EP0840837A1 - Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage - Google Patents

Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Info

Publication number
EP0840837A1
EP0840837A1 EP96922762A EP96922762A EP0840837A1 EP 0840837 A1 EP0840837 A1 EP 0840837A1 EP 96922762 A EP96922762 A EP 96922762A EP 96922762 A EP96922762 A EP 96922762A EP 0840837 A1 EP0840837 A1 EP 0840837A1
Authority
EP
European Patent Office
Prior art keywords
pressure
steam
steam turbine
low
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96922762A
Other languages
English (en)
French (fr)
Other versions
EP0840837B1 (de
Inventor
Hermann Brückner
Georg Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0840837A1 publication Critical patent/EP0840837A1/de
Application granted granted Critical
Publication of EP0840837B1 publication Critical patent/EP0840837B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a gas and steam turbine system with a waste heat steam generator connected downstream of the gas turbine on the exhaust gas side, the high pressure preheater of which is connected to the water / steam circuit of the steam turbine having a low pressure part. It is also aimed at a plant operated according to this method.
  • the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place by means of a number of heating surfaces which are arranged in the form of tubes or tube bundles in a heat recovery steam generator downstream of the gas turbine. These in turn are connected to the steam turbine water-steam cycle.
  • the water-steam cycle comprises several, e.g. two or three pressure levels, each pressure level having a preheater, an evaporator and a superheater.
  • the arrangement of the heating surfaces within the heat recovery steam generator is adapted to the temperature profile of the exhaust gas.
  • the so-called three-pressure ZÜ process a particularly high steam turbine output and thus a particularly high overall efficiency of the plant are achieved with a given gas turbine output.
  • a gas and steam turbine plant operating according to the three-pressure ZÜ process is known from EP 0 436 536 B1. But even with this well-known system, the overall efficiency is limited to around 55%.
  • the invention is therefore based on the object of developing a gas and steam turbine system and a method suitable for its operation in such a way that an increase in the system efficiency is achieved by further increasing the use of the heat content in the exhaust gas of the gas turbine.
  • this object is achieved by a heat exchanger arranged outside the heat recovery steam generator, the primary-side inlet of which is connected to the outlet and the primary-side outlet of which is connected to the inlet of the high-pressure preheater, and the secondary-side is connected to an overflow conduit opening into the high-pressure part of the steam turbine device is switched.
  • a circulation pump and a control valve are connected on the primary side of the heat exchanger.
  • a controller module is expediently provided for setting the amount of feed water supplied per unit time on the primary side of the heat exchanger.
  • the controller module serves to approximate the temperature of the feed water returned via the heat exchanger to the high-pressure preheater to the temperature of the feed water fed directly to the high-pressure preheater, with the aim that the temperatures at the mixing point of the high-pressure preheater are at least approximately the same.
  • a first temperature sensor for detecting the temperature of the feed water flowing out of the heat exchanger on the secondary side is connected to the controller module.
  • a second temperature sensor connected to the controller module is used to measure the temperature of the high-pressure preheater
  • the high-pressure preheater is designed in two stages. Therefore, in a further advantageous embodiment the high-pressure preheater is a second high-pressure preheater downstream of a first high-pressure preheater, which is arranged in the waste heat steam generator in front of the first high-pressure preheater.
  • This principle can be developed further in a water-steam circuit constructed from three pressure stages in that, in addition to the intermediate superheater present in a three-pressure ZÜ process, a medium-pressure superheater is provided in the waste heat which is connected to the feed water side steam generator is arranged on the exhaust gas side before the reheater.
  • a low-pressure superheater arranged in the waste heat steam generator can be provided, which is connected on the outlet side to the secondary-side inlet of the heat exchanger.
  • the stated object is achieved in that the low-pressure steam flowing to the steam turbine is overheated by indirect heat exchange with a preheated feedwater taken from the high-pressure preheater.
  • the cooled sub-stream is preferably mixed again with the feed water to be preheated at the inlet of the high-pressure preheater, the sub-stream approaching the temperature of the feed water to be preheated by adjusting the sub-stream.
  • superheated low-pressure steam is further superheated in the waste heat steam generator by mixing it with the low-pressure steam to be overheated by indirect heat exchange.
  • the advantages achieved with the invention are in particular that, on the one hand, overheating of the low-pressure steam through indirect heat exchange outside the waste heat Steam generator with preheated in the high pressure preheater feed water heat from the exhaust gas of the gas turbine can be used for overheating, and that on the other hand an additional degree of freedom compared to a direct heat exchange with the exhaust gas is provided due to the indirect heat exchange.
  • the heat transfer can be adapted particularly favorably to the operating condition of the low-pressure steam from the steam turbine. This enables a particularly favorable utilization of the heat content in the exhaust gas from the gas turbine, even under changing load conditions.
  • the invention also enables the generator clamping power of the steam turbine to be increased.
  • FIG. 1 shows schematically a gas and steam turbine plant with a separate heat exchanger for heating low-pressure steam.
  • the gas and steam turbine system comprises a gas turbine 2 and a steam turbine 4 and a heat recovery steam generator 6 through which hot exhaust gas AG flows from the gas turbine 2.
  • the steam turbine 4 comprises a high-pressure part 4a and a medium-pressure part 4b and a low-pressure part 4c.
  • the waste heat steam generator 6 is used to generate steam, the heating surfaces of which are connected to a water-steam circuit 8 of the steam turbine 4.
  • the waste heat steam generator 6 has a condensate preheater 12 connected to a condensate line 10, which is connected on the input side via a condensate pump 14 to a condenser 16 connected downstream of the steam turbine 4.
  • the condensate preheater 12 is connected on the output side to its input via a circulation pump 18. It is also connected to a feed water container 22 via a feed line 20 via a feed line.
  • the feed water container 22 is connected on the output side to a low-pressure drum 28 via a feed water line 24, into which a pump 26 is connected.
  • An evaporator is connected to the low-pressure drum 28 via a circulation pump 30.
