EP2454340A1 - Co-doped silicooxynitrides - Google Patents

Co-doped silicooxynitrides

Info

Publication number
EP2454340A1
EP2454340A1 EP10725994A EP10725994A EP2454340A1 EP 2454340 A1 EP2454340 A1 EP 2454340A1 EP 10725994 A EP10725994 A EP 10725994A EP 10725994 A EP10725994 A EP 10725994A EP 2454340 A1 EP2454340 A1 EP 2454340A1
Authority
EP
European Patent Office
Prior art keywords
phosphor
compound according
compound
thorium
osmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10725994A
Other languages
German (de)
French (fr)
Inventor
Holger Winkler
Ralf Petry
Tim Vosgroene
Thomas Juestel
Dominik Uhlich
Arturas Katelnikovas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP2454340A1 publication Critical patent/EP2454340A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • C09K11/7791Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the invention relates to compounds which consist of thorium, ruthenium, osmium, fluorine and / or chlorine-co-doped 6-3-6-4-Erdalkali- silicooxynitriden, their preparation and their use as
  • Phosphors and LED conversion phosphors for warm white LEDs or so-called color-on-demand applications.
  • This concept is e.g. used to create certain corporate designs, e.g. for illuminated company logos, brands etc. To achieve high color spaces using LED TV backlighting are deep red
  • Phosphors having an emission maximum in the range from 620 nm to 660 nm are required.
  • Material systems known and suitable to the person skilled in the art are siliconitrides and aluminosiliconitrile phosphors (Xie, Sei. Technol. Adv. Mater. 2007, 8, 588-600):
  • 1-1-2-Nitrides such as the CaSiN 2 : Eu 2+ (Le Toquin, Cheetham, Chem.
  • 2-5-8-nitrides such as the (Ca 1 Sr 1 Ba) 2 Si 5 N 8 ) Eu 2+ (Li et al., Chem. Mater. 2005, 15, 4492). and aluminosiliconitrides such as the (Ca, Sr) AISiN 3 : Eu 2+ (K. Uheda et al., Electrochem., Solid State Lett., 2006, 9, H22).
  • Nitridic phosphors as mentioned above, have a number of
  • Oxygen is introduced into the phosphor.
  • Common manufacturing processes, such as carbothermic reduction and nitridation lead to
  • the object of the present invention is therefore the o.g. 6-3-6-4 Modify alkaline earth silicooxynitrides so that these compounds achieve even greater light efficiency.
  • the present invention thus relates to compounds of the 6-3- 6-4 alkaline earth silicooxynitride type with europium doping which additionally contain co-dopants from the series thorium, rubidium, osmium, fluorine and / or chlorine.
  • compositions M 6 Si 3 O 6 N 4 IEu 2+ where M is an alkaline earth metal
  • the x value is 0.003 to 0.2
  • the y value (which is the atomic concentration of the co-dopants Me) is 0.0001 to 0.2
  • the z value is 0.0005 to 0.03.
  • composition but without the co-dopants thorium, rubidium, osmium, fluorine and / or chlorine can be explained with the theories known to the expert. This is due to the higher
  • Diffusion barriers which must overcome the ions in the solid state reaction to occupy the desired lattice sites in the solid state structure can.
  • the heavy metals Th, Ru or Os are likely to cause an increase in the so-called heavy atom effect
  • the particle size of the compounds according to the invention is between 50 nm and 30 .mu.m, preferably between 1 .mu.m and 20 .mu.m, more preferably between 2 and 15 .mu.m. - A -
  • Another object of the present invention is a compound obtainable by mixing silicon nitride, europium and calcium and / or strontium and / or barium-containing educts with at least one thorium, osmium, ruthenium, fluoride and / or Chloride-containing co-dopant by solid-state diffusion methods and subsequent thermal aftertreatment, which optionally a flux from the series of alkali or alkaline earth halides or a
  • a further subject of the present invention is a process for the preparation of a compound of the 6-3-6-4 alkaline earth silicooxynitride type with europium doping with the following process steps:
  • an Eu-doped 6-3-6-4 alkaline earth silicooxynitride compound which is co-doped with thorium, rubidium, osmium, fluoride and / or chloride containing materials by mixing at least 4 starting materials selected from silicon nitride, europium, calcium, strontium, barium, thorium, rubidium, osmium, fluoride and / or chloride-containing materials,
  • the starting materials for the preparation of the compound consist of silicon nitride (Si 3 N 4 ), calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
  • silicon nitride Si 3 N 4
  • calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant.
  • other inorganic and / or organic substances such as cyanamides, dicyanamides, cyanides, oxalates, malonates, fumarates, carbonates, citrates,
  • the abovementioned thermal aftertreatment runs for several hours under reducing conditions, for. B with forming gas (eg 90/10), pure hydrogen and / or in an ammonia atmosphere with or without the above mentioned atmospheres.
  • forming gas eg 90/10
  • pure hydrogen e.g., pure hydrogen
  • ammonia atmosphere e.g., ammonia
  • the phosphors are transferred to a high-pressure sintering furnace and there at 40 to 70 bar and a temperature of
  • the phosphors are hot isostatic under
  • the phosphors are first washed with HCl and then with KOH, whereby amorphous SiO 2 is eliminated. This washing step advantageously increases the
  • Methods can be made of any external forms of the compounds or phosphors according to the invention, such as spherical particles, platelets and structured materials and
  • the shaped body is preferably a "phosphor body”.
  • Another object of the present invention is thus a
  • the shaped body on the, an LED chip opposite side of a structured eg.
  • the structured surface on the shaped article is formed by subsequent coating with a suitable material, which is already structured, or in a subsequent step by (photo) lithographic
  • a rough surface opposite side a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , ZrO 2 and / or Y 2 O 3 or combinations of these materials and / or of particles with the phosphor composition according to formula I with or without dopants from the series Th, Ru, Os, F and / or Cl carries.
  • a rough surface has a roughness of up to several 100 nm.
  • the coated surface has the advantage that total reflection can be reduced or prevented and the light can be better decoupled from the phosphor according to the invention (see WO2008 / 058619 (Merck) is fully incorporated by reference in the context of the present application)
  • the shaped bodies according to the invention have a refractive index-adapted layer on the surface facing away from the chip, which facilitates the decoupling of the primary radiation and / or the radiation emitted by the phosphor body.
  • the shaped bodies have a closed surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides and / or of the compounds according to formula I without the activator europium.
  • Luminescent decreases and a greater proportion of the light can penetrate into the phosphor and absorbed and converted there.
  • Phosphor must be encapsulated. This may be necessary to one
  • closed shell is a thermal decoupling of the actual phosphor from the heat that arises in the chip. This heat leads to a reduction in the fluorescent light output of the phosphor and may also affect the color of the fluorescent light. Finally, it is possible by such a coating to increase the efficiency of the phosphor by preventing lattice vibrations arising in the phosphor from propagating to the environment.
  • the shaped body is a porous one
  • Has surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or of the compounds according to formulas I with or without dopants from the series Eu, Th, Ru,
  • porous coatings offer the possibility of further reducing the refractive index of a single layer.
  • the preparation of such porous coatings can after three
  • the shaped body has a surface which carries functional groups which allow a chemical or physical connection to the environment, preferably consisting of epoxy or silicone resin.
  • functional groups may e.g. oxo group-attached esters or other derivatives which can form linkages with components based on epoxides and / or silicones.
  • Such surfaces have the advantage that a homogeneous mixing of the phosphors is made possible in the binder. Furthermore, this can be the
  • Phosphor layer preferably consists of a mixture of silicone and homogeneous phosphor particles, and the silicone one
  • this phosphor layer is on
  • the thickness of the layer is not consistently constant.
  • platelet-shaped phosphors can be prepared by a natural or synthetically produced highly stable support or a substrate of, for example mica, SiO 2 , Al 2 O 3 , ZrO 2 , glass or TiO 2 platelets, which is a very has high aspect ratio, has an atomically smooth surface and an adjustable thickness, can be coated by precipitation reaction in aqueous dispersion or suspension with a phosphor layer.
  • the platelets may also consist of the phosphor material itself, or be composed of a material. If the plate itself only as a carrier for the
  • Phosphor coating is used, it must be made of a material that is transparent to the primary radiation of the LED, or the
  • the flake phosphors are dispersed in a resin (e.g., silicone or epoxy) and this dispersion is applied to the LED chip.
  • a resin e.g., silicone or epoxy
  • the platelet-shaped phosphors can be produced on a large scale in thicknesses of 50 nm up to about 20 ⁇ m, preferably between 150 nm and 5 ⁇ m.
  • the diameter is from 50 nm to 20 microns. It usually has an aspect ratio (ratio of diameter to particle thickness) of 1: 1 to 400: 1, and in particular 3: 1 to 100: 1.
  • the platelet extent (length x width) depends on the arrangement. Platelets are also suitable as scattering centers within the conversion layer, especially if they have particularly small dimensions.
  • the LED chip surface facing the platelet-shaped phosphor according to the invention can be provided with a coating which anti-reflective with respect to the emitted from the LED chip Primary radiation acts. This leads to a reduction in the backscattering of the primary radiation, as a result of which it can be better coupled into the phosphor body according to the invention.
  • the production of the shaped bodies according to the invention in the form of ceramic bodies takes place analogously to the process described in WO 2008/017353 (Merck), which is incorporated by reference in its entirety into the context of the present application.
  • the phosphor is prepared by mixing the corresponding reactants and dopants, then isostatically pressed and applied in the form of a homogeneous thin and non-porous platelets directly on the surface of the chip or at a distance from the chip (remote phosphor concept).
  • the particular arrangement depends i.a. from the architecture of the LED devices, wherein the skilled person is capable of the advantageous
  • Phosphor bodies can e.g. be produced industrially as platelets in thicknesses of a few 100 nm up to about 500 .mu.m.
  • Platelet expansion depends on the arrangement.
  • the size of the wafer according to the chip size (from about 100 .mu.m * 100 microns to several mm 2 ) with a certain excess of about 10% - 30% of the chip surface with a suitable chip arrangement (eg Flip Chip arrangement) or accordingly to choose. If the phosphor plate is placed over a finished LED, the emerging cone of light is completely covered by the plate.
  • the side surfaces of the ceramic phosphor body can with a
  • Light or precious metal preferably aluminum or silver are mirrored.
  • the mirroring causes no light to escape laterally from the
  • ceramic phosphor body takes place in a process step after the isostatic pressing to bars or plates, which may be done before the mirroring a tailor of the rods or plates in the required size.
  • the side surfaces are for this purpose e.g. wetted with a solution of silver nitrate and glucose and then exposed at elevated temperature to an ammonia atmosphere.
  • a silver coating on the side surfaces e.g. a silver coating on the side surfaces.
  • the ceramic phosphor body may, if necessary, with a
  • Water-gas solution can be fixed on the substrate of an LED chip.
  • the ceramic has
  • Phosphor body has a patterned (e.g., pyramidal) surface on the side opposite an LED chip. Thus, as much light as possible can be coupled out of the phosphor body.
  • the pressing tool has a structured pressing plate and thereby embosses a structure in the surface.
  • Another object of the present invention is a process for the preparation of a shaped body, preferably phosphor body, with the following process steps:
  • the excitability of the phosphors according to the invention also extend over a wide range, ranging from about 350 nm to 530 nm, preferably 430 nm to about 500 nm.
  • these phosphors are not only suitable for excitation by UV or blue emitting primary light sources such as LEDs or conventional discharge lamps (eg based on Hg), but also for light sources such as those which exploit the blue In 3+ line at 451 nm.
  • Another object of the present invention is a
  • Lighting unit with at least one primary light source whose emission maximum or maximum in the range 250 nm to 530 nm, preferably 350 nm to about 500 nm ranges. Particularly preferred is a range between 440 and 480 nm, wherein the primary radiation is partially or completely converted by the compounds or phosphors according to the invention into longer-wave radiation.
  • this lighting unit emits white or emits light with a certain color point (color-on-demand principle).
  • Preferred embodiments of the lighting units according to the invention are shown in FIGS. 1 to 7. In a preferred embodiment of the invention
  • Lighting unit is the light source to a
  • the light source is a
  • the light source is a source which
  • Electroluminescence and / or photoluminescence shows.
  • the light source may also be a plasma or discharge source.
  • the phosphors according to the invention can either be dispersed in a resin (for example epoxy or silicone resin) or suitable Depending on the application, size ratios may be arranged directly on the primary light source or may be arranged remotely, depending on the application (the latter arrangement also includes the "remote phosphor technology”.)
  • the advantages of the "remote phosphor technology” are known to the person skilled in the art and are, for example, the following Publication: Japanese
  • the optical coupling of the illumination unit between the phosphor and the primary light source is realized by a light-conducting arrangement.
  • the primary light source is installed at a central location and this by means of light-conducting devices, such as
  • the lighting requirements adapted lights can only consist of one or
  • different phosphors which may be arranged to form a luminescent screen, and a light guide, which is connected to the primary light source
  • Another object of the present invention is the use of the compounds of the invention and shaped articles as a phosphor or phosphor body.
  • Another object of the present invention is the use of the compounds of the invention for the partial or complete conversion of the blue or in the near UV emission of a
  • Emitting diode Further preferred is the use of the invention
  • BaTiP 2 O 7 (Ba 1 Ti) 2 P 2 O 7 Ti, Ba 3 WO 6 : U, BaY 2 F 8 Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 Oi 2 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 : Eu 2+ , CaAl 2 O 4 : Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 Tb 3+ , Ca 3 Al 2 Si 3 O 12 Oe 3+ ,
  • Cao. 5 Ba 0 5 Al 12 O 19 Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4) 3 CI: Eu 2+ , CaBr 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ , Mn 2+ in SiO 2 , CaF 2 : Ce 3+ ,
  • CaF 2 Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaF 2 : U,
  • CaGa 2 O 4 Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ ,
  • CaGa 2 S 4 Mn 2+ , CaGa 2 S 4 Pb 2+ , CaGeO 3 : Mn 2+ , Cal 2 : Eu 2+ in SiO 2 , Cal 2 : Eu 2+ , Mn 2+ in SiO 2 , CaLaBO 4 Eu 3+ , CaLaB 3 O 7 : Ce 3+ , Mn 2+ ,
  • Ca 2 MgSi 2 O 7 Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 : Eu 3+ , CaO: Bi 3+ , CaOOd 2+ , CaO: Cu + , CaO: Eu 3+ , CaO: Eu 3 + , Na + , CaO: Mn 2+ , CaOPb 2+ , CaO: Sb 3+ , CaO: Sm 3+ , CaOTb 3+ , CaOTI, CaO: Zn 2+ , Ca 2 P 2 O 7 Oe 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , ⁇ -Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2+ , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , ⁇ -C
  • Ca s (PO 4 ) 3 F Sb 3+
  • Ca s (PO 4 ) 3 F Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , ⁇ -Ca 3 (PO 4 ) 2 Pb 2 + , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Ca 2 P 2 O 7 : Sn, Mn, ⁇ -Ca 3 (PO 4 ) 2 : Tr, CaS: Bi 3+ , CaS: Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS
  • CaSiO 3 Mn 2+ , Pb, CaSiO 3 Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 Ti 4+ ,
  • CaSr 2 (PO 4 ) 2 Bi 3+ , ⁇ - (Ca, Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0 . 9 Alo.iO 3 : Bi 3+ ,
  • CaTiO 3 Eu 3+ , CaTiO 3 Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 Pb 2+ , CaWO 4 : W, Ca 3 WO 6 : U, CaYAIO 4 : Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 : Eu 3+ , CaYB 0 . 8 O 3 .
  • CdS ln, CdSMn, CdS: In, Te, CdSTe, CdWO 4 , CsF, CsI, CsLNa + , CsITI, (ErCl 3 ) o . 2 5 (BaCl 2 ) o.75, GaN: Zn, Gd 3 Ga 5 O 12 Or 3+ , Gd 3 Ga 5 O 12 : Cr, Ce,
  • GdNbO 4 Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 SPr 1 Ce 1 F, Gd 2 O 2 STb 3+ , Gd 2 SiO 5 : Ce 3 + , KAl 11 O 17 TI + , KGa 11 O 17 Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4+ , LaAl 3 B 4 Oi 2 : Eu 3+ , LaAIB 2 O 6 : Eu 3+ , LaAIO 3 : Eu 3+ ,
  • LaAIO 3 Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ ,
  • (La, Ce, Tb) PO 4 Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBrTb 3+ , LaOBrTm 3+ , LaOCl: Bi 3+ , LaOChEu 3+ , LaOF: Eu 3+ , La 2 O 3 : Eu 3+ , La 2 O 3 Pr 3+ , La 2 O 2 STb 3+ , LaPO 4 : Ce 3+ , LaPO 4 : Eu 3+ , LaSiO 3 ChCe 3+ , LaSiO 3 ChCe 3+ Tb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAIF 4 : Mn 2+ , LiAl 5 O 8 Pe 3+ , LiAIO 2 Pe 3+ , LiAIO 2 : Mn 2+ ,
  • LiAl 5 O 8 Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ ,
  • LiCeSrBa 3 Si 4 O 14 Mn 2+ , LilnO 2 : Eu 3+ , LilnO 2 : Sm 3+ , LiLaO 2 : Eu 3+ ,
  • LuAIO 3 Ce 3+
  • (Lu, Gd) 2 Si0 5 Ce 3+
  • Lu 2 SiO 5 Ce 3+
  • Lu 2 Si 2 0 7 Ce 3+
  • LuTaO 4 Nb 5+ , Lu 1-x Y x AIO 3 : Ce 3+ , MgAl 2 O 4 : Mn 2+ , MgSrAl 10 O 17 : Ce,
  • MgB 2 O 4 Mn 2+
  • MgBa 2 (PO 4 ) 2 Sn 2+
  • MgBa 2 (PO 4 ) 2 U
  • MgBaP 2 O 7 Pu 2+
  • MgBaP 2 O 7 Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 Pu 2+ , MgBa (SO 4 ) 2 : Eu 2+ ,
  • Mg 2 Ca (SO 4 ) 3 Eu 2+ , Mn 2 , MgCeAl n O 19 Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ ,
  • Mg 4 (F) (Ge, Sn) O 6 Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 Mn 4+ , MgS: Eu 2+ , MgSiO 3 : Mn 2+ , Mg 2 SiO 4 : Mn 2+ , Mg 3 SiO 3 F 4 Ti 4+ , MgSO 4 Pu 2+ ,
  • SrB 4 O 7 Eu 2+ (F, CI, Br), SrB 4 O 7 Pb 2+ , SrB 4 O 7 Pb 2+ , Mn 2+ , SrB 8 Oi 3 : Sm 2+ , Sr x Ba y Cl z Al 2 O 4-zy2 : Mn 2+ , Ce 3+ , SrBaSiO 4 : Eu 2+ , Sr (Cl, Br, I) 2 : Eu 2+ in SiO 2 , SrCl 2 : Eu 2+ in SiO 2 , Sr 5 Cl (PO 4 ) 3 : Eu, Sr w F x B 4 O 6 5 : Eu 2+ , Sr w F x B y O z : Eu 2+ , Sm 2+ , SrF 2 : Eu 2+ , SrGai 2 O 19 : Mn 2+ , SrGa 2 S 4 Oe 3+ , SrGa 2 S 4 : Eu
  • Sr 5 (PO 4 ) 3 F Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 ) Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , ⁇ -Sr 3 (PO 4 ) 2 : Sn 2+ , Mn 2+ (Al), SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu ⁇ Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ ,
  • ZnS P 3 , Cr, ZnS) Pb 2+ , ZnS: Pb 2+ , Cr, ZnS) Pb 1 Cu 1 Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 ) Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 IMn 1 Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 Ti 4 + , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnSTe 1 Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl, ZnWO 4
  • Example 2 Preparation of 5 g Sr5.9 4 Euo, o6 Si3 ⁇ 5l 88N 4 Fo, 24 6.6736 g SrC 2 O 4 (Alfa Aesar, 95%), 0.0689 g Eu 2 O 3 (Treibacher, 99.99%), 0.0984 g SrF 2 (Aldrich, 99.998%) and 0.9159 g Ci-Si 3 N 4 (UBE, 99 %) are mixed thoroughly in an agate mortar with a dry N 2 glove box. The resulting mixture of raw materials is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Example 5 Preparation of 5 g Sr 5182 Os 01O eEu 01O eSi 3 O 6 N 4 6.6658 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0688 g of Eu 2 O 3 (Treibacher, 99.99%), 0.0869 g of OsO 2 (Alfa Aesar, Os 83% min) and 0.9148 g of Q-Si 3 N 4 ( UBE, 99%) are placed in a glove box filled with dry N 2 in one
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat.
  • the mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
  • Example 7 High pressure sintering of the phosphors of Examples 1-6
  • Example 8 Hot isostatic pressing of the phosphors from the
  • Examples 1-6 In each case 5 g of the compounds from Examples 1-6 are transferred to an isostatic hot press. The hot press is placed under vacuum and the temperature is raised to 200 ° C. Subsequently, the temperature is increased at 5-10 K / min to 1400-1600 0 C, at the same time, the pressure is readjusted to values between 50 and 200 MPa, the holding time is 6-10 hours.
  • Example 9 Washing the phosphors of Examples 1-8
  • Tab. 1 Optical properties of Sr 5 94 Eu 0 O eSi S OeN 4 IEu (as a reference) and co-doped phosphors according to the invention
  • COB chip on board package of the type InGaN, which serves as light source (LED) for white light
  • LED light source
  • 1 semiconductor chip
  • 2.3 electrical connections
  • 4 conversion luminescent material
  • 7 board (board) .
  • Phosphor is dispersed in a binder lens, which simultaneously constitutes a secondary optical element and influences the light emission characteristic as a lens.
  • COB chip on board package of the type InGaN, which serves as a light source (LED) for white light
  • LED light source
  • Phosphor is distributed in a thin binder layer directly on the LED chip.
  • a secondary optical element consisting of a transparent material can be placed thereon.
  • Conversion luminescent material in cavity with reflector Conversion luminescent material in cavity with reflector.
  • the conversion phosphor is dispersed in a binder, the mixture filling the cavity.
  • the semiconductor chip is completely covered with the phosphor according to the invention.
  • the SMD design has the advantage that it has a small design and thus fits into conventional luminaires.
  • Bonding wire wherein the phosphor is applied as a thin layer dispersed in a binder.
  • a further component acting as a secondary optical element, such as a lens, can easily be applied to this layer.
  • Fig. 7 shows an example of a further application, as already known in principle from US Pat. No. 6,700,322.
  • the phosphor according to the invention is used together with an OLED.
  • the light source is an organic light-emitting diode 31, consisting of the actual organic film 30 and a transparent substrate 32.
  • the film 30 emits in particular blue primary light, produced for example by means of PVK: PBD: coumarin (PVK, abbreviation for poly (n-vinylcarbazole) PBD, abbreviation for 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1, 3,4-oxadiazole)).
  • the emission is partially converted into a yellow, secondarily emitted light by a cover layer, formed from a layer 33 of the phosphor according to the invention, so that a white emission is achieved overall by color mixing of the primary and secondary emitted light.
  • the OLED consists essentially of at least one layer of a light-emitting
  • Indium tin oxide as an anode and a highly reactive metal, such as Ba or Ca, as a cathode.
  • a highly reactive metal such as Ba or Ca
  • several layers are used between the electrodes, which either serve as a hole transport layer or serve as electron transport layers in the area of the "small molecules.”
  • Polyfluorene or polyspiro materials, for example, are used as emitting polymers.

