EP2454340A1 - Co-dotierte silicooxynitride - Google Patents

Co-dotierte silicooxynitride

Info

Publication number
EP2454340A1
EP2454340A1 EP10725994A EP10725994A EP2454340A1 EP 2454340 A1 EP2454340 A1 EP 2454340A1 EP 10725994 A EP10725994 A EP 10725994A EP 10725994 A EP10725994 A EP 10725994A EP 2454340 A1 EP2454340 A1 EP 2454340A1
Authority
EP
European Patent Office
Prior art keywords
phosphor
compound according
compound
thorium
osmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10725994A
Other languages
German (de)
English (en)
French (fr)
Inventor
Holger Winkler
Ralf Petry
Tim Vosgroene
Thomas Juestel
Dominik Uhlich
Arturas Katelnikovas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP2454340A1 publication Critical patent/EP2454340A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • C09K11/7791Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the invention relates to compounds which consist of thorium, ruthenium, osmium, fluorine and / or chlorine-co-doped 6-3-6-4-Erdalkali- silicooxynitriden, their preparation and their use as
  • Phosphors and LED conversion phosphors for warm white LEDs or so-called color-on-demand applications.
  • This concept is e.g. used to create certain corporate designs, e.g. for illuminated company logos, brands etc. To achieve high color spaces using LED TV backlighting are deep red
  • Phosphors having an emission maximum in the range from 620 nm to 660 nm are required.
  • Material systems known and suitable to the person skilled in the art are siliconitrides and aluminosiliconitrile phosphors (Xie, Sei. Technol. Adv. Mater. 2007, 8, 588-600):
  • 1-1-2-Nitrides such as the CaSiN 2 : Eu 2+ (Le Toquin, Cheetham, Chem.
  • 2-5-8-nitrides such as the (Ca 1 Sr 1 Ba) 2 Si 5 N 8 ) Eu 2+ (Li et al., Chem. Mater. 2005, 15, 4492). and aluminosiliconitrides such as the (Ca, Sr) AISiN 3 : Eu 2+ (K. Uheda et al., Electrochem., Solid State Lett., 2006, 9, H22).
  • Nitridic phosphors as mentioned above, have a number of
  • Oxygen is introduced into the phosphor.
  • Common manufacturing processes, such as carbothermic reduction and nitridation lead to
  • the object of the present invention is therefore the o.g. 6-3-6-4 Modify alkaline earth silicooxynitrides so that these compounds achieve even greater light efficiency.
  • the present invention thus relates to compounds of the 6-3- 6-4 alkaline earth silicooxynitride type with europium doping which additionally contain co-dopants from the series thorium, rubidium, osmium, fluorine and / or chlorine.
  • compositions M 6 Si 3 O 6 N 4 IEu 2+ where M is an alkaline earth metal
  • the x value is 0.003 to 0.2
  • the y value (which is the atomic concentration of the co-dopants Me) is 0.0001 to 0.2
  • the z value is 0.0005 to 0.03.
  • composition but without the co-dopants thorium, rubidium, osmium, fluorine and / or chlorine can be explained with the theories known to the expert. This is due to the higher
  • Diffusion barriers which must overcome the ions in the solid state reaction to occupy the desired lattice sites in the solid state structure can.
  • the heavy metals Th, Ru or Os are likely to cause an increase in the so-called heavy atom effect
  • the particle size of the compounds according to the invention is between 50 nm and 30 .mu.m, preferably between 1 .mu.m and 20 .mu.m, more preferably between 2 and 15 .mu.m. - A -
  • Another object of the present invention is a compound obtainable by mixing silicon nitride, europium and calcium and / or strontium and / or barium-containing educts with at least one thorium, osmium, ruthenium, fluoride and / or Chloride-containing co-dopant by solid-state diffusion methods and subsequent thermal aftertreatment, which optionally a flux from the series of alkali or alkaline earth halides or a
  • a further subject of the present invention is a process for the preparation of a compound of the 6-3-6-4 alkaline earth silicooxynitride type with europium doping with the following process steps:
