EP2420728B1 - Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze - Google Patents

Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze Download PDF

Info

Publication number
EP2420728B1
EP2420728B1 EP11175421.4A EP11175421A EP2420728B1 EP 2420728 B1 EP2420728 B1 EP 2420728B1 EP 11175421 A EP11175421 A EP 11175421A EP 2420728 B1 EP2420728 B1 EP 2420728B1
Authority
EP
European Patent Office
Prior art keywords
light
screen
edge
headlamp
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11175421.4A
Other languages
English (en)
French (fr)
Other versions
EP2420728A1 (de
Inventor
Wolfgang Dr. Hoßfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2420728A1 publication Critical patent/EP2420728A1/de
Application granted granted Critical
Publication of EP2420728B1 publication Critical patent/EP2420728B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/686Blades, i.e. screens moving in a vertical plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/689Flaps, i.e. screens pivoting around one of their edges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/16Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having blurred cut-off lines

Definitions

  • the present invention relates to a projection headlight for a motor vehicle according to the preamble of claim 1.
  • a motor vehicle headlight is known from JP 63 157 102 U known.
  • a projection headlamp generally comprises at least one light source, an optical element collecting light of the light source, a diaphragm with a diaphragm edge, and imaging optics.
  • the optical element is set up and arranged to direct collected light onto the diaphragm edge, so that a first light distribution bounded by the diaphragm edge adjusts at the diaphragm edge, which is imaged by the imaging optical system as a second light distribution in an advance field of the headlight.
  • the aperture edge in the second light distribution as a light-dark boundary between a shown comparatively lighter and a comparatively darker area.
  • the light intensity gradient occurring when crossing the cut-off line is an important parameter in the design and construction of automotive headlamps.
  • a high value of the light intensity gradient is perceived as a high-contrast and thus sharp cut-off line.
  • there are legal minimum requirements for the sharpness of the cut-off line which must be complied with.
  • a blurred Patoscuro limit is more pleasant for the driver.
  • a less contrasty transition is less restless than a high-contrast transition, especially in the case of rapid vertical movements of the cut-off line, as they occur on bumpy roads. The less contrasting transition is therefore less tiring.
  • the object of the invention is a further improvement of visual comfort and driving safety.
  • the projection headlamp according to the invention is also distinguished by the fact that the diaphragm has projections and / or half-open incisions in the diaphragm edge and / or that the diaphragm has a closed edge limited first recesses in the diaphragm, which are arranged at a distance from the diaphragm edge, the is less than one fifth of the width of the aperture.
  • the aperture edge is sharply imaged as a light-dark boundary in the second light distribution in the run-up to the headlamp.
  • the diaphragm edge is usually arranged so that it is close to the focal point of the imaging optics.
  • the aperture edge separates sharply between a shadowed from the aperture and a not shaded by the aperture and thus illuminated area in the second light distribution.
  • each projection shadows light that would contribute to illuminating the bright area below the cut-off line in a conventional aperture.
  • Each incision and recess allows light to pass which would be shaded in a conventional aperture.
  • the intensity in the inherently bright area in the middle reduced and increased in average per se dark area.
  • the projections protrude beyond a middle course of the diaphragm edge, while the recesses and recesses remain behind this central course.
  • the position of the projections cuts and recesses inevitably deviates from the position of the middle course of the diaphragm edge.
  • a headlamp according to the invention in which the diaphragm edge has a central region lying close to the optical axis, in which the diaphragm neither protrusions, nor semi-open cuts in the diaphragm edge, still having a closed edge limited first recesses in the aperture.
  • the desired reduction in the sharpness of the cut-off line is achieved in the invention by designing the aperture.
  • the diaphragm is a comparatively easy to design and to be manufactured part, which in total allows a predictable, targeted adjustment of the sharpness of the cut-off line with a reduced effort.
  • a preferred embodiment is characterized in that the imaging optics have a lens which is not rotationally symmetrical with respect to the optical axis or an astigmatic one which is not rotationally symmetrical with respect to the optical axis Lens system is.
  • Astigmatism is an aberration in which points are not depicted as points, but generally as elliptical surfaces. Such an aberration already results to a comparatively small extent in the case of beam bundles which impinge on a rotationally symmetrical lens from a point located outside the optical axis.
  • Non-rotationally symmetric lenses generally have a more pronounced astigmatism. The thus increased blurring of the image contributes in this embodiment to the fact that the holey or jagged or wave-shaped modulated diaphragm edge is not sharply displayed, which would be undesirable.
  • the imaging optics have a different focal length on the optical axis in a plane or direction running along the diaphragm edge than in a plane or direction running transversely to the diaphragm edge. This results in the possibility of imaging the light distribution between the diaphragm edge and the imaging optics in the two directions with different degrees of sharpness. This contributes to the fact that projections, cuts and recesses, which has the aperture in the vicinity of the diaphragm edge, are not resolved when mapping the first light distribution in the second light distribution.
  • a further preferred embodiment is characterized in that the diaphragm edge is closer to one of the two focal points of the imaging optics lying on the optical axis than to the other of the two focal points of the imaging optics lying on the optical axis.
  • the diaphragm edge is not equidistant from the two focal points, but closer to one of the two focal points.
  • the aperture can basically be arranged in a horizontal position or a vertical position or in an intermediate position between these two layers in the headlight. Depending on the position of the diaphragm, it may be more favorable for the desired fuzzy dissolution of the projections and recesses and recesses to arrange the diaphragm closer to one of the two foci than to the other of the two foci.
  • the diaphragm edge is arranged closer to the focal point farther away from the imaging optics in the direction of the optical axis than at the focal point which is less distant from the imaging optics.
  • the diaphragm lies in a plane which includes an angle of less than 20 °, in particular an angle of less than 10 °, in particular an angle of 0 ° with a plane defined by the diaphragm edge and the optical axis, and that the aperture has a reflective surface.
  • the light initially shaded by the diaphragm can be reflected onto the light entry surface of the imaging optics and be refracted by the latter into the bright region of the second light distribution. This improves the efficiency which can be defined as the quotient of the light emitted by the light source in the denominator and the light forming the second light distribution in the counter.
  • a further preferred embodiment is characterized in that the diaphragm in its plane has bulges and / or depressions and / or further recesses which are farther away from the diaphragm edge than the first recesses.
  • These structures are preferably used to modify the light distribution defined by the basic shape of the diaphragm, for example to obtain prescribed light intensity values at certain measurement points within the intrinsically dark region of the light distribution. These measuring points located above the cut-off line serve, for example, to ensure certain illuminance levels of traffic signs (so-called overhead values).
  • a further preferred embodiment provides that the imaging optics has light-scattering structures in the form of local bulges and / or depressions on its light entry surface and / or on its light exit surface.
  • This embodiment opens up further degrees of freedom in the design of the headlamps, since it permits a division of the modifications of the projection system to the diaphragm and the imaging optics required for a desired reduction in the sharpness of the cut-off line.
  • the division reduces the amount of modification required with respect to each of the components.
  • scattered structures that are distributed periodically or statistically over the lens surface may then be sufficient, which avoids time-consuming and expensive production of individually calculated scattering structures.
  • the lens reduces the sharpness of the image of the area of the diaphragm in the vicinity of the diaphragm edge which is structured in accordance with the invention. This contributes to the desired effect that the cuts, projections and recesses of the aperture in the second light distribution are not or only weaker than usual resolved.
  • FIG. 1 a projection headlight 10 for a motor vehicle with a light source 12, a light 15 of the light source 12 collecting optical element 14, a diaphragm 16 having a diaphragm edge 18, and an imaging optics 22.
  • the said elements 12, 14, 16 and 22 are along a optical axis 31 of the headlamp 10 arranged so that the optical element 14 from the light source 12 originating light bundles 15 and directed to the diaphragm edge 18, so that adjusts a limited by the diaphragm edge 18 first light distribution at the diaphragm edge 18.
  • the imaging optics 22 is arranged and arranged so that it images the first light distribution as a second light distribution 24 in an apron of the headlamp 10, wherein the aperture edge 18 in the second light distribution 24 as a light-dark boundary 26 between a comparatively brighter area 28 and a comparatively darker area 30 of the second light distribution 24 is imaged.
  • the image is made in such a way that the aperture 16 is displayed upside down and reversed in the front of the motor vehicle.
  • the brighter region 28 therefore lies below the horizon in the case of a projection headlamp 10, which is intended to fulfill a dimming function.
  • the fact that the darker area 30 is above the horizon, dazzling oncoming traffic is avoided or at least reduced.
  • the diaphragm edge 18 is generally asymmetrical and has, for example, a section sloping from the optical axis 31 to the side at an angle of 15 °, which is imaged as a rising edge in the second light distribution 24.
  • angles of 0 ° or 45 ° or 90 ° are provided at Alternative embodiments.
  • the light source 12 is in a first embodiment, an incandescent lamp or a gas discharge lamp.
  • the light collecting optical element 14 is preferably a polyellipsoid reflector having an ellipsoidal basic shape.
  • the light source 12 is preferably arranged in the one focal point of the ellipsoidal reflector. In the other focal point of the ellipsoidal reflector, the diaphragm edge 18 is arranged.
  • the isotropically radiated light from the light source 12 is directed by the reflector 14 in the second focal point, so that there is a highly concentrated first light distribution, which is bounded by the diaphragm edge 18.
  • the light source 12 is a semiconductor light source or an array of semiconductor light sources.
  • Semiconductor light sources in particular light-emitting diodes, are generally half-space radiators and thus differ from incandescent lamps and gas-discharge lamps, which can be considered approximately as isotropically emitting light sources 12. For this reason, another light-collecting element 14 is used as the light source 12 for the semiconductor light source design.
  • a half-shell reflector as a light-collecting optical element could be used for a semiconductor light source or as an array of semiconductor light sources realized light source 12 and a head optics of light-conducting material which receives the light 15 of the light sources 12 and by refraction and by in the interior of the light conducting internal material internal total reflections and focuses on the diaphragm edge 18.
  • the imaging optics 22 is a converging lens, which is arranged such that its reflector-side focal point lies in the region of the first light distribution at the diaphragm edge 18.
  • the diaphragm edge 18 is then imaged as a sharp cut-off line 26 in the second light distribution 24 in the apron of the motor vehicle.
  • FIG. 2 shows a known from the prior art aperture 16, which, as shown in the FIG. 1 is shown, is arranged transversely to the optical axis 31 in the headlight 10 and has a substantially smooth aperture edge 18.
  • the diaphragm edge 18 may have a curvature, as in the FIG. 2 is shown, in conjunction with the imaging optics 22 to achieve a desired contour of the cut-off line 26 in the second light distribution 24 in front of the motor vehicle.
  • this smooth course is depicted as a sharp cut-off line 26.
  • FIG. 3 shows various embodiments of apertures 32 inventive headlights 10.
  • the FIG. 3a a diaphragm 32, the diaphragm edge 34 has half-open incisions 38 and projections 40.
  • the projections 40 Measured on a central diaphragm profile 36, the projections 40 extend into a region which, in a conventional diaphragm, as shown in the FIG. 2 is shown, completely translucent would be.
  • the projections 40 shadow in a region which is close to the central curve 36 of the diaphragm edge 34, light, which would not be shaded in the known aperture 16.
