EP2429673A1 - Silandestillation mit reduziertem energieeinsatz - Google Patents
Silandestillation mit reduziertem energieeinsatzInfo
- Publication number
- EP2429673A1 EP2429673A1 EP10722027A EP10722027A EP2429673A1 EP 2429673 A1 EP2429673 A1 EP 2429673A1 EP 10722027 A EP10722027 A EP 10722027A EP 10722027 A EP10722027 A EP 10722027A EP 2429673 A1 EP2429673 A1 EP 2429673A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- distillation apparatus
- vapors
- column
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004821 distillation Methods 0.000 title claims abstract description 48
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910000077 silane Inorganic materials 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 150000004756 silanes Chemical class 0.000 claims abstract description 6
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000005055 methyl trichlorosilane Substances 0.000 claims description 7
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 3
- PFMKUUJQLUQKHT-UHFFFAOYSA-N dichloro(ethyl)silicon Chemical compound CC[Si](Cl)Cl PFMKUUJQLUQKHT-UHFFFAOYSA-N 0.000 claims description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 6
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000005051 trimethylchlorosilane Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- RKHXNBJRDQOIOQ-UHFFFAOYSA-N dichloro(ethyl)silane Chemical compound CC[SiH](Cl)Cl RKHXNBJRDQOIOQ-UHFFFAOYSA-N 0.000 description 1
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
- B01D3/146—Multiple effect distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
- B01D3/148—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step in combination with at least one evaporator
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/12—Organo silicon halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/20—Purification, separation
Definitions
- the invention relates to a process for the distillation of silane mixtures f in the heat for heating the distillation apparatus of vapors of another
- the difficulty of silane distillation is in particular their high purity requirements, for example, is dimethyldichlorosilane with very low levels of
- Methyltrichlorosilane and Ethyldichlorsilan required, the contents of the latter components vary greatly in the silane mixture to be distilled. These boundary conditions require an extremely stable adjustment of the operating parameters of the distillation network as well as a variable adaptation of the operating parameters to the changing silane compositions.
- the invention relates to a process for the thermal separation of silane mixtures containing silanes selected from alkylchlorosilanes and hydrogenchlorosilanes in a distillation apparatus in which at least a portion of the heat for heating the distillation apparatus is transferred from vapors of a v / eiteren distillation apparatus and wherein a Silane product is obtained with impurities of not more than 200 ppm.
- the energy content of the vapor stream is utilized, which has been previously discharged via heat transfer to the environment.
- the process can save up to 85% of energy compared to conventional distillation. Surprisingly, despite this energy saving, the distillation of highly pure alkylchlorosilane and hydrogenchlorosilanes succeeds.
- the vapors are condensed and the
- the distillation device consists of one or more columns.
- the further distillation device consists of one or more columns.
- At least 20% by weight / in particular at least 50% by weight of the vapors of the further distillation apparatus give off heat for heating the distillation apparatus.
- At least 10%, in particular at least 20%, of the heat for heating the distillation apparatus is transferred from vapors to a further distillation apparatus.
- heat of the vapors of the further distillation apparatus is discharged to a heat exchanger to a heat carrier and this heat carrier used to heat the distillation apparatus.
- heat of the vapors of the further distillation apparatus is discharged by condensation to a heat exchanger.
- the heat of the vapors of the further distillation apparatus is used as a heat source in a cyclic process used.
- the heat of the vapors of the further distillation apparatus is passed through a heat pump.
- the vapors of the further distillation apparatus are used to heat the bottom of the distillation apparatus.
- the distillation device is a column.
- the vapors accumulating at the top of a column are compressed and thereby heated. Heat is then transferred to a heat carrier in a heat exchanger and this heat carrier is used to heat the bottom of this column.
- the distillation apparatus and the further distillation apparatus are identical.
- FIG. 1 A further preferred embodiment is illustrated by FIG. 1:
- silane mixture (A1) is distilled.
- the vapor withdrawn at the top (B1) is condensed in a heat exchanger (W1) and gives off heat to a heat transfer medium.