Abstract

The invention relates to compounds of the formula (I) (Ca,Sr,Ba)6-X (Si1-yMey)3(O1-zMa2z)6N4: Eux (I) where Me = Th, Ru and/or Os, Ma = F and/or Cl, x < 0.5, y < 1 and z < 0.1, and also to a process for producing these compounds and use as light-emitting substances, and also to conversion light-emitting substances for the conversion of the blue emission or the emission in the near UV from an LED.

Description

Co-dotierte Silicooxynitride  Co-doped silicooxynitrides
Die Erfindung betrifft Verbindungen, die aus mit Thorium, Ruthenium, Osmium, Fluor und/oder Chlor-co-dotierten 6-3-6-4-Erdalkali- silicooxynitriden bestehen, deren Herstellung sowie deren Verwendung alsThe invention relates to compounds which consist of thorium, ruthenium, osmium, fluorine and / or chlorine-co-doped 6-3-6-4-Erdalkali- silicooxynitriden, their preparation and their use as
Leuchtstoffe sowie LED-Konversionsleuchtstoffe für warm-weiße LEDs oder sogenannte Color-on-demand-Anwendungen. Phosphors and LED conversion phosphors for warm white LEDs or so-called color-on-demand applications.
Unter dem Color-on-demand Konzept versteht man die Realisierung von Licht eines bestimmten Farbpunktes mit einer pcLED (=phosphor converted LED) unter Einsatz eines oder mehrer Leuchtstoffe. Dieses Konzept wird z.B. verwendet, um bestimmte Corporate Designs z.B. für beleuchtete Firmenlogos, Marken etc. zu erzeugen. Zur Erzielung hoher Farbräume mittels LED TV-Backlighting sind tiefroteThe color-on-demand concept is the realization of light of a particular color point with a pcLED (= phosphor converted LED) using one or more phosphors. This concept is e.g. used to create certain corporate designs, e.g. for illuminated company logos, brands etc. To achieve high color spaces using LED TV backlighting are deep red
Leuchtstoffe erforderlich, welche ein Emissionsmaximum aufweisen in Bereich von 620 nm -660 nm. Dem Fachmann bekannte und geeignete Materialsystem stellen Siliconitride und Alumosilikonitridleuchtstoffe dar (Xie, Sei. Technol. Adv. Mater. 2007, 8, 588-600): Phosphors having an emission maximum in the range from 620 nm to 660 nm are required. Material systems known and suitable to the person skilled in the art are siliconitrides and aluminosiliconitrile phosphors (Xie, Sei. Technol. Adv. Mater. 2007, 8, 588-600):
1-1-2-Nitride, wie z.B. das CaSiN2:Eu2+ (Le Toquin, Cheetham, Chem.1-1-2-Nitrides such as the CaSiN 2 : Eu 2+ (Le Toquin, Cheetham, Chem.
Phys. Lett. 2006, 423, 352.), 2-5-8-Nitride, wie das (Ca1Sr1Ba)2Si5N8)Eu2+ (Li et al., Chem. Mater. 2005, 15, 4492) und Alumosilikonitride, wie das (Ca,Sr)AISiN3:Eu2+ (K. Uheda et al., Electrochem. Solid State Lett. 2006, 9, H22). Phys. Lett. 2006, 423, 352.), 2-5-8-nitrides, such as the (Ca 1 Sr 1 Ba) 2 Si 5 N 8 ) Eu 2+ (Li et al., Chem. Mater. 2005, 15, 4492). and aluminosiliconitrides such as the (Ca, Sr) AISiN 3 : Eu 2+ (K. Uheda et al., Electrochem., Solid State Lett., 2006, 9, H22).
Nitridische Leuchtstoffe, wie oben genannt, weisen eine Reihe von Nitridic phosphors, as mentioned above, have a number of
Nachteilen auf, die dazu führen, dass diese Materialien nicht in großen Mengen verfügbar sind: Insbesondere die hohe erforderliche Reinheit stellt eine technisch nur unter hohem Aufwand realisierbare Herausforderung dar. So führen geringste Konzentrationen von Kohlenstoff oder Sauerstoff dazu, dass die Effizienz der Leuchtstoffe empfindlich verringert wird.  Disadvantages that lead to these materials being not available in large quantities: In particular, the high level of purity required represents a challenge which can only be realized technically with great difficulty. For example, the lowest concentrations of carbon or oxygen lead to a marked reduction in the efficiency of the phosphors becomes.
Jedoch ist es nahezu unmöglich, Sauerstoffverunreinigungen zu vermeiden, da selbst die Edukte, wie Si3N4 und die Metallnitride However, it is nearly impossible to oxygen contaminants Avoid even the starting materials, such as Si 3 N 4 and the metal nitrides
(Erdalkalimetallnitride, Europiumnitrid) nicht sauerstofffrei erhältlich sind. Alternative Edukte, wie Metallhydride, sind extrem Sauerstoff- und (Erdalkalimetallnitride, Europiumnitrid) are not available oxygen-free. Alternative educts, such as metal hydrides, are extremely oxygen and
Feuchtigkeitsempfindlich, so dass auch über diese Komponenten Moisture sensitive, so that too about these components
Sauerstoff in den Leuchtstoff eingetragen wird. Gängige Herstellprozesse, wie die Carbothermische Reduktion und - Nitridierung führen zu Oxygen is introduced into the phosphor. Common manufacturing processes, such as carbothermic reduction and nitridation lead to
Kohlenstoffverunreinigungen im Leuchtstoff, wodurch dieser Leuchtstoff eine die Helligkeit vermindernde Vergrauung erfährt. Carbon contaminants in the phosphor, whereby this phosphor undergoes a brightness-reducing graying.
Das Silicooxynitrid Sr6Si3OeN4: Eu wurde erstmalig durch Sohn et al., Journ. of Electr. Soc. 155(2), J58-J61 (2008) beschrieben. The silicooxynitride Sr 6 Si 3 OeN 4 : Eu was first reported by Sohn et al., Journ. of Electr. Soc. 155 (2), J58-J61 (2008).
Aufgabe der vorliegenden Erfindung ist es daher die o.g. 6-3-6-4 Erdalkali- Silicooxynitride so zu modifizieren, dass diese Verbindungen eine noch höhere Lichteffizienz erreichen. The object of the present invention is therefore the o.g. 6-3-6-4 Modify alkaline earth silicooxynitrides so that these compounds achieve even greater light efficiency.
Überraschenderweise wurde gefunden, dass die Anforderung nach einer wirtschaftlich bedeutenden weiteren Steigerung der Konversionseffizienz der roten Silicooxynitrid-Leuchtstoffe (Ca1Sr1Ba)6Si3O6N4IEu erfüllt werden kann, falls eine Co-Dotierung mit Thorium, Ruthenium, Osmium, Fluor und/oder Chlor durchgeführt wird. Surprisingly, it has been found that the requirement for an economically significant further increase in the conversion efficiency of the red silicooxynitride phosphors (Ca 1 Sr 1 Ba) 6 Si 3 O 6 N 4 IEu can be fulfilled if a co-doping with thorium, ruthenium, osmium , Fluorine and / or chlorine is carried out.
Gegenstand der vorliegenden Erfindung sind somit Verbindungen des 6-3- 6-4-Erdalkali-silicooxynitridtyps mit Europium-Dotierung, die zusätzlich Co- Dotanten aus der Reihe Thorium, Rubidium, Osmium, Fluor und/oder Chlor enthalten. The present invention thus relates to compounds of the 6-3- 6-4 alkaline earth silicooxynitride type with europium doping which additionally contain co-dopants from the series thorium, rubidium, osmium, fluorine and / or chlorine.
Unter„6-3-6-4-Erdalkali-silicooxynitriden" versteht man solche By "6-3-6-4 alkaline earth silicooxynitriden" one understands such
Zusammensetzungen M6Si3O6N4IEu2+, wobei M ein Erdalkalim Compositions M 6 Si 3 O 6 N 4 IEu 2+ , where M is an alkaline earth metal
eine Mischung aus mehreren Erdalkalimetallen darstellt. is a mixture of several alkaline earth metals.
Bevorzugt sind Verbindungen der Formel I (Ca1Sr1Ba)6-X (Si1-yMey)3(O1-2Ma2z)6N4:Eux (I) Preference is given to compounds of the formula I. (Ca 1 Sr 1 Ba) 6 -X (Si 1-y Me y ) 3 (O 1-2 Ma 2z) 6 N 4 : Eu x (I)
wobei in which
Me = Th, Ru und/oder Os  Me = Th, Ru and / or Os
Ma = F und/oder Cl Ma = F and / or Cl
x < 0.5 x <0.5
y < 1 und y <1 and
z < 0.1 z <0.1
gilt. applies.
Bevorzugt ist es, wenn der x-Wert gleich 0.003 bis 0.2, der y-Wert (der für die Atomkonzentration der Co-Dotanten Me steht) gleich 0.0001 bis 0.2, und der z-Wert gleich 0.0005 bis 0.03 beträgt. It is preferable if the x value is 0.003 to 0.2, the y value (which is the atomic concentration of the co-dopants Me) is 0.0001 to 0.2, and the z value is 0.0005 to 0.03.
Noch bevorzugter ist x = 0.005 bis 0.15 und/oder y = 0.001 bis 0.02. More preferably, x = 0.005 to 0.15 and / or y = 0.001 to 0.02.
Die größere Helligkeit der erfindungsgemäßen Verbindungen bzw. The greater brightness of the compounds according to the invention or
Leuchtstoffe gemäß der Formel I gegenüber denjenigen identischerPhosphors according to the formula I compared with those of identical
Zusammensetzung, aber ohne die Co-Dotanden Thorium, Rubidium, Osmium, Fluor und/oder Chlor lässt sich mit den dem Fachmann bekannten Theorien erklären. Diese wird durch die höhere Composition, but without the co-dopants thorium, rubidium, osmium, fluorine and / or chlorine can be explained with the theories known to the expert. This is due to the higher
Kristallgitterqualität durch die Anwesenheit der Halogenide erzeugt. Die Halogenide bewirken mit aller Wahrscheinlichkeit eine Verringerung derCrystal lattice quality generated by the presence of halides. The halides are likely to reduce the
Diffusionsbarrieren, welche die Ionen in der Festkörperreaktion überwinden müssen, um die erwünschten Gitterplätze in der Festkörperstruktur besetzen zu können. Die Schwermetalle Th, Ru oder Os bewirken mit aller Wahrscheinlichkeit über den sog. Schweratomeffekt eine erhöhte Diffusion barriers, which must overcome the ions in the solid state reaction to occupy the desired lattice sites in the solid state structure can. The heavy metals Th, Ru or Os are likely to cause an increase in the so-called heavy atom effect
Absorption des Leuchtstoffes. Absorption of the phosphor.
Die Partikelgröße der erfindungsgemäßen Verbindungen beträgt zwischen 50 nm und 30 μm, vorzugsweise zwischen 1 μm und 20 μm, noch bevorzugter zwischen 2 und 15 μm. - A - The particle size of the compounds according to the invention is between 50 nm and 30 .mu.m, preferably between 1 .mu.m and 20 .mu.m, more preferably between 2 and 15 .mu.m. - A -
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Verbindung erhältlich durch Mischen von Siliciumnitrid-, Europium- und Calcium- und/oder Strontium- und /oder Barium-haltigen Edukten mit mindestens einem Thorium-, Osmium-, Ruthenium-, Fluorid- und/oder Chlorid-haltigen Co-Dotierstoff nach Festkörperdiffusionsmethoden und anschließender thermischer Nachbehandlung, welcher gegebenenfalls ein Flussmittel aus der Reihe der Alkali- oder Erdalkalihalogenide oder auch eine Another object of the present invention is a compound obtainable by mixing silicon nitride, europium and calcium and / or strontium and / or barium-containing educts with at least one thorium, osmium, ruthenium, fluoride and / or Chloride-containing co-dopant by solid-state diffusion methods and subsequent thermal aftertreatment, which optionally a flux from the series of alkali or alkaline earth halides or a
Boratverbindung enthalten kann. Can contain borate compound.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer Verbindung des 6-3-6-4-Erdalkali-silicooxynitridtyps mit Europium-Dotierung mit folgenden Verfahrensschritten: A further subject of the present invention is a process for the preparation of a compound of the 6-3-6-4 alkaline earth silicooxynitride type with europium doping with the following process steps:
a) Herstellen einer Eu-dotierten 6-3-6-4-Erdalkali-silicooxynitrid- Verbindung, die mit Thorium-, Rubidium-, Osmium-, Fluorid- und/oder Chlorid-haltigen Materialien co-dotiert wird, durch Mischen von mindestens 4 Edukten ausgewählt aus Siliciumnitrid-, Europium- , Calcium-, Strontium-, Barium-, Thorium-, Rubidium-, Osmium-, Fluorid- und/oder Chlorid-haltigen Materialien,  a) preparing an Eu-doped 6-3-6-4 alkaline earth silicooxynitride compound which is co-doped with thorium, rubidium, osmium, fluoride and / or chloride containing materials by mixing at least 4 starting materials selected from silicon nitride, europium, calcium, strontium, barium, thorium, rubidium, osmium, fluoride and / or chloride-containing materials,
b) Thermische Nachbehandlung der Thorium-, Rubidium-, Osmium-, b) Thermal aftertreatment of thorium, rubidium, osmium,
Fluorid- und/oder Chlorid- co-dotierten Verbindung, Fluoride and / or chloride co-doped compound,
c) Waschen der thermisch nachbehandelten Verbindungen mit einer HCl- und einer KOH-Lösung. Die Edukte zur Herstellung der Verbindung bestehen, wie oben erwähnt, aus Siliciumnitrid (Si3N4), Calciumhydrid und Europiumfluorid sowie mindestens einem Th-, Ru-, Os-, F- und Cl-haltigen Co-Dotierstoff. Als Edukte kommen neben den bevorzugten Nitriden, Hydriden und Fluoriden auch weitere anorganische und/oder organische Stoffe wie Cyanamide, Dicyanamide, Cyanide, Oxalate, Malonate, Fumarate, Carbonate, Citrate,c) washing the thermally treated compounds with an HCl and a KOH solution. The starting materials for the preparation of the compound, as mentioned above, consist of silicon nitride (Si 3 N 4 ), calcium hydride and europium fluoride and at least one Th, Ru, Os, F and Cl-containing co-dopant. In addition to the preferred nitrides, hydrides and fluorides, other inorganic and / or organic substances such as cyanamides, dicyanamides, cyanides, oxalates, malonates, fumarates, carbonates, citrates,
Ascorbate und Acetylacetonate in Frage. Die oben genannte thermische Nachbehandlung (siehe Verfahrensschritt b) verläuft mehrere Stunden unter reduzierenden Bedingungen, z. B mit Formiergas (z.B.90/10), reinem Wasserstoff und/oder in Ammoniak- Atmosphäre mit oder ohne den oben aufgeführten Atmosphären. Die Temperaturen beim Glühprozess betragen mehrere Stunden Ascorbates and acetylacetonates in question. The abovementioned thermal aftertreatment (see process step b) runs for several hours under reducing conditions, for. B with forming gas (eg 90/10), pure hydrogen and / or in an ammonia atmosphere with or without the above mentioned atmospheres. The temperatures during the annealing process amount to several hours
