EP2414327B1 - Heterocyclische verbindungen als autotaxin-inhibitoren - Google Patents

Heterocyclische verbindungen als autotaxin-inhibitoren Download PDF

Info

Publication number
EP2414327B1
EP2414327B1 EP10706554.2A EP10706554A EP2414327B1 EP 2414327 B1 EP2414327 B1 EP 2414327B1 EP 10706554 A EP10706554 A EP 10706554A EP 2414327 B1 EP2414327 B1 EP 2414327B1
Authority
EP
European Patent Office
Prior art keywords
denotes
formula
carboxylate
compound
piperazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10706554.2A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2414327A1 (de
Inventor
Wolfgang Staehle
Kai Schiemann
Melanie Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to EP10706554.2A priority Critical patent/EP2414327B1/de
Publication of EP2414327A1 publication Critical patent/EP2414327A1/de
Application granted granted Critical
Publication of EP2414327B1 publication Critical patent/EP2414327B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/58Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention had the object of finding new compounds with valuable properties, in particular those that can be used for the production of medicaments.
  • the present invention relates to compounds and to the use of compounds for the treatment of diseases associated with an increase in lysophosphate acid level, and to pharmaceutical compositions containing these compounds.
  • the present invention relates to compounds of formula I, which are preferably one or inhibit several enzymes that regulate levels modulate the lysophosphatidic acid (hereinafter abbreviated LPA lysophosphatidic acid or) and / or compositions containing these compounds, and methods for their use for the treatment diseases and conditions such as angiogenesis, cancer, tumorigenesis, growth and spread, arteriosclerosis, ocular disorders, choroidal neovascularization and diabetic retinopathy, inflammatory diseases, arthritis, neurodegeneration, restenosis, wound healing or graft rejection.
  • the compounds according to the invention are suitable for the therapy or prophylaxis of cancerous diseases.
  • ATX Autotaxin
  • LPC lysophatidylcholine
  • LPA is an intercellular lipid mediator that influences a variety of biological and biochemical processes such as smooth muscle contraction, platelet aggregation and apoptosis ( Tigyi et al. 2003 Prog. Lipid Res. Vol 42, page. 498 and Mills et al. 2003 Nat. Rev. Cancer Vol. 3, page 582 and Lynch et al. 2001 cheers Lipid Med. Vol. 64, page 33 ).
  • LPA is found in increased concentrations in plasma and ascites fluid of ovarian cancer patients of the early and late stage. LPA plays a role in tumor cell proliferation and invasion into neighboring tissues, which can lead to metastasis ( Xu et al. 1995, Clinical Cancer Research Vol.
  • LPA level of LPA for the treatment of cancer patients.
  • This can be achieved by the inhibition of enzymes involved in LPA biosynthesis, such as autotaxine (ATX, Sano et al. 2002, J. Biol. Chem. Vol. 277, page 21197 and Aoki et al. 2003, J. Biol. Chem. Vol. 277, page 48737 ).
  • Autotaxin belongs to the enzyme family of nucleotides pyrophosphatases and phosphodiesterases ( Goding et al. 1998, Immunol. Rev. Vol. 161, page 11 ) and represents an important starting point for antitumor therapy ( Mills et al. 2003 Nat. Rev. Cancer Vol. 3, page 582 and Goto et al.
  • the compounds according to the invention bring about a specific inhibition of the enzyme family of the nucleotide pyrophosphatases and phosphodiesterases, in particular autotaxin.
  • the compounds of the invention preferably exhibit a beneficial biological activity that is readily detectable in the assay described, for example, herein.
  • the compounds of the invention preferably exhibit and effect an inhibiting effect, usually documented by IC 50 values in a suitable range, preferably in the micromolar range, and more preferably in the nanomolar range.
  • all solid and non-solid tumors can be treated with the compounds of formula I, e.g. monocytic leukemia, brain, urogenital, lymphatic, gastric, laryngeal, ovarian and lung carcinomas, including lung adenocarcinoma and small cell lung carcinoma.
  • Other examples include prostate, pancreatic and breast carcinoma.
  • the compounds of the invention are useful in the prophylaxis and / or treatment of diseases which are affected by inhibition of one or more nucleotide pyrophosphatases and / or phosphodiesterases, particularly autotaxin.
  • the present invention therefore relates to compounds according to the invention as medicaments and / or active pharmaceutical ingredients in the Treatment and / or prophylaxis of said diseases and the use of compounds of the invention for the preparation of a pharmaceutical for the treatment and / or prophylaxis of said diseases, as well as a method for the treatment of said diseases comprising administering one or more of the compounds of the invention to a patient in need on such administration.
  • the compounds according to the invention have a beneficial effect in a xenograft tumor model.
  • the host or patient may be of any mammalian species, e.g. A primate species, especially humans; Rodents, including mice, rats and hamsters, rabbits, horses, cattle, dogs, cats, etc. Animal models are of interest for experimental studies, providing a model for the treatment of human disease.
  • a primate species especially humans
  • Rodents including mice, rats and hamsters, rabbits, horses, cattle, dogs, cats, etc.
  • Animal models are of interest for experimental studies, providing a model for the treatment of human disease.
  • the sensitivity of a particular cell to treatment with the compounds of the invention can be determined by testing in vitro.
  • a culture of the cell is combined with a compound of the invention at various concentrations for a period of time sufficient to allow the active agents to induce cell death or inhibit cell migration or to block the cellular secretion of angiogenesis-promoting substances, usually between about one hour and a week.
  • cultured cells from a biopsy sample can be used. The viable cells remaining after treatment are then counted.