- the heat carrier heats the sump of the column (K2).
- the heat carrier can be additionally heated in a further heat exchanger (W2).
- the column (K2) is fed to silane mixture (A2) and distilled.
- the at the top of the column (K2) withdrawn vapors (B2) are condensed in a heat exchanger (W3) and give off heat to a heat carrier.
- the bottom (C2) is discharged at the bottom of the column (K2).
- the produced silane product is obtained with impurities of at most 200 ppm at the bottom of the distillation apparatus.
- Silane mixtures containing silanes selected from alkylchlorosilanes and hydrogenchlorosilanes are preferably also separated in the further distillation apparatus.
- Silanprod ⁇ kt with impurities of at most 200 ppm are preferably also produced in the further distillation device.
- the alkylchlorosilane and / or hydrogenchlorosilanes to be separated preferably correspond to the general formula (D
- R 1 is a hydrocarbon radical having 1-10 carbon atoms, a is 0, 1, 2, 3 or 4 and b is 0, 1, 2 or 3.
- Particularly preferred hydrocarbon radicals R 1 are the alkyl radicals having 1 to 6 carbon atoms, in particular the methyl and ethyl radicals.
- the silane product produced contains impurities of at most 100 ppm, particularly preferably at most 50 ppm, in particular at most 20 ppm.
- the proportion of a single compound in the impurities is preferably at most 100 ppm, particularly preferably at most 60 ppm, in particular at most 15 ppm.
- dimethyldichlorosilane is obtained, which preferably contains in each case at most 100 ppm, more preferably at most 60 ppm, in particular at most 15 ppm methyltrichlorosilane and ethyldichlorosilane.
- mixtures are used, in addition to
- the top product (B) consists of 18% dimethyldichlorosilane, 58% methyltrichlorosilane, 16% trimethylchlorosilane and 8% methylhydrogen dichlorosilane.
- the bottom product (C) consists of 100% dimethyldichlorosilane.
- the dimethyldichlorosilane can be distilled as needed with less than 80 ppm, with less than 20 ppm and in particular with 10-15 ppm methyltrichlorosilane impurities.
- Vapor from other columns (K3) and (K4) give 1.5 MW condensation heat to a heat pump ⁇ columns (K3) and (K4) and the heat pump not shown in Figure 1). This heats with the addition of another 0.8 MW heat exchanger (Wl) the bottom of the column (K2). The energy saving is 65%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Silicon Compounds (AREA)
Abstract
Gegenstand der Erfindung ist ein Verfahren zur thermischen Trennung von Silangemischen, die Silane, ausgewählt aus Alkylchlorsilanen und Hydrogenchlorsilanen enthalten, in einer Destillationsvorrichtung, bei dem mindestens ein Teil der Wärme zum Beheizen der Destillationsvorrichtung von Brüden einer weiteren Destillationsvorrichtung übertragen wird und bei dem ein Silanprodukt mit Verunreinigungen von höchstens 200 ppm erhalten wird.
Description
Silandestillation mit reduziertem Energieeinsatz
Die Erfindung betrifft ein Verfahren zur Destillation von Silangemischenf bei dem Wärme zum Beheizen der Destillationsvorrichtung von Brüden einer weiteren
Destillationsvorrichtung übertragen wird und ein reines Silanprodukt erhalten wird.
Im Bereich der Chlorsilan- und Methylchlorsilandestillation sind bisher aufgrund der hohen Reinheitsanforderungen und der Produkteigenschaften der beteiligten Stoffe, insbesondere deren korrosives Verhalten bei Zutritt von Feuchtigkeit, teilweise leichte Brennbarkeit der Flüssigkeiten, Reaktivität gegenüber protischen Lösungsmitteln und Metalloxiden, klassische Destillationskonzepte im Einsatz. Dabei wird die in Form von Heizdampf oder anderen Wärmeträgern eingebrachte Energie über Luft- oder Wasserkühler an die Umgebung abgegeben. Die Siedepunkte der reinen Stoffe liegen eng beieinander.