  • an Eu-doped 6-3-6-4 alkaline earth silicooxynitride compound which is co-doped with thorium, rubidium, osmium, fluoride and / or chloride containing materials by mixing at least 4 starting materials selected from silicon nitride, europium, calcium, strontium, barium, thorium, rubidium, osmium, fluoride and / or chloride-containing materials,
  • the starting materials for the preparation of the compound consist of silicon nitride (Si 3 N 4 ), calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
  • silicon nitride Si 3 N 4
  • calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
  • other inorganic and / or organic substances such as cyanamides, dicyanamides, cyanides, oxalates, malonates, fumarates, carbonates, citrates,
  • the abovementioned thermal aftertreatment runs for several hours under reducing conditions, for. B with forming gas (eg 90/10), pure hydrogen and / or in an ammonia atmosphere with or without the above mentioned atmospheres.
  • forming gas eg 90/10
  • pure hydrogen e.g., pure hydrogen
  • ammonia atmosphere e.g., ammonia
  • the phosphors are transferred to a high-pressure sintering furnace and there at 40 to 70 bar and a temperature of
  • the phosphors are hot isostatic under
  • the phosphors are first washed with HCl and then with KOH, whereby amorphous SiO 2 is eliminated. This washing step advantageously increases the
  • Methods can be made of any external forms of the compounds or phosphors according to the invention, such as spherical particles, platelets and structured materials and
  • the shaped body is preferably a "phosphor body”.
  • Another object of the present invention is thus a
  • the shaped body on the, an LED chip opposite side of a structured eg.
  • the structured surface on the shaped article is formed by subsequent coating with a suitable material, which is already structured, or in a subsequent step by (photo) lithographic
  • a rough surface opposite side a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , ZrO 2 and / or Y 2 O 3 or combinations of these materials and / or of particles with the phosphor composition according to formula I with or without dopants from the series Th, Ru, Os, F and / or Cl carries.
  • a rough surface has a roughness of up to several 100 nm.
  • the coated surface has the advantage that total reflection can be reduced or prevented and the light can be better decoupled from the phosphor according to the invention (see WO2008 / 058619 (Merck) is fully incorporated by reference in the context of the present application)
  • the shaped bodies according to the invention have a refractive index-adapted layer on the surface facing away from the chip, which facilitates the decoupling of the primary radiation and / or the radiation emitted by the phosphor body.
  • the shaped bodies have a closed surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides and / or of the compounds according to formula I without the activator europium.
  • Luminescent decreases and a greater proportion of the light can penetrate into the phosphor and absorbed and converted there.
  • Phosphor must be encapsulated. This may be necessary to one
  • closed shell is a thermal decoupling of the actual phosphor from the heat that arises in the chip. This heat leads to a reduction in the fluorescent light output of the phosphor and may also affect the color of the fluorescent light. Finally, it is possible by such a coating to increase the efficiency of the phosphor by preventing lattice vibrations arising in the phosphor from propagating to the environment.
  • the shaped body is a porous one
  • Has surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or of the compounds according to formulas I with or without dopants from the series Eu, Th, Ru,
  • porous coatings offer the possibility of further reducing the refractive index of a single layer.
  • the preparation of such porous coatings can after three
  • the shaped body has a surface which carries functional groups which allow a chemical or physical connection to the environment, preferably consisting of epoxy or silicone resin.
