78) und ein Regelventil (80) nachgeschaltet sind.
  3. Anlage nach Anspruch 1 oder 2,
    gekennzeichnet durch einen Reglerbaustein (84) zur Einstellung der Menge von dem Wärmetauscher (72) primärseitig pro Zeiteinheit zugeführtem Speisewasser (tS).
  4. Anlage nach Anspruch 3,
    gekennzeichnet durch einen mit dem Reglerbaustein (84) verbundenen ersten Temperatursensor (87) zur Erfassung der Temperatur (T1) des aus dem Wärmetauscher (72) sekundärseitig abströmenden Speisewassers (tS) und durch einen mit dem Reglerbaustein (84) verbundenen zweiten Temperatursensor (89) zur Erfassung der Temperatur (T2) des dem Hochdruck-Vorwärmer (48) zugeführten Speisewassers (S).
  5. Anlage nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß der Hochdruck-Vorwärmer (48) ein einem ersten Hochdruck-Vorwärmer (44) speisewasserseitig nachgeschalteter zweiter Hochdruck-Vorwärmer ist, der im Abhitzedampferzeuger (6) abgasseitig vor dem ersten Hochdruck-Vorwärmer (44) angeordnet ist.
  6. Anlage nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen im Abhitzedampferzeuger (6) angeordneten Niederdruck-Überhitzer (34), der ausgangsseitig mit dem sekundärseitigen Eingang des Wärmetauschers (72) verbunden ist.
  7. Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage, bei dem im entspannten Arbeitsmittel (AG) aus der Gasturbine (2) enthaltene Wärme zur Erzeugung von Dampf für die in einen aus mindestens zwei Druckstufen aufgebauten Wasser-Dampf-Kreislauf (8) geschaltete Dampfturbine (4) genutzt wird, wobei im Wasser-Dampf-Kreislauf (8) strömendes Speisewasser (S) in einem im Abhitzedampferzeuger (6) angeordneten Hochdruck-Vorwärmer (48) vorgewärmt wird,
    dadurch gekennzeichnet, daß der Dampfturbine (4) zuströmender Niederdruckdampf (ND) durch indirekten Wärmetausch mit einem dem Hochdruck-Vorwärmer (48) entnommenen Teilstrom (tS) vorgewärmten Speisewassers (S) überhitzt wird.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, daß der abgekühlte Teilstrom (tS) dem vorzuwärmenden Speisewasser (S) zugemischt wird, wobei die Temperatur (T1) des Teilstroms (tS) und die Temperatur (T2) des vorzuwärmenden Speisewassers (S) einander angenähert werden.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, daß die Temperaturannäherung durch Einstellen des Teilstroms (tS) erfolgt.
  10. Verfahren nach einem der Ansprüche 7 bis 9, mit einem aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf (8),
    dadurch gekennzeichnet, daß im Abhitzedampferzeuger (6) überhitzter Niederdruckdampf (ND) dem durch indirekten Wärmetausch zu überhitzenden Niederdruckdampf (ND) zugemischt wird.
EP96922762A 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage Expired - Lifetime EP0840837B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19527537 1995-07-27
DE19527537A DE19527537C1 (de) 1995-07-27 1995-07-27 Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
PCT/DE1996/001244 WO1997005366A1 (de) 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Publications (2)

Publication Number Publication Date
EP0840837A1 EP0840837A1 (de) 1998-05-13
EP0840837B1 true EP0840837B1 (de) 2001-08-29

Family

ID=7767972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96922762A Expired - Lifetime EP0840837B1 (de) 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Country Status (11)

