EP2425490B1 - Système d'antenne à large bande pour communication par satellite - Google Patents

Système d'antenne à large bande pour communication par satellite Download PDF

Info

Publication number
EP2425490B1
EP2425490B1 EP10718884A EP10718884A EP2425490B1 EP 2425490 B1 EP2425490 B1 EP 2425490B1 EP 10718884 A EP10718884 A EP 10718884A EP 10718884 A EP10718884 A EP 10718884A EP 2425490 B1 EP2425490 B1 EP 2425490B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
aerial
aperture
antenna
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10718884A
Other languages
German (de)
English (en)
Other versions
EP2425490A1 (fr
Inventor
Michael Seifried
Michael Wenzel
Christoph Häussler
Jörg OPPENLANDER
Jörg TOMES
Alexander Friesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QEST Quantenelektronische Systeme GmbH
Original Assignee
QEST Quantenelektronische Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QEST Quantenelektronische Systeme GmbH filed Critical QEST Quantenelektronische Systeme GmbH
Priority to PL10718884T priority Critical patent/PL2425490T3/pl
Publication of EP2425490A1 publication Critical patent/EP2425490A1/fr
Application granted granted Critical
Publication of EP2425490B1 publication Critical patent/EP2425490B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns

Definitions

  • the invention relates to a broadband antenna system for communication between mobile carriers and satellites, in particular for aeronautical applications.
  • the weight and size of the antenna system is very important because it reduces the payload of the aircraft and causes additional operating costs.
  • the problem therefore is to provide antenna systems that are as small and lightweight as possible, which nevertheless satisfy the regulatory requirements for transmitting and receiving operation when operating on mobile carriers.
  • parabolic antennas are used which have these properties.
  • rectangular or rectangular antenna apertures are used which have an aspect ratio height to width of at most 1: 4. Since parabolic mirrors have only very low efficiencies in such aspect ratios, for applications such.
  • antenna fields in question are used.
  • Grating lobes are significant parasitic side lobes, which arise from the fact that the beam centers of the antenna elements that make up the antenna field, due to the design have to have a certain distance from each other. This leads at certain beam angles to the positive interference of the antenna radiators and thus to the unwanted emission of electromagnetic power in unwanted solid angle ranges.
  • antenna fields have to have a feed network, there is the practical problem of finding network and antenna field topologies which, on the one hand, meet the above requirement for the maximum distance between the beam centers and, on the other hand, occupy as little space as possible.
  • the feed networks must be minimally dissipative in order to realize high antenna efficiencies and thus minimum antenna sizes.
  • Directed satellite communication also typically uses two independent signal polarizations to increase the data rate.
  • the antenna system must therefore be able to process two independent polarizations simultaneously. Both in the transmitting and in the receiving mode, a high polarization separation is required so that there is no mixing and thus a loss of efficiency.
  • In the transmission mode there are also strict regulatory requirements for the polarization separation so that it can not interfere with neighboring transponders with orthogonal polarization (see, for example, CFR 25.209 or 25.222).
  • it must therefore be ensured, on the one hand, that the primary radiator elements have sufficiently good polarization separation or preservation, and, on the other hand, that there is no undesired mixing of the orthogonal polarizations in the feed networks.
  • the required polarization decoupling with linearly polarized signals places very high demands on the antenna system.
  • the antenna aperture is always with its azimuth axis in the plane of the aircraft.
  • the aircraft level is typically a tangential plane to the earth's surface. If the aircraft position and satellite position are not of the same geographical length, then the antenna aperture, when directed at the satellite, will always be twisted by a certain angle, which depends on the geographic length, with respect to the plane of the Clarke orbit.
  • antennas which are designed as fields of horns, over a very high efficiency feature. If fields are fed by horns with a network of waveguides, then the attenuation of electromagnetic waves through such networks can be very small. Such a field is z. B. in the patent US 5243357 proposed. However, this is a pure receiving antenna (column 1, line 10 ff.). The very high polarization decoupling necessary for operation as a transmitting antenna can not be achieved with the proposed network of square waveguides. In addition, the design of the spacing between the radiator elements is comparatively large, since the square waveguides must have dimensions in the range of half the wavelength of the useful frequency for efficient waveguiding and the centers of the radiating elements are therefore far more than one wavelength apart.
  • the object of the invention is to provide a broadband antenna system, in particular for aeronautical applications, which, with minimal dimensions, permits a regulatory compliant transmission and reception operation and the precise alignment of the antenna with the target satellites.
  • N N 1 x N 2 primary horns, where N 1 > 4 N 2 , and N 1 and N 2 are even integers, a rectangular antenna aperture is achieved that meets the requirements of the lowest possible Height in mobile, especially aeronautical, use is sufficient.
  • This dimensioning rule also ensures that upon rotation of the antenna about the main axis of the beam necessarily associated with the rotation expansion of the main lobe remains low within the +/- 35 ° angle range that is important for the application. With a length to side ratio of 4: 1, the expansion in the Ku transmission band (14 GHz-14.5 GHz) is only a few tenths of a degree.
  • the angular range for the geographic skew of +/- 35 ° is therefore of particular importance, because then z. B. in Ku-band, the entire North American continent with only one satellite can be covered. This leads to a significant reduction in the cost of providing a corresponding service.
  • the horn field can be fed efficiently with a bi-directional binary feed network.
  • the dimensioning rule for the length L of the horn field, L ⁇ N 1 ⁇ , ensures that no parasitic sidelobes occur in the azimuth direction, which are generated by too large a distance of the beam centers of the primary horns.
  • the wavelength ⁇ must be the smallest of the wavelength occurring in the transmission mode. In Ku-band broadcasting this z. For example, the wavelength is 14.5 GHz, so ⁇ 2.07 cm. Only by suppressing parasitic side lobes is a regulatory permissible transmission mode possible.
  • the aperture surfaces a of the primary horns in azimuth and elevation are close together and are aligned with their short edge in the azimuth and with their long edge in the elevation direction. With 1 ⁇ it is then achieved that with dense horn occupancy no parasitic side lobes in the azimuth direction can occur. If z. B.
  • the antenna pattern can comply with the regulatory requirements.
  • the sizing of the primary horns also ensures that they can have a quadratic output that supports two orthogonal linear polarizations.
  • the square output (3) is fed by two rectangular waveguides lying in orthogonal planes. This geometry ensures effective polarization separation.
  • the feeding tube lying in a plane perpendicular to the aperture plane is provided with a waveguide septum (6), which prevents the parasitic migration of the orthogonal polarization in this waveguide branch.
  • the transition from the square output (3) of the primary horn to the input of the rectangular waveguide of the one linear polarization lying in the aperture plane is typically designed stepwise. This can also improve polarization separation and broadbandness.
  • a typical embodiment of the signal extraction from the primary horns is shown in FIG Fig. 2 shown.
  • the horns of the primary horns are compressed in the beam direction. Their length perpendicular to the aperture surface is only 1 H ⁇ 1.5 ⁇ . This length is much smaller than the length which would result according to the known sizing of horn apertures and leads without Phasenegalleitersgitter to a significant impedance mismatch to the free space wave and thus to considerable reflection losses.
  • the aperture is provided with a phase-adjusting grating according to the invention, then the horns can be dimensioned according to the invention without significant losses occurring. This leads to a considerable reduction in the size of the overall antenna.
  • the phase gating in antennas according to the invention therefore not only has the task to homogenize the phase assignment of the aperture, but also serves for the impedance matching of the primary horn to the free-space wave impedance.
  • a separate feed network is provided for each of the two orthogonal polarizations.
  • the separate feed directly from the horn output also has the advantage that the two linear orthogonal polarizations can be processed completely separately and a high-precision phase adjustment can take place. This is necessary in order to be able to achieve the accuracy required for the polarization tracking of typically ⁇ 1 ° over the entire instantaneous bandwidth of typically more than 3 GHz. Also, the separation of the transmitting and receiving band is facilitated by appropriate frequency diplexer.
  • Fig. 1c The construction of food networks as binary trees, as shown schematically in Fig. 1c shown, allows the use of high-precision binary symmetric and asymmetric E-field and H-field power dividers (7, 8), as exemplified in Fig. 4a and Fig. 4b are shown.
  • This high precision is necessary to get one for both Polarizations to achieve almost identical frequency response over the entire instantaneous bandwidth, which is necessary in order to achieve the necessary precision in polarization tracking can.
  • high-efficiency phasing can then be achieved by a suitable combination of waveguide pieces with coaxial cable pieces over the entire instantaneous bandwidth.
  • this has the advantage that the amplitude and phase assignment of the aperture can be set very accurately.
  • the waveguides (2) of the feed networks are dimensioned for both polarizations such that on the one hand as lossless waveguide over the entire instantaneous bandwidth is achieved, and on the other hand is minimized by a high integration density of the required space.
  • waveguides are used whose aspect ratio is substantially smaller than the standard ratio 1: 2.
  • the waveguide (2) have only an aspect ratio of 6.5: 16.
  • the feed networks such that the line divider at the lowest level signals the two half-apertures with N / 2 primary horns respectively merges.
  • this power divider can also be designed as a combined E-field and H-field divider.