(vorzugsweise 8 h) zwischen 10000C und 18000C, vorzugsweise von 1400°C bis 1600°C. (preferably 8 h) between 1000 0 C and 1800 0 C, preferably from 1400 ° C to 1600 ° C.
Weiterhin ist es bevorzugt, wenn die Leuchtstoffe in einen Hochdruck- Sinterofen überführt und dort bei 40 bis 70 bar und einer Temperatur vonFurthermore, it is preferred if the phosphors are transferred to a high-pressure sintering furnace and there at 40 to 70 bar and a temperature of
1400 bis 1600 °C 6 bis 10 Stunden geglüht werden. 1400 to 1600 ° C are annealed for 6 to 10 hours.
Weiterhin ist es bevorzugt, wenn die Leuchtstoffe heißisostatisch unter Furthermore, it is preferred if the phosphors are hot isostatic under
Vakuum verpresst werden. Vacuum be pressed.
Außerdem ist es bevorzugt, wenn die Leuchtstoffe erst mit HCl und anschließend mit KOH gewaschen werden, wodurch amorphes SiO2 eliminiert wird. Durch diesen Waschschritt erhöht sich vorteilhafterweise dieIn addition, it is preferable that the phosphors are first washed with HCl and then with KOH, whereby amorphous SiO 2 is eliminated. This washing step advantageously increases the
Emissionsintensität sowie auch die Absorption der Leuchtstoffe. Emission intensity as well as the absorption of the phosphors.
Mit Hilfe der o.g. Verfahren können beliebige äußere Formen der erfindungsgemäßen Verbindungen bzw. Leuchtstoffe, hergestellt werden, wie sphärische Partikel, Plättchen und strukturierte Materialien und With the help of o.g. Methods can be made of any external forms of the compounds or phosphors according to the invention, such as spherical particles, platelets and structured materials and
Keramiken. Diese Formen werden erfindungsgemäß unter dem Begriff „Formkörper" zusammengefasst. Vorzugsweise handelt es sich bei dem Formkörper um einen„Leuchtstoffkörper". Ceramics. According to the invention, these forms are combined under the term "shaped body." The shaped body is preferably a "phosphor body".
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit ein Another object of the present invention is thus a
Formkörper enthaltend die erfindungsgemäßen Verbindungen, wobei er eine raue Oberfläche besitzt, die Nanopartikel aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus und/oder Partikel mit der erfindungsgemäßen Verbindung mit oder ohne Dotierstoffen aus der ReiheShaped body containing the compounds of the invention, wherein it has a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or particles with the inventive compound with or without dopants from the series
Europium, Osmium, Ruthenium, Thorium, Fluor und/oder Chlor. In einer weiteren bevorzugten Ausführungsform besitzt der Formkörper auf der, einem LED Chip entgegengesetzten Seite eine strukturierte (z.B. Europium, osmium, ruthenium, thorium, fluorine and / or chlorine. In a further preferred embodiment, the shaped body on the, an LED chip opposite side of a structured (eg
pyramidale) Oberfläche (siehe WO2008/058619, Merck, die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt wird). Somit kann möglichst viel Licht aus dem Leuchtstoff ausgekoppelt werden. pyramidal) surface (see WO2008 / 058619, Merck, which is incorporated by reference in its entirety in the context of the present application). Thus, as much light as possible can be coupled out of the phosphor.
Die strukturierte Oberfläche auf dem Formkörper wird durch nachträgliches Beschichten mit einem geeigneten Material, welches bereits strukturiert ist, oder in einem nachfolgenden Schritt durch (photo-) lithografische The structured surface on the shaped article is formed by subsequent coating with a suitable material, which is already structured, or in a subsequent step by (photo) lithographic
Verfahren, Ätzverfahren oder durch Schreibverfahren mit Energie- oder Materiestrahlen oder Einwirkung von mechanischen Kräften hergestellt.  Process, etching or by writing process with energy or matter beams or exposure to mechanical forces produced.
In einer weiteren bevorzugten Ausführungsform besitzen die In a further preferred embodiment, the
erfindungsgemäßen Formkörper auf der, einem LED Chip Moldings of the invention on the, an LED chip
entgegengesetzten Seite eine raue Oberfläche, die Nanopartikel aus SiO2, TiO2, AI2O3, ZnO2, ZrO2 und/oder Y2O3 oder Kombinationen aus diesen Materialien und/oder aus Partikeln mit der Leuchtstoffzusammensetzung gemäß Formel I mit oder ohne Dotierstoffen aus der Reihe Th, Ru, Os, F und/oder Cl trägt. Dabei hat eine raue Oberfläche eine Rauhigkeit von bis zu einigen 100 nm. Die beschichtete Oberfläche hat den Vorteil, dass Totalreflexion verringert oder verhindert werden kann und das Licht besser aus dem erfindungsgemäßen Leuchtstoff ausgekoppelt werden kann, (siehe WO2008/058619 (Merck), die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt wird) opposite side a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO 2 , ZrO 2 and / or Y 2 O 3 or combinations of these materials and / or of particles with the phosphor composition according to formula I with or without dopants from the series Th, Ru, Os, F and / or Cl carries. In this case, a rough surface has a roughness of up to several 100 nm. The coated surface has the advantage that total reflection can be reduced or prevented and the light can be better decoupled from the phosphor according to the invention (see WO2008 / 058619 (Merck) is fully incorporated by reference in the context of the present application)
Weiterhin bevorzugt ist es, wenn die erfindungsgemäßen Formkörper auf der dem Chip abgewandten Oberfläche eine Brechzahl angepasste Schicht besitzen, welche die Auskopplung der Primärstrahlung und oder der vom Leuchtstoffkörper emittierten Strahlung erleichtert. It is further preferred if the shaped bodies according to the invention have a refractive index-adapted layer on the surface facing away from the chip, which facilitates the decoupling of the primary radiation and / or the radiation emitted by the phosphor body.
In einer weiteren bevorzugten Ausführungsform besitzen die Formkörper eine geschlossene Oberflächenbeschichtung, die aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide und/oder aus den Verbindungen gemäß Formel I ohne den Aktivator Europium besteht. Diese In a further preferred embodiment, the shaped bodies have a closed surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides and / or of the compounds according to formula I without the activator europium. These
Oberflächenbeschichtung hat den Vorteil, dass durch eine geeignete Abstufung der Brechungsindices der Beschichtungsmaterialien eine Surface coating has the advantage that a suitable grading of the refractive indices of the coating materials a
Anpassung des Brechungsindex mit der Umgebung erzielt werden kann. In diesem Fall wird die Streuung des Lichtes an der Oberfläche des  Adjustment of the refractive index with the environment can be achieved. In this case, the scattering of light on the surface of the
Leuchtstoffes verringert und ein größerer Anteil des Lichtes kann in den Leuchtstoff eindringen und dort absorbiert und konvertiert werden. Luminescent decreases and a greater proportion of the light can penetrate into the phosphor and absorbed and converted there.
Außerdem ermöglicht es die Brechungsindex-angepasste It also allows the refractive index-matched
Oberflächenbeschichtung, dass mehr Licht aus dem Leuchtstoff  Surface coating that gives more light from the phosphor
ausgekoppelt wird, weil die interne Totalreflexion verringert wird. is decoupled, because the total internal reflection is reduced.
Zudem ist eine geschlossene Schicht dann vorteilhaft, wenn der In addition, a closed layer is advantageous if the
Leuchtstoff verkapselt werden muss. Dies kann erforderlich sein, um einerPhosphor must be encapsulated. This may be necessary to one
Empfindlichkeit des Leuchtstoffes oder Teilen davon gegen diffundierendes Wasser oder andere Materialien in der unmittelbaren Umgebung zu entgegnen. Ein weiterer Grund für die Verkapselung mit einer Sensitivity of the phosphor or parts thereof to diffusing water or other materials in the immediate vicinity. Another reason for the encapsulation with a
geschlossenen Hülle ist eine thermische Entkoppelung des eigentlichen Leuchtstoffes von der Wärme, die im Chip entsteht. Diese Wärme führt zu einer Verringerung der Fluoreszenzlichtausbeute des Leuchtstoffes und kann auch die Farbe des Fluoreszenzlichts beeinflussen. Schließlich ist es möglich durch eine solche Beschichtung die Effizienz des Leuchtstoffes zu erhöhen, indem im Leuchtstoff entstehende Gitterschwingungen in ihrer Ausbreitung an die Umgebung gehindert werden. closed shell is a thermal decoupling of the actual phosphor from the heat that arises in the chip. This heat leads to a reduction in the fluorescent light output of the phosphor and may also affect the color of the fluorescent light. Finally, it is possible by such a coating to increase the efficiency of the phosphor by preventing lattice vibrations arising in the phosphor from propagating to the environment.
Außerdem bevorzugt ist es, wenn der Formkörper eine poröse It is furthermore preferred if the shaped body is a porous one
Oberflächenbeschichtung besitzt, die aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus und/oder aus den Verbindungen gemäß Formeln I mit oder ohne Dotierstoffen aus der Reihe Eu, Th, Ru,Has surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or of the compounds according to formulas I with or without dopants from the series Eu, Th, Ru,
Os, F und/oder Cl besteht. Diese porösen Beschichtungen bieten die Möglichkeit, den Brechungsindex einer Einfachschicht weiter zu reduzieren. Die Herstellung solcher poröser Beschichtungen kann nach drei Os, F and / or Cl exists. These porous coatings offer the possibility of further reducing the refractive index of a single layer. The preparation of such porous coatings can after three
herkömmlichen Methoden geschehen, wie sie in WO 03/027015 conventional methods, as described in WO 03/027015
beschrieben werden, die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt wird: das Ätzen von Glas (z.B. Natron-Kalk-Gläser (siehe US 4019884)), das Aufbringen einer porösenwhich is fully incorporated by reference in the context of the present application: the etching of glass (e.g., soda lime glasses (see US 4019884)), the application of a porous one
Schicht und die Kombination aus poröser Schicht und einem Ätzvorgang. Layer and the combination of porous layer and an etching process.
In einer weiteren bevorzugten Ausführungsform besitzt der Formkörper eine Oberfläche, die funktionelle Gruppen trägt, welche eine chemische oder physikalische Anbindung an die Umgebung, vorzugsweise bestehend aus Epoxy- oder Silikonharz ermöglicht. Diese funktionellen Gruppen können z.B. über Oxogruppen angebundene Ester oder andere Derivate sein, die mit Bestandteilen der Bindemittel auf Basis von Epoxiden und / oder Silikonen Verknüpfungen eingehen können. Solche Oberflächen haben den Vorteil, dass eine homogene Einmischung der Leuchtstoffe in das Bindemittel ermöglicht wird. Des Weiteren können dadurch die In a further preferred embodiment, the shaped body has a surface which carries functional groups which allow a chemical or physical connection to the environment, preferably consisting of epoxy or silicone resin. These functional groups may e.g. oxo group-attached esters or other derivatives which can form linkages with components based on epoxides and / or silicones. Such surfaces have the advantage that a homogeneous mixing of the phosphors is made possible in the binder. Furthermore, this can be the
Theologischen Eigenschaften des Systems Leuchtstoff/ Bindemittel und auch die Topfzeiten in einem gewissen Masse eingestellt werden. Damit wird die Verarbeitung der Gemische vereinfacht. Von einer physikalischen Anbindung an die Umgebung spricht man in diesem Zusammenhang, wenn zwischen den Systemen elektrostatische Wechselwirkungen über Theological properties of the system phosphor / binder and also the pot life can be adjusted to a certain extent. This simplifies the processing of the mixtures. In this context, physical connection to the environment is referred to as electrostatic interactions between the systems
Ladungsfluktuationen oder Partialladungen wirken. Charge fluctuations or partial charges act.
Da die auf dem LED Chip aufgebrachte erfindungsgemäße Since the invention applied to the LED chip
Leuchtstoffschicht vorzugsweise aus einem Gemisch von Silikon und homogenen Leuchtstoffpartikeln besteht, und das Silikon eine Phosphor layer preferably consists of a mixture of silicone and homogeneous phosphor particles, and the silicone one
Oberflächenspannung aufweist, ist diese Leuchtstoffschicht auf Surface tension, this phosphor layer is on
mikroskopischer Ebene nicht einheitlich bzw. ist die Dicke der Schicht nicht durchweg konstant. at the microscopic level, or the thickness of the layer is not consistently constant.
Die Herstellung von plättchenförmigen Leuchtstoffen als weitere The production of platelet-shaped phosphors as further
bevorzugte Ausführungsform geschieht nach herkömmlichen Verfahren aus den entsprechenden Metall- und/oder Seltenerd-Salzen. Das preferred embodiment is done by conventional methods from the corresponding metal and / or rare earth salts. The