  • functional groups may e.g. oxo group-attached esters or other derivatives which can form linkages with components based on epoxides and / or silicones.
  • Such surfaces have the advantage that a homogeneous mixing of the phosphors is made possible in the binder. Furthermore, this can be the
  • Phosphor layer preferably consists of a mixture of silicone and homogeneous phosphor particles, and the silicone one
  • this phosphor layer is on
  • the thickness of the layer is not consistently constant.
  • platelet-shaped phosphors can be prepared by a natural or synthetically produced highly stable support or a substrate of, for example mica, SiO 2 , Al 2 O 3 , ZrO 2 , glass or TiO 2 platelets, which is a very has high aspect ratio, has an atomically smooth surface and an adjustable thickness, can be coated by precipitation reaction in aqueous dispersion or suspension with a phosphor layer.
  • the platelets may also consist of the phosphor material itself, or be composed of a material. If the plate itself only as a carrier for the
  • Phosphor coating is used, it must be made of a material that is transparent to the primary radiation of the LED, or the
  • the flake phosphors are dispersed in a resin (e.g., silicone or epoxy) and this dispersion is applied to the LED chip.
  • a resin e.g., silicone or epoxy
  • the platelet-shaped phosphors can be produced on a large scale in thicknesses of 50 nm up to about 20 ⁇ m, preferably between 150 nm and 5 ⁇ m.
  • the diameter is from 50 nm to 20 microns. It usually has an aspect ratio (ratio of diameter to particle thickness) of 1: 1 to 400: 1, and in particular 3: 1 to 100: 1.
  • the platelet extent (length x width) depends on the arrangement. Platelets are also suitable as scattering centers within the conversion layer, especially if they have particularly small dimensions.
  • the LED chip surface facing the platelet-shaped phosphor according to the invention can be provided with a coating which anti-reflective with respect to the emitted from the LED chip Primary radiation acts. This leads to a reduction in the backscattering of the primary radiation, as a result of which it can be better coupled into the phosphor body according to the invention.
  • the production of the shaped bodies according to the invention in the form of ceramic bodies takes place analogously to the process described in WO 2008/017353 (Merck), which is incorporated by reference in its entirety into the context of the present application.
  • the phosphor is prepared by mixing the corresponding reactants and dopants, then isostatically pressed and applied in the form of a homogeneous thin and non-porous platelets directly on the surface of the chip or at a distance from the chip (remote phosphor concept).
  • the particular arrangement depends i.a. from the architecture of the LED devices, wherein the skilled person is capable of the advantageous
  • Phosphor bodies can e.g. be produced industrially as platelets in thicknesses of a few 100 nm up to about 500 .mu.m.
  • Platelet expansion depends on the arrangement.
  • the size of the wafer according to the chip size (from about 100 .mu.m * 100 microns to several mm 2 ) with a certain excess of about 10% - 30% of the chip surface with a suitable chip arrangement (eg Flip Chip arrangement) or accordingly to choose. If the phosphor plate is placed over a finished LED, the emerging cone of light is completely covered by the plate.
  • the side surfaces of the ceramic phosphor body can with a
  • Light or precious metal preferably aluminum or silver are mirrored.
  • the mirroring causes no light to escape laterally from the
  • ceramic phosphor body takes place in a process step after the isostatic pressing to bars or plates, which may be done before the mirroring a tailor of the rods or plates in the required size.
  • the side surfaces are for this purpose e.g. wetted with a solution of silver nitrate and glucose and then exposed at elevated temperature to an ammonia atmosphere.
  • a silver coating on the side surfaces e.g. a silver coating on the side surfaces.