  • the low-pressure drum 28 is connected on the steam side to a low-pressure superheater 34, which is connected via a steam line 36 to an overflow line 38 from the medium-pressure part 4b to the low-pressure part 4c of the steam turbine 4.
  • the low-pressure drum 28 and the low-pressure evaporator 32 together with the low-pressure superheater 34 and the low-pressure part 4c form a low-pressure stage of the water-steam circuit 8.
  • the feed water tank 22 is also connected via a feed water line 40, into which a pump 42 is connected, to a first high-pressure preheater 44, which is connected via a connecting line 46 to the input of a second high-pressure preheater 48.
  • a medium-pressure drum 52 is connected to the connecting line 46 via a line 50, to which in turn a medium-pressure evaporator 56 is connected via a circulation pump 54.
  • the medium-pressure drum 52 is connected on the steam side to a medium-pressure superheater 56, which is connected on the output side to the input of an intermediate superheater 58.
  • the intermediate superheater 58 is connected on the input side to the high-pressure part 4a and on the output side to the medium-pressure part 4b of the steam turbine 4.
  • the medium-pressure drum 52 and the medium-pressure evaporator 56 and the medium-pressure superheater 57 together with the intermediate superheater 58 and the medium-pressure part 4b of the steam turbine 4 form a medium-pressure stage of the water-steam circuit
  • the second high-pressure preheater 48 is connected on the output side via a connecting line 60 and a valve 62 to a high-pressure drum 64, to which a high-pressure evaporator 68 is connected via a circulating pump 66.
  • the high pressure drum mel 64 is connected on the steam side via a high-pressure superheater 70 to the high-pressure part 4a of the steam turbine 4.
  • the secondary side of a heat exchanger 72 is connected in the overflow line 38 between the medium pressure part 4b and the low pressure part 4c of the steam turbine 4.
  • the heat exchanger 72 is connected on the input side to the line 60 via a line 74 and is thus connected to the output of the second high-pressure preheater 48.
  • the primary-side output of the heat exchanger 72 is connected to the input of the second high-pressure preheater 48 via a line 76, into which a pump 78 and a control valve 80 are connected.
  • the line 76 opens at a mixing point 82 into the line 46 connecting the two high-pressure preheaters 44 and 48.
  • the condensate preheater 12 When the gas and steam turbine system is operating, the condensate preheater 12 is supplied with condenser K from the condenser 16 via the pump 14 and the condensate line 10.
  • the condensate preheater 12 can be bypassed in whole or in part.
  • the condensate K is warmed up in the condensate preheater 12 and for this purpose at least partially circulated via the circulating pump 18.
  • the warmed-up condensate K is fed via line 20 into the feed water tank 22, "where the feed water is heated in a manner not shown by means of tapped steam from the steam turbine 4.
  • the warmed up feed water S becomes one side of the low-pressure drum 28 and on the other hand, to the medium-pressure drum 52 via the first high-pressure preheater 44 and to the high-pressure drum 64 via the second high-pressure preheater 48.
  • the feed water S fed to the low-pressure stage is ver ⁇ in the low-pressure evaporator 32 at low pressure vapors, the separated in the low pressure drum 28
  • Low pressure steam ND is fed to the low pressure superheater 34.
  • the low-pressure steam ND overheated there is conducted upstream of the heat exchanger 72 into the overflow line 38.
  • the feed water S fed into the medium-pressure drum 52 is evaporated in the medium-pressure evaporator 56.
  • the steam which is separated from the medium-pressure drum 52 and is under medium pressure is passed through the medium-pressure superheater 57 and is supplied as the superheated medium-pressure steam MD to the medium-pressure part 4b of the steam turbine 4.
  • the feed water S preheated in the second high-pressure preheater or economizer 48 is evaporated under high pressure in the high-pressure evaporator 68, the high-pressure steam HD separated in the high-pressure drum 64 overheating in the high-pressure superheater 70 and in the overheated state into the high-pressure part 4a the steam turbine
  • the steam released in the high-pressure part 4a is superheated again in the intermediate superheater 58 and, in the superheated state, is fed to the medium-pressure part 4b of the steam turbine 4 together with the medium-pressure steam MD superheated in the medium-pressure superheater 56.
  • the steam in the medium-pressure part 4b of the steam turbine 4, which is under low pressure, is passed over the overflow line 38 and in the heat exchanger 72 by indirect heat exchange with a partial flow tg of the feed water preheated in the high-pressure preheater 48 via the line 74
  • the steam flowing out of the medium-pressure part 4b is mixed with the low-pressure steam ND overheated in the low-pressure superheater 34 before the heat exchanger 72.
  • the low-pressure steam ND overheated in the heat exchanger 72 is expanded in the low-pressure part 4c of the steam turbine 4 and fed to the condenser 16 for condensation.
  • the amount of the partial flow tg of the feed water S which is supplied to the heat exchanger 72 per unit of time and is preheated in the second high-pressure preheater 48 is set by means of the control valve 80.
  • the setting is such that the The temperature T] of the partial flow tg and the temperature T2 of the feed water S to be preheated at the mixing point 82 are approximated to one another, preferably the same.
  • a controller module 84 is connected to the control valve 80 via a control line 85.
  • the controller module 84 is also connected via a control line 86 to a first temperature sensor 87 for detecting the temperature T 1 and via a control line 88 to a second temperature sensor 89 to detect the temperature T 2.
  • the clamping power which can be obtained from a steam turbine generator increases by 1.3% to 2 %. If the entire low-pressure steam quantity is correspondingly overheated in a two-pressure process, the increase in steam turbine ducting achieved is more than 2.6%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Commercial Cooking Devices (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Bei einer Gas- und Dampfturbinenanlage mit einem der Gasturbine (2) abgasseitig nachgeschalteten Abhitzedampferzeuger (6), dessen Hochdruckvorwärmer (48) in den Wasser-Dampf-Kreislauf (8) der einen Niederdruckteil (4c) aufweisenden Dampfturbine (4) geschaltet ist, ist zur Erzielung eines möglichst hohen Anlagenwirkungsgrades erfindungsgemäß ein außerhalb des Abhitzedampferzeugers (6) angeordneter Wärmetauscher (72) vorgesehen, dessen primärseitiger Eingang an den Ausgang und dessen primärseitiger Ausgang an den Eingang des Hochdruckvorwärmers (48) angeschlossen sind, und der sekundärseitig in eine in den Niederdruckteil (4c) der Dampfturbine (4) mündende Überströmleitung (38) geschaltet ist. Bei einem entsprechenden Verfahren zum Betreiben einer derartigen Anlage wird der Dampfturbine (4) zuströmender Niederdruckdampf (ND) durch indirekten Wärmetausch mit einem im Hochdruckvorwärmer (48) entnommenen Teilstrom (tS) vorgewärmten Speisewassers (S) überhitzt.