Herstellverfahren ist in EP 763573 und WO2008/058620 ausführlich beschrieben, welche voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt werden. Diese plättchenförmigen Leuchtstoffe können hergestellt werden, indem ein natürlicher oder synthetisch hergestellter hoch stabiler Träger bzw. ein Substrat aus beispielsweise Glimmer-, SiO2-, AI2O3-, ZrO2 -, Glas- oder TiO2-Plättchen, welches ein sehr großes Aspektverhältnis aufweist, eine atomar glatte Oberfläche und eine einstellbare Dicke besitzt, durch Fällungsreaktion in wässriger Dispersion oder Suspension mit einer Leuchtstoffschicht beschichtet werden kann. Neben Glimmer, ZrO2, SiO2, AI2O3, Glas oder TiO2 oder Gemischen derselben können die Plättchen auch aus dem Leuchtstoffmaterial selbst bestehen, oder aus einem Material aufgebaut sein. Falls das Plättchen selbst lediglich als Träger für die Manufacturing method is described in detail in EP 763573 and WO2008 / 058620, which are fully incorporated by reference into the context of the present application. These platelet-shaped phosphors can be prepared by a natural or synthetically produced highly stable support or a substrate of, for example mica, SiO 2 , Al 2 O 3 , ZrO 2 , glass or TiO 2 platelets, which is a very has high aspect ratio, has an atomically smooth surface and an adjustable thickness, can be coated by precipitation reaction in aqueous dispersion or suspension with a phosphor layer. In addition to mica, ZrO 2 , SiO 2 , Al 2 O 3 , glass or TiO 2 or mixtures thereof, the platelets may also consist of the phosphor material itself, or be composed of a material. If the plate itself only as a carrier for the
Leuchtstoffbeschichtung dient, muss diese aus einem Material bestehen, welches transparent für die Primärstrahlung der LED ist, oder die Phosphor coating is used, it must be made of a material that is transparent to the primary radiation of the LED, or the
Primärstrahlung absorbiert und diese Energie auf die Leuchtstoffschicht überträgt. Die plättchenförmigen Leuchtstoffe werden in einem Harz (z.B. Silikon- oder Epoxidharz), dispergiert und diese Dispersion wird auf dem LED Chip aufgebracht. Absorbs primary radiation and transfers this energy to the phosphor layer. The flake phosphors are dispersed in a resin (e.g., silicone or epoxy) and this dispersion is applied to the LED chip.
Die plättchenförmigen Leuchtstoffe können in Dicken von 50 nm bis zu etwa 20 μm, vorzugsweise zwischen 150 nm und 5 μm, grosstechnisch hergestellt werden. Der Durchmesser beträgt dabei von 50 nm bis 20 μm. Er besitzt in der Regel ein Aspektverhältnis (Verhältnis des Durchmessers zur Teilchendicke) von 1 : 1 bis 400 : 1 , und insbesondere 3 : 1 bis 100 : 1. The platelet-shaped phosphors can be produced on a large scale in thicknesses of 50 nm up to about 20 μm, preferably between 150 nm and 5 μm. The diameter is from 50 nm to 20 microns. It usually has an aspect ratio (ratio of diameter to particle thickness) of 1: 1 to 400: 1, and in particular 3: 1 to 100: 1.
Die Plättchenausdehnung (Länge x Breite) ist von der Anordnung abhängig. Plättchen eignen sich auch als Streuzentren innerhalb der Konversionsschicht, insbesondere dann, wenn sie besonders kleine Abmessungen aufweisen. The platelet extent (length x width) depends on the arrangement. Platelets are also suitable as scattering centers within the conversion layer, especially if they have particularly small dimensions.
Die dem LED Chip zugewandte Oberfläche des erfindungsgemäßen plättchenförmigen Leuchtstoffes kann mit einer Beschichtung versehen werden, welche entspiegelnd in Bezug auf die von dem LED Chip emittierte Primärstrahlung wirkt. Dies führt zu einer Verringerung der Rückstreuung der Primärstrahlung, wodurch diese besser in den erfindungsgemäßen Leuchtstoffkörper eingekoppelt werden kann. The LED chip surface facing the platelet-shaped phosphor according to the invention can be provided with a coating which anti-reflective with respect to the emitted from the LED chip Primary radiation acts. This leads to a reduction in the backscattering of the primary radiation, as a result of which it can be better coupled into the phosphor body according to the invention.
Hierfür eignen sich beispielsweise brechzahl-angepasste Beschichtungen, die eine folgende Dicke d aufweisen müssen: d = [Wellenlänge der Suitable for this purpose are, for example, refractive index-adapted coatings which must have a following thickness d: d = [wavelength of the
Primärstrahlung des LED Chips /(4* Brechzahl der Leuchtstoffkeramik)], s. beispielsweise Gerthsen, Physik, Springer Verlag, 18. Auflage, 1995. Diese Beschichtung kann auch aus photonischen Kristallen bestehen. Wobei hierunter auch eine Strukturierung der Oberfläche des plättchenförmigen Leuchtstoffes fällt, um bestimmte Funktionalitäten zu erreichen. Primary radiation of the LED chip / (4 * refractive index of the phosphor ceramic)], s. for example, Gerthsen, Physik, Springer Verlag, 18th edition, 1995. This coating can also consist of photonic crystals. This also includes a structuring of the surface of the platelet-shaped phosphor in order to achieve certain functionalities.
Die Herstellung der erfindungsgemäßen Formkörper in Form von keramischen Körpern erfolgt analog nach dem in der WO 2008/017353 (Merck) beschrieben Verfahren, die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt wird. Dabei wird der Leuchtstoff durch Mischen der entsprechenden Edukte und Dotierstoffe hergestellt, anschließend isostatisch verpresst und in Form eines homogenen dünnen und nicht porösen Plättchens direkt auf die Oberfläche des Chips aufgebracht oder in Abstand zum Chip (remote phosphor- Konzept). Die jeweilige Anordnung hängt u.a. von der Architektur des LED devices ab, wobei der Fachmann in der Lage ist, die vorteilhafte The production of the shaped bodies according to the invention in the form of ceramic bodies takes place analogously to the process described in WO 2008/017353 (Merck), which is incorporated by reference in its entirety into the context of the present application. In this case, the phosphor is prepared by mixing the corresponding reactants and dopants, then isostatically pressed and applied in the form of a homogeneous thin and non-porous platelets directly on the surface of the chip or at a distance from the chip (remote phosphor concept). The particular arrangement depends i.a. from the architecture of the LED devices, wherein the skilled person is capable of the advantageous
Anordnung auszuwählen. Somit findet keine ortsabhängige Variation der Anregung und Emission des Leuchtstoffes statt, wodurch die damit ausgerüstete LED einen homogenen und farbkonstanten Lichtkegel emittiert und über eine hohe Lichtleistung verfügt. Die keramischen Select arrangement. Thus, no location-dependent variation of the excitation and emission of the phosphor takes place, as a result of which the LED equipped with it emits a homogeneous and color-constant light cone and has a high light output. The ceramic
Leuchtstoffkörper können z.B. als Plättchen in Dicken von einigen 100 nm bis zu etwa 500 μm großtechnisch hergestellt werden. Die  Phosphor bodies can e.g. be produced industrially as platelets in thicknesses of a few 100 nm up to about 500 .mu.m. The
Plättchenausdehnung (Länge x Breite) ist von der Anordnung abhängig. Bei direkter Aufbringung auf den Chip ist die Größe des Plättchens gemäß der Chipausdehnung (von ca. 100 μm * 100 μm bis zu mehreren mm2) mit einem gewissen Übermaß von ca. 10% - zu 30% der Chipoberfläche bei geeigneter Chipanordnung (z.B. Flip-Chip-Anordnung) oder entsprechend zu wählen. Wird das Leuchtstoffplättchen über einer fertigen LED angebracht, so ist der austretende Lichtkegel vollständig vom Plättchen zu erfassen. Die Seitenflächen des keramischen Leuchtstoffkörpers können mit einemPlatelet expansion (length x width) depends on the arrangement. When directly applied to the chip, the size of the wafer according to the chip size (from about 100 .mu.m * 100 microns to several mm 2 ) with a certain excess of about 10% - 30% of the chip surface with a suitable chip arrangement (eg Flip Chip arrangement) or accordingly to choose. If the phosphor plate is placed over a finished LED, the emerging cone of light is completely covered by the plate. The side surfaces of the ceramic phosphor body can with a
Leicht- oder Edelmetall, vorzugsweise Aluminium oder Silber verspiegelt werden. Die Verspiegelung bewirkt, dass kein Licht lateral aus dem Light or precious metal, preferably aluminum or silver are mirrored. The mirroring causes no light to escape laterally from the
Leuchtstoffkörper austritt. Lateral austretendes Licht kann den aus der LED auszukoppelnden Lichtstrom verringern. Die Verspiegelung des Phosphor body exits. Lateral exiting light can reduce the luminous flux to be coupled out of the LED. The mirroring of the
keramischen Leuchtstoffkörpers erfolgt in einem Prozessschritt nach der isostatischen Verpressung zu Stangen oder Plättchen, wobei vor der Verspiegelung eventuell ein Schneider der Stangen oder Plättchen in die erforderliche Größe erfolgen kann. Die Seitenflächen werden hierzu z.B. mit einer Lösung aus Silbernitrat und Glucose benetzt und anschließend bei erhöhter Temperatur einer Ammoniak-Atmosphäre ausgesetzt. Hierbei bildet sich z.B. ein silberner Belag auf den Seitenflächen aus. ceramic phosphor body takes place in a process step after the isostatic pressing to bars or plates, which may be done before the mirroring a tailor of the rods or plates in the required size. The side surfaces are for this purpose e.g. wetted with a solution of silver nitrate and glucose and then exposed at elevated temperature to an ammonia atmosphere. Here, e.g. a silver coating on the side surfaces.
Alternativ bieten sich auch stromlose Metallisierungsverfahren an, siehe beispielsweise Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter Verlag oder Ullmanns Enzyklopädie der chemischen Technologie. Alternatively, there are also electroless metallization processes, see for example Hollemann-Wiberg, Textbook of Inorganic Chemistry, Walter de Gruyter Verlag or Ullmann's Encyclopedia of Chemical Technology.
Der keramische Leuchtstoffkörper kann, falls erforderlich, mit einer  The ceramic phosphor body may, if necessary, with a
Wassergiaslösung auf dem Untergrund eines LED Chip fixiert werden. Water-gas solution can be fixed on the substrate of an LED chip.
In einer weiteren Ausführungsform besitzt der keramische In a further embodiment, the ceramic has
Leuchtstoffkörper auf der, einem LED Chip entgegengesetzten Seite eine strukturierte (z.B. pyramidale) Oberfläche. Somit kann möglichst viel Licht aus dem Leuchtstoffkörper ausgekoppelt werden. Die strukturierte Phosphor body has a patterned (e.g., pyramidal) surface on the side opposite an LED chip. Thus, as much light as possible can be coupled out of the phosphor body. The structured
Oberfläche auf dem Leuchtstoffkörper wird dadurch hergestellt, in dem beim isostatischen Verpressen das Presswerkzeug eine strukturierte Pressplatte aufweist und dadurch eine Struktur in die Oberfläche prägt.Surface on the phosphor body is thereby produced, in which during isostatic pressing, the pressing tool has a structured pressing plate and thereby embosses a structure in the surface.
Strukturierte Oberflächen sind dann gewünscht, wenn möglichst dünne Leuchtstoffkörper bzw. Plättchen hergestellt werden sollen. Die Pressbedingungen sind dem Fachmann bekannt (siehe J. Kriegsmann, Technische keramische Werkstoffe, Kap. 4, Deutscher Wirtschaftsdienst, 1998). Wichtig ist, dass als Presstemperaturen 2/3 bis zu 5/6 der Structured surfaces are desired when thin phosphor bodies or platelets are to be produced. The Press conditions are known to those skilled in the art (see J. Kriegsmann, Technische keramische Materialien, Chapter 4, Deutscher Wirtschaftsdienst, 1998). It is important that as pressing temperatures 2/3 up to 5/6 of the
Schmelztemperatur des zu verpressenden Stoffes verwendet werden. Melting temperature of the substance to be pressed are used.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Formkörpers, vorzugsweise Leuchtstoffkörpers, mit folgenden Verfahrensschritten: Another object of the present invention is a process for the preparation of a shaped body, preferably phosphor body, with the following process steps:
a) Herstellen einer Europium-dotierten 6-3-6-4-Erdalkali-silicooxynitrid- Verbindung, die Thorium-, Rubidium, Osmium-, Fluorid und/oder Chlorid- haltigen Materialien codotiert wird, durch Mischen von mindestens 4 Edukten ausgewählt aus Siliciumnitrid-, Europium-, Calcium-, Strontium-, Barium-, Ruthenium-, Thorium-, Osmium, Fluorid- und/oder Chlorid- haltigen Materialien, a) preparing a europium-doped 6-3-6-4 alkaline earth silicooxynitride compound co-doped with thorium, rubidium, osmium, fluoride and / or chloride-containing materials by mixing at least 4 starting materials selected from silicon nitride , Europium, calcium, strontium, barium, ruthenium, thorium, osmium, fluoride and / or chloride containing materials,
b) Thermische Nachbehandlung der mit Thorium-, Rubidium, Osmium,b) Thermal aftertreatment with thorium, rubidium, osmium,
Fluorid und/oder Chlorid-codotierten Verbindung und Entstehung eines Formkörpers mit rauer Oberfläche, Fluoride and / or chloride-codoped compound and formation of a shaped body with a rough surface,
c) Beschichtung der Oberfläche mit Nanopartikeln aus Siθ2 c) coating the surface with nanoparticles of SiO 2
Tiθ2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus oder mit Nanopartikeln aus den erfindungsgemäßen Verbindungen. TiO 2 , Al 2 O 3 , ZnO, ZrO 2 and / or Y 2 O 3 or mixed oxides thereof or with nanoparticles of the compounds according to the invention.