Country Link
US (1) US5992138A (de)
EP (1) EP0840837B1 (de)
JP (1) JPH11509901A (de)
KR (1) KR19990029030A (de)
CN (1) CN1093215C (de)
DE (2) DE19527537C1 (de)
ES (1) ES2163641T3 (de)
RU (1) RU2153080C2 (de)
TW (1) TW308627B (de)
UA (1) UA41457C2 (de)
WO (1) WO1997005366A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007323A1 (de) * 1995-08-18 1997-02-27 Siemens Aktiengesellschaft Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage
AT410695B (de) * 1996-03-08 2003-06-25 Beckmann Georg Dr Vorrichtung und verfahren zur energieerzeugung
JP4126108B2 (ja) * 1998-02-25 2008-07-30 三菱重工業株式会社 ガスタービンコンバインドプラント、その運転方法、及びガスタービン高温部蒸気冷却システム
DE19829088C2 (de) * 1998-06-30 2002-12-05 Man Turbomasch Ag Ghh Borsig Stromerzeugung in einem Verbundkraftwerk mit einer Gas- und einer Dampfturbine
US6796240B2 (en) * 2001-06-04 2004-09-28 Quad/Tech, Inc. Printing press register control using colorpatch targets
CN1948720B (zh) * 2006-10-31 2011-08-10 章祖文 永磁传动低温多级涡轮发电机
DE102008057490B4 (de) * 2008-11-14 2010-09-30 Siemens Aktiengesellschaft Kombiniertes Gas- und Dampfturbinenkraftwerk und Verfahren zum Betrieb
US9435534B2 (en) * 2009-08-31 2016-09-06 Holistic Engineering Inc Energy-recovery system for a production plant
RU2553477C2 (ru) * 2013-01-23 2015-06-20 Аркадий Ефимович Зарянкин Парогазовая установка
MX2018014295A (es) * 2016-06-17 2019-03-14 Siemens Ag Recirculacion de condensacion de agua.
FI20210068A1 (fi) * 2021-11-10 2023-05-11 Loeytty Ari Veli Olavi Menetelmä ja laitteisto energiatehokkuuden parantamiseksi nykyisissä kaasuturbiini kombilaitoksissa

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH432555A (de) * 1965-02-15 1967-03-31 Sulzer Ag Dampfkraftanlage mit Dampferzeuger und mit Gasturbine
DE3804605A1 (de) * 1988-02-12 1989-08-24 Siemens Ag Verfahren und anlage zur abhitzedampferzeugung
DE59000787D1 (de) * 1989-07-27 1993-03-04 Siemens Ag Abhitzedampferzeuger fuer ein gas- und dampfturbinenkraftwerk.
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
JPH04298604A (ja) * 1990-11-20 1992-10-22 General Electric Co <Ge> 複合サイクル動力装置及び蒸気供給方法
EP0515911B1 (de) * 1991-05-27 1996-03-13 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
DE59205446D1 (de) * 1991-07-17 1996-04-04 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
DE59203883D1 (de) * 1991-07-17 1995-11-09 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens.

Also Published As

Publication number Publication date
DE59607594D1 (de) 2001-10-04
EP0840837A1 (de) 1998-05-13
UA41457C2 (uk) 2001-09-17
US5992138A (en) 1999-11-30
JPH11509901A (ja) 1999-08-31
CN1177995A (zh) 1998-04-01
CN1093215C (zh) 2002-10-23
DE19527537C1 (de) 1996-09-26
TW308627B (de) 1997-06-21
ES2163641T3 (es) 2002-02-01
WO1997005366A1 (de) 1997-02-13
RU2153080C2 (ru) 2000-07-20
KR19990029030A (ko) 1999-04-15

Similar Documents

Publication Publication Date Title
DE19512466C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE69931831T2 (de) Kraftanlage mit kombiniertem Kreislauf
EP1009919B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage und gas- und dampfturbinenanlage zur durchführung des verfahrens
EP1023526B1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0898641B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
DE19645322B4 (de) Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
DE3213837C2 (de) Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen
EP0515911B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0826096B2 (de) Verfahren und anordnung zum entgasen eines kondensats
WO2000011325A1 (de) Gas- und dampfturbinenanlage
EP0595009B1 (de) Verfahren zum Betreiben einer Kraftwerksanlage sowie danach arbeitende Anlage
EP1303684B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie entsprechende anlage
EP0582898A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage
EP0981681B1 (de) Gas- und dampfturbinenanlage und verfahren zur kühlung des kühlmittels der gasturbine einer derartigen anlage
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE19944920B4 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
DE10004187C5 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
WO1997007323A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001122

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607594

Country of ref document: DE

Date of ref document: 20011004

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011117

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

EN Fr: translation not filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163641

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ERR

Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 244 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060707

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060711

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060727

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060809

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061012

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070710

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070710

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060707

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202