Description

Beschreibung
Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
Die Erfindung bezieht sich auf eine Gas- und Dampfturbinenan¬ lage mit einem der Gasturbine abgasseitig nachgeschalteten Abhitzedampferzeuger, dessen Hochdruckvorwärmer in den Was¬ ser-Dampf-Kreislauf der einen Niederdruckteil aufweisenden Dampfturbine geschaltet ist. Sie richtet sich weiter auf eine nach diesem Verfahren betriebene Anlage.
Bei einer Gas- und Dampfturbinenanlage wird die im entspann¬ ten Arbeitsmittel aus der Gasturbine enthaltene Wärme zur Er- zeugung von Dampf für die Dampfturbine genutzt. Die Wärme¬ übertragung erfolgt mittels einer Anzahl von Heizflächen, die in Form von Rohren oder Rohrbündeln in einem der Gasturbine abgasseitig nachgeschalteten Abhitzedampferzeuger angeordnet sind. Diese wiederum sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfaßt mehrere, z.B. zwei oder drei, Druckstufen, wobei jede Druck¬ stufe einen Vorwärmer, einen Verdampfer und einen Überhitzer aufweist.
Um bei der Wärmeübertragung einen möglichst hohen Wirkungs¬ grad der Anlage zu erreichen, ist die Anordnung der Heizflä¬ chen innerhalb des Abhitzedampferzeugers an den Temperatur¬ verlauf des Abgases angepaßt. Bei einem Dreidruck-Prozeß mit Zwischenüberhitzung, dem sogenannten Dreidruck-ZÜ-Prozeß, wird dabei bei vorgegebener Gasturbinenleistung eine beson¬ ders hohe Dampfturbinenleistung und damit ein besonders hoher Gesamtwirkungsgrad der Anlage erreicht. Eine nach dem Drei¬ druck-ZÜ-Prozeß arbeitende Gas- und Dampfturbinenanlage ist aus der EP 0 436 536 Bl bekannt. Aber auch bei dieser bekann- ten Anlage ist der Gesamtwirkungsgrad auf etwa 55% begrenzt. Der Erfindung liegt daher die Aufgabe zugrunde, eine Gas- und Dampfturbinenanlage sowie ein zu deren Betrieb geeignetes Verfahren derart weiterzubilden, daß durch eine weitere Stei¬ gerung der Nutzung des Wärmeinhalts im Abgas der Gasturbine eine Steigerung des Anlagenwirkungsgrades erzielt wird.
Bezüglich der Anlage wird dieεe Aufgabe gelöst durch einen außerhalb des Abhitzedampferzeugers angeordneten Wärme¬ tauscher, dessen primärseitiger Eingang an den Ausgang und dessen primärseitiger Ausgang an den Eingang des Hochdruck¬ vorwärmers angeschlossen sind, und der sekundärseitig an eine in den Hochdruckteil der Dampfturbine mündende Überströmlei¬ tung geschaltet ist.
In zweckmäßiger Weiterbildung sind dem Wärmetauscher primar¬ seitig eine Umwälzpumpe und ein Regelventil nachgeschaltet.
Zur Einstellung der Menge von dem Wärmetauscher primarseitig pro Zeiteinheit zugeführtem Speisewasser ist zweckmäßiger- weise ein Reglerbaustein vorgesehen. Der Reglerbaustein dient zur Annäherung der Temperatur des über den Wärmetauscher zum Hochdruckvorwärmer zurückgeführten Speisewassers an die Tem¬ peratur des dem Hochdruckvorwärmer direkt zugeführten Speise¬ wassers mit dem Ziel, daß die Temperaturen an der Mischstelle des Hochdruckvorwärmers mindestens annähernd gleich sind. Da¬ zu ist mit dem Reglerbaustein ein erster Temperatursensor zur Erfassung der Temperatur des aus dem Wärmetauscher sekundär¬ seitig abströmenden Speisewassers verbunden. Ein zweiter mit dem Reglerbaustein verbundener Temperatursensor dient zur Er- fassung der Temperatur des dem Hochdruckvorwärmer zugeführten
Speisewassers.
Eine besonders effektive Anpassung der Heizfläche des Hoch¬ druckvorwärmers an den Temperaturverlauf des Abgases aus der Gasturbine innerhalb des Abhitzedampferzeugers wird dadurch erreicht, daß der Hochdruckvorwärmer zweistufig ausgebildet ist. Daher ist in einer weiteren vorteilhaften Ausgestaltung der Hochdruckvorwärmer ein einem ersten Hochdruckvorwärmer speisewasserseitig nachgeschalteter zweiter Hochdruckvorwär¬ mer, der im Abhitzedampferzeuger abgasseitig vor dem ersten Hochdruckvorwärmer angeordnet ist.