  • the semi-open incisions 38 allow light through the aperture 32, which would be completely shadowed in the conventional aperture 16.
  • FIG. 3b differs from the subject of FIG. 3a in that the projections 40 and cuts 38 in the subject matter of FIG. 3b give a rather wavy, round edge, while at the subject of the FIG. 3a have a more straight, pointed, jagged course.
  • first recesses 50 which are provided just below the diaphragm edge 34 in the aperture 32.
  • All three embodiments of the aperture 32, as shown in the FIGS. 3a-c are represented, characterized in that the diaphragm edge 34 has a central, lying close to the optical axis 31 region 42 in which the aperture 32 neither projections 40, nor half-open incisions 38 in the diaphragm edge 34, nor bounded by a closed edge having first recesses 50 in the aperture 32. Therefore, in this middle region 42, the diaphragms 32 do not differ from the conventional diaphragms 16. In this middle region, therefore, the light-dark boundary produced by the diaphragms 32 in cooperation with the other components of the projection headlamp 10 does not differ from the bright one Dark border, as produced in a projection headlamp with a conventional aperture 16.
  • FIG. 4 shows in its right half a half of a second light distribution 24, as it is generated by means of a conventional diaphragm 16 and having a well-marked both in the central region 42 and in the right edge region bright-dark boundary 26.
  • a light distribution 24, as produced by the same projection headlight under the same conditions with a diaphragm 32, as shown in the FIGS. 3a . b and c is shown.
  • the otherwise sharp light-dark boundary 26 in the left edge area blurred which is indicated by a split of the light-dark boundary 26 in three light-dark boundaries 26, 26 'and 26 ".Each of the three lines 26, 26' and 26 "corresponds to a constant illuminance. This means that the transition from light to dark, which occurs in the right half of the light distribution 24 sharply above the cut-off line 26, takes place in the left half of the light distribution 24 over an area which is blurred over several degrees of angle.
  • FIG. 5 illustrates the same relationship in that there is the intensity over the degree of blending of the light spots from a central axis, for example, the optical axis 31 is shown.
  • the course of intensity shown in solid lines belongs to a conventional diaphragm 16 and to a light distribution 24, as in the right part of FIG FIG. 4 is shown.
  • This course is characterized by a sharp cut-off line 26, located in the FIG. 5 represented by a very steep curve 54 in the region of the horizon angle of 0 °.
  • the dashed curve 54 at the angle 0 ° and in a narrow angle environment around this angle of 0 ° around a lower slope. This means that the correspondingly less steep course of the cut-off line is correspondingly less contrasted and correspondingly more blurred.
  • the dashed curve 56 results in a projection headlight 10 by diaphragms, of which embodiments in the FIGS. 3a . b and c and which are characterized in that they affect the first light distribution at the diaphragm edge 34 in the right and left edge zones of the diaphragm 32 outside the central region 42 so that they allow more light in the otherwise shadowed area and less light in the otherwise get illuminated area.
  • the deliberate broadening and blurring of the cut-off line additionally requires that in connection with the FIG. 3 explained structuring of the diaphragm 32 in the region of the diaphragm edge 34 by cuts 38 and / or projections 40 and / or recesses 50 in the production the second light distribution 24 is not resolved. In other words, said structuring should not be visible in the second light distribution 24.
  • This desired effect is favored by an astigmatism of the imaging optics 22.
  • astigmatism dots are generally not depicted as dots, but as ellipses and thus out of focus.
  • the imaging optics 22 is a lens 58 which is not rotationally symmetrical with respect to the optical axis 31 or an astigmatic lens system which is not rotationally symmetrical with respect to the optical axis.
  • FIG. 6 shows a first section 60 through such a non-rotationally symmetrical lens 58, which was guided along the optical axis 31 and transversely to a diaphragm edge 34. If the diaphragm edge 34 is to be imaged in the second light distribution 24 as a substantially horizontal light-dark boundary, the section 60 is a vertical section.
  • FIG. 6b shows a second section 62 through the non-rotationally symmetrical lens 58, which is guided along the optical axis 31 and along a diaphragm edge 34. If the diaphragm edge 34 is to be imaged in the second light distribution 24 as a substantially horizontally running cut-off line, the section 62 is a horizontal section.
  • the focal length of a lens is known to be longer, the lower its curvature.
  • the lens 58 has in its vertical section 60 a lower curvature of its light entry surface and light exit surface, and thus in particular a comparatively large focal length fv.
  • the focal length fv is in the FIG. 6a the distance of the focal point 66 from a median plane of the lens 58.
  • the light rays 68 are correspondingly extending in the vertical sectional plane light rays.
  • the lens 58 has a greater curvature and thus shorter focal length fh.
  • the focal point 64 lying in the horizontal sectional plane is therefore closer to the lens 58 than the focal point 66, which lies in the vertical sectional plane.
  • the light rays 70 represent light rays lying in the horizontal sectional plane.
  • FIG. 7 shows an arrangement of elements of a projection headlamp according to the invention with a vertically arranged aperture 32, as in connection with the FIG. 3 has been explained, and with a non-rotationally symmetrical lens 58, as in connection with the FIG. 6 has been explained.
  • the lens 58 is thicker at its upper edge than at its lateral edge and therefore has a greater focal length in its vertical section than in its horizontal section.
  • the diaphragm edge 34 is preferably arranged closer to one of the two focal points 64, 66 than to the respective other of the two focal points 66, 64 of the lens 58 serving as imaging optics 22.
  • the diaphragm edge 34 is in the direction of the optical axis 31 closer to the farther from the imaging optics 22, respectively the lens 58, removed focal point 66, as disposed on the less far from the imaging optics 22, respectively the lens 58, the removed focal point 64th
  • the diaphragm edge 34 is therefore in this embodiment in vertical focal point 66 of the astigmatic lens 58.
  • the horizontal focus 64 lies between the diaphragm edge 34 and the lens 58. This has the effect that the diaphragm edge is sharply focused vertically but not sharply horizontally. If the horizontal focal point 64 is far enough away from the vertical focal point 66, which is favored by the asymmetrically designed lens 58 with respect to its rotational symmetry, the serrated or wavy or first recesses 50 having shape of the aperture 32, respectively the diaphragm edge 34, no longer resolved.
  • the cuts 38, projections 40 and recesses 50 are rather blurred horizontally, which is desirable here.
  • FIG. 7 an embodiment with an arrangement of two semiconductor light sources 72, 74, in particular light-emitting diodes, as a light source 12 and an array of internally totally reflecting auxiliary optics 80, 82 as light-collecting elements.
  • the attachment optics 80, 82 consist for example of PMMA (polymethyl methacrylate) or PC (polycarbonate) as a light-conducting material. Due to the high refractive index of these materials compared to air, the opening angle of the outgoing light beam from each semiconductor light source decreases when entering the respectively assigned intent optics of, for example, 90 ° to about 40 °. This angle relates in each case to the deviation of a marginal ray of the propagation cone from a central axis of the propagation cone.
  • the totally reflecting side surfaces and the surfaces of the auxiliary optics 80, 82 which serve as the light exit surface and face the diaphragm 34 are preferably configured by their geometry to focus the light emanating from the semiconductor light sources 72, 74 and to direct them to the diaphragm edge 34, so that at the Aperture edge 34 sets a limited by the diaphragm edge 34 first light distribution.
  • FIG. 8 shows a particularly preferred embodiment of an arrangement of elements of a projection headlamp according to the invention. Similar to the subject of the FIG. 7 also indicates the subject of the FIG. 8 Semiconductor light sources 72, 74, 76, 78 as a light source 12 and associated attachment optics 80, 82, 84 and 86 as light collecting, focusing and directing elements.
  • the unequal number of semiconductor light sources and attachment optics in the objects of FIGS. 7 and 8 is insignificant. However, a significant difference is the arrangement of the aperture 32nd
  • FIG. 8 shows thus in particular an embodiment in which the diaphragm 32 lies in a plane which includes an angle of less than 20 ° with a plane defined by the diaphragm edge 34 and the optical axis 31, in particular an angle of less than 10 °, in particular one Angle of 0 °.
  • the angular position of the diaphragm 32 is of subordinate importance.
  • a need for adjustment to the situation results under certain circumstances in that the diaphragm edge 34 should each have a similar curvature as the light entrance surface of the imaging optics 22 facing it, or the lens 58 serving as the imaging optics 22 FIG. 8 Such a curvature is recognizable.
  • Such a curvature would be feasible by moving the vertical outer edges of the aperture 32 somewhat towards the lens 58, while the central region of the diaphragm edge 34 should remain in the focal point 66 of the vertical section through the lens 58.
  • an efficiency is understood here as the proportion of the amount of light emitted by the light source 12, which is imaged in the light distribution 24 in front of the motor vehicle. This amount of light remains with the object of FIG. 7 necessarily behind an optimal value, because the vertically arranged Aperture shading a certain portion of the first light distribution, which adjusts to the diaphragm edge 34, effectively shaded.
  • the horizontal diaphragm 32 prevents the light impinging on it from entering the intended dark region 30 of the light distribution 24.
  • the horizontal diaphragm 32 also offers the possibility of reflecting the reflected light onto the light entrance side of the lens 58 facing the diaphragm 32, wherein the lens 58 is preferably designed such that it diffracts this light into the bright region 28 of the second light source Light distribution 24 directed in front of the motor vehicle.
  • FIG. 8 This is the subject of the FIG. 8 less light lost than at the subject of the FIG. 7 ,
  • This efficiency advantage of FIG. 8 can still be increased by the fact that the light exit surfaces of the attachment optics 80, 82, 84, 86 facing surface of the aperture 32 is designed to be reflective. This is preferably achieved by a metallic reflective coating, as known from reflector fabrication for decades.
  • the more efficient use of light makes the embodiment with the horizontally arranged aperture 32 particularly suitable for use in conjunction with semiconductor light sources as the light source 12. This is because semiconductor light sources, at least if limited in number, do not readily provide so much luminous flux as can be expected from gas discharge lamps and / or halogen lamps.
  • the horizontal aperture 32 is that with a horizontal installation of the aperture 32 of the lower part of the projection module for more Functions can be used.
  • the upper part is particularly advantageous to use the upper part as auxiliary low beam and the lower part as additional high beam.
  • the aperture described acts both in the dipped beam and in the high beam range. As a result, the structurally visible dividing line between additional low beam and additional high beam is additionally blurred.
  • a preferred embodiment is characterized in that the aperture is movable.
  • the aperture is moved along the aperture or folded.
  • it is pivoted about an axis which is largely perpendicular, in particular perpendicular, to the direction of travel and largely parallel, in particular parallel to the roadway. Extensive means here except for deviations of less than 5 °.
  • the folding movement takes place at the vertical aperture Fig. 7 preferably with a movement of the diaphragm edge forward and in the horizontal aperture of the Fig.
  • the projection headlamp supports the high beam function. It is also preferable that the diaphragm can also be moved in each case in one or more intermediate positions, which lie between said end positions.
  • lens 58 further optical functions such as a Color correction or a further reduction in contrast in the area of the cut-off by microstructures or light-scattering structures on one or more surfaces of the lens 58 is met.
  • FIG. 6 a lens 58 as an embodiment of an imaging optics 22, which has light-scattering structures 92 in the form of local bulges and / or depressions on its light exit surface 90.
  • FIG. 9 shows a further embodiment, which is realized both in vertical and horizontally arranged aperture 32.
  • This embodiment is characterized in that the diaphragm 32 has in its plane bulges and / or depressions and / or further recesses 88, which are farther away from the diaphragm edge 34 than the first recesses 50 which are used to broaden the cut-off line serve in their peripheral areas.
  • the shading effect of the diaphragm 32 is purposefully locally modified to give certain proportions of light a certain direction, so that, for example, traffic signs, which are normally in the dark area 30 of the second light distribution 24, with a small, but permissible and prescribed light intensity are irradiated, which does not lead to dazzling oncoming traffic.
  • the recesses contain optical elements in a further embodiment.