  • the difference signal can be tapped directly at the aperture output. If the difference signal is processed accordingly this enables the high-precision alignment of the antenna on the target satellites.
  • the CFR 25.222 standard requires a targeting accuracy of ⁇ 0.2 °.
  • the aperture is constructed so that it can provide the difference signal, accuracies can be achieved with the help of a "closed loop" tracking, which are permanently ⁇ 0.2 ° in time.
  • Fig. 1c the schematic structure of the two feed networks for the two orthogonal linear polarizations is shown.
  • the two polarisations are separated and fed in two separate feed networks (4) (solid lines) and (5) (dotted lines).
  • Both feed networks are designed as binary trees with E-field dividers (7) and H-field dividers (8).
  • the signals from N / 2 primary horns are symmetrically combined.
  • the lowest-level divider may be implemented as a combined E-field and H-field divider (30).
  • This class of amplitude assignments in addition to the sizing specifications for the horn field, the individual primary horns and the phase gating of claim 1, has the property that, as the geographic skew angle increases, no parasitic grating lobes occur, but the level of sidelobes in the azimuth direction the entire instantaneous bandwidth decreases.
  • This is a significant advantage of arrangements according to the invention over previously known arrangements. The effect is in Fig. 5a and Fig. 5b for a typical embodiment and for a frequency in the Ku broadcast band (14.25 GHz).
  • the angle theta denotes the angle along the tangent to the Clark orbit at the location where the geostationary satellite is located, and the skew angle the angle of rotation of the aperture perpendicular to the beam direction when the antenna is aligned with that satellite.
  • the bold curve (“FCC”) marks the regulatory envelope according to CFR 25.209, which must not be exceeded by the antenna gain "gain”.
  • Fig. 5a shows the angle range -180 ° to + 180 °
  • Fig. 5b the area around the main lobe.
  • Aperture occupancy is realized by symmetric and asymmetrical binary E and H power splitters (7, 8) in each of the two feed networks for each of the two orthogonal polarizations, and thus is effective over the entire instantaneous bandwidth.
  • This has the advantage that also in the receiving band a very high directivity is achieved and the parasitic irradiation of signals from neighboring satellites is greatly reduced.
  • a typical embodiment of the feed networks is in Fig. 1c shown.
  • Typical Embodiments of E-Field Dividers (7) and H-Field Dividers (8) are in the FIGS. 4a and 4b shown.
  • the webs of the phase gating grating divide the aperture surfaces of the primary horns into two equal parts, as in FIG Fig. 1a shown. This arrangement has the advantage that the phase occupation of the field is homogenized in both directions and that no parasitic side lobes caused by phase correlation occur even when the aperture is rotated about the main radiation direction.
  • the grid has square cells, even in the presence of a geographic skew, no distortion of the E-field and H-field vectors occurs, even if, as in arrangements according to the invention, the aperture areas of the primary horn have an aspect ratio of 1: 2.
  • the number of required primary horns in the elevation direction can be halved, since then they need not have an extension in this direction which is smaller ⁇ .
  • the topological requirements for the feed networks are thereby simplified considerably and an additional volume or weight reduction is achieved.
  • the extension of the phase gating grating (9) in the direction perpendicular to the aperture surface is typically between ⁇ / 4 and ⁇ / 2. This expansion is determined by the extension l H of the horns horn horns, which according to the invention ⁇ 1.5 ⁇ .
  • the instantaneous bandwidth and the impedance matching to the free-space wave can be adjusted according to the respective requirements.
  • Arrangements according to the invention have the advantage over fields of unmodified horns that an additional degree of freedom exists for the aperture design and the antenna performance of the strongly shortened horns can thus be optimized with respect to the available installation space.
  • FIG. 5a and 5b An example of a measured antenna diagram of an antenna according to the invention with a trapezoidal aperture is shown in FIG Fig. 5a and 5b shown.
  • a further advantageous embodiment is in Fig. 6 shown. If the antenna is used simultaneously for transmission and reception, then it is advantageous if the output of the feed network of each of the two orthogonal polarizations is connected by a waveguide (11) to a waveguide frequency diplexer (12) comprising the transmission frequency band from Receiving frequency band separates and the receiving frequency band output (13) of the two waveguide frequency diplexer (12) is in each case connected to a low-noise amplifier (14).
  • the receive frequency band output is each connected directly to a low noise amplifier, or preferably a waveguide, such that the parasitic noise performance through dissipative connections remains minimal.
  • cooled low-noise amplifiers can advantageously also be used here.
  • thermoelectrically cooled low-noise amplifiers or active or passive cryogenically cooled low-noise amplifiers the receiving power of the antenna can be further increased.
  • Fig. 7 A typical embodiment of a waveguide module for polarization tracking is shown.
  • the two orthogonal linearly polarized signals at the two outputs of the feed networks and / or at the outputs of the waveguide-frequency diplexer and / abut the outputs of the low-noise amplifier are fed orthogonally into one or more waveguide modules, which consist of two along their axis connected hollow conductor pieces (15, 16) which against each other about the waveguide axis (17) motor-driven (18) by means of a transmission (19) can be rotated so that on the feed points (20) opposite side (21) of the waveguide modules in their polarization relative to the fed orthogonal linearly polarized signals rotated linearly polarized signals can be coupled out and so reconstruct the polarization of the incident waves t or the polarization of the waves to be transmitted can be controlled.
  • the antenna is used for receiving and transmitting signals in different frequency bands, which may be far apart, then it is advantageous if the antenna has a waveguide module for polarization tracking for the transmit band and a separate waveguide module for polarization tracking for the receive band Is provided.
  • the two waveguide modules can then be matched exactly to the corresponding band. As a result, a high-precision polarization tracking is achieved and caused by the frequency dispersion of the waveguide deviations can be minimized.
  • the antenna is not only used for receiving and transmitting linearly polarized signals but also for receiving and / or transmitting circularly polarized signals, it is advantageous if the two orthogonally linearly polarized signals at the two outputs of the feed networks and / or at the outputs of the waveguide frequency diplexer and / or at the outputs of the low-noise amplifiers abutting with one or more 90 ° hybrid couplers are converted into orthogonal circularly polarized signals, so that also circularly polarized signals can be transmitted and / or received with the antenna. Also, with appropriate division of the transmit and receive signals, simultaneous operation with all four possible orthogonal polarizations (2 ⁇ linear + 2 ⁇ circular) is possible both in transmit mode and in simultaneous receive mode. An arrangement according to claim 1 thus has the highest possible variability.
  • the antenna is mounted on the elevation axis of a two-axis positioner and the waveguide modules for compensation of polarization rotations and / or the 90 ° hybrid coupler for the reconstruction of circularly polarized signals mounted on the azimuth platform of the positioner and the antenna and waveguide modules and / or the 90 ° hybrid couplers are interconnected with flexible high frequency cables.
  • This arrangement of aperture and RF modules reduces the space required and facilitates integration, especially in aeronautical applications.
  • a typical arrangement with a two-axis positioner is in FIG Fig. 8 shown.
  • the Hornfeld aperture with feed network (22) is mounted on the elevation axis (23) and can be aligned by means of the elevation motor (24) and the elevation gear (25) in the elevation direction. With the aid of the azimuth motor (26), the antenna can be rotated about the azimuth axis (27). In the azimuth axis (27) a high-frequency rotary feedthrough with typically two channels is integrated.
  • the electronics boxes (28) and (29) typically contain the control electronics for the positioner and additional high-frequency modules, such. B. modules according to claim 4 for polarization tracking. Also, boxes (28) and (29) may include processing electronics for high-precision tracking of the antenna, such as the electronics for processing the difference and sum signals of a combined E-field and H-field divisor.
  • the antenna is provided with the exception of the aperture surface from the outside wholly or partially with a protective layer against the ingress of moisture, and in the plane between the primary horns (1) and the Phasenegalmaschinesgitter (9) or in the plane of the horn outputs (3 ) a high frequency permeable waterproof film is introduced, which prevents the penetration of moisture into the primary horns and the waveguide feed network.
  • antennas according to the present invention typically consist of light metals such as aluminum or metallized plastic materials for reasons of weight reduction.
  • silver or copper these materials, since silver and copper have a very high RF conductivity.
  • solder at least critical parts of the aperture, to weld, or to glue with the bonding typically electrically conductive adhesives are used.
  • a suitable RF-transmissive material are in particular thin sheets of closed-cell foams (eg polystyrene, Airex, etc.). These plates can be glued and / or screwed to the surface of the phase gating grid with suitable flexible or viscoplastic adhesives, thus reliably preventing the ingress of moisture or other undesirable substances into the antenna. It is also advantageous hydrophobic and / or fungicidal equipment of the surface of the protective material as this prevents the unwanted colonization of biological organisms ("biological slime", fungi), which can adversely affect the high-frequency properties.
  • biological slime fungi
  • vents may prevent condensate from accumulating inside the antenna, which may degrade the high frequency characteristics of the antenna.
  • the ventilation openings are preferably attached to the long edge of the waveguide of the feed network, since only small high frequency currents flow.
  • the dimension of the vents is typically much smaller than the wavelength for which the antenna is designed.