Die Anregbarkeit der erfindungsgemäßen Leuchtstoffe erstrecken sich zudem über einen weiten Bereich, der von etwa 350 nm bis 530 nm, bevorzugt 430 nm bis zu etwa 500 nm reicht. Damit sind diese Leuchtstoffe nicht nur zur Anregung durch UV oder blau emittierende Primärlichtquellen wie LEDs oder konventionelle Entladungslampen (z.B. auf Hg-Basis) geeignet, sondern auch für Lichtquellen wie solche, welche die blaue In3+ - Linie bei 451 nm ausnutzen. Ein weiterer Gegenstand der vorliegenden Erfindung ist eine The excitability of the phosphors according to the invention also extend over a wide range, ranging from about 350 nm to 530 nm, preferably 430 nm to about 500 nm. Thus, these phosphors are not only suitable for excitation by UV or blue emitting primary light sources such as LEDs or conventional discharge lamps (eg based on Hg), but also for light sources such as those which exploit the blue In 3+ line at 451 nm. Another object of the present invention is a
Beleuchtungseinheit mit mindestens einer Primärlichtquelle, dessen Emissionsmaximum bzw. -maxima im Bereich 250 nm bis 530 nm, bevorzugt 350 nm bis zu etwa 500 nm reicht. Insbesondere bevorzugt ist ein Bereich zwischen 440 und 480 nm, wobei die primäre Strahlung teilweise oder vollständig durch die erfindungsgemäßen Verbindungen bzw. Leuchtstoffe in längerwellige Strahlung konvertiert wird. Vorzugsweise ist diese Beleuchtungseinheit weiß emittierend oder emittiert Licht mit einem bestimmten Farbpunkt (Color-on-demand-Prinzip). Bevorzugte Ausführungsformen der erfindungsgemäßen Beleuchtungseinheiten sind in den Figuren 1 bis 7 dargestellt. In einer bevorzugten Ausführungsform der erfindungsgemäßen Lighting unit with at least one primary light source whose emission maximum or maximum in the range 250 nm to 530 nm, preferably 350 nm to about 500 nm ranges. Particularly preferred is a range between 440 and 480 nm, wherein the primary radiation is partially or completely converted by the compounds or phosphors according to the invention into longer-wave radiation. Preferably, this lighting unit emits white or emits light with a certain color point (color-on-demand principle). Preferred embodiments of the lighting units according to the invention are shown in FIGS. 1 to 7. In a preferred embodiment of the invention
Beleuchtungseinheit handelt es sich bei der Lichtquelle um ein  Lighting unit is the light source to a
lumineszentes IndiumAluminiumGalliumNitrid, insbesondere der Formel IniGajAlkN, wobei 0 < i, 0 < j, 0 < k, und i+j+k=1 ist. luminescent indium-aluminum gallium nitride, in particular of the formula IniGa j Al k N, where 0 <i, 0 <j, 0 <k, and i + j + k = 1.
Dem Fachmann sind mögliche Formen von derartigen Lichtquellen bekannt. Es kann sich hierbei um lichtemittierende LED-Chips The person skilled in possible forms of such light sources are known. These may be light emitting LED chips
unterschiedlichen Aufbaus handeln. act different construction.
In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Beleuchtungseinheit handelt es sich bei der Lichtquelle um eine In a further preferred embodiment of the illumination unit according to the invention, the light source is a
lumineszente auf ZnO, TCO (Transparent conducting oxide), ZnSe oderluminescent on ZnO, TCO (transparent conducting oxide), ZnSe or
SiC basierende Anordnung oder auch um eine auf einer organischen lichtemittierende Schicht basierende Anordnung (OLED). SiC based arrangement or even on an organic light emitting layer based arrangement (OLED).
In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Beleuchtungseinheit handelt es sich bei der Lichtquelle um eine Quelle, dieIn a further preferred embodiment of the illumination unit according to the invention, the light source is a source which
Elektrolumineszenz und/oder Photolumineszenz zeigt. Weiterhin kann es sich bei der Lichtquelle auch um eine Plasma- oder Entladungsquelle handeln. Die erfindungsgemäßen Leuchtstoffe können entweder in einem Harz dispergiert (z.B. Epoxy- oder Siliconharz), oder bei geeigneten Größenverhältnissen direkt auf der Primärlichtquelle angeordnet werden oder aber von dieser, je nach Anwendung, entfernt angeordnet sein (letztere Anordnung schließt auch die„Remote phosphor Technologie" mit ein). Die Vorteile der„Remote phosphor Technologie" sind dem Fachmann bekannt und z.B. der folgenden Publikation zu entnehmen: JapaneseElectroluminescence and / or photoluminescence shows. Furthermore, the light source may also be a plasma or discharge source. The phosphors according to the invention can either be dispersed in a resin (for example epoxy or silicone resin) or suitable Depending on the application, size ratios may be arranged directly on the primary light source or may be arranged remotely, depending on the application (the latter arrangement also includes the "remote phosphor technology".) The advantages of the "remote phosphor technology" are known to the person skilled in the art and are, for example, the following Publication: Japanese
Journ. of Appl. Phys. Vol. 44, No. 21 (2005). L649-L651. Journ. of Appl. Phys. Vol. 44, no. 21 (2005). L649-L651.
In einer weiteren Ausführungsform ist es bevorzugt, wenn die optische Ankopplung der Beleuchtungseinheit zwischen dem Leuchtstoff und der Primärlichtquelle durch eine lichtleitende Anordnung realisiert wird. In a further embodiment, it is preferred if the optical coupling of the illumination unit between the phosphor and the primary light source is realized by a light-conducting arrangement.
Dadurch ist es möglich, dass an einem zentralen Ort die Primärlichtquelle installiert wird und diese mittels lichtleitender Vorrichtungen, wie  This makes it possible that the primary light source is installed at a central location and this by means of light-conducting devices, such as
beispielsweise lichtleitenden Fasern, an den Leuchtstoff optisch for example, light-conducting fibers, to the phosphor optically
angekoppelt ist. Auf diese Weise lassen sich den Beleuchtungswünschen angepasste Leuchten lediglich bestehend aus einem oder is coupled. In this way, the lighting requirements adapted lights can only consist of one or
unterschiedlichen Leuchtstoffen, die zu einem Leuchtschirm angeordnet sein können, und einem Lichtleiter, der an die Primärlichtquelle different phosphors, which may be arranged to form a luminescent screen, and a light guide, which is connected to the primary light source
angekoppelt ist, realisieren. Auf diese Weise ist es möglich, eine starke Primärlichtquelle an einen für die elektrische Installation günstigen Ort zu platzieren und ohne weitere elektrische Verkabelung, sondern nur durchis connected, realize. In this way, it is possible to place a strong primary light source at a convenient location for electrical installation and without further electrical wiring, but only by
Verlegen von Lichtleitern an beliebigen Orten Leuchten aus Leuchtstoffen, welche an die Lichtleiter gekoppelt sind, zu installieren. Laying light guides anywhere you want to install lights from phosphors that are coupled to the light guides.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen und Formkörper als Leuchtstoff bzw. Leuchtstoffkörper. Another object of the present invention is the use of the compounds of the invention and shaped articles as a phosphor or phosphor body.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur teilweisen oder vollständigen Konversion der blauen oder im nahen UV-liegenden Emission einerAnother object of the present invention is the use of the compounds of the invention for the partial or complete conversion of the blue or in the near UV emission of a
Lumineszenzdiode. Weiterhin bevorzugt ist die Verwendung der erfindungsgemäßen Emitting diode. Further preferred is the use of the invention
Verbindungen zur Konversion der blauen oder im nahen UV-liegenden Emission in sichtbare weiße Strahlung. Weiterhin ist die Verwendung der erfindungsgemäßen Verbindungen zur Konversion der Primärstrahlung in einen bestimmten Farbpunkt nach dem„Color on demand"- Konzept bevorzugt. Compounds for the conversion of blue or near UV emission into visible white radiation. Furthermore, the use of the compounds according to the invention for the conversion of the primary radiation into a specific color point according to the "color on demand" concept is preferred.
Die erfindungsgemäßen Verbindungen der Formel I können einzeln, oder als Mischung mit den dem Fachmann geläufigen folgenden Leuchtstoffen eingesetzt werden: The compounds of the formula I according to the invention can be used individually or as a mixture with the following phosphors familiar to the person skilled in the art:
Ba2Si04:Eu2+, BaSi2O5Pb2+, BaxSri1-xF2:Eu2+, BaSrMgSi2O7: Eu2+, Ba 2 Si0 4 : Eu 2+ , BaSi 2 O 5 Pb 2+ , Ba x Sri 1-x F 2 : Eu 2+ , BaSrMgSi 2 O 7 : Eu 2+ ,
BaTiP2O7, (Ba1Ti)2P2O7Ti, Ba3WO6:U, BaY2F8 Er3+,Yb+, Be2SiO4:Mn2+, Bi4Ge3Oi2, CaAI2O4:Ce3+, CaLa4O7:Ce3+, CaAI2O4:Eu2+, CaAI2O4:Mn2+, CaAI4O7:Pb2+,Mn2+, CaAI2O4Tb3+, Ca3AI2Si3O12Oe3+, BaTiP 2 O 7 , (Ba 1 Ti) 2 P 2 O 7 Ti, Ba 3 WO 6 : U, BaY 2 F 8 Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 Oi 2 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 : Eu 2+ , CaAl 2 O 4 : Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 Tb 3+ , Ca 3 Al 2 Si 3 O 12 Oe 3+ ,
Ca3AI2Si3Oi2:Ce3+, Ca3AI2Si30, 2:Eu2+, Ca2B5O9BrEu2+, Ca 3 Al 2 Si 3 Oi 2 : Ce 3+ , Ca 3 Al 2 Si 3 O, 2 : Eu 2+ , Ca 2 B 5 O 9 BrEu 2+ ,
Ca2B5O9ChEu2+, Ca2B5O9ChPb2+, CaB2O4:Mn2+, Ca2B2O5:Mn2+, CaB2O4Pb2+, CaB2P2O9:Eu2+, Ca5B2SiO10:Eu3+, Ca 2 B 5 O 9 ChEu 2+ , Ca 2 B 5 O 9 ChPb 2+ , CaB 2 O 4 : Mn 2+ , Ca 2 B 2 O 5 : Mn 2+ , CaB 2 O 4 Pb 2+ , CaB 2 P 2 O 9 : Eu 2+ , Ca 5 B 2 SiO 10 : Eu 3+ ,
Cao.5Ba0 5AI12O19:Ce3+,Mn2+, Ca2Ba3(PO4)3CI:Eu2+, CaBr2:Eu2+ in SiO2, CaCI2:Eu2+ in SiO2, CaCI2:Eu2+,Mn2+ in SiO2, CaF2:Ce3+, Cao. 5 Ba 0 5 Al 12 O 19 : Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4) 3 CI: Eu 2+ , CaBr 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ , Mn 2+ in SiO 2 , CaF 2 : Ce 3+ ,
CaF2:Ce3+,Mn2+, CaF2:Ce3+,Tb3+, CaF2: Eu2+, CaF2:Mn2+, CaF2: U,CaF 2 : Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaF 2 : U,
CaGa2O4:Mn2+, CaGa4O7:Mn2+, CaGa2S4:Ce3+, CaGa2S4:Eu2+, CaGa 2 O 4 : Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ ,
CaGa2S4:Mn2+, CaGa2S4Pb2+, CaGeO3:Mn2+, Cal2:Eu2+ in SiO2, Cal2:Eu2+,Mn2+ in SiO2, CaLaBO4:Eu3+, CaLaB3O7:Ce3+,Mn2+, CaGa 2 S 4 : Mn 2+ , CaGa 2 S 4 Pb 2+ , CaGeO 3 : Mn 2+ , Cal 2 : Eu 2+ in SiO 2 , Cal 2 : Eu 2+ , Mn 2+ in SiO 2 , CaLaBO 4 Eu 3+ , CaLaB 3 O 7 : Ce 3+ , Mn 2+ ,
Ca2La2BO6.5Pb2+, Ca2MgSi2O7, Ca2MgSi2O7Oe3+, CaMgSi2O6:Eu2+, Ca3MgSi2O8:Eu2+, Ca2MgSi2O7:Eu2+, CaMgSi2O6:Eu2+,Mn2+, Ca 2 La 2 BO 6 . 5 Pb 2+ , Ca 2 MgSi 2 O 7 , Ca 2 MgSi 2 O 7 Oe 3+ , CaMgSi 2 O 6 : Eu 2+ , Ca 3 MgSi 2 O 8 : Eu 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Mn 2+ ,
Ca2MgSi2O7:Eu2+,Mn2+, CaMoO4, CaMoO4:Eu3+, CaO:Bi3+, CaOOd2+, CaO:Cu+, CaO:Eu3+, CaO:Eu3+, Na+, CaO:Mn2+, CaOPb2+, CaO:Sb3+, CaO:Sm3+, CaOTb3+, CaOTI, CaO:Zn2+, Ca2P2O7Oe3+, α-Ca3(PO4)2:Ce3+, ß-Ca3(PO4)2:Ce3+, Ca5(PO4)3CI:Eu2+, Ca5(PO4)3CI:Mn2+, Ca5(PO4)3CI:Sb3+, Ca5(PO4)3CI:Sn2+, ß-Ca3(PO4)2:Eu2+,Mn2+, Ca5(PO4)3F:Mn2+, Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 : Eu 3+ , CaO: Bi 3+ , CaOOd 2+ , CaO: Cu + , CaO: Eu 3+ , CaO: Eu 3 + , Na + , CaO: Mn 2+ , CaOPb 2+ , CaO: Sb 3+ , CaO: Sm 3+ , CaOTb 3+ , CaOTI, CaO: Zn 2+ , Ca 2 P 2 O 7 Oe 3+ , α -Ca 3 (PO 4 ) 2 : Ce 3+ , β-Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2+ , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Mn 2+ , Ca 5 ( PO 4 ) 3 F: Mn 2+ ,
Cas(PO4)3F:Sb3+, Cas(PO4)3F:Sn2+, α-Ca3(PO4)2:Eu2+, ß-Ca3(PO4)2:Eu2+, Ca2P2O7:Eu2+, Ca2P2O7:Eu2+,Mn2+, CaP2O6:Mn2+, α-Ca3(PO4)2Pb2+, α-Ca3(PO4)2:Sn2+, ß-Ca3(PO4)2:Sn2+, ß-Ca2P2O7:Sn,Mn, α-Ca3(PO4)2:Tr, CaS:Bi3+, CaS:Bi3+,Na, CaS:Ce3+, CaS:Eu2+, CaS:Cu+,Na+, CaS:La3+, CaS:Mn2+, CaSO4:Bi, CaSO4:Ce3+, CaSO4:Ce3+,Mn2+, CaSO4:Eu2+, CaSO4:Eu2+,Mn2+, CaSO4Pb2+, CaSPb2+, CaSPb2+,CI, CaSPb2+,Mn2+, CaSPr3+,Pb2+,CI, CaS:Sb3+, CaS:Sb3+,Na, CaS:Sm3+, CaS:Sn2+, Ca s (PO 4 ) 3 F: Sb 3+ , Ca s (PO 4 ) 3 F: Sn 2+ , α-Ca 3 (PO 4 ) 2 : Eu 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , α-Ca 3 (PO 4 ) 2 Pb 2 + , α-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 2 P 2 O 7 : Sn, Mn, α-Ca 3 (PO 4 ) 2 : Tr, CaS: Bi 3+ , CaS: Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS: La 3+ , CaS: Mn 2+ , CaSO 4 : Bi, CaSO 4 : Ce 3+ , CaSO 4 : Ce 3+ , Mn 2+ , CaSO 4 : Eu 2+ , CaSO 4 : Eu 2+ , Mn 2+ , CaSO 4 Pb 2+ , CaSPb 2+ , CaSPb 2+ , CI, CaSPb 2+ , Mn 2+ , CaSPr 3+ , Pb 2+ , CI, CaS: Sb 3+ , CaS: Sb 3+ , Na, CaS: Sm 3+ , CaS: Sn 2+ ,
CaS:Sn2+,F, CaS:Tb3+, CaS:Tb3+,CI, CaS:Y3+, CaS:Yb2+, CaS:Yb2+,CI, CaSiO3:Ce3+, Ca3SiO4CI2)Eu2+, Ca3SiO4CI2Pb2+, CaSiO3:Eu2+, CaS: Sn 2+ , F, CaS: Tb 3+ , CaS: Tb 3+ , CI, CaS: Y 3+ , CaS: Yb 2+ , CaS: Yb 2+ , CI, CaSiO 3 : Ce 3+ , Ca 3 SiO 4 Cl 2 ) Eu 2+ , Ca 3 SiO 4 Cl 2 Pb 2+ , CaSiO 3 : Eu 2+ ,
CaSiO3: Mn2+, Pb, CaSiO3Pb2+, CaSiO3:Pb2+,Mn2+, CaSiO3Ti4+, CaSiO 3 : Mn 2+ , Pb, CaSiO 3 Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 Ti 4+ ,
CaSr2(PO4)2:Bi3+, ß-(Ca,Sr)3(PO4)2:Sn2+Mn2+, CaTi0.9Alo.iO3:Bi3+, CaSr 2 (PO 4 ) 2 : Bi 3+ , β- (Ca, Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0 . 9 Alo.iO 3 : Bi 3+ ,