Description

  • Die vorliegende Erfindung betrifft einen Projektionsscheinwerfer für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1. Ein solcher Kraftfahrzeugscheinwerfer ist aus der JP 63 157 102 U bekannt.
  • Ein Projektionsscheinwerfer weist im Allgemeinen wenigstens eine Lichtquelle, ein Licht der Lichtquelle sammelndes optisches Element, eine Blende mit einer Blendenkante, und eine Abbildungsoptik auf. Das optische Element ist dazu eingerichtet und angeordnet, gesammeltes Licht auf die Blendenkante zu richten, so dass sich an der Blendenkante eine von der Blendenkante begrenzte erste Lichtverteilung einstellt, die von der Abbildungsoptik als zweite Lichtverteilung in ein Vorfeld des Scheinwerfers abgebildet wird. Dabei wird die Blendenkante in der zweiten Lichtverteilung als Hell-Dunkel-Grenze zwischen einem vergleichsweise helleren und einem vergleichsweise dunkleren Bereich abgebildet.
  • Der beim Überqueren der Hell-Dunkel-Grenze auftretende Lichtintensitätsgradient ist ein wichtiger Parameter beim Entwurf und bei der Konstruktion von Kraftfahrzeugscheinwerfern. Ein hoher Wert des Lichtintensitätsgradienten wird als kontrastreiche und damit scharfe Hell-Dunkel-Grenze wahrgenommen. Einerseits bestehen gesetzliche Mindestanforderungen an die Schärfe der Hell-Dunkel-Grenze, die eingehalten werden müssen. Andererseits ist eine unschärfere Hell-Dunkel-Grenze für den Fahrer angenehmer. Ein weniger kontrastreicher Übergang wirkt insbesondere bei schnellen Vertikalbewegungen der Hell-Dunkel-Grenze, wie sie auf welliger Fahrbahn auftreten, weniger unruhig als ein kontrastreicher Übergang. Der weniger kontrastreiche Übergang wirkt daher weniger ermüdend.
  • Die Aufgabe der Erfindung besteht in einer weiteren Verbesserung des Sichtkomforts und der Fahrsicherheit.
  • Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Der erfindungsgemäße Projektionsscheinwerfer zeichnet sich auch dadurch aus, dass die Blende Vorsprünge und/oder halboffene Einschnitte in der Blendenkante aufweist und/oder dass die Blende durch einen geschlossenen Rand begrenzte erste Ausnehmungen in der Blende aufweist, die in einem Abstand zur Blendenkante angeordnet sind, der kleiner als ein Fünftel der Breite der Blende ist.
  • Normalerweise wird die Blendenkante scharf als Hell-Dunkel-Grenze in der zweiten Lichtverteilung im Vorfeld des Scheinwerfers abgebildet. Dazu ist die Blendenkante in der Regel so angeordnet, dass sie in der Nähe des Brennpunktes der Abbildungsoptik liegt. Außerdem trennt die Blendenkante scharf zwischen einem von der Blende abgeschatteten und einem nicht von der Blende abgeschatteten und damit beleuchteten Bereich in der zweiten Lichtverteilung.
  • Durch die Erfindung wird diese scharfe Trennung abgeschwächt und damit verwischt. Jeder Vorsprung schattet Licht ab, das bei einer herkömmlichen Blende zur Beleuchtung des hellen Bereichs unterhalb der Hell-Dunkel-Grenze beitragen würde. Jeder Einschnitt und jede Ausnehmung lässt dagegen Licht passieren, das bei einer herkömmlichen Blende abgeschattet werden würde. Mit anderen Worten: Im Vergleich mit einer herkömmlichen Blende wird die Intensität im an sich hellen Bereich im Mittel verringert und im an sich dunklen Bereich im Mittel erhöht.
  • Gleichzeitig ragen die Vorsprünge über einen mittleren Verlauf der Blendenkante hinaus, während die Einschnitte und Ausnehmungen hinter diesem mittleren Verlauf zurückbleiben. In Bezug auf ihre Lage zum Brennpunkt der Abbildungsoptik weicht die Lage der Vorsprünge, Einschnitte und Ausnehmungen damit zwangsläufig von der Lage des mittleren Verlaufs der Blendenkante ab.
  • Unterstellt man, dass der mittlere Verlauf der Blendenkante wegen seiner Nähe zum Brennpunkt der Abbildungsoptik scharf abgebildet wird, folgt aus der abweichenden Lage der Vorsprünge, Einschnitte und Ausnehmungen, dass diese weniger scharf abgebildet werden. Im Ergebnis ergibt sich damit eine zweite Lichtverteilung im Vorfeld des Scheinwerfers, die sich durch eine weniger scharfe und damit weniger kontrastreiche Hell-Dunkelgrenze auszeichnet, ohne dass die dafür ursächlichen Details der Blendenform, also die Vorsprünge und/oder Einschnitte und/oder Ausnehmungen scharf abgebildet werden, was unerwünscht wäre.
  • Dadurch, dass eine Amplitude der Einschnitte und/oder Vorsprünge und/oder eine Fläche und/oder eine Zahl und/oder ein Abstand erster Ausnehmungen mit zunehmendem Abstand von der optischen Achse zunimmt, wird eine Hell-Dunkel-Grenze in der zweiten Lichtverteilung erzeugt, die in einem zentralen Bereich vergleichsweise scharf und in peripheren Bereichen vergleichsweise unschärfer wird. Dadurch treten zum Beispiel Vertikalbewegungen der Hell-Dunkel-Grenze, wie sie zum Beispiel auf welliger Fahrbahn auftreten, in dem zentralen Bereich stärker in Erscheinung als in den Randbereichen. Dies führt dazu dass sich der Fahrer intuitiv stärker auf den zentralen Bereich konzentriert, was aus Gründen der Fahrsicherheit erwünscht ist.
  • Die gleichen Vorteile werden alternativ oder ergänzend durch eine Ausgestaltung eines erfindungsgemäßen Scheinwerfers erzielt, bei dem die Blendenkante einen mittleren, nahe an der optischen Achse liegenden Bereich aufweist, in dem die Blende weder Vorsprünge, noch halboffene Einschnitte in der Blendenkante, noch durch einen geschlossenen Rand begrenzte erste Ausnehmungen in der Blende aufweist.
  • Die erwünschte Verringerung der Schärfe der Hell-Dunkel-Grenze wird bei der Erfindung durch eine Gestaltung der Blende erzielt. Im Vergleich zu der Abbildungsoptik ist die Blende ein vergleichsweise einfach zu gestaltendes und zu fertigendes Teil, was in der Summe eine vorhersagbare, gezielte Einstellung der Schärfe der Hell-Dunkel-Grenze mit einem verringerten Aufwand erlaubt.
  • Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Abbildungsoptik eine bezüglich der optischen Achse nicht rotationssymmetrische Linse oder ein bezüglich der optischen Achse nicht rotationssymmetrisches astigmatisches Linsensystem ist. Unter Astigmatismus wird ein Abbildungsfehler verstanden, bei dem Punkte nicht als Punkte, sondern im Allgemeinen als elliptische Flächen abgebildet werden. Ein solcher Abbildungsfehler ergibt sich in vergleichsweise geringem Ausmaß bereits bei Strahlenbündeln, die von einem außerhalb der optischen Achse liegenden Punkt auf eine rotationsymmetrische Linse einfallen. Nicht rotationssymmetrische Linsen weisen in der Regel einen stärker ausgeprägten Astigmatismus auf. Die dadurch verstärkte Unschärfe der Abbildung trägt bei dieser Ausgestaltung dazu bei, dass die löchrige oder gezackte oder wellenförmig modulierte Blendenkante nicht scharf abgebildet wird, was unerwünscht wäre.
  • Bevorzugt ist auch, dass die Abbildungsoptik auf der optischen Achse in einer längs der Blendenkante laufenden Ebene oder Richtung eine andere Brennweite aufweist als in einer quer zu der Blendenkante laufenden Ebene oder Richtung. Dadurch ergibt sich die Möglichkeit, die sich zwischen der Blendenkante und der Abbildungsoptik einstellende Lichtverteilung in den beiden Richtungen unterschiedlich scharf abzubilden. Dies trägt dazu bei, dass Vorsprünge, Einschnitte und Ausnehmungen, die die Blende in der Nähe der Blendenkante aufweist, bei der Abbildung der ersten Lichtverteilung in die zweite Lichtverteilung nicht aufgelöst werden.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Blendenkante näher an einem der beiden auf der optischen Achse liegenden Brennpunkte der Abbildungsoptik liegt als an dem anderen der beiden auf der optischen Achse liegenden Brennpunkte der Abbildungsoptik. Mit anderen Worten: Die Blendenkante liegt nicht in äquidistantem Abstand zu den beiden Brennpunkten, sondern näher an einem der beiden Brennpunkte. Die Blende kann grundsätzlich in einer horizontalen Lage oder einer vertikalen Lage oder in einer Zwischenstellung zwischen diesen beiden Lagen im Scheinwerfer angeordnet sein. Je nach Lage der Blende kann es für die gewünschte unscharfe Auflösung der Vorsprünge und Einschnitte und Ausnehmungen günstiger sein, die Blende näher an einem der beiden Brennpunkte anzuordnen als an dem anderen der beiden Brennpunkte.
  • Bevorzugt ist auch, dass die Blendenkante in Richtung der optischen Achse näher an dem weiter von der Abbildungsoptik entfernten Brennpunkt angeordnet ist als an dem weniger weit von der Abbildungsoptik entfernten Brennpunkt. Diese Ausgestaltung hat den Vorteil, dass sie insbesondere bei einer mehr horizontal als vertikal im Scheinwerfer angeordneten Blende dazu beiträgt, dass die Vorsprünge, Einschnitte und Ausnehmungen in der Blende in der zweiten Lichtverteilung nicht aufgelöst werden und daher nicht sichtbar oder zumindest nicht deutlich sichtbar in Erscheinung treten.
  • Bevorzugt ist auch, dass die Blende in einer Ebene liegt, die mit einer von der Blendenkante und der optischen Achse definierten Ebene eine Winkel von weniger als 20°, insbesondere einen Winkel von weniger als 10°, insbesondere einen Winkel von 0° einschließt, und dass die Blende eine reflektierende Oberfläche besitzt. Durch diese Lage und reflektierende Ausgestaltung kann das von der Blende zunächst abgeschattete Licht auf die Lichteintrittsfläche der Abbildungsoptik reflektiert und von dieser in den hellen Bereich der zweiten Lichtverteilung gebrochen werden. Dadurch wird die Effizienz verbessert, die sich als Quotient aus dem von der Lichtquelle emittierten Licht im Nenner und dem das Licht der zweiten Lichtverteilung bildenden Licht im Zähler definieren lässt.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Blende in ihrer Ebene Wölbungen und/oder Vertiefungen und/oder weitere Ausnehmungen aufweist, die weiter von der Blendenkante entfernt liegen als die ersten Ausnehmungen. Diese Strukturen werden bevorzugt dazu verwendet, die von der Grundform der Blende definierte Lichtverteilung zu modifizieren, um zum Beispiel vorgeschriebene Lichtintensitätswerte in bestimmten Messpunkten innerhalb des an sich dunklen Bereichs der Lichtverteilung zu erhalten. Diese oberhalb der Hell-Dunkel-Grenze liegenden Messpunkte dienen zum Beispiel zur Sicherstellung bestimmter Beleuchtungsstärken von Verkehrsschildern (sogenannte Overhead-Werte).