  • the ventilation openings can also be mounted in the protective film of the Phasenegalmaschinesgitters or in the Phasenegalmaschinesgitter covering material, in which case larger openings can be realized.
  • To prevent the ingress of dirt or other undesirable substances such.
  • Fig. 9 represents a typical embodiment of a combined E-field and H-field divider, with the aid of which the antenna can be tracked with high precision.
  • An advantageous Embodiment of the antenna is characterized in that the last waveguide power divider each of the two feed networks (4,5), which combines the signals of the two aperture halves with each N / 2 primary horns designed as a combined E and H divider (30) is such that both the sum signal (31) of the two symmetrical aperture halves and the difference signal (32) of the two symmetrical aperture halves is applied to this waveguide four-port and both the sum signal and the difference signal can be derived separately for each of the two orthogonal polarizations.
  • Combined E-field and H-field divisors are four-element elements which, due to their geometric properties, provide both the sum signal of two supplied signals and the difference signal. Due to the binary structure of the feed networks it is possible in Hornfeld apertures according to the invention, instead of the last binary power divider to install a "magic tea".
  • the difference signal can then be used either alone or together with the sum signal for high-precision alignment of the antenna on the target satellites. Since the difference signal disappears with exact alignment and the sum signal with exact alignment becomes maximum, z. B. the quotient of the signal powers P difference / P sum an extremely pronounced minimum (a so-called "zero") with exact alignment.
  • phase of the RF signal at the differential port (32) has a zero crossing with exact alignment, so that the sign of the phase position indicates the direction in which the antenna must be tracked. Since the high-precision tracking in satellite antennas must in principle only along the Clarke orbit - the azimuth direction - must be made, it is sufficient to divide the aperture in half in the azimuth direction. In the elevation direction, "open loop" tracking is typically sufficient with the aid of position data and / or inertial detector data.
  • the difference gate (32) of the combined E- and H-divider is equipped with a transmission band-cut filter, the prevents the penetration of transmission signals in the differential branch and the difference gate (32) is connected via the transmission band rejection filter with a low-noise amplifier. Since only the receiving signal must be used for high-precision tracking of the antenna by means of the signal of the differential gate, the low-noise amplifier which amplifies this signal can be effectively protected by a transmission band-cut filter from overdriving by the typically very strong transmission signal. Typically, this is a waveguide barrier filter is used because this class of components has only a very low attenuation.
  • the low-noise amplifier directly to the transmit band blocking filter, preferably also through waveguides, as this can minimize signal loss. If the received signal strong enough then but also embodiments are conceivable in which the low-noise amplifier with a high-frequency cable, z. B. a coaxial line is connected to the transmission band blocking filter.
  • the differential signals and / or a part of the sum signals of the two symmetrical aperture halves are forwarded to a processing electronics, which evaluates the strength and / or the phase position of the differential signals and / or the sum signals and these to the Passing control electronics of the antenna positioner, so that the control electronics can track the antenna so that the difference signal is minimal and so the antenna remains aligned with the target satellites when the antenna carrier moves relative to the target satellite. Due to the design, the antenna is optimally aligned with the target satellites when the received signal at the difference gate of the combined E-field and H-field divider becomes minimal.
  • This optimality criterion can thereby in a simple way for high-precision tracking of the antenna at moving antenna carriers are used to be processed by a suitable electronic unit and forwarded to the controller of the antenna positioning system. Since the difference signal is permanently available in time, very high sampling rates and thus very fast tracking are possible even with very fast moving antenna carrier. Since the phase of the difference signal has a rapid zero crossing with optimum alignment with the target satellites, it is advantageous to also evaluate the phase position of the difference signal and to use for tracking. Typically, this allows an even higher precision in the tracking can be achieved than when only the strength of the difference signal is used.
  • the antenna diagram of the Differenztors Since the antenna diagram of the Differenztors has two main lobes, which can show in the worst case on neighboring satellites, it is also advantageous to compare the difference signal in its strength and / or its phase position with the sum signal to exclude the parasitic interference of neighboring satellites in the tracking , In principle, by appropriate processing of the sum signal, since the antenna diagram of the Summentors has only a single, well-defined main lobe, parasitic interference terms are eliminated in the difference signal. This can be z. B. take place in that the difference signal is phase-aligned projected to the sum signal.
  • both beacon signals of the satellite and normal transponder signals can be used.
  • a satellite beacon typically consists of a narrowband ( ⁇ 1 kHz) CW-like signal
  • a normal transponder typically emits a broadband signal (in Ku-band, for example, 30 MHz), which is coded by phase coding (eg. QPSK) an information content is imprinted.
  • phase coding eg. QPSK
  • the processing of high-frequency signals is facilitated by the fact that the processing electronics contains one or more fixed frequency mixer and / or one or more controllable frequency-variable mixer and one or more frequency filters for the difference signals and / or the sum signals, with which the difference signal or a part of the difference signal and / or the sum signal or a part of the sum signal in a defined baseband can be converted and processed there.
  • controllable frequency-variable mixers (“frequency synthesizer"), the frequency range or transponder used for tracking can be specifically controlled.
  • the difference signal and the sum signal in the baseband can be directly evaluated.
  • the strength of the difference signal and / or the sum signal in the baseband is measured with a suitable electronic circuit and transferred to the control electronics of the antenna positioner.
  • standard electronic components such as suitable amplifiers or power detectors, can be used, which are available at low cost for typical base bands in the MHz range.
  • the difference signal and / or the sum signal in the baseband is digitized with an analog-to-digital converter and forwarded to a processor which has suitable evaluation methods to measure the strength and / or the Phase position of the difference signal and / or the sum signal to determine, and passes this information to the control electronics of the antenna positioner.
  • the processor can be z. B. consist of a specially programmed FPGA or a simple freely programmable arithmetic unit. To improve the signal quality z. B. software-implemented controllable filter can be used with the help of which the noise bandwidth can be optimized.
  • the antenna signals are converted into a baseband for the purpose of high-precision tracking, digitized and forwarded to a processor, then it is advantageous in particular for aeronautical applications in which the antenna carrier (eg the aircraft) can move at very high speed.
  • the processor has an evaluation method with which the Doppler frequency shift of the difference signal and / or the sum signal occurring during rapid movements of the antenna carrier can be compensated.
  • the software-implemented tracking is relatively inexpensive to implement in a suitable processor if the signals are already in digitized form. Since the maximum Doppler shift can be calculated over the maximum velocity of the antenna carrier, it is possible to configure a software-implemented filter accordingly. Then z. B. using an FFT (“Fast Fourier Transform”) determines the current frequency of the signal, the noise bandwidth adjusted accordingly and the strength of the signal are measured.
  • FFT Fast Fourier Transform
  • the antenna aperture in mobile and in particular aeronautical applications typically can not be rotated about the beam axis, it may be advantageous if a polarization rotation of the difference signal and / or the sum signal of the two aperture halves due to the spatial position of the antenna carrier is reflected by one or more waveguide modules Claim 4 or in that the processor of the processing electronics has a suitable evaluation method can be compensated. As a result, a mixing of the signals of different polarization and thus a signal interference, which may affect the precise tracking prevented. In principle, this is depending on the application, two methods, the use of waveguide modules according to claim 4 and the software processing, available. Since the position of the antenna carrier, z. B. via GPS, typically known is, the polarization rotation can be calculated in a simple manner and can then be transferred to the control of the waveguide module or to the processor.
  • the evaluation method of the processor is to multiply two or more temporally successive values of the amplitude of the baseband difference signal and these products over a certain time .DELTA.t sum up to a sum S 1 , in each case two or more temporally successive values of the amplitude of the baseband sum signal multiply and accumulate these products over a certain time .DELTA.t to a sum S 2 , after the expiration of the period .DELTA.t the quotient S 1 / S 2 and / or another suitable function f (S 1 , S 2 ), the value obtained thereby by the method of the smallest distance or another suitable method with the standard curve f N ( ⁇ , S 1 , S 2 ), thereby determining the value of the deviation angle ⁇ and these n to pass to the control electronics of the antenna positioner.
  • the antenna is constructed according to the invention, up to a total of N physical not realized half primary horn radiator, which are located at the edge of the aperture, or changed in their outline or reduced realized, the associated cells of the Phasenegalleitersgitters are correspondingly so modified that the edges of the cells continue to lie on the edges of the primary horns, the aperture allocation according to the invention is realized only for complete lines of the field of primary horns containing N 1 primary horns (see. Fig. 1b ), and the binary tree structure of the two feed networks (cf. Fig. 1c ) is trimmed accordingly in the absence of primary horns.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Claims (18)