Energierückgewinnungskonzepte wurden wegen diesen
Schwierigkeiten und der gegenseitigen Beeinflussung der Kolonnen und Trennschnitte nicht angewandt.
In der DE 10 2008 000 490 A ist ein Destillationsverfahren für Silane beschrieben, wobei der Verstärkungsteil der Kolonne bei einem höheren Druck als der Abtriebsteil betrieben wird und Wärme vom Verstärkungsteil an den Abtriebsteil abgegeben wird und am Verstärkungsteil die leicht siedende Fraktion und am Abtriebsteil die schwer siedende Fraktion abgetrennt wird. Hier wird Destillat als wärmeübertragendes Betriebsmittel benutzt, jedoch ist dieses Verfahren problematisch im Teillastverhalten. Ein hochreines Silanprodukt wird nicht erhalten.
Verfahren zur Energierückgewinnung werden beschrieben z.B. in "Verfahrenstechnische Berechnungsmethoden Teil 2 - Thermisches Trennen; VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1986, S. 185-190, insbesondere S, 185. Dort ist erwähnt, dass der Kopfproduktdampf einer Kolonne als Heizmedium am Sumpf einer anderen Kolonne genutzt werden kann.
Die Schwierigkeit der Silandestillation besteht insbesondere in ihren hohen Reinheitsanforderungen, beispielsweise wird Dimethyldichlorsilan mit sehr geringen Gehalten an
Methyltrichlorsilan und Ethyldichlorsilan verlangt, wobei die Gehalte letzterer Komponenten im zu destillierenden Silangemisch stark schwanken. Diese Randbedingungen erfordern eine extrem stabile Einstellung der Betriebsparameter des Destillationsverbundes als auch eine variable Anpassung der Betriebsparameter an die sich ändernden Silangem!schzusammensetzungen .
In der technischen Umsetzung wird deshalb bei der Anwendung der Wärmerückgewinnung in der Reindestilation auf „Regellasten" durch konventionelle Verdampfer und Kondensatoren zurückgegriffen. Diese stabilen den Destillationsprozess , um Reindestillationen unter hohen Reinheitsanforderungen und schwankenden StoffZusammensetzungen energetisch effektiv durchführen zu können.
Gegenstand der Erfindung ist ein Verfahren zur thermischen Trennung von Silangemischen, die Silane, ausgewählt aus Alkylchlorsilanen und Hydrogenchlorsilanen enthalten, in einer Destillationsvorrichtung, bei dem mindestens ein Teil der Wärme zum Beheizen der Destillationsvorrichtung von Brüden einer v/eiteren Destillationsvorrichtung übertragen wird und bei dem ein Silanprodukt mit Verunreinigungen von höchstens 200 ppm erhalten wird.
Bei dem Verfahren wird der Energieinhalt des Brüdenstromes ausgenutzt, der bisher über Wärmeträger an die Umgebung abgegeben wurde. Mit dem Verfahren lassen sich bis zu 85 % der Energie gegenüber der konventionellen Destillation einsparen. Überraschenderweise gelingt trotz dieser Energieeinsparung die Destillation hochreiner Alkylchlorsilan- und Hydrogen- chlorsilane.
Vorzugsweise werden die Brüden kondensiert und die
Kondensationswärme zur Beheizung der Destillationsvorrichtung eingesetzt .
Vorzugsweise besteht die Destillationsvorrichtung aus einer oder mehreren Kolonnen. Vorzugsweise besteht die weitere Destillationsvorrichtung aus einer oder mehreren Kolonnen.
Vorzugsweise geben mindestens 20 Gew.-%/ insbesondere mindestens 50 Gew.-% der Brüden der weiteren Destillationsvorrichtung Wärme zur Beheizung der Destillationsvorrichtung ab.
Vorzugsweise werden mindestens 10 %, insbesondere mindestens 20 % der Wärme zum Beheizen der Destillationsvorrichtung von Brüden einer weiteren Destillationsvorrichtung übertragen.