  • Eine weitere bevorzugte Ausgestaltung sieht vor, dass die Abbildungsoptik auf ihrer Lichteintrittsfläche und/oder auf ihrer Lichtaustrittsfläche Licht streuende Strukturen in Form von lokalen Auswölbungen und/oder Vertiefungen aufweist.
  • Diese Ausgestaltung eröffnet weitere Freiheitsgrade beim Entwurf der Scheinwerfer, da sie eine Aufteilung der für eine erwünschte Verringerung der Schärfe der Hell-Dunkel-Grenze erforderlichen Modifikationen des Projektionssystems auf die Blende und die Abbildungsoptik erlaubt. Durch die Aufteilung wird das Ausmaß der jeweils erforderlichen Modifikation in Bezug auf jeweils eine der Komponenten verringert. Bei der Linse reichen dann unter Umständen periodisch oder statistisch über die Linsenfläche verteilte streuende Strukturen aus, was eine aufwändige und teure Fertigung individuell berechneter Streustrukturen erspart. Gleichzeitig verringert die Linse die Schärfe der Abbildung des erfindungsgemäß strukturierten Bereichs der Blende in der Nähe Blendenkante. Dies trägt zu dem erwünschten Effekt bei, dass die Einschnitte, Vorsprünge und Ausnehmungen der Blende in der zweiten Lichtverteilung nicht oder nur schwächer als sonst aufgelöst werden.
  • Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und den beigefügten Figuren.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Dabei zeigen, jeweils in schematischer Form:
  • Fig. 1
    einen Projektionsscheinwerfer als technisches Umfeld der Erfindung;
    Fig. 2
    eine aus dem Stand der Technik bekannte Blende;
    Fig. 3
    Ausführungsbeispiele von Blenden erfindungsgemäßer Scheinwerfer;
    Fig. 4
    ein Beispiel einer Lichtverteilung, die eine Hell-Dunkel-Grenze aufweist;
    Fig. 5
    Verläufe von Beleuchtungsintensitäten beim Überqueren der Hell-Dunkel-Grenze einer Lichtverteilung in qualitativer Form;
    Fig. 6
    eine nicht rotationssymmetrische, astigmatische Linse in zwei Schnittebenen mit zugehörigen Strahlengängen;
    Fig. 7
    eine Anordnung von Elementen eines erfindungsgemäßen Projektionscheinwerfers mit einer vertikal angeordneten Blende;
    Fig. 8
    eine Anordnung von Elementen eines erfindungsgemäßen Projektionsscheinwerfers mit einer horizontal angeordneten Blende; und
    Fig. 9
    eine weitere Ausgestaltung einer Blende eines erfindungsgemäßen Scheinwerfers.
  • Gleiche Bezugszeichen verweisen dabei in den verschiedenen Figuren jeweils auf gleiche oder zumindest ihrer Funktion nach gleiche Elemente.
  • Im Einzelnen zeigt die Figur 1 einen Projektionsscheinwerfer 10 für ein Kraftfahrzeug mit einer Lichtquelle 12, einem Licht 15 der Lichtquelle 12 sammelnden optischen Element 14, einer Blende 16, die eine Blendenkante 18 aufweist, und einer Abbildungsoptik 22. Die genannten Elemente 12, 14, 16 und 22 sind längs einer optischen Achse 31 des Scheinwerfers 10 so angeordnet, dass das optische Element 14 von der Lichtquelle 12 stammendes Licht 15 bündelt und auf die Blendenkante 18 richtet, so dass sich an der Blendenkante 18 eine von der Blendenkante 18 begrenzte erste Lichtverteilung einstellt.
  • Die Abbildungsoptik 22 ist dazu eingerichtet und so angeordnet, dass sie die erste Lichtverteilung als zweite Lichtverteilung 24 in ein Vorfeld des Scheinwerfers 10 abbildet, wobei die Blendenkante 18 in der zweiten Lichtverteilung 24 als Hell-Dunkel-Grenze 26 zwischen einem vergleichsweise helleren Bereich 28 und einem vergleichsweise dunkleren Bereich 30 der zweiten Lichtverteilung 24 abgebildet wird.
  • Die Abbildung erfolgt dabei so, dass die Blende 16 auf dem Kopf stehend und seitenverkehrt in das Vorfeld des Kraftfahrzeugs abgebildet wird. Der hellere Bereich 28 liegt daher bei einem Projektionsscheinwerfer 10, der eine Abblendlichtfunktion erfüllen soll, unter dem Horizont. Dadurch, dass der dunklere Bereich 30 über dem Horizont liegt, wird eine Blendung des Gegenverkehrs vermieden oder zumindest verringert. Die Blendenkante 18 ist in der Regel asymmetrisch ausgeführt und besitzt zum Beispiel einen von der optischen Achse 31 aus zur Seite um einen Winkel von 15° abfallenden Abschnitt, der als ansteigende Kante in der zweiten Lichtverteilung 24 abgebildet wird. Dadurch kann bekanntlich die dem Gegenverkehr nicht zugewandte Seite des Fahrzeugs weitreichender ausgeleuchtet werden. Bei alternativen Ausgestaltungen sind Winkel von 0° oder von 45° oder von 90° vorgesehen.
  • Die Lichtquelle 12 ist in einer ersten Ausgestaltung eine Glühlampe oder eine Gasentladungslampe. Bei dieser Ausgestaltung ist das Licht sammelnde optische Element 14 bevorzugt ein Polyellipsoid-Reflektor der eine ellipsoide Grundform besitzt. Die Lichtquelle 12 ist bevorzugt in dem einen Brennpunkt des ellipsoiden Reflektors angeordnet. In dem anderen Brennpunkt des ellipsoiden Reflektors ist die Blendenkante 18 angeordnet. Das von der Lichtquelle 12 isotrop abgestrahlte Licht wird von dem Reflektor 14 in den zweiten Brennpunkt gerichtet, so dass dort eine stark gebündelte erste Lichtverteilung entsteht, die von der Blendenkante 18 begrenzt wird.
  • In einer alternativen Ausgestaltung ist die Lichtquelle 12 eine Halbleiterlichtquelle oder eine Anordnung von Halbleiterlichtquellen. Halbleiterlichtquellen, insbesondere Leuchtdioden, sind in der Regel Halbraumstrahler und unterscheiden sich insofern von Glühlampen und Gasentladungslampen, die näherungsweise als isotrop abstrahlende Lichtquellen 12 betrachtet werden können. Aus diesem Grund wird für die Ausgestaltung mit Halbleiterlichtquellen als Lichtquelle 12 ein anderes Licht sammelndes Element 14 verwendet.
  • Im Unterschied zu einem Polyellipsoid-Reflektor, der die Lichtquelle 12 mehr oder weniger umgibt, ist für den Fall von Halbleiterlichtquellen als Lichtquellen 12 nur ein halbseitig geschlossener Reflektor 14 erforderlich, der auch eine ellipsoide Grundform besitzen sollte. Übertragen auf die Darstellung der Figur 1 bedeutet dies, dass die untere Hälfte des dort dargestellten Reflektors 14 weggelassen werden könnte.
  • Alternativ zu einem solchen Halbschalenreflektor als Licht sammelnden optischen Element könnte für eine als Halbleiterlichtquelle oder als Anordnung von Halbleiterlichtquellen realisierte Lichtquelle 12 auch eine Vorsatzoptik aus Licht leitendem Material verwendet werden, die das Licht 15 der Lichtquellen 12 aufnimmt und durch Brechung sowie durch im Inneren des Licht leitenden Materials erfolgende interne Totalreflexionen bündelt und auf die Blendenkante 18 richtet.
  • Die Abbildungsoptik 22 ist in einer Ausgestaltung eine Sammellinse, die so angeordnet ist, dass ihr reflektorseitiger Brennpunkt im Bereich der ersten Lichtverteilung an der Blendenkante 18 liegt. Die Blendenkante 18 wird dann als scharfe Hell-Dunkel-Grenze 26 in der zweiten Lichtverteilung 24 in das Vorfeld des Kraftfahrzeugs abgebildet.
  • Figur 2 zeigt eine aus dem Stand der Technik bekannte Blende 16, die, wie es in der Figur 1 dargestellt ist, quer zur optischen Achse 31 im Scheinwerfer 10 angeordnet ist und eine im Wesentlichen glatt verlaufende Blendenkante 18 besitzt. Die Blendenkante 18 kann dabei eine Krümmung aufweisen, wie es in der Figur 2 dargestellt ist, um im Zusammenwirken mit der Abbildungsoptik 22 eine gewünschte Kontur der Hell-Dunkel-Grenze 26 in der zweiten Lichtverteilung 24 vor dem Kraftfahrzeug zu erzielen. Beim Stand der Technik wird dieser glatte Verlauf als scharfe Hell-Dunkel-Grenze 26 abgebildet.
  • Die Figur 3 zeigt verschiedene Ausführungsbeispiele von Blenden 32 erfindungsgemäßer Scheinwerfer 10. Im Einzelnen zeigt die Figur 3a eine Blende 32, deren Blendenkante 34 halboffene Einschnitte 38 und Vorsprünge 40 aufweist. Gemessen an einem mittleren Blendenverlauf 36 erstrecken sich die Vorsprünge 40 in einen Bereich hinein, der bei einer üblichen Blende, wie sie in der Figur 2 dargestellt ist, komplett lichtdurchlässig wäre. Die Vorsprünge 40 schatten also in einem Bereich, der nahe an dem mittleren Verlauf 36 der Blendenkante 34 liegt, Licht ab, das bei der bekannten Blende 16 nicht abgeschattet würde. Im Gegensatz dazu lassen die halboffenen Einschnitte 38 Licht durch die Blende 32 hindurch, das bei der üblichen Blende 16 vollständig abgeschattet werden würde.
  • Dies führt dazu, dass die Blende 32, wie sie in der Figur 3a dargestellt ist, die Lichtintensität in der ersten Lichtverteilung, die sich an der Blendenkante 34 einstellt, oberhalb von dem mittleren Verlauf 36 verringert und unterhalb von dem mittleren Verlauf 36 vergrößert.
  • Ganz ähnlich ist es beim Gegenstand der Figur 3b. Der Gegenstand der Figur 3b unterscheidet sich vom Gegenstand der Figur 3a dadurch, dass die Vorsprünge 40 und Einschnitte 38 beim Gegenstand der Figur 3b einen eher wellenförmig, runden Rand ergeben, während sie beim Gegenstand der Figur 3a einen eher geradlinigen, Spitzen aufweisenden, gezackten Verlauf aufweisen.
  • Die weitere Ausgestaltung, die in der Figur 3c dargestellt ist, zeichnet sich durch erste Ausnehmungen 50 auf, die knapp unterhalb der Blendenkante 34 in der Blende 32 vorgesehen sind. Durch diese Ausnehmungen 50 gelangt Licht, das bei der üblichen Blende 16 durch das Blendenmaterial abgeschattet werden würde, durch die Blende hindurch und beeinflusst so die erste Lichtverteilung, die sich an der Blende 32 einstellt.