  1. Antenne pour communication par satellite à large bande, en particulier pour des utilisations mobiles se composant d'un champ de radiateurs en cornets électromagnétiques primaires (1) qui sont reliés entre eux par un réseau d'alimentation par guides d'ondes (2), cette antenne étant constituée d'un nombre N = N1 x N2 de radiateurs en cornets primaires, et N1 et N2 étant des nombres entiers directs,
    caractérisé en ce que
    N1 > 4 N2, sur la totalité du champ d'ouverture A de l'antenne A = L x H avec L ≥ 4 H et L < N1λ, λ étant la longueur d'ondes de rayonnement direct minimum de l'onde électromagnétique devant être émise ou reçue, les radiateurs à cornets primaires permettant la réception et l'émission de deux ondes électromagnétiques à polarisations linéaires orthogonales de sorte qu'ils disposent d'un champ d'ouverture rectangulaire a = 1 x h avec 1 < h et 1 < λ, et d'une sortie (3) approximativement carrée, avec L = N1 1, H = N2 h et A = N1 x N2 x 1 x h = L x H, et les radiateurs à cornets primaires (1) étant alimentés directement au niveau de leur sortie par des guides d'ondes rectangulaires (4, 5) de sorte que l'une des polarisations linéaires orthogonales soit introduite et extraite parallèlement au champ d'ouverture tandis que l'autre polarisation linéaire orthogonale est introduite et évacuée dans un plan perpendiculaire au champ d'ouverture par l'intermédiaire d'un septum de guides d'ondes (6), les cornets des radiateurs à cornets étant aplatis et présentant perpendiculairement au champ d'ouverture une longueur 1H < 1,5 λ, le réseau d'alimentation par guides d'ondes (2) étant constitué d'un réseau d'alimentation pour l'une des deux polarisations linéaires orthogonales et d'un réseau d'alimentation séparé de celui-ci pour l'autre polarisation linéaire orthogonale, chacun des deux réseaux d'alimentation étant réalisé sous la forme d'un arbre binaire avec des diviseurs de puissance E et H binaires (7, 8) de sorte que le dernier diviseur de puissance respectif rassemble en les séparant symétriquement sur le plan le plus bas de l'arbre binaire les puissances de deux semi-ouvertures avec respectivement N/2 radiateurs à cornets primaires pour chacune des deux polarisations orthogonales, l'occupation de l'ouverture de l'antenne suivant à chaque fois approximativement la relation p 1 , j < p 2 , j < p 3 , j < < p k , j = p k + 1 , j = p k + 2 , j = = p k + m , j > p k + m + 1 , j > p k + m + 2 , j > p k + m + 3 , j > > p 2 k + m , j
    Figure imgb0009