  • the ceramic phosphor body may, if necessary, with a
  • Water-gas solution can be fixed on the substrate of an LED chip.
  • the ceramic has
  • Phosphor body has a patterned (e.g., pyramidal) surface on the side opposite an LED chip. Thus, as much light as possible can be coupled out of the phosphor body.
  • the pressing tool has a structured pressing plate and thereby embosses a structure in the surface.
  • Another object of the present invention is a process for the preparation of a shaped body, preferably phosphor body, with the following process steps:
  • the excitability of the phosphors according to the invention also extend over a wide range, ranging from about 350 nm to 530 nm, preferably 430 nm to about 500 nm.
  • these phosphors are not only suitable for excitation by UV or blue emitting primary light sources such as LEDs or conventional discharge lamps (eg based on Hg), but also for light sources such as those which exploit the blue In 3+ line at 451 nm.
  • Another object of the present invention is a
  • Lighting unit with at least one primary light source whose emission maximum or maximum in the range 250 nm to 530 nm, preferably 350 nm to about 500 nm ranges. Particularly preferred is a range between 440 and 480 nm, wherein the primary radiation is partially or completely converted by the compounds or phosphors according to the invention into longer-wave radiation.
  • this lighting unit emits white or emits light with a certain color point (color-on-demand principle).
  • Preferred embodiments of the lighting units according to the invention are shown in FIGS. 1 to 7. In a preferred embodiment of the invention
  • Lighting unit is the light source to a
  • the light source is a
  • the light source is a source which
  • Electroluminescence and / or photoluminescence shows.
  • the light source may also be a plasma or discharge source.
  • the phosphors according to the invention can either be dispersed in a resin (for example epoxy or silicone resin) or suitable Depending on the application, size ratios may be arranged directly on the primary light source or may be arranged remotely, depending on the application (the latter arrangement also includes the "remote phosphor technology”.)
  • the advantages of the "remote phosphor technology” are known to the person skilled in the art and are, for example, the following Publication: Japanese
  • the optical coupling of the illumination unit between the phosphor and the primary light source is realized by a light-conducting arrangement.
  • the primary light source is installed at a central location and this by means of light-conducting devices, such as
  • the lighting requirements adapted lights can only consist of one or
  • different phosphors which may be arranged to form a luminescent screen, and a light guide, which is connected to the primary light source
  • Another object of the present invention is the use of the compounds of the invention and shaped articles as a phosphor or phosphor body.
  • Another object of the present invention is the use of the compounds of the invention for the partial or complete conversion of the blue or in the near UV emission of a
  • Emitting diode Further preferred is the use of the invention
  • BaTiP 2 O 7 (Ba 1 Ti) 2 P 2 O 7 Ti, Ba 3 WO 6 : U, BaY 2 F 8 Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 Oi 2 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 : Eu 2+ , CaAl 2 O 4 : Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 Tb 3+ , Ca 3 Al 2 Si 3 O 12 Oe 3+ ,
  • Cao. 5 Ba 0 5 Al 12 O 19 Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4) 3 CI: Eu 2+ , CaBr 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ , Mn 2+ in SiO 2 , CaF 2 : Ce 3+ ,
  • CaF 2 Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaF 2 : U,
  • CaGa 2 O 4 Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ ,
  • CaGa 2 S 4 Mn 2+ , CaGa 2 S 4 Pb 2+ , CaGeO 3 : Mn 2+ , Cal 2 : Eu 2+ in SiO 2 , Cal 2 : Eu 2+ , Mn 2+ in SiO 2 , CaLaBO 4 Eu 3+ , CaLaB 3 O 7 : Ce 3+ , Mn 2+ ,