  • Alle drei Ausgestaltungen der Blende 32, wie sie in den Figuren 3a-c dargestellt sind, zeichnen sich dadurch aus, dass die Blendenkante 34 eine mittleren, nahe an der optischen Achse 31 liegenden Bereich 42 aufweist, in dem die Blende 32 weder Vorsprünge 40, noch halboffene Einschnitte 38 in der Blendenkante 34, noch durch einen geschlossenen Rand begrenzte erste Ausnehmungen 50 in der Blende 32 aufweist. In diesem mittleren Bereich 42 unterscheiden sich die Blenden 32 daher nicht von den üblichen Blenden 16. In diesem mittleren Bereich unterscheidet sich daher auch die von den Blenden 32 im Zusammenwirken mit den übrigen Komponenten des Projektionsscheinwerfers 10 erzeugten Hell-Dunkel-Grenze nicht von der Hell-Dunkel-Grenze, wie sie in einem Projektionsscheinwerfer mit einer üblichen Blende 16 erzeugt wird.
  • Unterschiede in den Lichtverteilungen ergeben sich dagegen in den rechten und linken Randbereichen der Blendenkanten, in denen die Blendenkante 34 zum Beispiel den in der Figur 3a dargestellten zackenförmigen Verlauf 46 oder den in der Figur 3b dargestellten wellenförmigen Verlauf 48 besitzt oder in denen erste Ausnehmungen 50 in der Blende 34 die erste Lichtverteilung beeinflussen. Dies wird im Folgenden unter Bezug auf die Figuren 4 und 5 noch näher erläutert. Die Figur 4 zeigt in ihrer rechten Hälfte eine Hälfte einer zweiten Lichtverteilung 24, wie sie mit Hilfe einer üblichen Blende 16 erzeugt wird und die eine sowohl im mittleren Bereich 42 als auch im rechten Randbereich scharf ausgeprägte Hell-Dunkel-Grenze 26 aufweist.
  • In ihrer linken Hälfte zeigt die Figur 4 zum Vergleich eine Lichtverteilung 24, wie sie von dem gleichen Projektionsscheinwerfer unter gleichen Bedingungen mit einer Blende 32 erzeugt wird, wie sie in den Figuren 3a, b und c dargestellt ist. In diesem Fall wird die ansonsten scharfe Hell-Dunkel-Grenze 26 im linken Randbereich verwischt, was durch eine Aufspaltung der Hell-Dunkel-Grenze 26 in drei Hell-Dunkel-Grenzen 26, 26' und 26" angedeutet wird. Jede der drei Linien 26, 26' und 26" entspricht dabei einer konstanten Beleuchtungsstärke. Das bedeutet, dass der Übergang von Hell nach Dunkel, der in der rechten Hälfte der Lichtverteilung 24 scharf über der Hell-Dunkel-Grenze 26 auftritt, in der linken Hälfte der Lichtverteilung 24 über einen Bereich stattfindet, der über mehrere Winkelgrade verwischt ist.
  • Es versteht sich, dass die Veranschaulichung diese Verwischens der Hell-Dunkel-Grenze durch drei Isolux-Linien 26, 26' und 26" lediglich einen veranschaulichenden Charakter hat und dass man in der Realität beliebig viele weitere Isolux-Linien mit einer feineren Unterteilung der Beleuchtungsstärkenwerte zeichnen könnte.
  • Figur 5 veranschaulicht den gleichen Zusammenhang dadurch, dass dort die Intensität über der Gradzahl der Abmischung der Lichtpunkte von einer zentralen Achse, zum Beispiel der optischen Achse 31 dargestellt ist. Dabei gehört der durchgezogen dargestellte Verlauf der Intensität zu einer üblichen Blende 16 und zu einer Lichtverteilung 24, wie sie im rechten Teil der Figur 4 dargestellt ist. Dieser Verlauf zeichnet sich durch eine scharfe Hell-Dunkel-Grenze 26 aus, die sich in der Figur 5 durch einen sehr steilen Verlauf der Kurve 54 im Bereich des Horizontwinkels von 0° abbildet. Im Gegensatz zu diesem sehr steilen Verlauf weist der gestrichelte Verlauf 54 beim Winkel 0° und in einer schmalen Winkelumgebung um diesen Winkel von 0° herum eine geringere Steigung auf. Dass bedeutet, dass der entsprechend weniger steile Verlauf der Hell-Dunkel-Grenze damit entsprechend weniger kontrastreich und entsprechend unschärfer wahrgenommen wird.
  • Der gestrichelte Verlauf 56 ergibt sich bei einem Projektionsscheinwerfer 10 durch Blenden, von denen Ausgestaltungen in den Figuren 3a, b und c dargestellt sind und die sich dadurch auszeichnen, dass sie die erste Lichtverteilung an der Blendenkante 34 in den rechten und linken Randzonen der Blende 32 außerhalb des mittleren Bereichs 42 so beeinflussen, dass sie mehr Licht in den ansonsten abgeschatteten Bereich gelangen lassen und weniger Licht in den ansonsten beleuchteten Bereich gelangen lassen.
  • In der Figur 5 zeigt sich dies darin, dass die Kurve 54, die zu den Blenden 32 eines erfindungsgemäßen Scheinwerfers gehört, knapp unterhalb des Horizonts, also bei Werten von etwas weniger als 0°, unterhalb der Kurve 56 verläuft, während die Kurve 54 für oberhalb des Horizonts liegende Werte von etwas mehr als 0° oberhalb der Kurve 56 verläuft.
  • Das in der Figur 4 von der Mitte her zu den äußeren Rändern der Lichtverteilung 24 hin stärker werdende Verwischen, das in der Figur 4 durch den von innen nach außen zunehmenden Abstand der Isolux-Linien 26`, 26 und 26" zum Ausdruck kommt, ist gewollt. Es ergibt sich dadurch, dass eine Amplitude der Einschnitte 38 und/oder Vorsprünge 40 und/oder eine Fläche und/oder eine Zahl und/oder ein Abstand erster Ausnehmungen 50 von einem mittleren Verlauf 36 der Blendenkante 34 mit zunehmendem Abstand von der optischen Achse 31 zunimmt.
  • Das gezielte Verbreitern und Verwischen der Hell-Dunkel-Grenze erfordert zusätzlich, dass die im Zusammenhang mit der Figur 3 erläuterte Strukturierung der Blende 32 im Bereich der Blendenkante 34 durch Einschnitte 38 und/oder Vorsprünge 40 und/oder Ausnehmungen 50 bei der Erzeugung der zweiten Lichtverteilung 24 nicht aufgelöst wird. Mit anderen Worten: Die genannte Strukturierung soll in der zweiten Lichtverteilung 24 nicht sichtbar sein. Dieser gewünschte Effekt wird durch einen Astigmatismus der Abbildungsoptik 22 begünstigt. Durch einen Astigmatismus werden Punkte im Allgemeinen nicht als Punkte, sondern als Ellipsen und damit unscharf abgebildet.
  • Um diese hier gewollte Unschärfe geeignet zu dimensionieren, sieht eine Ausgestaltung vor, dass die Abbildungsoptik 22 eine bezüglich der optischen Achse 31 nicht rotationssymmetrische Linse 58 oder ein bezüglich der optischen Achse nicht rotationssymmetrisches astigmatisches Linsensystem ist. Eine solche Ausgestaltung ist schematisch in der Figur 6 dargestellt. Die Figur 6a zeigt einen ersten Schnitt 60 durch eine solche nicht rotationssymmetrische Linse 58, der entlang der optischen Achse 31 und quer zu einer Blendenkante 34 geführt wurde. Wenn die Blendenkante 34 in der zweiten Lichtverteilung 24 als im Wesentlichen horizontal verlaufende Hell-Dunkel-Grenze abgebildet werden soll, ist der Schnitt 60 ein Vertikalschnitt.
  • Die Figur 6b zeigt einen zweiten Schnitt 62 durch die nicht rotationssymmetrische Linse 58, der entlang der optischen Achse 31 und entlang einer Blendenkante 34 geführt wird. Wenn die Blendenkante 34 in der zweiten Lichtverteilung 24 als im Wesentlichen horizontal verlaufende Hell-Dunkel-Grenze abgebildet werden soll, ist der Schnitt 62 ein Horizontalschnitt. Die Brennweite einer Linse ist bekanntlich umso länger, je geringer ihre Krümmung ist.
  • Beim Gegenstand der Figur 6 weist die Linse 58 in ihrem Vertikalschnitt 60 eine geringere Krümmung ihrer Lichteintrittsfläche und Lichtaustrittsfläche und damit insbesondere eine vergleichsweise große Brennweite fv auf.
  • Die Brennweite fv ist in der Figur 6a der Abstand des Brennpunktes 66 von einer Mittelebene der Linse 58. Die Lichtstrahlen 68 sind entsprechend in der vertikalen Schnittebene verlaufende Lichtstrahlen.
  • Im Horizontalschnitt 62 weist die Linse 58 eine größere Krümmung und damit kürzere Brennweite fh auf. Der in der horizontalen Schnittebene liegende Brennpunkt 64 liegt daher näher an der Linse 58 als der Brennpunkt 66, der in der vertikalen Schnittebene liegt. Die Lichtstrahlen 70 repräsentieren in der horizontalen Schnittebene liegende Lichtstrahlen.
  • Die Figur 7 zeigt eine Anordnung von Elementen eines erfindungsgemäßen Projektionsscheinwerfers mit einer vertikal angeordneten Blende 32, wie sie im Zusammenhang mit der Figur 3 erläutert worden ist, und mit einer nicht rotationssymmetrischen Linse 58, wie sie im Zusammenhang mit der Figur 6 erläutert worden ist.
  • Die Linse 58 ist an ihrem oberen Rand dicker als an ihrem seitlichen Rand und besitzt daher in ihrem Vertikalschnitt eine größere Brennweite als in ihrem Horizontalschnitt. Die Blendenkante 34 ist bevorzugt näher an einem der beiden Brennpunkte 64, 66 angeordnet als an dem jeweils anderen der beiden Brennpunkte 66, 64 der hier als Abbildungsoptik 22 dienenden Linse 58. In einer besonders bevorzugten Ausgestaltung ist die Blendenkante 34 in Richtung der optischen Achse 31 näher an dem weiter von der Abbildungsoptik 22, respektive der Linse 58, entfernten Brennpunkt 66 angeordnet, als an dem weniger weit von der Abbildungsoptik 22, respektive der Linse 58, entfernten Brennpunkt 64.
  • Die Blendenkante 34 liegt daher bei dieser Ausgestaltung im vertikalen Brennpunkt 66 der astigmatischen Linse 58. Der horizontale Brennpunkt 64 liegt zwischen der Blendenkante 34 und der Linse 58. Dies hat den Effekt, dass die Blendenkante vertikal scharf, aber horizontal nicht scharf abgebildet wird. Liegt der horizontale Brennpunkt 64 weit genug vom vertikalen Brennpunkt 66 entfernt, was durch die bezüglich ihrer Rotationssymmetrie asymmetrisch ausgestaltete Linse 58 begünstigt wird, wird die zackenförmige oder wellenförmige oder erste Ausnehmungen 50 aufweisende Form der Blende 32, respektive der Blendenkante 34, nicht mehr aufgelöst. Die Einschnitte 38, Vorsprünge 40 und Ausnehmungen 50 werden vielmehr horizontal verwischt, was hier erwünscht ist.