Dieses Prinzip kann bei einm aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf dadurch weitergebildet werden, daß zu¬ sätzlich zu dem bei einem Dreidruck-ZÜ-Prozeß vorhandenen Zwischenüberhitzer ein mit diesem speisewasserseitig verbun- dener Mitteldruck-Überhitzer vorgesehen ist, der im Abhitze¬ dampferzeuger abgasseitig vor dem Zwischenüberhitzer angeord¬ net ist. Ferner kann zur Weiterbildung dieses Prinzips ein im Abhitzedampferzeuger angeordneter Niederdruck-Überhitzer vor¬ gesehen sein, der ausgangsseitig mit dem sekundarseitigen Eingang des Wärmetauschers verbunden ist.
Bezüglich des Verfahrens wird die genannte Aufgabe dadurch gelöst, daß der Dampfturbine zuströmender Niederdruckdampf durch indirekten Wärmetausch mit einem dem Hochdruckvorwärmer entnommenen Teilstrom vorgewärmten Speisewassers überhitzt wird.
Der abgekühlte Teilstrom wird dem vorzuwärmenden Speisewasser vorzugsweise am Eingang des Hochdruckvorwärmers wieder zuge- mischt, wobei eine Temperaturannäherung des Teilstroms an das vorzuwärmende Speisewasser durch Einstellen des Teilstroms erfolgt.
Bei einem aus drei Druckstufen aufgebauten Wasser-Dampf- Kreislauf wird im Abhitzdampferzeuger überhitzter Nieder¬ druckdampf weiter überhitzt, indem dieser dem durch indirek¬ ten Wärmetausch zu überhitzenden Niederdruckdampf zugemischt wird.
Die mit der Erfindung erzielten Vorteile bestehen insbeson¬ dere darin, daß einerseits durch die Überhitzung des Nieder¬ druckdampfs durch indirekten Wärmetausch außerhalb des Abhit- zedampferzeugers mit im Hochdruckvorwärmer vorgewärmtem Spei¬ sewasser Wärme aus dem Abgas der Gasturbine zur Überhitzung herangezogen werden kann, und daß andererseits aufgrund des indirekten Wärmetauschs ein zusätzlicher Freiheitsgrad gegen- über einem direkten Wärmetausch mit dem Abgas bereitgestellt wird. Durch diesen zusätzlichen Freiheitsgrad kann der Wärme¬ transfer besonderε günstig an den jeweils betriebsbedingt vorliegenden Zustand des Niederdruckdampfes aus der Dampftur¬ bine angepaßt werden. Dadurch ist eine besonders günεtige Ausnutzung des Wärmeinhalts im Abgas aus der Gasturbine auch bei wechselnden Lastzuständen möglich. Zusätzlich zu der so¬ mit erreichbaren Wirkungsgradsteigerung der Gas- und Dampf¬ turbinenanlage ermöglicht die Erfindung aber auch eine Stei¬ gerung der Generator-Klemmleistung der Dampfturbine.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine Gas- und Dampfturbinenanlage mit einem separaten Wärme¬ tauscher zur Erhitzung von Niederdruckdampf.
Die Gas- und Dampfturbinenanlage gemäß der Figur umfaßt eine Gasturbine 2 und eine Dampfturbine 4 sowie einen vom heißen Abgas AG aus der Gasturbine 2 durchströmten Abhitzedampfer¬ zeuger 6. Die Dampfturbine 4 umfaßt einen Hochdruckteil 4a und einen Mitteldruckteil 4b sowie einen Niederdruckteil 4c. Der Abhitzedampferzeuger 6 dient zur Dampferzeugung, wobei dessen Heizflächen in einen Wasser-Dampf-Kreislauf 8 der Dampfturbine 4 geschaltet sind.