Vorzugsweise wird Wärme der Brüden der weiteren Destillationsvorrichtung an einem Wärmetauscher an einen Wärmeträger abgegeben und dieser Wärmeträger zur Beheizung der Destillationsvorrichtung eingesetzt. Insbesondere wird Wärme der Brüden der weiteren Destillationsvorrichtung durch Kondensation an einen Wärmetauscher abgegeben. Vorzugsweise wird die Wärme der Brüden der weiteren Destillationsvorrichtung als Wärmequelle in einem Kreisprozess
eingesetzt. Vorzugsweise wird die Wärme der Brüden der weiteren Destillationsvorrichtung über eine Wärmepumpe weitergegeben. Vorzugsweise werden die Brüden der weiteren Destillationsvorrichtung zur Beheizung des Sumpfes der Destillationsvorrichtung eingesetzt.
Vorzugsweise ist die Destillationsvorrichtung eine Kolonne.
In einer bevorzugten Ausführungsform werden die am Kopf einer Kolonne anfallenden Brüden verdichtet und dadurch erwärmt. In einem Wärmetauscher wird dann Wärme an einen Wärmeträger abgegeben und dieser Wärmeträger zur Beheizung des Sumpfes dieser Kolonne eingesetzt. Die Destillationsvorrichtung und die weitere Destillationsvorrichtung sind hierbei identisch.
Eine weitere bevorzugte Ausführungsform wird mit Figur 1 erläutert: In einer Kolonne (Kl) wird Silangemisch (Al) destilliert. Die am Kopf abgezogenen Brüden (Bl) werden in einem Wärmetauscher (Wl) kondensiert und geben Wärme an einen Wärmeträger ab. Der Wärmeträger heizt den Sumpf der Kolonne (K2) . Der Wärmeträger kann in einem weiteren Wärmetauscher (W2) zusätzlich erwärmt werden. Der Kolonne (K2) wird Silangemisch (A2) zugeführt und destilliert. Die am Kopf der Kolonne (K2) abgezogenen Brüden (B2) werden in einem Wärmetauscher (W3) kondensiert und geben Wärme an einen Wärmeträger ab. Der Sumpf (C2) wird am Boden der Kolonne (K2) abgeführt.
Vorzugsweise wird das hergestellte Silanprodukt mit Verunreinigungen von höchstens 200 ppm am Sumpf der Destillationsvorrichtung erhalten. Vorzugsweise werden auch in der weiteren Destillationsvorrichtung Silangemische, die Silane, ausgewählt aus Alkylchlorsilanen und Hydrogenchlorsilanen enthalten, getrennt. Vorzugsweise wird
auch in der weiteren Destillationsvorrichtung Silanprodυkt mit Verunreinigungen von höchstens 200 ppm hergestellt.
Die zu trennenden Alkylchlorsilan- und/oder Hydrogen- chlorsilane, entsprechen vorzugsweise der allgemeinen Formel (D
RlaHbSiCl4_a_b (1),
wobei
R^ einen Kohlenwasserstoffrest mit 1-10 Kohlenstoffatomen, a die Werte 0, 1, 2, 3 oder 4 und b die Werte 0, 1, 2, oder 3 bedeuten.
Besonders bevorzugte Kohlenwasserstoffreste R^ sind die ftlkylreste mit 1 bis 6 Kohlenstoffatomen, insbesondere der Methyl- und Ethylrest.
Vorzugsweise enthält das hergestellte Silanprodukt Verunreinigungen von höchstens 100 ppm, besonders bevorzugt höchstens 50 ppm, insbesondere höchstens 20 ppm. Vorzugsweise beträgt der Anteil einer einzelnen Verbindung in den Verunreinigungen höchstens 100 ppm, besonders bevorzugt höchstens 60 ppm, insbesondere höchstens 15 ppm.