  • Ca 2 MgSi 2 O 7 Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 : Eu 3+ , CaO: Bi 3+ , CaOOd 2+ , CaO: Cu + , CaO: Eu 3+ , CaO: Eu 3 + , Na + , CaO: Mn 2+ , CaOPb 2+ , CaO: Sb 3+ , CaO: Sm 3+ , CaOTb 3+ , CaOTI, CaO: Zn 2+ , Ca 2 P 2 O 7 Oe 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2+ , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , ⁇ -C
  • Ca s (PO 4 ) 3 F Sb 3+
  • Ca s (PO 4 ) 3 F Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , ⁇ -Ca 3 (PO 4 ) 2 Pb 2 + , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 2 P 2 O 7 : Sn, Mn, ⁇ -Ca 3 (PO 4 ) 2 : Tr, CaS: Bi 3+ , CaS: Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS
  • CaSiO 3 Mn 2+ , Pb, CaSiO 3 Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 Ti 4+ ,
  • CaSr 2 (PO 4 ) 2 Bi 3+ , ⁇ - (Ca, Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0 . 9 Alo.iO 3 : Bi 3+ ,
  • CaTiO 3 Eu 3+ , CaTiO 3 Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 Pb 2+ , CaWO 4 : W, Ca 3 WO 6 : U, CaYAIO 4 : Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 : Eu 3+ , CaYB 0 . 8 O 3 .
  • CdS ln, CdSMn, CdS: In, Te, CdSTe, CdWO 4 , CsF, CsI, CsLNa + , CsITI, (ErCl 3 ) o . 2 5 (BaCl 2 ) o.75, GaN: Zn, Gd 3 Ga 5 O 12 Or 3+ , Gd 3 Ga 5 O 12 : Cr, Ce,
  • GdNbO 4 Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 SPr 1 Ce 1 F, Gd 2 O 2 STb 3+ , Gd 2 SiO 5 : Ce 3 + , KAl 11 O 17 TI + , KGa 11 O 17 Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4+ , LaAl 3 B 4 Oi 2 : Eu 3+ , LaAIB 2 O 6 : Eu 3+ , LaAIO 3 : Eu 3+ ,
  • LaAIO 3 Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ ,
  • (La, Ce, Tb) PO 4 Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBrTb 3+ , LaOBrTm 3+ , LaOCl: Bi 3+ , LaOChEu 3+ , LaOF: Eu 3+ , La 2 O 3 : Eu 3+ , La 2 O 3 Pr 3+ , La 2 O 2 STb 3+ , LaPO 4 : Ce 3+ , LaPO 4 : Eu 3+ , LaSiO 3 ChCe 3+ , LaSiO 3 ChCe 3+ Tb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAIF 4 : Mn 2+ , LiAl 5 O 8 Pe 3+ , LiAIO 2 Pe 3+ , LiAIO 2 : Mn 2+ ,
  • LiAl 5 O 8 Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ ,
  • LiCeSrBa 3 Si 4 O 14 Mn 2+ , LilnO 2 : Eu 3+ , LilnO 2 : Sm 3+ , LiLaO 2 : Eu 3+ ,
  • LuAIO 3 Ce 3+
  • (Lu, Gd) 2 Si0 5 Ce 3+
  • Lu 2 SiO 5 Ce 3+
  • Lu 2 Si 2 0 7 Ce 3+
  • LuTaO 4 Nb 5+ , Lu 1-x Y x AIO 3 : Ce 3+ , MgAl 2 O 4 : Mn 2+ , MgSrAl 10 O 17 : Ce,
  • MgB 2 O 4 Mn 2+
  • MgBa 2 (PO 4 ) 2 Sn 2+
  • MgBa 2 (PO 4 ) 2 U
  • MgBaP 2 O 7 Pu 2+
  • MgBaP 2 O 7 Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 Pu 2+ , MgBa (SO 4 ) 2 : Eu 2+ ,
  • Mg 2 Ca (SO 4 ) 3 Eu 2+ , Mn 2 , MgCeAl n O 19 Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ ,
  • Mg 4 (F) (Ge, Sn) O 6 Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 Mn 4+ , MgS: Eu 2+ , MgSiO 3 : Mn 2+ , Mg 2 SiO 4 : Mn 2+ , Mg 3 SiO 3 F 4 Ti 4+ , MgSO 4 Pu 2+ ,
  • SrB 4 O 7 Eu 2+ (F, CI, Br), SrB 4 O 7 Pb 2+ , SrB 4 O 7 Pb 2+ , Mn 2+ , SrB 8 Oi 3 : Sm 2+ , Sr x Ba y Cl z Al 2 O 4-zy2 : Mn 2+ , Ce 3+ , SrBaSiO 4 : Eu 2+ , Sr (Cl, Br, I) 2 : Eu 2+ in SiO 2 , SrCl 2 : Eu 2+ in SiO 2 , Sr 5 Cl (PO 4 ) 3 : Eu, Sr w F x B 4 O 6 5 : Eu 2+ , Sr w F x B y O z : Eu 2+ , Sm 2+ , SrF 2 : Eu 2+ , SrGai 2 O 19 : Mn 2+ , SrGa 2 S 4 Oe 3+ , SrGa 2 S 4 : Eu
  • Sr 5 (PO 4 ) 3 F Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 ) Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , Mn 2+ (Al), SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu ⁇ Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ ,
  • ZnS P 3 , Cr, ZnS) Pb 2+ , ZnS: Pb 2+ , Cr, ZnS) Pb 1 Cu 1 Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 ) Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 IMn 1 Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 Ti 4 + , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnSTe 1 Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl, ZnWO 4