Dazu weist der Abhitzedampferzeuger 6 einen an eine Konden¬ satleitung 10 angeschloεsenen Kondensatvorwärmer 12 auf, der eingangsseitig über eine Kondensatpumpe 14 mit einem der Dampfturbine 4 nachgeschalteten Kondensator 16 verbunden ist. Der Kondensatvorwärmer 12 ist ausgangsseitig über eine Um- wälzpumpe 18 mit seinem Eingang verbunden. Er ist ausgangs- seigig außerdem über eine Speiεeleitung 20 mit einem Speise- waεserbehälter 22 verbunden. Der Speisewaεserbehälter 22 ist ausgangεseitig über eine Speisewasserleitung 24, in die eine Pumpe 26 geschaltet ist, mit einer Niederdruck-Trommel 28 verbunden. An die Nieder- druck-Trommel 28 ist über eine Umwälzpumpe 30 ein Verdampfer angeschlossen. Die Niederdruck-Trommel 28 ist dampfseitig mit einem Niederdruck-Überhitzer 34 verbunden, der über eine Dampfleitung 36 an eine Überströmleitung 38 von dem Mittel- druckteil 4b zum Niederdruckteil 4c der Dampfturbine 4 ange- εchloεsen ist. Die Niederdruck-Trommel 28 und der Nieder¬ druck-Verdampfer 32 bilden zusammen mit dem Niederdruck-Über¬ hitzer 34 und dem Niederdruckteil 4c eine Niederdruckεtufe des Wasser-Dampf-Kreislaufε 8.
Der Speisewaεserbehälter 22 ist ausgangsseitig außerdem über eine Speisewasserleitung 40, in die eine Pumpe 42 geschaltet iεt, mit einem ersten Hochdruckvorwärmer 44 verbunden, der über eine Verbindungsleitung 46 mit dem Eingang eines zweiten Hochdruckvorwärmers 48 verbunden ist. An die Verbindungslei- tung 46 iεt über eine Leitung 50 eine Mitteldruck-Trommel 52 angeεchloεsen, an die wiederum über eine Umwälzpumpe 54 ein Mitteldruck-Verdampfer 56 angeschlossen ist. Die Mitteldruck- Trommel 52 ist dampfseitig mit einem Mitteldruck-Überhitzer 56 verbunden, der ausgangsεeitig mit dem Eingang eines Zwi- schenüberhitzerε 58 verbunden iεt. Der Zwiεchenüberhitzer 58 iεt eingangsseitig an den Hochdruckteil 4a und ausgangsεeitig an den Mitteldruckteil 4b der Dampfturbine 4 angeschlosεen. Die Mitteldruck-Trommel 52 und der Mitteldruck-Verdampfer 56 sowie der Mitteldruck-Überhitzer 57 bilden zusammen mit dem Zwischenüberhitzer 58 und dem Mitteldruckteil 4b der Dampf¬ turbine 4 eine Mitteldruckstufe des Wasεer-Dampf-Kreiεlaufs
Der zweite Hochdruckvorwärmer 48 ist ausgangsεeitig über eine Verbindungεleitung 60 und ein Ventil 62 mit einer Hochdruck- Trommel 64 verbunden, an die über eine Umwälzpumpe 66 ein Hochdruckverdampfer 68 angeεchlossen ist. Die Hochdruck-Trom- mel 64 ist dampfseitig über einen Hochdruck-Überhitzer 70 an den Hochdruckteil 4a der Dampfturbine 4 angeschlossen. Die Hochdruck-Vorwärmer 44, 48 und die Hochdruck-Trommel 64 sowie der Hochdruck-Verdampfer 68 und der Hochdruck-Überhitzer 70 bilden zusammen mit dem Hochdruckteil 4a der Dampfturbine 4 eine Hochdruckstufe deε Wasεer-Dampf-Kreiεlaufε 8.
In die Überströmleitung 38 zwischen dem Mitteldruckteil 4b und dem Niederdruckteil 4c der Dampfturbine 4 ist die Sekun- därεeite eineε Wärmetauεchers 72 geschaltet. Primarseitig ist der Wärmetauscher 72 eingangsseitig über eine Leitung 74 an die Leitung 60 angeschlossen und somit mit dem Ausgang deε zweiten Hochdruck-Vorwärmers 48 verbunden. Der primärseitige Ausgang des Wärmetauεchers 72 ist über eine Leitung 76, in die eine Pumpe 78 und ein Regelventil 80 geschaltet εind, mit dem Eingang deε zweiten Hochdruck-Vorwärmerε 48 verbunden. Dabei mündet die Leitung 76 an einer Mischstelle 82 in die die beiden Hochdruck-Vorwärmer 44 und 48 verbindende Leitung 46.