In einer bevorzugten ftusführungsform wird Dimethyldichlorsilan erhalten, welches bevorzugt jeweils höchstens lOOpprn, besonders bevorzugt höchstens 60ppm, insbesondere höchstens 15ppm Methyltrichlorsilan und Ethyldichlorsilan enthält. Vorzugsweise werden Gemische eingesetzt, die neben
Dimethyldichlorsilan Silane enthalten, die ausgewählt werden aus Methyltrichlorsilan, Trimethylchlorsilan und Methylhydrogendichlorsilan ,
Die vorstehenden ppm-Werte sind auf das Gewicht bezogen.
In den folgenden Beispielen sind, falls jeweils nicht anders angegeben, alle Mengen- und Prozentangaben auf das Gewicht bezogen, alle Drücke 0,10 MPa (abs.) und alle Temperaturen 200C, Die Bezugszeichen verweisen auf Figur 1.
In den Beispielen v/ird ein Silangemisch (A) aus 90% Dimethyldichlorsilan, 7% Methyltrichlorsilan, 2%
Trimethylchlorsilan und 1% Methylhydrogendichlorsilan von 7 t/h in einer Kolonne (K2) in zwei Fraktionen aufgetrennt. Das Kopfprodukt (B) besteht aus 18 % Dimethyldichlorsilan, 58% Methyltrichlorsilan, 16% Trimethylchlorsilan und 8% Methylhydrogendichlorsilan. Das Sumpfprodukt (C) besteht aus 100% Dimethyldichlorsilan. Das Dimethyldichlorsilan kann dabei bedarfsgerecht mit kleiner 80ppm, mit kleiner 20ppm und insbesondere mit 10-15ppm Methyltrichlorsilanverunreinigungen destilliert werden.
Beispiel 1, nicht erfindungsgemäß:
Bei der konventionellen Destillation werden in der Kolonne (K2) am Wärmetauscher (W2) 2,3 MW Heizenergie zugeführt.
Beispiel 2 :
In einem Wärmeverbund mit einer vorhandenen Kolonne (Kl) werden am Wärmetauscher (Wl) 1,9 MW der benötigten Wärme zur Beheizung der Kolonne (K2) durch Brüdenlcondensation bereitgestellt. Am Wärmetauscher (W2) v/erden weitere 0,4 MW Wärme übertragen. Die Energieeinsparung beträgt 83%.
Beispiel 3 :
Bei der Brüdenverdichtung in der Kolonne (K2) wird der Brüden (B2) mit einer Wärmeleistung von 1,9 MW der mit einem weiteren Energieeinsatz von 0,3 MW verdichtet (Verdichtungsvorrichtung und Leitung zu Wärmetauscher (W2) nicht in Figur 1 eingezeichnet) und heizt über den Wärmetauscher (W2) den Sumpf der Kolonne (K2). Die Energieeinsparung beträgt 87%.
Beispiel 4 :
Brüden von anderen Kolonnen (K3) und (K4) geben 1,5 MW Kondensationswärme an eine Wärmepumpe {Kolonnen (K3) und (K4) sowie die Wärmepumpe nicht in Figur 1 eingezeichnet) ab. Diese heizt mit der Zuführung weiterer 0,8 MW über Wärmetauscher (Wl) den Sumpf der Kolonne (K2) . Die Energieeinsparung beträgt 65%.
Claims
1. Verfahren zur thermischen Trennung von Silangemischen, die Silane, ausgewählt aus Alkylchlorsilanen und Hydrogenchlorsilanen enthalten, in einer
Destillationsvorrichtung, bei dem mindestens ein Teil der Wärme zum Beheizen der Destillationsvorrichtung von Brüden einer weiteren Destillationsvorrichtung übertragen wird und bei dem ein Silanprodukt mit Verunreinigungen von höchstens 200 ppm erhalten wird.
2. Verfahren nach Anspruch 1, bei dem die Brüden der weiteren Destillationsvorrichtung kondensiert werden.
3. Verfahren nach Anspruch 1 oder 2, bei dem Wärme der Brüden der weiteren Destillationsvorrichtung an einem Wärmetauscher an einen Wärmeträger abgegeben wird und dieser Wärmeträger zur Beheizung der Destillationsvorrichtung eingesetzt wird.