  • Example 2 Preparation of 5 g Sr5.9 4 Euo, o6 Si3 ⁇ 5l 88N 4 Fo, 24 6.6736 g SrC 2 O 4 (Alfa Aesar, 95%), 0.0689 g Eu 2 O 3 (Treibacher, 99.99%), 0.0984 g SrF 2 (Aldrich, 99.998%) and 0.9159 g Ci-Si 3 N 4 (UBE, 99 %) are mixed thoroughly in an agate mortar with a dry N 2 glove box. The resulting mixture of raw materials is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Example 5 Preparation of 5 g Sr 5182 Os 01O eEu 01O eSi 3 O 6 N 4 6.6658 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0688 g of Eu 2 O 3 (Treibacher, 99.99%), 0.0869 g of OsO 2 (Alfa Aesar, Os 83% min) and 0.9148 g of Q-Si 3 N 4 ( UBE, 99%) are placed in a glove box filled with dry N 2 in one
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Example 7 High pressure sintering of the phosphors of Examples 1-6
  • Example 8 Hot isostatic pressing of the phosphors from the
  • Examples 1-6 In each case 5 g of the compounds from Examples 1-6 are transferred to an isostatic hot press. The hot press is placed under vacuum and the temperature is raised to 200 ° C. Subsequently, the temperature is increased at 5-10 K / min to 1400-1600 0 C, at the same time, the pressure is readjusted to values between 50 and 200 MPa, the holding time is 6-10 hours.
  • Example 9 Washing the phosphors of Examples 1-8
  • Tab. 1 Optical properties of Sr 5 94 Eu 0 O eSi S OeN 4 IEu (as a reference) and co-doped phosphors according to the invention
  • COB chip on board package of the type InGaN, which serves as light source (LED) for white light
  • LED light source
  • 1 semiconductor chip
  • 2.3 electrical connections
  • 4 conversion luminescent material
  • 7 board (board) .
  • Phosphor is dispersed in a binder lens, which simultaneously constitutes a secondary optical element and influences the light emission characteristic as a lens.
  • COB chip on board package of the type InGaN, which serves as a light source (LED) for white light
  • LED light source
  • Phosphor is distributed in a thin binder layer directly on the LED chip.
  • a secondary optical element consisting of a transparent material can be placed thereon.
  • Conversion luminescent material in cavity with reflector Conversion luminescent material in cavity with reflector.
  • the conversion phosphor is dispersed in a binder, the mixture filling the cavity.
  • the semiconductor chip is completely covered with the phosphor according to the invention.
  • the SMD design has the advantage that it has a small design and thus fits into conventional luminaires.
  • Bonding wire wherein the phosphor is applied as a thin layer dispersed in a binder.
  • a further component acting as a secondary optical element, such as a lens, can easily be applied to this layer.
  • Fig. 7 shows an example of a further application, as already known in principle from US Pat. No. 6,700,322.
  • the phosphor according to the invention is used together with an OLED.
  • the light source is an organic light-emitting diode 31, consisting of the actual organic film 30 and a transparent substrate 32.
  • the film 30 emits in particular blue primary light, produced for example by means of PVK: PBD: coumarin (PVK, abbreviation for poly (n-vinylcarbazole) PBD, abbreviation for 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1, 3,4-oxadiazole)).
  • the emission is partially converted into a yellow, secondarily emitted light by a cover layer, formed from a layer 33 of the phosphor according to the invention, so that a white emission is achieved overall by color mixing of the primary and secondary emitted light.
  • the OLED consists essentially of at least one layer of a light-emitting
  • Indium tin oxide as an anode and a highly reactive metal, such as Ba or Ca, as a cathode.
  • a highly reactive metal such as Ba or Ca
  • several layers are used between the electrodes, which either serve as a hole transport layer or serve as electron transport layers in the area of the "small molecules.”
  • Polyfluorene or polyspiro materials, for example, are used as emitting polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
EP10725994A 2009-07-11 2010-06-17 Co-dotierte silicooxynitride Withdrawn EP2454340A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009032711A DE102009032711A1 (de) 2009-07-11 2009-07-11 Co-dotierte Silicooxynitride
PCT/EP2010/003656 WO2011006565A1 (de) 2009-07-11 2010-06-17 Co-dotierte silicooxynitride