Beim Betrieb der Gas- und Dampfturbinenanlage wird dem Kon¬ densatvorwärmer 12 über die Pumpe 14 und die Kondensatleitung 10 Kondensator K aus dem Kondensator 16 zugeführt. Dabei kann der Kondensat-Vorwärmer 12 ganz oder teilweise umführt wer- den. Das Kondensat K wird in dem Kondensat-Vorwärmer 12 auf¬ gewärmt und dazu mindestens teilweise über die Umwälzpumpe 18 umgewälzt. Das aufgewärmte Kondensat K wird über die Leitung 20 in den Speisewasεerbehälter 22 geführt," wobei dort in nicht näher dargestellter Art und Weise eine Aufwärmung deε Speiεewaεsers mittels Anzapfdampf aus der Dampfturbine 4 er¬ folgt. Das aufgewärmte Speisewasεer S wird einerεeitε der Niederdruck-Trommel 28 und andererseitε über den erεten Hoch¬ druck-Vorwärmer 44 der Mitteldruck-Trommel 52 εowie über den zweiten Hochdruck-Vorwärmer 48 der Hochdruck-Trommel 64 zuge- führt. Daε der Niederdruckstufe zugeführte Speisewaεser S wird im Niederdruck-Verdampfer 32 bei niedrigem Druck ver¬ dampft, wobei der in der Niederdruck-Trommel 28 abgetrennte Niederdruckdampf ND dem Niederdruck-Überhitzer 34 zugeführt wird. Der dort überhitzte Niederdruckdampf ND wird vor dem Wärmetauscher 72 in die Überströmleitung 38 geführt.
Ebenso wird das in die Mitteldruck-Trommel 52 geführte Spei¬ sewasser S im Mitteldruck-Verdampfer 56 verdampft. Der in der Mitteldruck-Trommel 52 abgetrennte, unter mittlerem Druck stehende Dampf wird über den Mitteldruck-Überhitzer 57 ge¬ führt und als überhitzter Mitteldruckdampf MD dem Mittel- druckteil 4b der Dampfturbine 4 zugeführt. Analog wird das im zweiten Hochdruck-Vorwärmer oder -Economizer 48 vorgewärmte Speisewasser S im Hochdruck-Verdampfer 68 unter hohem Druck verdampft, wobei der in der Hochdruck-Trommel 64 abgetrennte Hochdruckdampf HD im Hochdruck-Überhitzer 70 überhitzt und im überhitzten Zustand in den Hochdruckteil 4a der Dampfturbine
4 geführt wird. Der im Hochdruckteil 4a entspannte Dampf wird im Zwischenüberhitzer 58 erneut überhitzt und in überhitztem Zustand zusammen mit dem im Mitteldruck-Überhitzer 56 über¬ hitzten Mitteldruckdampf MD dem Mitteldruckteil 4b der Dampf- turbine 4 zugeführt.
Der im Mitteldruckteil 4b der Dampfturbine 4 entspannte, un¬ ter niedrigem Druck stehende Dampf wird über die Überström¬ leitung 38 geführt und im Wärmetauscher 72 durch indirekten Wärmetausch mit einem über die Leitung 74 geführten Teilstrom tg des im Hochdruck-Vorwärmers 48 vorgewärmten Speisewasserε
5 überhitzt. Dabei wird dem aus dem Mitteldruckteil 4b ab- εtrömenden Dampf vor dem Wärmetauεcher 72 der im Niederdruck- Überhitzer 34 überhitzte Niederdruckdampf ND zugemischt. Der im Wärmetauεcher 72 überhitzte Niederdruckdampf ND wird im Niederdruckteil 4c der Dampfturbine 4 entεpannt und zur Kon- denεation dem Kondenεator 16 zugeführt.
Die Menge deε dem Wärmetauscher 72 pro Zeiteinheit zugeführ- ten Teilstromε tg des im zweiten Hochdruck-Vorwärmer 48 vor¬ gewärmten Speisewassers S wird mittelε des Regelventils 80 eingestellt. Dabei erfolgt die Einstellung derart, daß die Temperatur T]_ des Teilstromε tg und die Temperatur T2 des vorzuwärmenden Speisewasεers S an der Mischstelle 82 einander angenähert, vorzugsweiεe einander gleich, εind. Dazu iεt ein Reglerbaustein 84 über eine Steuerleitung 85 mit dem Regel- ventil 80 verbunden. Der Reglerbauεtein 84 ist dazu außerdem über eine Steuerleitung 86 mit einem ersten Temperatursenεor 87 zur Erfassung der Temperatur T^ und über eine Steuerlei¬ tung 88 mit einem zweiten Temperatursenεor.89 zur Erfaεsung der Temperatur T2 verbunden.
Durch die Einschaltung deε Wärmetauεeherε 72 in die Über- strömleitung 38 zur Überhitzung des Niederdruckdampfeε ND mittels deε dem Hochdruck-Vorwärmer 48 entnommenen Teilεtroms tg erhöht sich die an einem (nicht dargestellten) Dampfturbi- nen-Generator entnehmbare Klemmleistung um 1,3% bis 2%. Wird in einem Zwei-Druck-Prozeß die geεamte Niederdruck-Dampfmenge in entεprechender Weiεe überhitzt, εo beträgt die damit er¬ reichte Steigerung der Dampfturbinenleiεtung mehr alε 2,6%.