CaTiO3:Eu3+, CaTiO3Pr3+, Ca5(VO4)3CI, CaWO4, CaWO4Pb2+, CaWO4:W, Ca3WO6:U, CaYAIO4:Eu3+, CaYBO4:Bi3+, CaYBO4:Eu3+, CaYB0.8O3.7:Eu3+, CaY2ZrO6: Eu3+, (Ca,Zn,Mg)3(PO4)2:Sn, CeF3, (Ce,Mg)BaAlnO18:Ce, (Ce1Mg)SrAI11O18Oe, CeMgAI11O19OeTb, Cd2B6O11Mn2+, CdS:Ag+,Cr,CaTiO 3 : Eu 3+ , CaTiO 3 Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 Pb 2+ , CaWO 4 : W, Ca 3 WO 6 : U, CaYAIO 4 : Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 : Eu 3+ , CaYB 0 . 8 O 3 . 7 : Eu 3+ , CaY 2 ZrO 6 : Eu 3+ , (Ca, Zn, Mg) 3 (PO 4 ) 2 : Sn, CeF 3 , (Ce, Mg) BaAlnO 18 : Ce, (Ce 1 Mg) SrAI 11 O 18 Oe, CeMgAl 11 O 19 OeTb, Cd 2 B 6 O 11 Mn 2+ , CdS: Ag + , Cr,
CdS:ln, CdSMn, CdS:ln,Te, CdSTe, CdWO4, CsF, CsI, CsLNa+, CsITI, (ErCI3)o.25(BaCI2)o.75, GaN :Zn, Gd3Ga5O12Or3+, Gd3Ga5O12:Cr,Ce, CdS: ln, CdSMn, CdS: In, Te, CdSTe, CdWO 4 , CsF, CsI, CsLNa + , CsITI, (ErCl 3 ) o . 2 5 (BaCl 2 ) o.75, GaN: Zn, Gd 3 Ga 5 O 12 Or 3+ , Gd 3 Ga 5 O 12 : Cr, Ce,
GdNbO4:Bi3+, Gd2O2S:Eu3+, Gd2O2Pr3+, Gd2O2SPr1Ce1F, Gd2O2STb3+, Gd2SiO5:Ce3+, KAI11O17TI+, KGa11O17Mn2+, K2La2Ti3O10:Eu, KMgF3:Eu2+, KMgF3:Mn2+, K2SiF6:Mn4+, LaAI3B4Oi2:Eu3+, LaAIB2O6:Eu3+, LaAIO3:Eu3+,GdNbO 4 : Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 SPr 1 Ce 1 F, Gd 2 O 2 STb 3+ , Gd 2 SiO 5 : Ce 3 + , KAl 11 O 17 TI + , KGa 11 O 17 Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4+ , LaAl 3 B 4 Oi 2 : Eu 3+ , LaAIB 2 O 6 : Eu 3+ , LaAIO 3 : Eu 3+ ,
LaAIO3:Sm3+, LaAsO4:Eu3+, LaBr3:Ce3+, LaBO3:Eu3+, LaAIO 3 : Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ ,
(La,Ce,Tb)PO4:Ce:Tb, LaCI3:Ce3+, La2O3:Bi3+, LaOBrTb3+, LaOBrTm3+, LaOCI:Bi3+, LaOChEu3+, LaOF:Eu3+, La2O3:Eu3+, La2O3Pr3+, La2O2STb3+, LaPO4:Ce3+, LaPO4:Eu3+, LaSiO3ChCe3+, LaSiO3ChCe3+Tb3+, LaVO4:Eu3+, La2W3O12:Eu3+, LiAIF4:Mn2+, LiAI5O8Pe3+, LiAIO2Pe3+, LiAIO2:Mn2+,(La, Ce, Tb) PO 4 : Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBrTb 3+ , LaOBrTm 3+ , LaOCl: Bi 3+ , LaOChEu 3+ , LaOF: Eu 3+ , La 2 O 3 : Eu 3+ , La 2 O 3 Pr 3+ , La 2 O 2 STb 3+ , LaPO 4 : Ce 3+ , LaPO 4 : Eu 3+ , LaSiO 3 ChCe 3+ , LaSiO 3 ChCe 3+ Tb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAIF 4 : Mn 2+ , LiAl 5 O 8 Pe 3+ , LiAIO 2 Pe 3+ , LiAIO 2 : Mn 2+ ,
LiAI5O8:Mn2+, Li2CaP2O7:Ce3+,Mn2+, LiCeBa4Si4O14:Mn2+, LiAl 5 O 8 : Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ ,
LiCeSrBa3Si4O14:Mn2+, LilnO2:Eu3+, LilnO2:Sm3+, LiLaO2:Eu3+, LiCeSrBa 3 Si 4 O 14 : Mn 2+ , LilnO 2 : Eu 3+ , LilnO 2 : Sm 3+ , LiLaO 2 : Eu 3+ ,
LuAIO3:Ce3+, (Lu,Gd)2Si05:Ce3+, Lu2SiO5:Ce3+, Lu2Si207:Ce3+, LuAIO 3 : Ce 3+ , (Lu, Gd) 2 Si0 5 : Ce 3+ , Lu 2 SiO 5 : Ce 3+ , Lu 2 Si 2 0 7 : Ce 3+ ,
LuTaO4:Nb5+, Lu1-xYxAIO3:Ce3+, MgAI2O4:Mn2+, MgSrAI10O17:Ce, LuTaO 4 : Nb 5+ , Lu 1-x Y x AIO 3 : Ce 3+ , MgAl 2 O 4 : Mn 2+ , MgSrAl 10 O 17 : Ce,
MgB2O4:Mn2+, MgBa2(PO4)2:Sn2+, MgBa2(PO4)2:U, MgBaP2O7Pu2+,MgB 2 O 4 : Mn 2+ , MgBa 2 (PO 4 ) 2 : Sn 2+ , MgBa 2 (PO 4 ) 2 : U, MgBaP 2 O 7 Pu 2+ ,
MgBaP2O7:Eu2+,Mn2+, MgBa3Si2O8Pu2+, MgBa(SO4)2:Eu2+, MgBaP 2 O 7 : Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 Pu 2+ , MgBa (SO 4 ) 2 : Eu 2+ ,
Mg3Ca3(PO4)4:Eu2+, MgCaP2O7:Mn2+, Mg2Ca(SO4)3:Eu2+, Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ , MgCaP 2 O 7 : Mn 2+ , Mg 2 Ca (SO 4 ) 3 : Eu 2+ ,
Mg2Ca(SO4)3:Eu2+,Mn2, MgCeAInO19Tb3+, Mg4(F)GeO6:Mn2+, Mg 2 Ca (SO 4 ) 3 : Eu 2+ , Mn 2 , MgCeAl n O 19 Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ ,
Mg4(F)(Ge,Sn)O6:Mn2+, MgF2:Mn2+, MgGa2O4:Mn2+, Mg8Ge2O11F2Mn4+, MgS:Eu2+, MgSiO3:Mn2+, Mg2SiO4:Mn2+, Mg3SiO3F4Ti4+, MgSO4Pu2+,Mg 4 (F) (Ge, Sn) O 6 : Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 Mn 4+ , MgS: Eu 2+ , MgSiO 3 : Mn 2+ , Mg 2 SiO 4 : Mn 2+ , Mg 3 SiO 3 F 4 Ti 4+ , MgSO 4 Pu 2+ ,
MgSO4Pb2+, MgSrBa2Si2O7Pu2+, MgSrP2O7Pu2+, MgSr5(PO4)4:Sn2+, MgSr3Si2O8:Eu2+,Mn2+, Mg2Sr(SO4)3:Eu2+, Mg2TiO4Mn4+, MgWO4, MgSO 4 Pb 2+ , MgSrBa 2 Si 2 O 7 Pu 2+ , MgSrP 2 O 7 Pu 2+ , MgSr 5 (PO 4 ) 4 : Sn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Mg 2 Sr (SO 4 ) 3 : Eu 2+ , Mg 2 TiO 4 Mn 4+ , MgWO 4 ,
MgYBO4Pu3+, Na3Ce(PO4)2Tb3+, NaITI, NaL23K0142Eu0-I2TiSi4O11Pu3+, Na1 23Ko 42Eu0 12TiSi5O13 XH2OPu3+, Na1 29K0 46Er0 08TiSi4O11Pu3+, MgYBO 4 Pu 3+, Ce Na 3 (PO 4) 2 Tb 3+, naiti, Na L23 K 0142 Eu 0 - I2 TiSi 4 O 11 Pu 3+, Na 1 23 Co 42 Eu 0 12 TiSi 5 O 13 XH 2 OPu 3+ , Na 1 29 K 0 46 Er 0 08 TiSi 4 O 11 Pu 3+ ,
Na2Mg3AI2Si2O10Tb, Na(Mg2-xMnx)LiSi4O10F2:Mn, NaYF4:Er3+, Yb3+,Na 2 Mg 3 Al 2 Si 2 O 10 Tb, Na (Mg 2-x Mn x ) LiSi 4 O 10 F 2 : Mn, NaYF 4 : Er 3+ , Yb 3+ ,
NaYO2Pu3+, P46(70%) + P47 (30%), SrAI12O19:Ce3+, Mn2+, SrAI2O4Pu2+, SrAI4O7IEu3+, SrAI12O19:Eu2+, SrAI2S4:Eu2+, Sr2B5O9CLEu2+, NaYO 2 Pu 3+ , P46 (70%) + P47 (30%), SrAl 12 O 19 : Ce 3+ , Mn 2+ , SrAl 2 O 4 Pu 2+ , SrAl 4 O 7 IEu 3+ , SrAl 12 O 19 : Eu 2+ , SrAl 2 S 4 : Eu 2+ , Sr 2 B 5 O 9 CLEu 2+ ,
SrB4O7:Eu2+(F,CI,Br), SrB4O7Pb2+, SrB4O7Pb2+, Mn2+, SrB8Oi3:Sm2+, SrxBayClzAI2O4-zy2: Mn2+, Ce3+, SrBaSiO4:Eu2+, Sr(CI,Br,l)2:Eu2+ in SiO2, SrCI2:Eu2+ in SiO2, Sr5CI(PO4)3:Eu, SrwFxB4O6 5:Eu2+, SrwFxByOz:Eu2+,Sm2+, SrF2:Eu2+, SrGai2O19:Mn2+, SrGa2S4Oe3+, SrGa2S4:Eu2+, SrGa2S4Pb2+,SrB 4 O 7 : Eu 2+ (F, CI, Br), SrB 4 O 7 Pb 2+ , SrB 4 O 7 Pb 2+ , Mn 2+ , SrB 8 Oi 3 : Sm 2+ , Sr x Ba y Cl z Al 2 O 4-zy2 : Mn 2+ , Ce 3+ , SrBaSiO 4 : Eu 2+ , Sr (Cl, Br, I) 2 : Eu 2+ in SiO 2 , SrCl 2 : Eu 2+ in SiO 2 , Sr 5 Cl (PO 4 ) 3 : Eu, Sr w F x B 4 O 6 5 : Eu 2+ , Sr w F x B y O z : Eu 2+ , Sm 2+ , SrF 2 : Eu 2+ , SrGai 2 O 19 : Mn 2+ , SrGa 2 S 4 Oe 3+ , SrGa 2 S 4 : Eu 2+ , SrGa 2 S 4 Pb 2+ ,
SrIn2O4Pr3+, Al3+, (Sr,Mg)3(PO4)2:Sn, SrMgSi2O6)Eu2+, Sr2MgSi2O7)Eu2+, Sr3MgSi2O8)Eu2+, SrMoO4)U, SrO-3B2O3:Eu2+,CI, B-SrO SB2O3Pb2+, ß-SrO-3B2O3 Pb2+,Mn2+, α-SrO-3B2O3:Sm2+, Sr6P5BO20)Eu, SrIn 2 O 4 Pr 3+ , Al 3+ , (Sr, Mg) 3 (PO 4 ) 2 : Sn, SrMgSi 2 O 6 ) Eu 2+ , Sr 2 MgSi 2 O 7 ) Eu 2+ , Sr 3 MgSi 2 O 8 ) Eu 2+ , SrMoO 4 ) U, SrO-3B 2 O 3 : Eu 2+ , CI, B-SrO SB 2 O 3 Pb 2+ , β-SrO-3B 2 O 3 Pb 2+ , Mn 2 + , α-SrO-3B 2 O 3 : Sm 2+ , Sr 6 P 5 BO 20 ) Eu,
Sr5(PO4)3CI:Eu2+, Sr5(PO4)3CI:Eu2+,Pr3+, Sr5(PO4)3CI:Mn2+, Sr 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , Pr 3+ , Sr 5 (PO 4 ) 3 Cl: Mn 2+ ,
Sr5(PO4)3CI:Sb3+, Sr2P2O7)Eu2+, ß-Sr3(PO4)2:Eu2+, Sr5(PO4)3F:Mn2+,Sr 5 (PO 4 ) 3 Cl: Sb 3+ , Sr 2 P 2 O 7 ) Eu 2+ , β-Sr 3 (PO 4 ) 2 : Eu 2+ , Sr 5 (PO 4 ) 3 F: Mn 2+ .
Sr5(PO4)3F:Sb3+, Sr5(PO4)3F:Sb3+,Mn2+, Sr5(PO4)3F:Sn2+, Sr2P2O7)Sn2+, ß-Sr3(PO4)2:Sn2+, ß-Sr3(PO4)2:Sn2+,Mn2+(AI), SrS)Ce3+, SrS)Eu2+, SrS)Mn2+, SrS:Cu\Na, SrSO4)Bi, SrSO4)Ce3+, SrSO4)Eu2+, SrSO4:Eu2+,Mn2+, Sr 5 (PO 4 ) 3 F: Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 ) Sn 2+ , β-Sr 3 (PO 4 ) 2 : Sn 2+ , β-Sr 3 (PO 4 ) 2 : Sn 2+ , Mn 2+ (Al), SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu \ Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ ,
Sr5Si4Oi0CI6)Eu2+, Sr2SiO4)Eu2+, SrTiO3)Pr3+, SrTiO3: Pr3+,AI3+, Sr3WO6)U, SrY2O3)Eu3+, ThO2)Eu3+, ThO2)Pr3+, ThO2)Tb3+, YAI3B4Oi2)Bi3+, Sr 5 Si 4 Oi 0 Cl 6 ) Eu 2+ , Sr 2 SiO 4 ) Eu 2+ , SrTiO 3 ) Pr 3+ , SrTiO 3 : Pr 3+ , Al 3+ , Sr 3 WO 6 ) U, SrY 2 O. 3 ) Eu 3+ , ThO 2 ) Eu 3+ , ThO 2 ) Pr 3+ , ThO 2 ) Tb 3+ , YAl 3 B 4 Oi 2 ) Bi 3+ ,
YAI3B4O12)Ce3+, YAI3B4O12:Ce3+,Mn, YAI3B4O12)Ce3+Jb3+, YAI3B4O12)Eu3+, YAI3B4Oi2:Eu3+,Cr3+, YAI3B4Oi2:Th4+,Ce3+,Mn2+, YAIO3)Ce3+, Y3AI5O12)Ce3+, Y3AI5O12)Cr3+, YAIO3)Eu3+, Y3AI5Oi2)Eu3', Y4AI2O9)Eu3+, Y3AI5O12)Mn4+, YAIO3)Sm3+, YAIO3)Tb3+, Y3AI5O12)Tb3+, YAsO4)Eu3+, YBO3)Ce3+, YAl 3 B 4 O 12 ) Ce 3+ , YAl 3 B 4 O 12 : Ce 3+ , Mn, YAl 3 B 4 O 12 ) Ce 3+ Jb 3+ , YAl 3 B 4 O 12 ) Eu 3+ , YAI 3 B 4 Oi 2 : Eu 3+ , Cr 3+ , YAl 3 B 4 Oi 2 : Th 4+ , Ce 3+ , Mn 2+ , YAIO 3 ) Ce 3+ , Y 3 Al 5 O 12 ) Ce 3+ , Y 3 Al 5 O 12 ) Cr 3+ , YAIO 3 ) Eu 3+ , Y 3 Al 5 O 2 ) Eu 3 ', Y 4 Al 2 O 9 ) Eu 3+ , Y 3 Al 5 O 12 ) Mn 4 + , YAIO 3 ) Sm 3+ , YAIO 3 ) Tb 3+ , Y 3 Al 5 O 12 ) Tb 3+ , YAsO 4 ) Eu 3+ , YBO 3 ) Ce 3+ ,
YBO3)Eu3+, YF3:Er3+,Yb3+, YF3)Mn2+, YF3)Mn2+Jh4+, YF3:Tm3+,Yb3+,YBO 3 ) Eu 3+ , YF 3 : Er 3+ , Yb 3+ , YF 3 ) Mn 2+ , YF 3 ) Mn 2+ Jh 4+ , YF 3 : Tm 3+ , Yb 3+ ,
(Y1Gd)BO3)Eu, (Y1Gd)BO3)Tb, (Y1Gd)2O3)Eu3+, Y1 34Gd0 60O3(Eu1Pr)1 Y2O3)Bi3+, YOBr)Eu3+, Y2O3)Ce1 Y2O3)Er3+, Y2O3)Eu3+(YOE), (Y 1 Gd) BO 3 ) Eu, (Y 1 Gd) BO 3 ) Tb, (Y 1 Gd) 2 O 3 ) Eu 3+ , Y 1 34 Gd 0 60 O 3 (Eu 1 Pr) 1 Y 2 O 3 ) Bi 3+ , YOBr) Eu 3+ , Y 2 O 3 ) Ce 1 Y 2 O 3 ) Er 3+ , Y 2 O 3 ) Eu 3+ (YOE),
Y2O3)Ce3+Jb3+, YOCI)Ce3+, YOCI)Eu3+, YOF)Eu3+, YOF)Tb3+, Y2O3)Ho3+, Y2O2S)Eu3+, Y2O2S)Pr3+, Y2O2S)Tb3+, Y2O3)Tb3+, YPO4)Ce3+, Y 2 O 3 ) Ce 3+ Jb 3+ , YOCl) Ce 3+ , YOCl) Eu 3+ , YOF) Eu 3+ , YOF) Tb 3+ , Y 2 O 3 ) Ho 3+ , Y 2 O 2 S ) Eu 3+ , Y 2 O 2 S) Pr 3+ , Y 2 O 2 S) Tb 3+ , Y 2 O 3 ) Tb 3+ , YPO 4 ) Ce 3+ ,
YPO4)Ce3+Jb3+, YPO4)Eu3+, YPO4)Mn2+Jh4+, YPO4)V5+, Y(P1V)O4)Eu1 YPO 4 ) Ce 3+ Jb 3+ , YPO 4 ) Eu 3+ , YPO 4 ) Mn 2+ Jh 4+ , YPO 4 ) V 5+ , Y (P 1 V) O 4 ) Eu 1
Y2SiO5)Ce3+, YTaO4, YTaO4)Nb5+, YVO4)Dy3+, YVO4)Eu3+, ZnAI2O4)Mn2+, ZnB2O4)Mn2+, ZnBa2S3)Mn2+, (Zn1Be)2SiO4)Mn2+, Zn0 4Cd0 6S)Ag, Y 2 SiO 5 ) Ce 3+ , YTaO 4 , YTaO 4 ) Nb 5+ , YVO 4 ) Dy 3+ , YVO 4 ) Eu 3+ , ZnAl 2 O 4 ) Mn 2+ , ZnB 2 O 4 ) Mn 2+ , ZnBa 2 S 3 ) Mn 2+ , (Zn 1 Be) 2 SiO 4 ) Mn 2+ , Zn 0 4 Cd 0 6 S) Ag,
Zn0 6Cd0 4S)Ag1 (Zn1Cd)S)Ag1CI, (Zn1Cd)S)Cu, ZnF2)Mn2+, ZnGa2O4, ZnGa2O4)Mn2+, ZnGa2S4)Mn2+, Zn2GeO4)Mn2+, (Zn1Mg)F2)Mn2+, Zn 0 6 Cd 0 4 S) Ag 1 (Zn 1 Cd) S) Ag 1 Cl, (Zn 1 Cd) S) Cu, ZnF 2 ) Mn 2+ , ZnGa 2 O 4 , ZnGa 2 O 4 ) Mn 2+ , ZnGa 2 S 4 ) Mn 2+ , Zn 2 GeO 4 ) Mn 2+ , (Zn 1 Mg) F 2 ) Mn 2+ ,
ZnMg2(PO4)2:Mn2+, (Zn,Mg)3(PO4)2:Mn2+, ZnO:AI3+,Ga3+, ZnO)Bi3+, ZnMg 2 (PO 4 ) 2 : Mn 2+ , (Zn, Mg) 3 (PO 4 ) 2 : Mn 2+ , ZnO: Al 3+ , Ga 3+ , ZnO) Bi 3+ ,
ZnO)Ga3+, ZnO)Ga, ZnO-CdO)Ga, ZnO)S, ZnO)Se, ZnO)Zn, ZnS:Ag+,CI', ZnS)Ag1Cu1CI1 ZnS)Ag1Ni, ZnS)Au1In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS)Ag1Br1Ni, ZnS-CdS:Ag+,CI, ZnS-CdS)Cu1Br, ZnS-CdS)Cu1I, ZnS)CI", ZnS)Eu2+, ZnS)Cu, ZnS:Cu\AI3+, ZnS:Cu+,CI", ZnS)Cu1Sn1 ZnS)Eu2+, ZnS)Mn2+, ZnS)Mn1Cu, ZnS)Mn2+Je2+, ZnS)P,ZnO) Ga 3+ , ZnO) Ga, ZnO-CdO) Ga, ZnO) S, ZnO) Se, ZnO) Zn, ZnS: Ag + , Cl ' , ZnS) Ag 1 Cu 1 Cl 1 ZnS) Ag 1 Ni, ZnS) Au 1 In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS) Ag 1 Br 1 Ni, ZnS-CdS: Ag + , CI, ZnS-CdS) Cu 1 Br, ZnS-CdS) Cu 1 I, ZnS) Cl " , ZnS) Eu 2+ , ZnS) Cu, ZnS: Cu \ Al 3+ , ZnS: Cu + , Cl " , ZnS ) Cu 1 Sn 1 ZnS) Eu 2+ , ZnS) Mn 2+ , ZnS) Mn 1 Cu, ZnS) Mn 2+ 2+ , ZnS) P,
ZnS:P3 ,Cr, ZnS)Pb2+, ZnS:Pb2+,Cr, ZnS)Pb1Cu1 Zn3(PO4)2:Mn2+, Zn2SiO4)Mn2+, Zn2SiO4:Mn2+,As5+, Zn2SiO4IMn1Sb2O2, Zn2SiO4:Mn2+,P, Zn2SiO4Ti4+, ZnS:Sn2+, ZnS:Sn,Ag, ZnS:Sn2+,Li+, ZnSTe1Mn, ZnS- ZnTe:Mn2+, ZnSe:Cu+,CI, ZnWO4 ZnS: P 3 , Cr, ZnS) Pb 2+ , ZnS: Pb 2+ , Cr, ZnS) Pb 1 Cu 1 Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 ) Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 IMn 1 Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 Ti 4 + , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnSTe 1 Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl, ZnWO 4
Die folgenden Beispiele sollen die vorliegende Erfindung verdeutlichen. Sie sind jedoch keinesfalls als limitierend zu betrachten. Alle Verbindungen oder Komponenten, die in den Zubereitungen verwendet werden können, sind entweder bekannt und käuflich erhältlich oder können nach bekannten Methoden synthetisiert werden. Die in den Beispielen angegebenenThe following examples are intended to illustrate the present invention. However, they are by no means to be considered limiting. Any compounds or components that can be used in the formulations are either known and commercially available or can be synthesized by known methods. Those given in the examples
Temperaturen gelten immer in 0C. Es versteht sich weiterhin von selbst, dass sich sowohl in der Beschreibung als auch in den Beispielen die zugegebenen Mengen der Komponenten in den Zusammensetzungen immer zu insgesamt 100% addieren. Gegebene Prozentangaben sind immer im gegebenen Zusammenhang zu sehen. Sie beziehen sich üblicherweise aber immer auf die Masse der angegebenen Teil- oder Gesamtmenge. Temperatures are always 0 C. It goes without saying that both in the description and in the examples, the added amounts of the components in the compositions always add up to a total of 100%. Given percentages are always to be seen in the given context. However, they usually refer to the mass of the specified partial or total quantity.
Beispiele Examples
Beispiel 1 : Herstellung von 5g Sr5194EUo1OeSJaOeN4 Example 1: Preparation of 5 g Sr 5194 EUo 1O eSJaOeN 4
6.8112 g SrC2O4 (Alfa Aesar, 95%), 0.0689 g Eu2O3 (Treibacher, 99.99%) und 0.9159 g α-Si3N4 (ÜBE, 99%) werden in einer mit trockenem N2 gefüllten 6.8112 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0689 g of Eu 2 O 3 (Treibacher, 99.99%) and 0.9159 g of α-Si 3 N 4 (UBE, 99%) are packed in dry N 2
Handschuhbox in einem Achatmörser gründlich miteinander vermengt. Die so erhaltene Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3- Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt Glove box in an agate mortar thoroughly mixed together. The raw material mixture thus obtained is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere
Beispiel 2: Herstellung von 5g Sr5,94Euo,o6Si3θ5l88N4Fo,24 6.6736 g SrC2O4 (Alfa Aesar, 95%), 0.0689 g Eu2O3 (Treibacher, 99.99%), 0.0984 g SrF2 (Aldrich, 99.998%) und 0.9159 g Ci-Si3N4 (UBE, 99%) werden in einer mit trockenem N2 gefüllten Handschuhbox in einem Achatmörser gründlich miteinander vermengt. Die so erhaltene Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3-Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt. Example 2: Preparation of 5 g Sr5.9 4 Euo, o6 Si3θ 5l 88N 4 Fo, 24 6.6736 g SrC 2 O 4 (Alfa Aesar, 95%), 0.0689 g Eu 2 O 3 (Treibacher, 99.99%), 0.0984 g SrF 2 (Aldrich, 99.998%) and 0.9159 g Ci-Si 3 N 4 (UBE, 99 %) are mixed thoroughly in an agate mortar with a dry N 2 glove box. The resulting mixture of raw materials is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
Beispiel 3: Herstellung von 5g Sr5194EUo106Si3O518SN4CIc24 Example 3: Preparation of 5 g of Sr 5194 EuO 106 Si 3 O 518 SN 4 CIc 24