4. Verfahren nach Anspruch 1 bis 3, bei dem die Destillationsvorrichtung eine Kolonne ist.
5. Verfahren nach Anspruch 4, bei dem die am Kopf einer Kolonne anfallenden Brüden verdichtet und dadurch erwärmt werden und dann in einem Wärmetauscher Wärme an einen Wärmeträger abgegeben wird und dieser Wärmeträger zur Beheizung des Sumpfes dieser Kolonne eingesetzt wird.
6. Verfahren nach Anspruch 1 bis 5, bei dem das hergestellte Silanprodukt mit Verunreinigungen von höchstens 200 ppm am Sumpf der Destillationsvorrichtung erhalten wird.
7. Verfahren nach Anspruch 1 bis 6, bei dem als Silanprodukt Dimethyldichlorsilan erhalten wird, welches jeweils höchstens 60ppm Methyltrichlorsilan und Ethyldichlorsilan enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009003163A DE102009003163A1 (de) | 2009-05-15 | 2009-05-15 | Silandestillation mit reduziertem Energieeinsatz |
PCT/EP2010/056090 WO2010130609A1 (de) | 2009-05-15 | 2010-05-05 | Silandestillation mit reduziertem energieeinsatz |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2429673A1 true EP2429673A1 (de) | 2012-03-21 |
Family
ID=42711796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10722027A Withdrawn EP2429673A1 (de) | 2009-05-15 | 2010-05-05 | Silandestillation mit reduziertem energieeinsatz |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120048719A1 (de) |
EP (1) | EP2429673A1 (de) |
JP (1) | JP2012526743A (de) |
KR (1) | KR20120023768A (de) |
CN (1) | CN102427864A (de) |
DE (1) | DE102009003163A1 (de) |
WO (1) | WO2010130609A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013207282A1 (de) | 2013-04-22 | 2014-11-06 | Wacker Chemie Ag | Verfahren und Vorrichtung zur destillativen Trennung eines Drei- oder Mehrkomponentengemisches |
EP3769830A1 (de) * | 2019-07-22 | 2021-01-27 | Sulzer Management AG | Verfahren zur destillation einer rohölzusammensetzung in einer rektifikationsanlage mit einer indirekten wärmepumpe |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3168542A (en) * | 1957-05-15 | 1965-02-02 | Union Carbide Corp | Process for separating mixtures of chlorosilanes |
US4402797A (en) * | 1982-09-20 | 1983-09-06 | Dow Corning Corporation | Separation of chlorosilanes by extractive distillation |
JP3501171B2 (ja) * | 1994-03-30 | 2004-03-02 | 日本エア・リキード株式会社 | 超高純度モノシランの製造方法及び装置 |
US5735141A (en) * | 1996-06-07 | 1998-04-07 | The Boc Group, Inc. | Method and apparatus for purifying a substance |
DE19842154C2 (de) * | 1998-09-15 | 2000-11-09 | Aventis Res & Tech Gmbh & Co | Verfahren zur Verbesserung der rektifikativen Trennung von Methyltrichlorsilan und Dimethyldichlorsilan |
DE102004045245B4 (de) * | 2004-09-17 | 2007-11-15 | Degussa Gmbh | Vorrichtung und Verfahren zur Herstellung von Silanen |
DE102008000490A1 (de) | 2008-03-03 | 2008-12-18 | Wacker Chemie Ag | Verfahren zur thermischen Trennung von Silanen |
US20100061912A1 (en) * | 2008-09-08 | 2010-03-11 | Stephen Michael Lord | Apparatus for high temperature hydrolysis of water reactive halosilanes and halides and process for making same |
US8298490B2 (en) * | 2009-11-06 | 2012-10-30 | Gtat Corporation | Systems and methods of producing trichlorosilane |
KR101292545B1 (ko) * | 2009-12-28 | 2013-08-12 | 주식회사 엘지화학 | 트리클로로실란의 정제 방법 및 정제 장치 |
-
2009
- 2009-05-15 DE DE102009003163A patent/DE102009003163A1/de not_active Ceased