Claims

Patentansprüche
1. Gaε- und Dampfturbinenanlage mit einem der Gaεturbine (2) abgaεεeitig nachgeεchalteten Abhitzedampferzeuger (6) , dessen Hochdruck-Vorwärmer (48) in den Wasser-Dampf-Kreislauf (8) der einen Niederdruckteil (4c) aufweisenden Dampfturbine (4) geschaltet iεt, g e k e n n z e i c h n e t d u r c h einen außerhalb des Abhitzedampferzeugers (6) angeordneten Wärmetauεcher (72), dessen primärseitiger Eingang an den Aus- gang und desεen primärseitiger Ausgang an den Eingang des
Hochdruck-Vorwärmers (48) angeschlossen sind, und der sekun- därseitig in eine in den Niederdruckteil (4c) der Dampftur¬ bine (4) mündende Überströmleitung (38) geschaltet ist.
2. Anlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß dem Wär¬ metauscher (72) primärεeitig eine Umwälzpumpe (78) und ein Regelventil (80) nachgeschaltet sind.
3. Anlage nach Anspruch 1 oder 2, g e k e n n z e i c h n e t d u r c h einen Reglerbau¬ stein (84) zur Einstellung der Menge von dem Wärmetauscher (72) primarseitig pro Zeiteinheit zugeführtem Speisewasεer
(tg).
4. Anlage nach Anspruch 3, g e k e n n z e i c h n e t d u r c h einen mit dem Reg¬ lerbaustein (84) verbundenen ersten Temperatursensor (87) zur Erfasεung der Temperatur (T]_) des aus dem Wärmetauscher (72) sekundärεeitig abεtrömenden Speiεewaεεerε (tg) und durch ei¬ nen mit dem Reglerbauεtein (84) verbundenen zweiten Tempera- turεenεor (89) zur Erfaεεung der Temperatur (T2) des dem Hochdruck-Vorwärmer (48) zugeführten Speiεewaεserε (S) .
5. Anlage nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Hoch¬ druck-Vorwärmer (48) ein einem ersten Hochdruck-Vorwärmer (44) speisewasserseitig nachgeschalteter zweiter Hochdruck- Vorwärmer ist, der im Abhitzedampferzeuger (6) abgasseitig vor dem ersten Hochdruck-Vorwärmer (44) angeordnet ist.
6. Anlage nach einem der Ansprüche 1 bis 5, g e k e n n z e i c h n e t d u r c h einen im Abhitze¬ dampferzeuger (6) angeordneten Niederdruck-Überhitzer (34) , der ausgangsεeitig mit dem sekundärεeitigen Eingang deε Wär- metauεcherε (72) verbunden iεt.
7. Verfahren zum Betreiben einer Gas- und Dampfturbinen¬ anlage, bei dem im entspannten Arbeitsmittel (AG) aus der Gasturbine (2) enthaltene Wärme zur Erzeugung von Dampf für die in einen auε mindeεtens zwei Druckεtufen aufgebauten Waε- ser-Dampf-Kreislauf (8) geschaltete Dampfturbine (4) genutzt wird, wobei im Wasεer-Dampf-Kreiεlauf (8) .strömendes Speise- waεεer (S) in einem im Abhitzedampferzeuger (6) angeordneten Hochdruck-Vorwärmer (48) vorgewärmt wird, d a d u r c h g e k e n n z e i c h n e t , daß der Dampfturbine (4) zuεtrömender Niederdruckdampf (ND) durch in¬ direkten Wärmetauεch mit einem dem Hochdruck-Vorwärmer (48) entnommenen Teilεtrom (tg) vorgewärmten Speiεewasserε (S) überhitzt wird.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß der abge¬ kühlte Teilstrom (tg) dem vorzuwärmenden Speisewaεεer (S) zu¬ gemischt wird, wobei die Temperatur (Tτ_) des Teilstroms (tg) und die Temperatur (T2) des vorzuwärmenden Speisewaεεerε (S) einander angenähert werden.
9. Verfahren nach Anεpruch 8, d a d u r c h g e k e n n z e i c h n e t , daß die Tem¬ peraturannäherung durch Einstellen des Teilstroms (tg) er- folgt.
10. Verfahren nach einem der Ansprüche 7 bis 9, mit einem aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf (8) , d a d u r c h g e k e n n z e i c h n e t , daß im Abhit¬ zedampferzeuger (6) überhitzter Niederdruckdampf (ND) dem durch indirekten Wärmetausch zu überhitzenden Niederdruck¬ dampf (ND) zugemischt wird.
EP96922762A 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage Expired - Lifetime EP0840837B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19527537A DE19527537C1 (de) 1995-07-27 1995-07-27 Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE19527537 1995-07-27
PCT/DE1996/001244 WO1997005366A1 (de) 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Publications (2)