6.6168 g SrC2O4 (Alfa Aesar, 95%), 0.0683 g Eu2O3 (Treibacher, 99.99%), 0.1231 g SrCI2 (Alfa Aesar, 99.5%) und 0.9081 g Ct-Si3N4 (UBE, 99%) werden in einer mit trockenem N2 gefüllten Handschuhbox in einem 6.6168 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0683 g of Eu 2 O 3 (Treibacher, 99.99%), 0.1231 g of SrCl 2 (Alfa Aesar, 99.5%) and 0.9081 g of Ct-Si 3 N 4 (UBE, 99%) are packed in a glove box filled with dry N 2
Achatmörser gründlich miteinander vermengt. Die so erhaltene  Agate mortar thoroughly mixed together. The thus obtained
Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3-Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt. Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
Beispiel 4: Herstellung von 5g Sr5182Th0106Eu01OeSi3O6N4 Example 4: Preparation of 5 g of Sr 5182 Th 0106 Eu 01O eSi 3 O 6 N 4
6.6444 g SrC2O4 (Alfa Aesar, 95%), 0.0686 g Eu2O3 (Treibacher, 99.99%), 0.1030 g ThO2 (Merck, 99%) und 0.9119 g Ci-Si3N4 (UBE, 99%) werden in einer mit trockenem N2 gefüllten Handschuhbox in einem Achatmörser gründlich miteinander vermengt. Die so erhaltene Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3-Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt. 6.6444 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0686 g of Eu 2 O 3 (Treibacher, 99.99%), 0.1030 g of ThO 2 (Merck, 99%) and 0.9119 g of Ci-Si 3 N 4 (UBE, 99 %) are mixed thoroughly in an agate mortar with a dry N 2 glove box. The resulting mixture of raw materials is transferred into a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
Beispiel 5: Herstellung von 5g Sr5182Os01OeEu01OeSi3O6N4 6.6658 g SrC2O4 (Alfa Aesar, 95%), 0.0688 g Eu2O3 (Treibacher, 99.99%), 0.0869 g OsO2 (Alfa Aesar, Os 83% min) und 0.9148 g Q-Si3N4 (UBE, 99%) werden in einer mit trockenem N2 gefüllten Handschuhbox in einem Example 5: Preparation of 5 g Sr 5182 Os 01O eEu 01O eSi 3 O 6 N 4 6.6658 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0688 g of Eu 2 O 3 (Treibacher, 99.99%), 0.0869 g of OsO 2 (Alfa Aesar, Os 83% min) and 0.9148 g of Q-Si 3 N 4 ( UBE, 99%) are placed in a glove box filled with dry N 2 in one
Achatmörser gründlich miteinander vermengt. Die so erhaltene Agate mortar thoroughly mixed together. The thus obtained
Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3-Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt. Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
Beispiel 6: Herstellung von 5g Sr5 82Ru0 OeEu0 OeSi3O6N4 Example 6: Preparation of 5 g of Sr 5 82 Ru 0 O eEu 0 O eSi 3 O 6 N 4
6.7129 g SrC2O4 (Alfa Aesar, 95%), 0.0693 g Eu2O3 (Treibacher, 99.99%), 0.0524 g RuO2 (Alfa Aesar, 99.9%) und 0.9213 g Ci-Si3N4 (UBE, 99%) werden in einer mit trockenem N2-gefüllten Handschuhbox in einem 6.7129 g of SrC 2 O 4 (Alfa Aesar, 95%), 0.0693 g of Eu 2 O 3 (Treibacher, 99.99%), 0.0524 g of RuO 2 (Alfa Aesar, 99.9%) and 0.9213 g of Ci-Si 3 N 4 (UBE, 99%) are placed in a dry N 2 -filled glove box in one
Achatmörser gründlich miteinander vermengt. Die so erhaltene Agate mortar thoroughly mixed together. The thus obtained
Rohstoffmischung wird in ein mit Mo-Folie ausgekleidetes AI2O3-Schiffchen überführt. Das Gemisch wird bei 1200 - 1600 0C für 8 Stunden unter N2/H2/NH3-Atmosphäre geheizt. Raw material mixture is transferred to a Mo foil-lined Al 2 O 3 boat. The mixture is heated at 1200 - 1600 0 C for 8 hours under N 2 / H 2 / NH 3 atmosphere.
Beispiel 7: Hochdruck-Sintern der Leuchtstoffe aus den Beispielen 1-6 Example 7: High pressure sintering of the phosphors of Examples 1-6
Jeweils 5g der Verbindung aus den Beispielen 1-6 werden in einen MO- Tiegel gefüllt und in einen Hochdruck-Sinterofen überführt. In diesem werden die Proben bei einem Stickstoffdruck von 40-70 bar und einer Heizrampe von 5-10 K/min auf eine Temperatur von 1400-1600 0C geheizt, die Haltezeit beträgt 6-10 Stunden. Beispiel 8: Heißisostatisches Verpressen der Leuchtstoffe aus denIn each case 5 g of the compound from Examples 1-6 are filled into an MO crucible and transferred to a high-pressure sintering furnace. In this, the samples are heated at a nitrogen pressure of 40-70 bar and a heating ramp of 5-10 K / min to a temperature of 1400-1600 0 C, the holding time is 6-10 hours. Example 8: Hot isostatic pressing of the phosphors from the
Beispielen 1-6 Jeweils 5 g der Verbindungen aus den Beispielen 1-6 werden in eine isostatische Heißpresse überführt. Die Heißpresse wird unter Vakuum gesetzt und die Temperatur auf 200 °C erhöht. Anschließend wird die Temperatur mit 5-10 K/min auf 1400-1600 0C erhöht, gleichzeitig wird der Druck auf Werte zwischen 50 und 200 MPa nachgeregelt, die Haltezeit beträgt 6-10 Stunden. Examples 1-6 In each case 5 g of the compounds from Examples 1-6 are transferred to an isostatic hot press. The hot press is placed under vacuum and the temperature is raised to 200 ° C. Subsequently, the temperature is increased at 5-10 K / min to 1400-1600 0 C, at the same time, the pressure is readjusted to values between 50 and 200 MPa, the holding time is 6-10 hours.
Beispiel 9: Waschen der Leuchtstoffe aus den Beispielen 1-8 Example 9: Washing the phosphors of Examples 1-8
Jeweils 5 g der Verbindungen aus den Beispielen 1-8 werden in 100 ml 1- molarer Salzsäure suspendiert und 3 Stunden bei Raumtemperatur gerührt. Anschließend wird der Rückstand abgesaugt und mit VE-Wasser neutral gewaschen. Der gewaschene Rückstand wird dann in 100 ml einer 1 -molaren KOH-Lösung suspendiert und weitere 30 Minuten gerührt. In each case 5 g of the compounds from Examples 1-8 are suspended in 100 ml of 1 molar hydrochloric acid and stirred for 3 hours at room temperature. The residue is then filtered off with suction and washed neutral with demineralized water. The washed residue is then suspended in 100 ml of a 1 molar KOH solution and stirred for a further 30 minutes.
Anschließend wird der Rückstand abgesaugt und erneut mit VE-Wasser neutral gewaschen. The residue is then filtered off with suction and washed again with deionized water until neutral.
Tab. 1 : Optische Eigenschaften von Sr5 94Eu0 OeSiSOeN4IEu (als Referenz) und co-dotiertem erfindungsgemäßen Leuchtstoffen Tab. 1: Optical properties of Sr 5 94 Eu 0 O eSi S OeN 4 IEu (as a reference) and co-doped phosphors according to the invention
Beschreibung der Abbildungen Description of the pictures
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen: In the following the invention will be explained in more detail with reference to several embodiments. Show it:
Fig. 1 : zeigt ein COB (Chip on board) Package des Typs InGaN, das als Lichtquelle (LED) für weißes Licht dient (1=Halbleiterchip; 2,3 = elektr. Anschlüsse; 4 = Konversionsleuchtstoff; 7 = Board (Platine). Der 1 shows a COB (chip on board) package of the type InGaN, which serves as light source (LED) for white light (1 = semiconductor chip, 2.3 = electrical connections, 4 = conversion luminescent material, 7 = board (board) . Of the
Leuchtstoff ist in einer Bindemittellinse verteilt, die gleichzeitig ein sekundäres optisches Element darstellt und die Lichtabstrahlcharakteristik als Linse beeinflusst. Phosphor is dispersed in a binder lens, which simultaneously constitutes a secondary optical element and influences the light emission characteristic as a lens.
Fig. 2: zeigt ein COB (Chip on board) Package des Typs InGaN, das als Lichtquelle (LED) für weißes Licht dient (1=Halbleiterchip; 2,3 = elektr.2 shows a COB (chip on board) package of the type InGaN, which serves as a light source (LED) for white light (1 = semiconductor chip, 2.3 = electr.
Anschlüsse; 4 = Konversionsleuchtstoff; 7 = Board (Platine) Der Connections; 4 = conversion phosphor; 7 = board (board) The
Leuchtstoff befindet sich in einer dünnen Bindemittelschicht verteilt direkt auf dem LED Chip. Ein sekundäres optisches Element bestehend aus einem transparenten Material kann darauf platziert werden. Phosphor is distributed in a thin binder layer directly on the LED chip. A secondary optical element consisting of a transparent material can be placed thereon.
Fig.3: zeigt ein Golden Dragon® Package, das als Lichtquelle (LED) für weißes Licht dient (1=Halbleiterchip; 2,3 = elektr. Anschlüsse; 4 = Fig.3: shows a Golden Dragon ® Package that as the light source (LED) for white light (1 = semiconductor chip; 2,3 = electrical connections; 4 =.
Konversionsleuchtstoff in Kavität mit Reflektor). Der Konversionsleuchtstoff befindet sich in einem Bindemittel dispergiert, wobei die Mischung die Kavität ausfüllt. Conversion luminescent material in cavity with reflector). The conversion phosphor is dispersed in a binder, the mixture filling the cavity.
Fig. 4: zeigt ein SMD-Package (Surface mounted package) wobei 1 = Gehäuse; 2, 3 = elektr. Anschlüsse, 4 = Konversionsschicht bedeutet. Der Halbleiterchip ist komplett mit dem erfindungsgemäßen Leuchtstoff bedeckt. Das SMD-Design hat den Vorteil, dass es eine kleine Bauform hat und somit in herkömmliche Leuchten passt. Fig. 5: zeigt eine schematische Abbildung einer Leuchtdiode mit 1 = Fig. 4: shows an SMD package (Surface mounted package) where 1 = housing; 2, 3 = electr. Connections, 4 = conversion layer means. The semiconductor chip is completely covered with the phosphor according to the invention. The SMD design has the advantage that it has a small design and thus fits into conventional luminaires. FIG. 5: shows a schematic illustration of a light emitting diode with 1 =
Halbleiterchip; 2,3 = elektr. Anschlüsse; 4 =Konversionsleuchtstoff, 5 = Bonddraht, wobei der Leuchtstoff in einem Bindemittel als Top Globe aufgebracht ist. Diese Form der Leuchtstoff-/Bindemittelschicht kann als sekundäres optisches Element wirken und z. B. die Lichtausbreitung beeinflussen. Semiconductor chip; 2,3 = electr. Connections; 4 = conversion luminescent material, 5 = bonding wire, wherein the luminescent material is applied in a binder as Top Globe. This form of phosphor / binder layer may act as a secondary optical element and may be e.g. B. influence the light propagation.
Fig. 6: zeigt eine schematische Abbildung einer Leuchtdiode mit 1 = FIG. 6: shows a schematic illustration of a light-emitting diode with 1 =
Halbleiterchip; 2,3 = elektr. Anschlüsse; 4 =Konversionsleuchtstoff, 5 =Semiconductor chip; 2,3 = electr. Connections; 4 = conversion luminescent material, 5 =
Bonddraht, wobei der Leuchtstoff als dünne Schicht in einem Bindemittel dispergiert aufgebracht ist. Auf diese Schicht lässt sich leicht ein weiteres, als sekundäres optisches Element wirkendes Bauteil, wie z.B eine Linse aufbringen. Bonding wire, wherein the phosphor is applied as a thin layer dispersed in a binder. A further component acting as a secondary optical element, such as a lens, can easily be applied to this layer.
Fig. 7: zeigt ein Beispiel für eine weitere Anwendung, wie sie im Prinzip bereits aus US-B 6,700,322 bekannt ist. Dabei wird der erfindungsgemäße Leuchtstoff zusammen mit einer OLED angewendet. Die Lichtquelle ist eine organisch lichtemittierende Diode 31 , bestehend aus der eigentlichen organischen Folie 30 und einem transparenten Substrat 32. Die Folie 30 emittiert insbesondere blaues primäres Licht, erzeugt beispielsweise mittels PVK:PBD:Kumarin (PVK, Abk. für Poly(n-vinylcarbazol); PBD, Abk. für 2- (4-biphenyl)-5-(4-tert.-butylphenyl)-1 ,3,4-oxadiazol)). Die Emission wird von einer Deckschicht, gebildet aus einer Schicht 33 des erfindungsgemäßen Leuchtstoffs, teilweise in gelbes, sekundär emittiertes Licht umgewandelt, so dass insgesamt durch Farbmischung des primär und sekundär emittierten Lichts eine weiße Emission realisiert wird. Die OLED besteht im wesentlichen aus mindestens einer Schicht eines lichtemittierenden Fig. 7: shows an example of a further application, as already known in principle from US Pat. No. 6,700,322. In this case, the phosphor according to the invention is used together with an OLED. The light source is an organic light-emitting diode 31, consisting of the actual organic film 30 and a transparent substrate 32. The film 30 emits in particular blue primary light, produced for example by means of PVK: PBD: coumarin (PVK, abbreviation for poly (n-vinylcarbazole) PBD, abbreviation for 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1, 3,4-oxadiazole)). The emission is partially converted into a yellow, secondarily emitted light by a cover layer, formed from a layer 33 of the phosphor according to the invention, so that a white emission is achieved overall by color mixing of the primary and secondary emitted light. The OLED consists essentially of at least one layer of a light-emitting
Polymers oder von sog. small molecules zwischen zwei Elektroden, die aus an sich bekannten Materialien bestehen, wie beispielsweise ITO (Abk. fürPolymer or so-called. Small molecules between two electrodes, which consist of known materials, such as ITO (abbr
„indium tin oxide") als Anode und ein hochreaktives Metall, wie z.B. Ba oder Ca, als Kathode. Oft werden auch mehrere Schichten zwischen den Elektroden verwendet, die entweder als Lochtransportschicht dienen oder im Bereich der„small molecules" auch als Elektronentransportschichten dienen. Als emittierende Polymere kommen beispielsweise Polyfluorene oder Polyspiro-Materialien zum Einsatz. "Indium tin oxide") as an anode and a highly reactive metal, such as Ba or Ca, as a cathode. Often, several layers are used between the electrodes, which either serve as a hole transport layer or serve as electron transport layers in the area of the "small molecules." Polyfluorene or polyspiro materials, for example, are used as emitting polymers.