  • In Bezug auf die Lichtquelle 12 und das Licht der Lichtquelle 12 sammelnde optische Elemente zeigt die Figur 7 eine Ausgestaltung mit einer Anordnung von zwei Halbleiterlichtquellen 72, 74, insbesondere Leuchtdioden, als Lichtquelle 12 und einer Anordnung von intern total reflektierenden Vorsatzoptiken 80, 82 als Licht sammelnde Elemente. Die Vorsatzoptiken 80, 82 bestehen zum Beispiel aus PMMA (Polymethylmethacrylat) oder PC (Polycarbonat) als Licht leitendem Material. Aufgrund der gegenüber Luft großen Brechzahl dieser Materialien verringert sich der Öffnungswinkel des von jeder Halbleiterlichtquelle ausgehenden Lichtbündels beim Eintritt in die jeweils zugeordnete Vorsatzoptik von zum Beispiel 90° auf etwa 40°. Dieser Winkel bezieht sich jeweils auf die Abweichung eines Randstrahls des Ausbreitungskegels von einer zentralen Achse des Ausbreitungskegels.
  • Dieser Effekt begründet die Licht sammelnde Wirkung der Vorsatzoptiken. Durch eine Ausgestaltung der Seitenflächen als total reflektierende Reflexionsflächen erfolgt eine hocheffiziente Bündelung des Lichtes, da die interne Totalreflexion im Gegensatz zu Reflexionen an spiegelnden Metallflächen praktisch verlustlos erfolgt.
  • Die totalreflektierenden Seitenflächen und die als Lichtaustrittsfläche dienenden, der Blende 34 zugewandten Flächen der Vorsatzoptiken 80, 82 sind durch ihre Geometrie bevorzugt dazu eingerichtet, das von den Halbleiterlichtquellen 72, 74 ausgehende Licht zu bündeln und auf die Blendenkante 34 zu richten, sodass sich an der Blendenkante 34 eine von der Blendenkante 34 begrenzte erste Lichtverteilung einstellt.
  • Diese wird dann von der Linse 58 als Abbildungsoptik 22 in Form einer zweiten Lichtverteilung 24 in ein Vorfeld des Scheinwerfers 10 abgebildet, wobei die Blendenkante 34 in der zweiten Lichtverteilung 24 als Hell-Dunkel-Grenze 26 zwischen einem vergleichsweise helleren Bereich und einem vergleichsweise dunkleren Bereich abgebildet wird.
  • Die Figur 8 zeigt eine besonders bevorzugte Ausgestaltung einer Anordnung von Elementen eines erfindungsgemäßen Projektionsscheinwerfers. Ähnlich wie der Gegenstand der Figur 7 weist auch der Gegenstand der Figur 8 Halbleiterlichtquellen 72, 74, 76, 78 als Lichtquelle 12 und zugeordnete Vorsatzoptiken 80, 82, 84 und 86 als Licht sammelnde, bündelnde und richtende Elemente auf. Die ungleiche Zahl der Halbleiterlichtquellen und Vorsatzoptiken bei den Gegenständen der Figuren 7 und 8 ist dabei unwesentlich. Ein wesentlicher Unterschied besteht jedoch in der Anordnung der Blende 32.
  • Während die Blende 32 beim Gegenstand der Figur 7 rechtwinklig zur optischen Achse und insbesondere vertikal zur optischen Achse angeordnet ist, zeigt die Figur 8 eine bezüglich der optischen Achse 31 parallele, das heißt waagerechte Anordnung der Blende 32. Die Figur 8 zeigt damit insbesondere eine Ausgestaltung, bei der die Blende 32 in einer Ebene liegt, die mit einer von der Blendenkante 34 und der optischen Achse 31 definierten Ebene einen Winkel von weniger als 20° einschließt, insbesondere einen Winkel von weniger als 10°, insbesondere einen Winkel von 0°.
  • Für die mit der vorliegenden Erfindung angestrebte Verbreiterung der Hell-Dunkel-Grenze und Verringerung des Lichtintensitätsgradienten über der Hell-Dunkel-Grenze in den Randbereichen der zweiten Lichtverteilung 24 vor dem Fahrzeug ist die Winkellage der Blende 32 von untergeordneter Bedeutung. Ein Anpassungsbedarf an die Lage ergibt sich unter Umständen insofern, dass die Blendenkante 34 jeweils eine ähnliche Krümmung aufweisen sollte wie die ihr zugewandte Lichteintrittsfläche der Abbildungsoptik 22, beziehungsweise der als Abbildungsoptik 22 dienenden Linse 58. Beim Gegenstand der Figur 8 ist eine solche Krümmung erkennbar. Beim Gegenstand der Figur 7 wäre eine solche Krümmung dadurch realisierbar, dass man die senkrechten Außenkanten der Blende 32 etwas auf die Linse 58 zubewegt, während der mittlere Bereich der Blendenkante 34 im Brennpunkt 66 des Vertikalschnitts durch die Linse 58 bleiben sollte.
  • Gegenüber der vertikalen Anordnung der Blende 32 in der Figur 7 liegt der eigentliche Vorteil der Anordnung der Blende 32, wie sie in der Figur 8 dargestellt ist, in einer Steigerung der Effizienz. Dabei wird unter einer Effizienz hier der Anteil der von der Lichtquelle 12 emittierten Lichtmenge verstanden wird, der in die Lichtverteilung 24 vor dem Kraftfahrzeug abgebildet wird. Diese Lichtmenge bleibt beim Gegenstand der Figur 7 notwendigerweise hinter einem optimalen Wert zurück, weil die vertikal angeordnete Blende einen gewissen Teil der ersten Lichtverteilung, die sich an der Blendenkante 34 einstellt, wirksam abschattet.
  • Beim Gegenstand der Figur 8 erfolgt zwar auch eine solche Abschattung in dem Sinne, dass die waagerecht liegende Blende 32 das auf sie auftreffende Licht daran hindert, in den gewollt dunklen Bereich 30 der Lichtverteilung 24 zu gelangen. Die waagerecht liegende Blende 32 bietet aber darüber hinaus die Möglichkeit, das reflektierte Licht auf die der Blende 32 zugewandte Lichteintrittsseite der Linse 58 zu reflektieren, wobei die Linse 58 bevorzugt so ausgestaltet ist, dass sie dieses Licht durch Brechung in den hellen Bereich 28 der zweiten Lichtverteilung 24 vor dem Kraftfahrzeug richtet.
  • Damit geht beim Gegenstand der Figur 8 weniger Licht verloren als beim Gegenstand der Figur 7. Dieser Effizienzvorteil der Figur 8 kann noch dadurch gesteigert werden, dass die den Lichtaustrittsflächen der Vorsatzoptiken 80, 82, 84, 86 zugewandte Oberfläche der Blende 32 reflektierend ausgestaltet ist. Dies wird bevorzugt durch eine metallisch spiegelnde Beschichtung erzielt, wie es aus der Reflektorfertigung seit Jahrzehnten bekannt ist. Die effizientere Lichtausnutzung macht die Ausgestaltung mit der waagerecht angeordneten Blende 32 besonders geeignet für eine Verwendung in Verbindung mit Halbleiterlicht-quellen als Lichtquelle 12. Dies liegt daran, dass Halbleiterlichtquellen, zumindest wenn man ihre Zahl beschränkt, nicht ohne Weiteres so viel Lichtstrom zur Verfügung stellen, wie dies von Gasentladungslampen und/oder Halogenlampen erwartet werden kann.
  • Ein weiterer Vorteil der waagerecht liegenden Blende 32 liegt darin, dass bei einem horizontalen Einbau der Blende 32 der untere Teil des Projektionsmoduls für weitere Funktionen genutzt werden kann. So ist es besonders vorteilhaft, den oberen Teil als Zusatzabblendlicht und den unteren Teil als Zusatzfernlicht zu benutzen. Dabei wirkt die beschriebene Blende sowohl im Abblendlicht als auch im Fernlichtbereich. Hierdurch wird die konstruktionsbedingt sichtbare Trennlinie zwischen Zusatzabblendlicht und Zusatzfernlicht zusätzlich verwischt.
  • Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Blende beweglich ist. Dabei wird die Blende entlang der Blendenfläche verschoben oder geklappt. In einer Ausgestaltung, wie sie in der Fig. 7 dargestellt ist, erfolgt eine Verschiebung der Blende nach unten. In einer Ausgestaltung, wie sie in der Fig. 8 dargestellt ist, erfolgt eine Verschiebung der Blende nach hinten. Bei einer Ausgestaltung mit einer klappbaren Blende wird diese um eine Achse geschwenkt, die weitgehend senkrecht, insbesondere senkrecht, zur Fahrtrichtung und weitgehend parallel, insbesondere parallel zu Fahrbahn ist. Weitgehend heißt hier bis auf Abweichungen von weniger als 5°. Die Klappbewegung erfolgt bei der vertikalen Blende aus Fig. 7 bevorzugt mit einer Bewegung der Blendenkante nach vorn und bei der waagerechten Blende aus der Fig. 8 bevorzugt mit einer Bewegung der Blendenkante nach unten. In einer bevorzugten Ausgestaltung wird die Bewegung der Blende zwischen zwei Endlagen ausgeführt. In der nach unten oder nach hinten verschobenen Endlage, beziehungsweise in der nach vorn oder nach unten geklappten Endlage unterstützt der Projektionsscheinwerfer die Fernlichtfunktion. Bevorzugt ist auch, dass die Blende auch jeweils in eine oder mehrere Zwischenpositionen bewegt werden kann, die zwischen den genannten Endlagen liegen.
  • Eine weiterer Ausgestaltung zeichnet sich dadurch aus, dass die Linse 58 weitere optische Funktionen wie eine Farbkorrektur oder eine weitere Kontrastminderung im Bereich der Hell-Dunkel-Grenze durch Mikrostrukturen oder Licht streuende Strukturen auf einer oder mehreren Oberflächen der Linse 58 erfüllt. Um dies zu verdeutlichen zeigt die Figur 6 eine Linse 58 als Ausgestaltung einer Abbildungsoptik 22, die auf ihrer Lichtaustrittsfläche 90 Licht streuende Strukturen 92 in Form von lokalen Auswölbungen und/oder Vertiefungen aufweist.
  • Figur 9 zeigt eine weitere Ausgestaltung, die sowohl bei vertikal als auch bei waagerecht angeordneter Blende 32 realisierbar ist. Diese Ausgestaltung zeichnet sich dadurch aus, dass die Blende 32 in ihrer Ebene Wölbungen und/oder Vertiefungen und/oder weitere Ausnehmungen 88 aufweist, die weiter von der Blendenkante 34 entfernt liegen als die ersten Ausnehmungen 50, die zur Verbreiterung der Hell-Dunkel-Grenze in deren Randbereichen dienen. Durch diese Ausnehmungen, Vertiefungen oder Auswölbungen wird die abschattende Wirkung der Blende 32 gezielt lokal modifiziert, um bestimmten Lichtanteilen eine bestimmte Richtung zu geben, so dass zum Beispiel Verkehrsschilder, die normalerweise im dunklen Bereich 30 der zweiten Lichtverteilung 24 liegen, mit einer geringen, aber zulässigen und vorgeschriebenen Lichtintensität bestrahlt werden, die noch nicht zu einer Blendung des Gegenverkehrs führt. Die Ausnehmungen enthalten in einer weiteren Ausgestaltung optische Elemente.