Publication Number Publication Date
EP0840837A1 true EP0840837A1 (de) 1998-05-13
EP0840837B1 EP0840837B1 (de) 2001-08-29

Family

ID=7767972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96922762A Expired - Lifetime EP0840837B1 (de) 1995-07-27 1996-07-10 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Country Status (11)

Country Link
US (1) US5992138A (de)
EP (1) EP0840837B1 (de)
JP (1) JPH11509901A (de)
KR (1) KR19990029030A (de)
CN (1) CN1093215C (de)
DE (2) DE19527537C1 (de)
ES (1) ES2163641T3 (de)
RU (1) RU2153080C2 (de)
TW (1) TW308627B (de)
UA (1) UA41457C2 (de)
WO (1) WO1997005366A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007323A1 (de) * 1995-08-18 1997-02-27 Siemens Aktiengesellschaft Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage
AT410695B (de) * 1996-03-08 2003-06-25 Beckmann Georg Dr Vorrichtung und verfahren zur energieerzeugung
JP4126108B2 (ja) * 1998-02-25 2008-07-30 三菱重工業株式会社 ガスタービンコンバインドプラント、その運転方法、及びガスタービン高温部蒸気冷却システム
DE19829088C2 (de) * 1998-06-30 2002-12-05 Man Turbomasch Ag Ghh Borsig Stromerzeugung in einem Verbundkraftwerk mit einer Gas- und einer Dampfturbine
US6796240B2 (en) * 2001-06-04 2004-09-28 Quad/Tech, Inc. Printing press register control using colorpatch targets
CN1948720B (zh) * 2006-10-31 2011-08-10 章祖文 永磁传动低温多级涡轮发电机
DE102008057490B4 (de) * 2008-11-14 2010-09-30 Siemens Aktiengesellschaft Kombiniertes Gas- und Dampfturbinenkraftwerk und Verfahren zum Betrieb
US9435534B2 (en) * 2009-08-31 2016-09-06 Holistic Engineering Inc Energy-recovery system for a production plant
RU2553477C2 (ru) * 2013-01-23 2015-06-20 Аркадий Ефимович Зарянкин Парогазовая установка
CN109312635B (zh) * 2016-06-17 2021-02-05 西门子股份公司 冷凝物再循环

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH432555A (de) * 1965-02-15 1967-03-31 Sulzer Ag Dampfkraftanlage mit Dampferzeuger und mit Gasturbine
DE3804605A1 (de) * 1988-02-12 1989-08-24 Siemens Ag Verfahren und anlage zur abhitzedampferzeugung
EP0410111B1 (de) * 1989-07-27 1993-01-20 Siemens Aktiengesellschaft Abhitzedampferzeuger für ein Gas- und Dampfturbinenkraftwerk
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
JPH04298604A (ja) * 1990-11-20 1992-10-22 General Electric Co <Ge> 複合サイクル動力装置及び蒸気供給方法
EP0515911B1 (de) * 1991-05-27 1996-03-13 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
EP0523466B1 (de) * 1991-07-17 1995-10-04 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0523467B1 (de) * 1991-07-17 1996-02-28 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9705366A1 *

Also Published As

Publication number Publication date
ES2163641T3 (es) 2002-02-01
US5992138A (en) 1999-11-30
EP0840837B1 (de) 2001-08-29
KR19990029030A (ko) 1999-04-15
CN1177995A (zh) 1998-04-01
CN1093215C (zh) 2002-10-23
JPH11509901A (ja) 1999-08-31
UA41457C2 (uk) 2001-09-17
RU2153080C2 (ru) 2000-07-20
DE59607594D1 (de) 2001-10-04
TW308627B (de) 1997-06-21
WO1997005366A1 (de) 1997-02-13
DE19527537C1 (de) 1996-09-26

Similar Documents

Publication Publication Date Title
EP0819209B1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
EP0898641B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP1009919B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage und gas- und dampfturbinenanlage zur durchführung des verfahrens
EP1023526B1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
EP0993581B1 (de) Abhitzedampferzeuger
DE69931831T2 (de) Kraftanlage mit kombiniertem Kreislauf
DE3213837A1 (de) Abgasdampferzeuger mit entgaser
EP0515911B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
WO1995000747A1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende gud-anlage
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0826096B2 (de) Verfahren und anordnung zum entgasen eines kondensats
EP1320665B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie entsprechende anlage
EP0582898A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage
EP0595009B1 (de) Verfahren zum Betreiben einer Kraftwerksanlage sowie danach arbeitende Anlage
EP0981681B1 (de) Gas- und dampfturbinenanlage und verfahren zur kühlung des kühlmittels der gasturbine einer derartigen anlage
DE1426698B2 (de) Vorrichtung zum anfahren eines zwangsdurchlaufdampferzeugers
WO2012126727A1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE2654192B1 (de) Anlage zur Nutzung von Abwaerme eines Gasstromes
DE10004187C5 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
WO1997007323A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage
EP1022440B1 (de) Dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001122

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607594

Country of ref document: DE

Date of ref document: 20011004

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011117

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

EN Fr: translation not filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163641

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ERR

Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 244 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060707

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060711

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060727

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060809

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061012

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070710

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070710

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060707

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202