Publications (1)

Publication Number Publication Date
EP2454340A1 true EP2454340A1 (de) 2012-05-23

Family

ID=43033074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725994A Withdrawn EP2454340A1 (de) 2009-07-11 2010-06-17 Co-dotierte silicooxynitride

Country Status (9)

Country Link
US (1) US8721925B2 (ja)
EP (1) EP2454340A1 (ja)
JP (1) JP2012532819A (ja)
KR (1) KR20120052974A (ja)
CN (1) CN102471681B (ja)
DE (1) DE102009032711A1 (ja)
SG (1) SG177475A1 (ja)
TW (1) TW201127938A (ja)
WO (1) WO2011006565A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230225A (zh) * 2011-06-27 2011-11-02 中国科学院福建物质结构研究所 非线性光学晶体硒化镓锗钡及其生长方法与用途
TWI474967B (zh) * 2011-07-14 2015-03-01 Getters Spa 有關磷光體之改良
TWI448538B (zh) 2012-10-23 2014-08-11 Ind Tech Res Inst 螢光材料與紫外光發光裝置
DE102013105056A1 (de) * 2013-05-16 2014-11-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Leuchtstoffs, Leuchtstoff und optoelektronisches Bauelement
DE102013113382A1 (de) 2013-12-03 2015-06-03 Osram Gmbh Leuchtstoffmischung, Licht emittierendes Halbleiterbauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung
CN104371712A (zh) * 2014-11-03 2015-02-25 天津理工大学 一种钙基氮化物红色荧光粉的常压制备方法
JP6164258B2 (ja) * 2015-07-13 2017-07-19 日立化成株式会社 太陽電池モジュール
US10720554B2 (en) * 2017-09-20 2020-07-21 General Electric Company Green-emitting phosphors and devices thereof
WO2021211181A1 (en) 2020-04-14 2021-10-21 General Electric Company Ink compositions and films with narrow band emission phosphor materials
KR20230102468A (ko) * 2021-12-30 2023-07-07 주식회사 원익큐엔씨 오염입자 발생 저감을 극대화 하는 반도체 장비 불화대상물의 불화 가공 방법 및 이에 의해 불화 가공된 부품