Claims

Patentansprüche claims
1. Verbindung des 6-3-6-4-Erdalkali-silicooxynitridtyps mit Europium-Dotierung, der zusätzlich Co-Dotanten aus der Reihe Th, Ru, Os, F und/ oder Cl enthält. 1. Compound of the 6-3-6-4 alkaline earth silicooxynitride type with europium doping, which additionally contains co-dopants from the series Th, Ru, Os, F and / or Cl.
2. Verbindung nach Anspruch 1 , gekennzeichnet durch die Formel I 2. A compound according to claim 1, characterized by the formula I.
(Ca1Sr1Ba)6-X (Si1-VMe7 J3(O1-2Ma2Z)6N4: Eux (I) (Ca 1 Sr 1 Ba) 6-X (Si 1 -V Me 7 J 3 (O 1-2 Ma 2 Z ) 6 N 4 : Eu x (I)
wobei  in which
Me = Th, Ru und/oder Os  Me = Th, Ru and / or Os
Ma = F und/oder Cl  Ma = F and / or Cl
x < 0.5  x <0.5
y < 1 und  y <1 and
z < 0.1  z <0.1
ist.  is.
3. Verbindung nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass x = 0.003 bis 0.2, y = 0.0001 bis 0.2 und z = 0.0005 bis 0.03 ist. 3. A compound according to claim 1 and / or 2, characterized in that x = 0.003 to 0.2, y = 0.0001 to 0.2 and z = 0.0005 to 0.03.
4. Verbindung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch 4. A compound according to one or more of claims 1 to 3, characterized
gekennzeichnet, dass x = 0.005 bis 0.15 und/oder y = 0.001 bis 0.02 ist.  in that x = 0.005 to 0.15 and / or y = 0.001 to 0.02.
5. Verbindung nach einem oder mehreren der Ansprüche 1 bis 5, erhältlich durch Mischen von Siliciumnitrid- , Europium- und Calcium- und/oder Strontium- und /oder Barium-haltigen Edukten mit mindestens einem 5. A compound according to one or more of claims 1 to 5, obtainable by mixing silicon nitride, europium and calcium and / or strontium and / or barium-containing educts with at least one
Thorium-, Osmium-, Ruthenium-, Fluorid- und/oder Chlorid-haltigen Co- Dotierstoff nach Festkörperdiffusionsmethoden und anschließender thermischer Nachbehandlung. Thorium, osmium, ruthenium, fluoride and / or chloride-containing Co dopant by solid-state diffusion methods and subsequent thermal aftertreatment.
6. Verfahren zur Herstellung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 mit folgenden Verfahrensschritten: 6. A process for preparing a compound according to one or more of claims 1 to 5 with the following process steps:
a) Herstellen einer Europium-dotierten 6-3-6-4-Erdalkali-silicooxynitrid- Verbindung, die mit Thorium-, Ruthenium-, Osmium-, Fluorid- und/oder Chlorid-haltigen Materialien co-dotiert wird, durch Mischen von mindestens 4 a) preparing a europium-doped 6-3-6-4 alkaline earth silicooxynitride compound which is co-doped with thorium, ruthenium, osmium, fluoride and / or chloride containing materials by mixing at least 4
Edukten ausgewählt aus Siliciumnitrid-, Europium-, Calcium-, Strontium-, Barium-, Thorium-, Ruthenium-, Osmium-, Fluorid- und/oder Chlorid-haltigen Materialien, Starting materials selected from silicon nitride, europium, calcium, strontium, barium, thorium, ruthenium, osmium, fluoride and / or chloride-containing materials,
b) Thermische Nachbehandlung der mit Thorium-, Ruthenium-, Osmium-, Fluorid- und/oder Chlorid- co-dotierten Verbindung.  b) Thermal aftertreatment of the thorium, ruthenium, osmium, fluoride and / or chloride co-doped compound.
c) Waschen der thermisch nachbehandelten Verbindungen mit einer HCI- und einer KOH-Lösung.  c) washing the thermally treated compounds with an HCl and a KOH solution.
7. Formkörper enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er eine raue Oberfläche besitzt, die Nanopartikel aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus und/ oder Partikel mit der Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 mit oder ohne Dotierstoffen aus der Reihe Europium, Thorium, Ruthenium, Osmium, Fluor und/oder Chlor trägt. 7. Shaped body comprising a compound according to one or more of claims 1 to 5, characterized in that it has a rough surface, the nanoparticles of SiO 2 , TiO 2 , Al 2 O 3 , ZnO, ZrO 2 and / or Y 2 O. 3 or mixed oxides thereof and / or particles with the compound according to one or more of claims 1 to 5 with or without dopants from the series europium, thorium, ruthenium, osmium, fluorine and / or chlorine carries.
8. Formkörper enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er eine geschlossene Oberflächenbeschichtung besitzt, die aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxiden daraus und /oder aus der Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 ohne den Aktivator Europium besteht. 8. Shaped body containing a compound according to one or more of claims 1 to 5, characterized in that it has a closed surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or from the compound according to one or more of claims 1 to 5 without the activator europium.
9. Formkörper enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er eine poröse 9. Shaped body containing a compound according to one or more of claims 1 to 5, characterized in that it is a porous
Oberflächenbeschichtung besitzt, die aus SiO2, TiO2, AI2O3, ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus und/ oder aus der Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 mit oder ohne Dotierstoffen aus der Reihe Europium, Thorium, Ruthenium, Osmium, Fluor und/oder Chlor besteht. Has surface coating consisting of SiO 2 , TiO 2 , Al 2 O 3, ZnO , ZrO 2 and / or Y 2 O 3 or mixed oxides thereof and / or from the compound according to one or more of claims 1 to 5 with or without dopants Europium, thorium, ruthenium, osmium, fluorine and / or chlorine.
10. Formkörper enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche 10. Shaped body containing a compound according to one or more of claims 1 to 5, characterized in that the surface
funktionelle Gruppen trägt, welche eine chemische oder physikalische Anbindung an die Umgebung, vorzugsweise bestehend aus Epoxy- oder Silikonharz, ermöglicht.  carries functional groups, which allows a chemical or physical connection to the environment, preferably consisting of epoxy or silicone resin.
11.Verfahren zur Herstellung eines Formkörpers nach einem oder mehreren der Ansprüche 8 bis 10 mit folgenden Verfahrensschritten: 11.A method for producing a shaped article according to one or more of claims 8 to 10 with the following method steps:
a) Herstellen einer 6-3-6-4-Europium-dotierten Erdalkali-silicooxynitrid- Verbindung, die mit Thorium-, Ruthenium-, Osmium-, Fluorid- und/oder Chlorid-haltigen Materialien co-dotiert wird, durch Mischen von mindestens 4 Edukten ausgewählt aus Siliciumnitrid-, Europium-, Calcium-, Strontium-, a) preparing a 6-3-6-4 europium-doped alkaline earth silicooxynitride compound which is co-doped with thorium, ruthenium, osmium, fluoride and / or chloride containing materials by mixing at least 4 starting materials selected from silicon nitride, europium, calcium, strontium,
Barium-, Thorium-, Ruthenium-, Osmium-, Fluor- und/oder Chlor-haltigen Materialien, ' Barium, thorium, ruthenium, osmium, fluorine and / or chlorine-containing materials,
b) Thermische Nachbehandlung der mit Thorium-, Ruthenium-, Osmium-, Fluor- und/oder Chlor-codotierten Verbindung,  b) thermal aftertreatment of the thorium, ruthenium, osmium, fluorine and / or chlorine codoped compound,
c) Beschichtung der Oberfläche mit Nanopartikeln aus SiO2, TiO2, AI2O3, c) coating the surface with nanoparticles of SiO 2 , TiO 2 , Al 2 O 3,
ZnO, ZrO2 und/oder Y2O3 oder Mischoxide daraus oder mit Nanopartikeln aus der Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 mit oder ohne Dotierstoffen. ZnO, ZrO 2 and / or Y 2 O 3 or mixed oxides thereof or with nanoparticles of the compound according to one or more of claims 1 to 5 with or without dopants.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass nach 12. The method according to claim 11, characterized in that after
Verfahrenschritt b) noch ein Waschschritt mit einer HCl- und einer KOH- Lösung erfolgt.  Process step b) is still a washing step with a HCl and a KOH solution.
13. Beleuchtungseinheit mit mindestens einer Primärlichtquelle, deren 13. Lighting unit with at least one primary light source whose
Emissionsmaximum im Bereich 250 nm bis 530 nm liegt, vorzugsweise zwischen 350 nm und 500 nm, wobei diese Strahlung teilweise oder vollständig in längerwellige Strahlung konvertiert wird durch eine Verbindung und/oder Leuchtstoffkörper nach einem oder mehreren der Ansprüche 1 bis 10. Emission maximum in the range 250 nm to 530 nm, preferably between 350 nm and 500 nm, wherein this radiation is partially or completely converted into longer-wave radiation by a compound and / or phosphor body according to one or more of claims 1 to 10.
14. Beleuchtungseinheit nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei der Lichtquelle um ein lumineszentes 14. Lighting unit according to claim 13, characterized in that it is at the light source to a luminescent
IndiumAluminiumGalliumNitrid, insbesondere der Formel InjGajAlkN, wobei 0 < i, 0 < j, 0 < k, und i+j+k=1 handelt. Indiumaluminum gallium nitride, in particular the formula InjGa j Al k N, where 0 <i, 0 <j, 0 <k, and i + j + k = 1.
15. Beleuchtungseinheit nach Anspruch 13, dadurch gekennzeichnet, dass es bei der Lichtquelle um eine lumineszente auf ZnO, TCO (Transparent conducting oxide), ZnSe oder SiC basierende Verbindung handelt. 15. Lighting unit according to claim 13, characterized in that the light source is a luminescent compound based on ZnO, TCO (Transparent conducting oxide), ZnSe or SiC.
16. Beleuchtungseinheit nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei der Lichtquelle um eine auf einer organischen lichtemittierenden Schicht basierendes Material handelt. 16. Illumination unit according to claim 13, characterized in that the light source is a material based on an organic light-emitting layer.
17. Beleuchtungseinheit nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei der Lichtquelle um eine Plasma- oder Entladungslampe handelt. 17. Lighting unit according to claim 13, characterized in that it is the light source is a plasma or discharge lamp.
18. Beleuchtungseinheit nach einem oder mehreren der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der Leuchtstoff direkt auf der Primärlichtquelle und/oder von dieser entfernt angeordnet ist. 18. Lighting unit according to one or more of claims 13 to 17, characterized in that the phosphor is arranged directly on the primary light source and / or away from it.
19. Beleuchtungseinheit nach einem oder mehreren der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass die optische Ankopplung zwischen dem19. Lighting unit according to one or more of claims 13 to 18, characterized in that the optical coupling between the
Leuchtstoff und der Primärlichtquelle durch eine lichtleitende Anordnung realisiert ist. Phosphor and the primary light source is realized by a light-conducting arrangement.
20. Verwendung von mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 als Leuchtstoff. 20. Use of at least one compound according to one or more of claims 1 to 5 as a phosphor.
21. Verwendung von mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 als Konversionsleuchtstoff zur teilweisen oder vollständigen Konversion der blauen oder im nahen UV-liegenden Emission einer Lumineszenzdiode. 21. Use of at least one compound according to one or more of claims 1 to 5 as a conversion phosphor for the partial or complete conversion of the blue or in the near UV emission of a light emitting diode.
22. Verwendung von mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 als Konversionsleuchtstoff zur Konversion der Primärstrahlung in einen bestimmten Farbpunkt nach dem Color-on- demand-Konzept. 22. Use of at least one compound according to one or more of claims 1 to 5 as a conversion phosphor for the conversion of the primary radiation into a specific color point according to the color on demand concept.
23. Verwendung eines Formkörpers nach einem oder mehreren der Ansprüche 7 bis 10 als Leuchtstoffkörper. 23. Use of a shaped body according to one or more of claims 7 to 10 as a phosphor body.
EP10725994A 2009-07-11 2010-06-17 Co-doped silicooxynitrides Withdrawn EP2454340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009032711A DE102009032711A1 (en) 2009-07-11 2009-07-11 Co-doped silicooxynitrides
PCT/EP2010/003656 WO2011006565A1 (en) 2009-07-11 2010-06-17 Co-doped silicooxynitrides

Publications (1)

Publication Number Publication Date
EP2454340A1 true EP2454340A1 (en) 2012-05-23

Family

ID=43033074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725994A Withdrawn EP2454340A1 (en) 2009-07-11 2010-06-17 Co-doped silicooxynitrides

Country Status (9)

Country Link
US (1) US8721925B2 (en)
EP (1) EP2454340A1 (en)
JP (1) JP2012532819A (en)
KR (1) KR20120052974A (en)
CN (1) CN102471681B (en)
DE (1) DE102009032711A1 (en)
SG (1) SG177475A1 (en)
TW (1) TW201127938A (en)
WO (1) WO2011006565A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230225A (en) * 2011-06-27 2011-11-02 中国科学院福建物质结构研究所 Nonlinear optical crystal gallium germanium barium selenide as well as growing method and purposes thereof
TWI474967B (en) * 2011-07-14 2015-03-01 Getters Spa Improvements to phosphors
TWI448538B (en) 2012-10-23 2014-08-11 Ind Tech Res Inst Phosphor and uv light emitting device utilizing the same
DE102013105056A1 (en) * 2013-05-16 2014-11-20 Osram Opto Semiconductors Gmbh Process for the preparation of a phosphor, phosphor and optoelectronic component
DE102013113382A1 (en) * 2013-12-03 2015-06-03 Osram Gmbh Phosphor mixture, semiconductor light-emitting device with a phosphor mixture and street lamp with a phosphor mixture
CN104371712A (en) * 2014-11-03 2015-02-25 天津理工大学 Normal-pressure preparation method of calcium-base nitride red fluorescent powder
JP6164258B2 (en) * 2015-07-13 2017-07-19 日立化成株式会社 Solar cell module
US10720554B2 (en) 2017-09-20 2020-07-21 General Electric Company Green-emitting phosphors and devices thereof
US11254864B2 (en) 2020-04-14 2022-02-22 General Electric Company Films with narrow band emission phosphor materials
KR20230102468A (en) * 2021-12-30 2023-07-07 주식회사 원익큐엔씨 Manufacturing method for fluorination of components of semiconductor equipment capable of maximizing reduction of pollutation particles and components manufactured by the method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019884A (en) 1976-01-22 1977-04-26 Corning Glass Works Method for providing porous broad-band antireflective surface layers on chemically-durable borosilicate glasses
JP3242561B2 (en) 1995-09-14 2001-12-25 メルク・ジヤパン株式会社 Flaky aluminum oxide, pearlescent pigment and method for producing the same
US6700322B1 (en) 2000-01-27 2004-03-02 General Electric Company Light source with organic layer and photoluminescent layer
TW593188B (en) * 2001-09-21 2004-06-21 Merck Patent Gmbh Hybrid sol for the production of abrasion-resistant SiO2 antireflection layers
JP2005105244A (en) * 2003-01-24 2005-04-21 National Institute Of Advanced Industrial & Technology Semiconductor ultrafine particle and fluorescent substance
US20070132360A1 (en) * 2003-11-11 2007-06-14 Koninklijke Philips Electronics N.V. Low-pressure vapor discharge lamp with a mercury-free gas filling
JP2005298721A (en) * 2004-04-14 2005-10-27 Nichia Chem Ind Ltd Oxynitride phosphor and light emitting device using the same
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US8017035B2 (en) * 2004-08-04 2011-09-13 Intematix Corporation Silicate-based yellow-green phosphors
JP4760082B2 (en) * 2005-03-25 2011-08-31 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing the same
DE602006018002D1 (en) * 2005-05-30 2010-12-16 Nemoto Tokushu Kagaku Kk GREEN LIGHT EMITTING FLUOR
KR101264580B1 (en) * 2005-09-27 2013-05-14 미쓰비시 가가꾸 가부시키가이샤 Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance
JP2009510230A (en) * 2005-09-30 2009-03-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nitrido and oxynitridocerium-based phosphor materials for solid-state lighting applications
JP4733535B2 (en) * 2006-02-24 2011-07-27 パナソニック株式会社 Oxynitride phosphor, method for manufacturing oxynitride phosphor, semiconductor light emitting device, light emitting device, light source, illumination device, and image display device
JP5292723B2 (en) * 2006-06-01 2013-09-18 三菱化学株式会社 Method for manufacturing phosphor
DE102006037730A1 (en) 2006-08-11 2008-02-14 Merck Patent Gmbh LED conversion phosphors in the form of ceramic bodies
US20080054793A1 (en) * 2006-08-30 2008-03-06 Everlight Electronics Co., Ltd. White light-emitting apparatus
DE102006054330A1 (en) 2006-11-17 2008-05-21 Merck Patent Gmbh Phosphor plates for LEDs made of structured foils
DE102006054331A1 (en) * 2006-11-17 2008-05-21 Merck Patent Gmbh Phosphor body based on platelet-shaped substrates
CN100415849C (en) * 2007-02-06 2008-09-03 江苏苏博特新材料股份有限公司 Rare earth red fluorescent powder and preparing method thereof
TW200925250A (en) * 2007-12-12 2009-06-16 wei-hong Luo Warm white light emitting semiconductor and yellow-orange silicate phosphor powder thereof
KR100902415B1 (en) * 2007-12-17 2009-06-11 한국화학연구원 The phosphor based on halo-silicate and manufacturing method for the same
KR101565988B1 (en) * 2009-10-23 2015-11-05 삼성전자주식회사 Red phosphor Method for preparing the same Light emitting device package and Lighting apparatus using the Red Phosphor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011006565A1 *

Also Published As

Publication number Publication date
CN102471681A (en) 2012-05-23
JP2012532819A (en) 2012-12-20
WO2011006565A1 (en) 2011-01-20
SG177475A1 (en) 2012-02-28
DE102009032711A1 (en) 2011-01-20
US8721925B2 (en) 2014-05-13
CN102471681B (en) 2014-11-05
TW201127938A (en) 2011-08-16
US20120140438A1 (en) 2012-06-07
KR20120052974A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
EP2401342B1 (en) Nitridosilicates co-doped with zirconium and hafnium
EP2616523B1 (en) Silicophosphate luminophores
EP2129740B1 (en) Method for producing illuminants based on orthosilicates for pcleds
EP2454340A1 (en) Co-doped silicooxynitrides
EP2576725B1 (en) Luminescent substances
EP2324096B1 (en) Codoped 1-1-2 nitrides
EP2596078B1 (en) Aluminate luminescent substances
WO2008107062A1 (en) Luminophores made of doped garnet for pcleds
WO2008058620A1 (en) Phosphor body based on platelet-shaped substrates
EP2350231A1 (en) Doped garnet fluorescent substance having red shift for pc leds
DE102006054330A1 (en) Phosphor plates for LEDs made of structured foils
EP2914688A1 (en) Eu-activated luminophores
EP2625247A1 (en) Mn-activated phosphors
DE102009050542A1 (en) Sm-activated aluminate and borate phosphors
EP2683790A1 (en) Carbodiimide luminescent substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UHLICH, DOMINIK

Inventor name: JUESTEL, THOMAS

Inventor name: KATELNIKOVAS, ARTURAS

Inventor name: PETRY, RALF

Inventor name: WINKLER, HOLGER

Inventor name: VOSGROENE, TIM

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105