    k et m représentant des nombres entiers et 2k+m=N1 et les puissances pi, j, i=1...N1, j=1...N2 caractérisant la contribution à la puissance des différents radiateurs à cornets primaires, l'occupation de l'ouverture étant réalisée par des diviseurs de puissance E et H binaires symétriques et asymétriques (7, 8) dans chacun des deux réseaux d'alimentation pour chacune des deux polarisations orthogonales et la totalité du champ d'ouverture étant couverte par une grille d'égalisation de phase (9), les mailles (10) de cette grille d'égalisation de phase (9) ayant la forme d'un carré dont les côtés ont une longueur b, et, dans chaque cas, et approximativement, b=1, h=2b et b<λ de sorte que dans la direction N1, les traverses de la grille soient situés sur les bords d'impact de deux radiateurs à cornets (1) voisins, et que dans la direction N2 les traverses de la grille se trouvent chaque cas approximativement au milieu du champ d'ouverture de chaque radiateur à cornet (1).
  2. Dispositif conforme à la revendication 1,
    caractérisé en ce que
    l'occupation de l'ouverture de l'antenne suit à chaque fois approximativement la relation p 1 , j < p 2 , j < p 3 , j < < p k , j = p k + 1 , j = p k + 2 , j = = p k + m , j > p k + m + 1 , j > p k + m + 2 , j > p k + m + 3 , j > > p 2 k + m , j
    Figure imgb0010