Claims (10)

  1. Projektionsscheinwerfer (10) für ein Kraftfahrzeug mit wenigstens einer Lichtquelle (12), einem Licht (15) der Lichtquelle (12) sammelnden optischen Element (14), einer Blende (32), die eine Blendenkante (34) aufweist, sowie mit einer Abbildungsoptik (22), wobei das optische Element (14) gesammeltes Licht (15) bündelt und auf die Blendenkante (34) richtet, so dass sich an der Blendenkante (34) eine von der Blendenkante (34) begrenzte erste Lichtverteilung einstellt, die von der Abbildungsoptik (22)als zweite Lichtverteilung (24) in ein Vorfeld des Scheinwerfers (10) abgebildet wird, wobei die Blendenkante (34) in der zweiten Lichtverteilung (24) als Hell-Dunkel-Grenze (26) zwischen einem vergleichsweise helleren Bereich (28) und einem vergleichsweise dunkleren Bereich (30) der zweiten Lichtverteilung (24) abgebildet wird, wobei die Blende (32) Vorsprünge (40) und/oder halboffene Einschnitte (38) in der Blendenkante (34) aufweist und/oder dass die Blende (32) durch einen geschlossenen Rand begrenzte erste Ausnehmungen (50) in der Blende (32) aufweist, die in einem Abstand zur Blendenkante (34) angeordnet sind, der kleiner als ein Fünftel der Breite (52) der Blende (32) ist, dadurch gekennzeichnet, dass eine Amplitude der Einschnitte (38) und/oder Vorsprünge (40) und/oder eine Fläche erster Ausnehmungen (50) und/oder eine Zahl erster Ausnehmungen (50) von einem mittleren Verlauf (36) der Blendenkante (34) mit zunehmendem Abstand von der optischen Achse (31) zunimmt.
  2. Scheinwerfer (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Abbildungsoptik (22) eine bezüglich der optischen Achse (31) nicht rotationssymmetrische Linse (58) oder ein bezüglich der optischen Achse (31) nicht rotationssymmetrisches astigmatisches Linsensystem ist.
  3. Scheinwerfer (10) nach Anspruch 2, dadurch gekennzeichnet, dass die Abbildungsoptik (22) auf der optischen Achse (31) in einer längs der Blendenkante (34) laufenden Ebene eine andere Brennweite aufweist als in einer quer zu der Blendenkante laufenden Richtung.
  4. Scheinwerfer (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Blendenkante (34) näher an einem (66) der auf der optischen Achse (31) liegenden Brennpunkte (64, 66) der Abbildungsoptik (22) liegt als an einem anderen (64) der auf der optischen Achse (31) liegenden Brennpunkte der Abbildungsoptik.
  5. Scheinwerfer (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Blendenkante (34) in Richtung der optischen Achse (31) näher an dem weiter von der Abbildungsoptik (22) entfernten Brennpunkt (66) angeordnet ist als an dem weniger weit von der Abbildungsoptik (22) entfernten Brennpunkt (64).
  6. Scheinwerfer (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blende (32) in einer Ebene liegt, die mit einer von der Blendenkante (34) und der optischen Achse (31) definierten Ebene eine Winkel von weniger als 20° einschließt, insbesondere eine Winkel von weniger als 10°, insbesondere einen Winkel von 0° einschließt und dass die Blende (32) eine reflektierende Oberfläche besitzt.
  7. Scheinwerfer (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blende (32) in ihrer Ebene Wölbungen und/oder Vertiefungen und/oder weitere Ausnehmungen (88) aufweist, die weiter von der Blendenkante (34) entfernt liegen als die ersten Ausnehmungen (50).
  8. Scheinwerfer (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blendenkante (34) einen mittleren, nahe an der optischen Achse (31) liegenden Bereich (42) aufweist, in dem die Blende (32) weder Vorsprünge (40), noch halboffene Einschnitte (38) in der Blendenkante (34), noch durch einen geschlossenen Rand begrenzte erste Ausnehmungen (50) in der Blende aufweist.
  9. Scheinwerfer (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abbildungsoptik (22) auf ihrer Lichteintrittsfläche und/oder auf ihrer Lichtaustrittsfläche (90) Licht streuende Strukturen (92) in Form von lokalen Auswölbungen und/oder Vertiefungen aufweist.
  10. Scheinwerfer (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blende (32) beweglich ist.
EP11175421.4A 2010-08-20 2011-07-26 Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze Active EP2420728B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010035767A DE102010035767A1 (de) 2010-08-20 2010-08-20 Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze