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019884A (en) 1976-01-22 1977-04-26 Corning Glass Works Method for providing porous broad-band antireflective surface layers on chemically-durable borosilicate glasses
JP3242561B2 (ja) 1995-09-14 2001-12-25 メルク・ジヤパン株式会社 薄片状酸化アルミニウム、真珠光沢顔料及びその製造方法
US6700322B1 (en) 2000-01-27 2004-03-02 General Electric Company Light source with organic layer and photoluminescent layer
JP4440639B2 (ja) * 2001-09-21 2010-03-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐摩耗性SiO2反射防止層を製造するための新規な混成ゾル
JP2005105244A (ja) * 2003-01-24 2005-04-21 National Institute Of Advanced Industrial & Technology 半導体超微粒子及び蛍光体
JP2007513469A (ja) * 2003-11-11 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 水銀を含まないガスが充填された低圧蒸気放電ランプ
JP2005298721A (ja) * 2004-04-14 2005-10-27 Nichia Chem Ind Ltd 酸窒化物蛍光体及びそれを用いた発光装置
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US8017035B2 (en) * 2004-08-04 2011-09-13 Intematix Corporation Silicate-based yellow-green phosphors
JP4760082B2 (ja) * 2005-03-25 2011-08-31 日亜化学工業株式会社 発光装置、発光素子用蛍光体及びその製造方法
EP1889892B1 (en) * 2005-05-30 2010-11-03 Nemoto & Co., Ltd. Green light emitting phosphor
WO2007037059A1 (ja) * 2005-09-27 2007-04-05 Dowa Electronics Co., Ltd. 蛍光体およびその製造方法、並びに該蛍光体を用いた発光装置
EP2236580A3 (en) * 2005-09-30 2010-11-03 The Regents of the University of California Nitride and oxy-nitride cerium based phosphor materials for solid-state lighting applications
JP4733535B2 (ja) * 2006-02-24 2011-07-27 パナソニック株式会社 酸窒化物蛍光体、酸窒化物蛍光体の製造方法、半導体発光装置、発光装置、光源、照明装置、及び画像表示装置
JP5292723B2 (ja) * 2006-06-01 2013-09-18 三菱化学株式会社 蛍光体の製造方法
DE102006037730A1 (de) 2006-08-11 2008-02-14 Merck Patent Gmbh LED-Konversionsleuchtstoffe in Form von keramischen Körpern
US20080054793A1 (en) * 2006-08-30 2008-03-06 Everlight Electronics Co., Ltd. White light-emitting apparatus
DE102006054330A1 (de) 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffplättchen für LEDs aus strukturierten Folien
DE102006054331A1 (de) 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffkörper basierend auf plättchenförmigen Substraten
CN100415849C (zh) * 2007-02-06 2008-09-03 江苏苏博特新材料股份有限公司 稀土红色荧光粉及其制造方法
TW200925250A (en) * 2007-12-12 2009-06-16 wei-hong Luo Warm white light emitting semiconductor and yellow-orange silicate phosphor powder thereof
KR100902415B1 (ko) * 2007-12-17 2009-06-11 한국화학연구원 할로실리케이트계 형광체 및 이의 제조방법
KR101565988B1 (ko) * 2009-10-23 2015-11-05 삼성전자주식회사 적색형광체, 그 제조방법, 이를 이용한 발광소자 패키지, 조명장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011006565A1 *

Also Published As

Publication number Publication date
US8721925B2 (en) 2014-05-13
DE102009032711A1 (de) 2011-01-20
CN102471681B (zh) 2014-11-05
WO2011006565A1 (de) 2011-01-20
US20120140438A1 (en) 2012-06-07
KR20120052974A (ko) 2012-05-24
TW201127938A (en) 2011-08-16
JP2012532819A (ja) 2012-12-20
SG177475A1 (en) 2012-02-28
CN102471681A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
EP2401342B1 (de) Mit zirkonium und hafnium co-dotierte nitridosilikate
EP2616523B1 (de) Silicophosphat-leuchtstoffe
EP2129740B1 (de) Verfahren zur herstellung von leuchtstoffen basierend auf orthosilikaten für pcleds
EP2454340A1 (de) Co-dotierte silicooxynitride
EP2576725B1 (de) Leuchtstoffe
EP2324096B1 (de) Co-dotierte 1-1-2 nitride
EP2596078B1 (de) Aluminat-leuchtstoffe
WO2008107062A1 (de) Leuchtstoffe bestehend aus dotierten granaten für pcleds
WO2008058620A1 (de) Leuchtstoffkörper basierend auf plättchenförmigen substraten
WO2010043287A1 (de) Dotierte granat-leuchtstoffe mit rotverschiebung für pcleds
DE102006054330A1 (de) Leuchtstoffplättchen für LEDs aus strukturierten Folien
EP2914688A1 (de) Eu-aktivierte leuchtstoffe
EP2625247A1 (de) Mn-aktivierte leuchtstoffe
DE102009050542A1 (de) Sm-aktivierte Aluminat- und Borat-Leuchtstoffe
EP2683790A1 (de) Carbodiimid-leuchtstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UHLICH, DOMINIK

Inventor name: JUESTEL, THOMAS

Inventor name: KATELNIKOVAS, ARTURAS

Inventor name: PETRY, RALF

Inventor name: WINKLER, HOLGER

Inventor name: VOSGROENE, TIM

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105