    k et m étant des nombres entiers et m ≥ 2 k, 2k+m=N1 dans chaque cas approximativement pi,j=p2k+m+1-i,j pour i=1...N1/2, et les puissances pi,j, i=1...N1, j=1...N2 représentant les contributions à la puissance des différents radiateurs à cornets primaires.
  3. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    la sortie du réseau d'alimentation de chacune des deux polarisations orthogonales est respectivement reliée par un guide d'ondes (11) avec un coupleur de fréquence de guides d'ondes (12) qui sépare la bande de fréquence d'émission de la bande de fréquence de réception et la sortie (13) de la bande de fréquence de réception (13) des deux coupleurs de fréquence de guides d'ondes (12) étant respectivement reliée à un amplificateur (14) à faible bruit.
  4. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    les deux signaux à polarisation linéaire orthogonaux qui s'appliquent aux deux sorties du réseau d'alimentation et/ou aux sorties du coupleur de fréquence de guides d'ondes (12) et/ou aux sorties de l'amplificateur (14) à faible bruit sont fournis de manière orthogonale à au moins un module de guide d'ondes (15, 16) constitué de deux éléments de guide d'ondes reliés l'un à l'autre le long de leur axe qui peuvent être déplacés en rotation de façon motorisée l'un par rapport à l'autre autour de l'axe (17) du guide d'onde de sorte que sur la face (21) du module de guide d'onde opposée aux points d'alimentation (20) de ce module, des signaux à polarisation linéaire déplacés par rotation puissent présenter une polarisation décuplée par rapport aux signaux à polarisation linéaire orthogonale fournis de façon à pouvoir ainsi reconstruire la polarisation des ondes incidentes ou commander la polarisation des ondes à émettre.
  5. Dispositif conforme à la revendication 4,
    caractérisé en ce que
    l'antenne est équipée d'un module de guide d'ondes pour poursuivre la polarisation pour la bande d'émission et d'un module de guide d'ondes séparé de celui-ci pour poursuivre la polarisation de la bande de réception.
  6. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    les deux signaux à polarisation linéaire orthogonaux appliques sur les deux sorties du réseau d'alimentation (2) et/ou sur les sorties du coupleur de fréquence de guides d'ondes (12) et/ou sur les sorties de l'amplificateur à faible bruit (14) sont transformés par un ou plusieurs coupleurs hybrides à 90° en des signaux à polarisation circulaire orthogonaux de sorte que l'antenne permette également d'émettre et/ou de recevoir des signaux à polarisation circulaire.
  7. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    l'antenne est montée sur l'axe de couverture angulaire (23) d'une table de positionnement à deux axes et les modules de guide d'ondes (15, 16) conformes à la revendication 4 et/ou le coupleur hybride à 90° conforme à la revendication 5 sont montés sur la plate-forme azimutale de la table de positionnement, et l'antenne et les modules de guide d'ondes (15, 16) et/ou le coupleur hybride à 90° sont reliés par des câbles haute fréquence flexibles.
  8. Dispositif conforme à l'une des revendications précédentes,
    en particulier pour des utilisations dans le domaine de l'aéronautique
    caractérisé en ce que
    tous ou une partie des composants de l'antenne sont totalement ou partiellement argentés ou cuivrés, tous ou une partie des composants de l'antenne sont brasés et/ou soudés et/ou collés, l'antenne, à l'exception du champ d'ouverture est équipée par l'extérieur, totalement ou partiellement d'une couche de protection contre la pénétration d'humidité, et, dans le plan situé entre les cornets primaires (1) et la grille d'égalisation de phase (9) ou dans le plan de sortie des cornets (3) est appliqué un film étanche à l'eau qui empêche la pénétration d'humidité dans les cornets primaires et dans le réseau d'alimentation par guides d'ondes.
  9. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    le dernier diviseur de puissance de guide d'ondes de chacun des deux réseau d'alimentation (4, 5), qui rassemble les signaux des deux demi ouvertures constituées par l'assemblage respectif de N/2 radiateurs à cornets primaires (1) est réalisé sous la forme d'un diviseur E et H combiné (30), de sorte que s'appliquent sur cette quadruple porte de guides d'ondes le signal de sommation (31) des deux demi ouvertures symétriques ainsi que le signal de différentiation (32) des deux demi ouvertures symétriques, et pour chacune des deux polarisations orthogonales, le signal de sommation ainsi que le signal de différentiation peuvent être dérivés de manière séparés.
  10. Dispositif conforme à la revendication 9,
    caractérisé en ce que
    la porte de différentiation (32) du diviseur combiné E et H est équipée d'un filtre de blocage de bande d'émission qui empêche la pénétration de signaux démission dans la branche de différentiation et la porte de différentiation (32) est reliée par l'intermédiaire du filtre de blocage de bande d'émission à un amplificateur à faible bruit.
  11. Dispositif conforme à la revendication 9,
    en particulier pour le domaine des utilisations mobiles
    caractérisé en ce que
    les signaux de différentiation et/ou une partie des signaux de sommation des deux demi ouvertures symétriques sont transmis à une électronique de traitement qui exploite l'intensité et/ou la position de phase des signaux de différentiation et/ou des signaux de sommation et les transmet à l'électronique de commande de la table de positionnement de l'antenne de sorte que cette électronique de commande puisse suivre l'antenne de sorte que le signal de différentiation devienne minimum, et qu'ainsi, l'antenne reste dirigée sur les satellites cibles lorsque le support de l'antenne se déplace par rapport à ces satellites.
  12. Dispositif conforme à la revendication 11,
    caractérisé en ce que
    l'électronique de traitement des signaux de différentiation et/ou des signaux de sommation comprend au moins un mélangeur de fréquences fixes et/ou un ou plusieurs mélangeurs variables en fréquences pouvant être commandés et un ou plusieurs filtres de fréquence avec lesquels le signal de différentiation ou une partie du signal de différentiation et/ou le signal de sommation ou une partie du signal de sommation peuvent être convertis dans une bande de base définie et y être traités.
  13. Dispositif conforme à la revendication 12,
    caractérisé en ce que
    l'intensité du signal de différentiation et/ou du signal de sommation dans la bande de base est mesurée avec un circuit électronique adapté et est délivrée à l'électronique de commande de la table de positionnement de l'antenne.
  14. Dispositif conforme à la revendication 12,
    caractérisé en ce que
    le signal de différentiation et/ou le signal de sommation est numérisé dans la bande de base par un convertisseur analogique-numérique et est transmis à un processeur qui dispose d'un processus d'exploitation adapté pour déterminer l'intensité et/ou la position de phase du signal de différentiation et/ou du signal de sommation et transmet ces informations à l'électronique de commande de la table de positionnement de l'antenne.
  15. Dispositif conforme à la revendication 14,
    en particulier pour des applications dans le domaine de l'aéronautique
    caractérisé en ce que
    le processeur dispose d'un processus d'exploitation permettant de compenser les décalages de fréquences de Doppler du signal de différentiation et/ou du signal de sommation se produisant en présence de mouvements rapides du support de l'antenne.
  16. Dispositif conforme à la revendication 9,
    caractérisé en ce qu'
    une rotation de la polarisation du signal de différentiation et/ou du signal de sommation des deux demi ouvertures conditionnée par la position spaciale du support de l'antenne peut être compensée par un ou plusieurs modules de guide d'ondes conforme à la revendication 4, ou par le fait que
    le processeur de l'électronique de traitement dispose d'un processus d'exploitation adapté.
  17. Dispositif conforme à la revendication 14,
    caractérisé en ce que
    le processus d'exploitation du processeur consiste à multiplier respectivement deux ou un plus grand nombre de valeurs de l'amplitude du signal de différentiation de la bande de base se succédant dans le temps et à faire la somme de ces produits sur un temps déterminé Δt pour obtenir une somme S1, respectivement à multiplier deux ou un plus grand nombre de valeurs de l'amplitude du signal de sommation de la bande de base se succédant dans le temps et à faire la somme de ces produits sur un temps déterminé Δt pour obtenir une somme S2, après écoulement de l'intervalle de temps Δt à former les quotients S1/S2 et/ou une autre fonction adaptée f (S1, S2), à comparer les valeurs ainsi obtenues selon la méthode du plus petit écart ou une autre méthode adaptée avec la courbe standard fN (δ, S1, S2) connue par mesure de calibration ou par calcul de façon à déterminer la valeur de l'angle d'écart δ et transmettre celui-ci à l'électronique de commande de la table de positionnement de l'antenne.
  18. Dispositif conforme à l'une des revendications précédentes,
    caractérisé en ce que
    jusqu'à globalement N1/2 radiateurs à cornets primaires qui sont situés au bord de l'ouverture ne sont pas réalisés physiquement ou sont modifiés sur leurs bords ou sont diminués, les cellules correspondantes de la grille d'égalisation de phase sont modifiées en conséquence, de sorte que les bords des cellules soient disposés sur les bords des radiateurs à cornets primaires (1), l'occupation de l'ouverture conforme à la revendication 1 ou à la revendication 2 n'est réalisée que pour des cellules complètes du champ des radiateurs à cornets primaires (1) qui renferment N1 radiateurs à cornets primaires (1) et la structure d'arbre binaire des deux réseaux d'alimentation (4, 5) est coupée en conséquence en cas de défaillance de radiateurs à cornets primaires.
EP10718884A 2009-04-30 2010-04-30 Système d'antenne à large bande pour communication par satellite Active EP2425490B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10718884T PL2425490T3 (pl) 2009-04-30 2010-04-30 System anten szerokopasmowych do komunikacji satelitarnej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009019291 2009-04-30
PCT/EP2010/002645 WO2010124867A1 (fr) 2009-04-30 2010-04-30 Système d'antenne large bande pour communication par satellites