Publications (2)

Publication Number Publication Date
EP2420728A1 EP2420728A1 (de) 2012-02-22
EP2420728B1 true EP2420728B1 (de) 2013-05-29

Family

ID=44674158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11175421.4A Active EP2420728B1 (de) 2010-08-20 2011-07-26 Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze

Country Status (3)

Country Link
EP (1) EP2420728B1 (de)
JP (1) JP5844088B2 (de)
DE (1) DE102010035767A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004823A1 (de) * 2012-03-08 2013-09-12 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Blende für einen Fahrzeugscheinwerfer
DE102012206394A1 (de) * 2012-04-18 2013-10-24 Osram Gmbh Leuchtvorrichtung mit Reflektor, Linse und Blende
DE102012106490A1 (de) * 2012-07-18 2014-03-27 Hella Kgaa Hueck & Co. Scheinwerfer für Fahrzeuge
KR101344427B1 (ko) * 2012-09-06 2013-12-23 주식회사 에스엘 서봉 차량용 램프
AT514161B1 (de) * 2013-04-09 2016-05-15 Zizala Lichtsysteme Gmbh Leuchteinheit mit Blende mit zumindest einem Lichtfenster
DE102014216545B4 (de) * 2014-08-20 2017-04-27 Automotive Lighting Reutlingen Gmbh Scheinwerfervorrichtung mit rechts und links unterschiedlichen Fernlichtmodulen
FR3069046B1 (fr) * 2017-07-17 2020-11-13 Valeo Vision Module lumineux bifonction
KR102384545B1 (ko) * 2017-07-27 2022-04-11 에스엘 주식회사 차량용 램프
KR102470446B1 (ko) * 2017-12-28 2022-11-24 에스엘 주식회사 차량용 램프
EP3527875A1 (de) * 2018-02-15 2019-08-21 ZKW Group GmbH Kraftfahrzeugscheinwerfer mit einem brennglasblech
EP3608585A1 (de) * 2018-08-07 2020-02-12 ZKW Group GmbH Projektionseinrichtung aus einer vielzahl von mikro-optiksystemen und ein lichtmodul für einen kraftfahrzeugscheinwerfer
DE102018131556A1 (de) * 2018-12-10 2020-06-10 HELLA GmbH & Co. KGaA Verfahren zur Herstellung eines optischen Bauteils, optisches Bauteil sowie Beleuchtungsvorrichtung für ein Kraftfahrzeug
KR102454229B1 (ko) * 2020-11-30 2022-10-14 현대모비스 주식회사 차량용 램프

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2636137A1 (de) * 1976-08-11 1978-02-16 Thorn Electrical Ind Ltd Gluehlampe mit optischem system
EP0221416B1 (de) * 1985-11-07 1995-09-27 Robert Bosch Gmbh Scheinwerfer für Abblendlicht oder Nebellicht von Kraftfahrzeugen
JPS62137502U (de) * 1986-02-25 1987-08-29
JPH046084Y2 (de) * 1987-03-31 1992-02-20
DE10004701A1 (de) * 2000-02-03 2001-08-09 Bosch Gmbh Robert Scheinwerfer für Fahrzeuge nach dem Projektionsprinzip
US7563008B2 (en) * 2006-03-28 2009-07-21 Visteon Global Technologies, Inc. LED projector headlamps using single or multi-faceted lenses
DE102006031819A1 (de) * 2006-07-07 2008-01-10 Hella Kgaa Hueck & Co. Projektionsscheinwerfer für Fahrzeuge
JP4695112B2 (ja) * 2007-03-26 2011-06-08 株式会社小糸製作所 車両用前照灯の灯具ユニット
JP4766698B2 (ja) * 2007-03-29 2011-09-07 株式会社小糸製作所 車輌用前照灯の灯具ユニット
DE102008023551B4 (de) 2008-05-14 2019-05-09 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung in Form eines Projektionsscheinwerfers für Kraftfahrzeuge
FR2940404B1 (fr) * 2008-12-19 2011-03-11 Valeo Vision Sas Module d'eclairage perfectionne pour vehicule automobile.

Also Published As

Publication number Publication date
EP2420728A1 (de) 2012-02-22
JP2012043797A (ja) 2012-03-01
DE102010035767A1 (de) 2012-02-23
JP5844088B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
EP2420728B1 (de) Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP3042119B1 (de) Optische struktur mit einer mikrostruktur mit quadratischer streufunktion
EP3042118B1 (de) Beleuchtungsvorrichtung eines kraftfahrzeugscheinwerfers mit einer optischen struktur
AT512468B1 (de) Beleuchtungsmodul für ein kraftfahrzeug
DE602004002043T2 (de) Elliptische Beleuchtungseinheit ohne Lichtblende zur Erzeugung eines Abblendlichtbündels und Scheinwerfer mit einer derartigen Belleuchtungseinheit
DE102014215785B4 (de) Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
DE102009020593B4 (de) Zur Erzeugung einer definierten Overhead-Beleuchtung eingerichteter Fahrzeugscheinwerfer
EP2828571B1 (de) Projektionsmodul für ein kraftfahrzeug
AT516836B1 (de) Beleuchtungsvorrichtung mit Strahlenblende sowie Kraftfahrzeugscheinwerfer
DE102013214116B4 (de) Scheinwerfer für ein blendungsfreies Fernlicht
WO2012119976A1 (de) Kraftfahrzeugscheinwerfer mit einem mehr-funktions-projektionsmodul
DE102014205994A1 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP2730836B1 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs
AT516965B1 (de) Beleuchtungsvorrichtung für Fahrzeugscheinwerfer
EP3091273B1 (de) Optische struktur für signlight
DE10302969B4 (de) Scheinwerfer, insbesondere für Kraftfahrzeuge
DE102016118152A1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
DE60131600T3 (de) Elliptischer Scheinwerfer für eine Strassenbeleuchtung mit verbesserter Niedrig-Photometrie
DE102015201856A1 (de) Kfz-Scheinwerfer
EP2402647B1 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer
DE4429839B4 (de) Fahrzeug-Scheinwerfer
DE10310263A1 (de) LED-Scheinwerfer zur asymmetrischen Ausleuchtung
DE102019125971A1 (de) Kraftfahrzeugscheinwerfer mit einem Lichtmodul und breit ausgeleuchteter Lichtaustrittslinse

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120822

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOSSFELD, WOLFGANG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOSSFELD, WOLFGANG DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOSSFELD, WOLFGANG DR.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 614649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011000807

Country of ref document: DE

Effective date: 20130801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

BERE Be: lapsed

Owner name: AUTOMOTIVE LIGHTING REUTLINGEN G.M.B.H.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

26N No opposition filed

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011000807

Country of ref document: DE

Effective date: 20140303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130726

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110726

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150726

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190621

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 614649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011000807

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 13