-
2010
- 2010-05-05 JP JP2012510212A patent/JP2012526743A/ja not_active Withdrawn
- 2010-05-05 EP EP10722027A patent/EP2429673A1/de not_active Withdrawn
- 2010-05-05 WO PCT/EP2010/056090 patent/WO2010130609A1/de active Application Filing
- 2010-05-05 US US13/318,932 patent/US20120048719A1/en not_active Abandoned
- 2010-05-05 KR KR1020117029411A patent/KR20120023768A/ko not_active Application Discontinuation
- 2010-05-05 CN CN2010800215003A patent/CN102427864A/zh active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2010130609A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20120048719A1 (en) | 2012-03-01 |
CN102427864A (zh) | 2012-04-25 |
KR20120023768A (ko) | 2012-03-13 |
WO2010130609A1 (de) | 2010-11-18 |
DE102009003163A1 (de) | 2010-11-25 |
JP2012526743A (ja) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1122213B1 (de) | Destillative Reinigung von Ammoniak | |
EP2988841B1 (de) | Verfahren und vorrichtung zur destillativen trennung eines drei- oder mehrkomponentengemisches | |
DE10017168A1 (de) | Verfahren und Anlage zur Herstellung von Silan | |
DE19860146A1 (de) | Verfahren und Anlage zur Herstellung von Silan | |
EP3027289B1 (de) | Verfahren und vorrichtung zur destillativen trennung eines drei- oder mehrkomponentengemisches | |
WO2002062733A1 (de) | Verfahren zur gewinnung von roh-1,3-butadien durch extraktivdestillation aus einem c4-schnitt | |
EP3204134A2 (de) | Reinigung von chlorsilanen mittels destillation und adsorption | |
EP2429673A1 (de) | Silandestillation mit reduziertem energieeinsatz | |
DE69920329T3 (de) | Destillationsverfahren für (Meth)acryloxysilane | |
EP1337464B1 (de) | Verfahren zur entfernung von aluminium aus chlorsilanen | |
US2679472A (en) | Separation of hydrocarbons by azeotropic distillation | |
EP3484943B1 (de) | Verfahren zur kontinuierlichen herstellung von alkoxyarmen verzweigten siloxanen | |
DE1134368B (de) | Verfahren zur Herstellung von Methylmercaptan | |
US4925535A (en) | Process for the production of an aromate concentrate suitable for use as blending component for gasification fuel | |
US4401560A (en) | Process for the separation of aromatic hydrocarbons from petroleum fractions with heat recovery | |
WO2008087072A1 (de) | Chlorsilandestillation in gegenwart ionischer flüssigkeit | |
DE845198C (de) | Verfahren zur Herstellung von Phenyldichlorsilan | |
DE69702884T2 (de) | Verfahren zur Destillierung von Hexamethylcyclotrisiloxan | |
US1951840A (en) | Stabilization of light hydrocarbon oils and particularly pressure distillate | |
DE60105451T2 (de) | Verfahren zur entfernung von reaktionsnebenprodukten aus dem ablauf einer selektiven hydrierung | |
EP3555038A1 (de) | Verfahren zur destillativen gewinnung von reinem cyclohexyl(meth)acrylat | |
US3322652A (en) | Multi-stage separation apparatus and process for treating hydrocarbon mixtures | |
DE69307508T2 (de) | Rückgewinnung eines relativ flüchtigen bestandteils eines lösungsmittels von einem weniger flüchtigen bestandteil, z.b. bei der rückgewinnung von lösungsmitteln | |
EP1256577B1 (de) | Verfahren zur Herstellung von Cyanurchlorid | |
WO2019073455A1 (en) | DISTILLATION COLUMN AND PROCESS FOR PREPARING A COMPOSITION THEREFROM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130118 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130529 |