Publications (2)

Publication Number Publication Date
EP2425490A1 EP2425490A1 (fr) 2012-03-07
EP2425490B1 true EP2425490B1 (fr) 2013-02-13

Family

ID=42262383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718884A Active EP2425490B1 (fr) 2009-04-30 2010-04-30 Système d'antenne à large bande pour communication par satellite

Country Status (8)

Country Link
US (1) US8477075B2 (fr)
EP (1) EP2425490B1 (fr)
JP (1) JP5535311B2 (fr)
CN (1) CN102414922B (fr)
DE (1) DE102010019081A1 (fr)
ES (1) ES2405598T3 (fr)
PL (1) PL2425490T3 (fr)
WO (1) WO2010124867A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113813A1 (de) 2014-09-24 2016-03-24 Lisa Dräxlmaier GmbH Vorrichtung zur Kompensation von Polarisationsverschiebungen
DE102015108154A1 (de) 2015-05-22 2016-11-24 Lisa Dräxlmaier GmbH Zweikanalige Polarisationskorrektur

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988294B2 (en) 2011-12-06 2015-03-24 Viasat, Inc. Antenna with integrated condensation control system
CN102625326B (zh) * 2012-03-22 2014-04-23 浙江大学 蜂窝移动通信网络覆盖的多小区联合优化方法及其装置
ES2763866T3 (es) 2012-07-03 2020-06-01 Draexlmaier Lisa Gmbh Sistema de antena para comunicación satelital de banda ancha en el intervalo de frecuencia de GHz con antenas de bocina con constricciones geométricas
DE102012013129A1 (de) 2012-07-03 2014-01-09 Qest Quantenelektronische Systeme Gmbh Breitband-Antennensystem zur Satellitenkommunlkation
FR3013909B1 (fr) * 2013-11-28 2016-01-01 Thales Sa Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes
FR3015787B1 (fr) 2013-12-23 2017-06-09 Thales Sa Procede pour definir la structure d'une antenne en bande ka
US10096904B2 (en) 2014-03-06 2018-10-09 Viasat, Inc. Waveguide feed network architecture for wideband, low profile, dual polarized planar horn array antennas
US9571183B2 (en) 2014-06-30 2017-02-14 Viasat, Inc. Systems and methods for polarization control
DE102015101721A1 (de) 2015-02-06 2016-08-11 Lisa Dräxlmaier GmbH Positionierungssystem für Antennen
US9823343B2 (en) * 2015-02-27 2017-11-21 Ford Global Technologies, Llc Digital beamforming based resolution of out-of-path targets showing up as in-path due to grating lobes in array antenna radars
US9640847B2 (en) 2015-05-27 2017-05-02 Viasat, Inc. Partial dielectric loaded septum polarizer
US9859597B2 (en) 2015-05-27 2018-01-02 Viasat, Inc. Partial dielectric loaded septum polarizer
US10027031B2 (en) 2015-06-03 2018-07-17 Mitsubishi Electric Corporation Horn antenna device
JP6569435B2 (ja) * 2015-09-29 2019-09-04 三菱電機株式会社 アレイアンテナ
KR102269233B1 (ko) * 2015-11-17 2021-06-28 위월드 주식회사 위성 통신 안테나용 초 광대역 듀얼 원편파 모듈
CN105652299B (zh) * 2016-01-19 2017-12-22 中国民航大学 一种基于最大相关信号能量的卫星导航定位方法
DE102016101583B4 (de) * 2016-01-29 2017-09-07 Lisa Dräxlmaier GmbH Radom
RU2630845C1 (ru) * 2016-06-14 2017-09-13 Общество с ограниченной ответственностью "Даурия - спутниковые технологии" Компактный высокоскоростной радиопередающий комплекс космического аппарата
DE102016014385A1 (de) 2016-12-02 2018-06-07 Kathrein-Werke Kg Dual polarisierter Hornstrahler
JP7103860B2 (ja) 2017-06-26 2022-07-20 日本電産エレシス株式会社 ホーンアンテナアレイ
JP2019009779A (ja) 2017-06-26 2019-01-17 株式会社Wgr 伝送線路装置
US10547122B2 (en) 2017-06-26 2020-01-28 Nidec Corporation Method of producing a horn antenna array and antenna array
EP3480884B1 (fr) 2017-11-06 2022-01-05 SWISSto12 SA Transducteur orthomode
US11784384B2 (en) * 2017-12-20 2023-10-10 Optisys, LLC Integrated tracking antenna array combiner network
WO2020009979A1 (fr) 2018-07-02 2020-01-09 Sea Tel, Inc. (Dba Cobham Satcom) Antenne à guide d'ondes à extrémité ouverte pour réseaux actifs unidimensionnels
CN109462042B (zh) * 2018-11-14 2020-12-08 广州合智瑞达科技有限公司 一种汽车防碰撞雷达阵列天线及设有该阵列天线的电路板
JP7316836B2 (ja) * 2019-05-15 2023-07-28 日本無線株式会社 導波管型偏分波器
FR3105611B1 (fr) 2019-12-18 2023-01-06 Swissto12 Sa Antenne à double polarisation
CN112490635B (zh) * 2020-11-05 2023-03-14 陕西飞机工业(集团)有限公司 一种矩阵波导与飞机一体化集成方法及系统
WO2022241483A2 (fr) 2021-05-14 2022-11-17 Optisys, Inc. Combinateur monolithiques planaires et multiplexeur pour forêts d'antennes
US11936112B1 (en) * 2022-05-05 2024-03-19 Lockheed Martin Corporation Aperture antenna structures with concurrent transmit and receive

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238914B (en) 1989-11-27 1994-05-04 Matsushita Electric Works Ltd Waveguide feeding array antenna
CA2085131A1 (fr) 1990-06-14 1991-12-15 John L. F. C. Collins Antennes hyperfrequence
GB2247990A (en) 1990-08-09 1992-03-18 British Satellite Broadcasting Antennas and method of manufacturing thereof
FI99221C (fi) * 1995-08-25 1997-10-27 Nokia Telecommunications Oy Planaarinen antennirakenne
GB9703748D0 (en) 1997-02-22 1997-04-09 Fortel International Limited Microwave antennas
US6201508B1 (en) * 1999-12-13 2001-03-13 Space Systems/Loral, Inc. Injection-molded phased array antenna system
US6211838B1 (en) * 2000-02-02 2001-04-03 Space Systems/Loral, Inc. High efficiency dual polarized horn antenna
US6476772B1 (en) * 2001-04-16 2002-11-05 Space Systems/Loral, Inc. Waveguide slot array capable of radiating shaped beams
US6977621B2 (en) 2004-01-07 2005-12-20 Motia, Inc. Vehicle mounted satellite antenna system with inverted L-shaped waveguide
ITRM20040605A1 (it) 2004-12-10 2005-03-10 Space Engineering Spa Antenna piatta ad alta efficienza e relativo procedimento di fabbricazione.
WO2008069369A1 (fr) * 2006-12-08 2008-06-12 Idoit Co., Ltd. Antenne du type à réseau de cornets pour polarisation rectiligne double
JP2008252216A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp アンテナ装置およびこれを用いた方位探知装置
CN104505594B (zh) * 2007-09-13 2018-07-24 天文电子学爱罗莎特股份有限公司 有宽带天线的通信系统
CN101183747B (zh) * 2007-11-13 2011-09-07 华南理工大学 用于空间功率合成的功分喇叭天线及其阵列
WO2010009685A1 (fr) * 2008-07-23 2010-01-28 Qest Quantenelektronische Systeme Gmbh Antenne bi-bande intégrée et procédé de communication aéronautique par satellite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113813A1 (de) 2014-09-24 2016-03-24 Lisa Dräxlmaier GmbH Vorrichtung zur Kompensation von Polarisationsverschiebungen
DE102014113813B4 (de) * 2014-09-24 2017-03-09 Lisa Dräxlmaier GmbH Vorrichtung zur Kompensation von Polarisationsverschiebungen
DE102015108154A1 (de) 2015-05-22 2016-11-24 Lisa Dräxlmaier GmbH Zweikanalige Polarisationskorrektur
US10044083B2 (en) 2015-05-22 2018-08-07 Lisa Draexlmaier Gmbh Dual-channel polarization correction

Also Published As

Publication number Publication date
CN102414922A (zh) 2012-04-11
ES2405598T3 (es) 2013-05-31
US8477075B2 (en) 2013-07-02
CN102414922B (zh) 2014-10-01
PL2425490T3 (pl) 2013-06-28
EP2425490A1 (fr) 2012-03-07
JP5535311B2 (ja) 2014-07-02
DE102010019081A9 (de) 2012-04-12
JP2012525747A (ja) 2012-10-22
DE102010019081A1 (de) 2010-11-04
WO2010124867A1 (fr) 2010-11-04
US20110267250A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
EP2425490B1 (fr) Système d&#39;antenne à large bande pour communication par satellite
EP2870660B1 (fr) Système d&#39;antennes pour communication satellite large bande dans la plage de fréquences ghz, doté d&#39;un réseau d&#39;alimentation
CN110391495B (zh) 相控阵天线和制造印刷电路板单位单元的方法
DE60310481T2 (de) Multiband-Hornstrahler
DE202021106120U1 (de) Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben
DE2727883A1 (de) Mikrowellen-antennensystem
DE102014112825A1 (de) Steghornstrahler mit zusätzlicher Rille
WO2005034288A1 (fr) Dispositif et procede permettant d&#39;emettre et/ou de recevoir un rayonnement electromagnetique
EP2384523B1 (fr) Antenne double bande pour usage à navigation satellite
EP2381531B1 (fr) Antenne en réseau commandée par phases
DE102015108154A1 (de) Zweikanalige Polarisationskorrektur
DE60112335T2 (de) Phasengesteuerte gruppenantenne mit spannungsgesteuertem phasenschieber
Baggen et al. Phased array technology by IMST: A comprehensive overview
DE19845868A1 (de) Doppelfokusplanarantenne
DE102011121138B4 (de) Breitband-Antennensystem zur Satellitenkommunikation
WO2010009685A1 (fr) Antenne bi-bande intégrée et procédé de communication aéronautique par satellite
EP0200819A2 (fr) Antenne réseau
DE102012109106A1 (de) Planarantenne mit verschachtelter Anordnung von Sendearray und Empfangsarray
EP3900111B1 (fr) Dispositif antenne
DE3514880A1 (de) Array-antenne
DE2451708C1 (de) Anordnung zur Stoerung einer Monopuls-Zielverfolgungs-Radareinrichtung durch Wiederausstrahlung in Kreuzpolarisation
EP4150708A1 (fr) Agencement d&#39;antenne, agencement d&#39;émetteur-récepteur, système de communication, dispositif d&#39;actionneur et procédé de fonctionnement d&#39;agencement d&#39;antenne
WO2009098084A1 (fr) Système d’antenne pour communication mobile par satellite
DE102008030327A1 (de) Integrierte Dualband - Antenne und Verfahren zur aeronautischen Satellitenkommunikation
DE102012013129A1 (de) Breitband-Antennensystem zur Satellitenkommunlkation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 596913

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002322

Country of ref document: DE

Effective date: 20130411

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2405598

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130531

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130213

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130514

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

BERE Be: lapsed

Owner name: QEST QUANTENELEKTRONISCHE SYSTEME G.M.B.H.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131114

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002322

Country of ref document: DE

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140410

Year of fee payment: 5

Ref country code: NO

Payment date: 20140409

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150309

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100430

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 596913

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230310

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240307

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240308

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240430

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240508

Year of fee payment: 15