  • the dose will vary depending on the specific compound used, the specific disease, the patient status, etc.
  • a therapeutic dose will be sufficient to substantially reduce the undesirable cell population in the target tissue while increasing the viability of the patient Patients is maintained. Treatment is generally continued until there is a significant reduction, e.g. B. at least about 50% reduction in cell load and can be continued until essentially no unwanted cells can be detected in the body.
  • Compounds of formula I also mean their optically active forms (stereoisomers), tautomers, polymorphs, enantiomers, racemates, diastereomers and the hydrates and solvates of these compounds.
  • Solvates of the compounds are understood to mean additions of inert solvent molecules to the compounds which form due to their mutual attraction. Solvates are, for example, mono- or dihydrate or alcoholates.
  • the term "effective amount” means the amount of a drug or pharmaceutical agent which elicits a biological or medical response in a tissue, system, animal or human, e.g. sought or desired by a researcher or physician.
  • terapéuticaally effective amount also includes the amounts effective to increase normal physiological function.
  • the invention also provides the use of mixtures of the compounds of formula I, e.g. Mixtures of two diastereomers, e.g. in the ratio 1: 1, 1: 2, 1: 3, 1: 4, 1: 5, 1:10, 1: 100 or 1: 1000.
  • A is alkyl and is preferably unbranched (linear) or branched, and has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C-atoms.
  • Alkyl is preferably methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, furthermore also pentyl, 1-, 2- or 3-methylbutyl, 1,1-, 1,2- or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1,1,2- or 1,2,2-trimethylpropyl, more preferably, for example Trifluoromethyl.
  • Alkyl very particularly preferably denotes alkyl having 1, 2, 3, 4, 5 or 6 C atoms, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, trifluoromethyl , Pentafluoroethyl or 1,1,1-trifluoroethyl.
  • Alkyl also means cycloalkyl.
  • Cycloalkyl is preferably cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • Hal is preferably F, Cl or Br, but also I, more preferably Br or Cl.
  • R 1 is preferably Hal.
  • R 3 is preferably H or methyl.
  • X is preferably O of CH 2 .
  • Y preferably means CH 2 or CH 2 O.
  • p is preferably 1, 2 or 3, further 4 or 5.
  • n is preferably 0, 1, 2 or 3.
  • the compounds of the formula I can possess one or more chiral centers and therefore occur in different stereoisomeric forms.
  • Formula I encompasses all these forms.
  • the invention relates in particular to those compounds of the formula I in which at least one of the radicals mentioned has one of the preferred meanings given above.
  • Some preferred groups of compounds can be expressed by the following partial formulas Ia to Ie, which correspond to the formula I and in which the unspecified radicals have the meaning given in the formula I, in which, however in Ia R 1 Hal means; in Ib X O or CH 2 means; in Ic Y CH 2 or CH 2 O; in Id P 1, 2 or 3; in Ie R 1 Hal, X O or CH 2 , Y CH 2 or CH 2 O, R Het A straight-chain or branched alkyl having 1-10 C atoms, in which 1-7 H atoms F and / or Cl may be replaced, Hal F, Cl, Br or I, P 1, 2 or 3, mean, and their pharmaceutically acceptable salts and stereoisomers, including mixtures thereof in all proportions.
  • the starting materials can, if desired, also be formed in situ, so that they are not isolated from the reaction mixture, but immediately further reacted to the compounds of formula I.
  • the starting compounds of the formulas II, III, IV, V, VI, VII, VIII, IX, X and XI are generally known. If they are new, they can be produced by methods known per se.
  • the starting materials are generally also commercially available.
  • L preferably denotes Cl, Br, I or a free or a reactively modified OH group, such as e.g. an activated ester, an imidazolide or alkylsulfonyloxy having 1-6 C atoms (preferably methylsulfonyloxy or trifluoromethylsulfonyloxy) or arylsulfonyloxy having 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • an activated ester an imidazolide or alkylsulfonyloxy having 1-6 C atoms (preferably methylsulfonyloxy or trifluoromethylsulfonyloxy) or arylsulfonyloxy having 6-10 C atoms (preferably phenyl- or p-tolylsulfonyloxy).
  • Compounds of the formula I can preferably be obtained by reacting a compound of the formula II with a compound of the formula III.
  • the reaction is usually carried out in an inert solvent, in the presence of an acid-binding agent, preferably an alkali or alkaline earth metal hydroxide, carbonate or bicarbonate or another salt of a weak acid of the alkali or alkaline earth metals, preferably of potassium, sodium, calcium or cesium.
  • an acid-binding agent preferably an alkali or alkaline earth metal hydroxide, carbonate or bicarbonate or another salt of a weak acid of the alkali or alkaline earth metals, preferably of potassium, sodium, calcium or cesium.
  • an organic base such as triethylamine, dimethylaniline, pyridine or quinoline may be beneficial.
  • the reaction time is between a few minutes and 14 days depending on the conditions used, the reaction temperature between about -30 ° and 140 °, normally between -10 ° and 90 °, in particular between about 0 ° and about 70 °, most preferably between 15 and 35 ° C.
  • Suitable inert solvents are, for example, hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichlorethylene, 1,2-dichloroethane, carbon tetrachloride, chloroform or dichloromethane; Alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; Ethers, such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or butanone; Amides like Acetamide, dimethylacetamide or dimethylformamide (DMF); Nitri
  • pyridine acetonitrile
  • dichloromethane a compound selected from the group consisting of pyridine, acetonitrile, dichloromethane and / or DMF.
  • Compounds of the formula I can furthermore preferably be obtained by reacting a compound of the formula IV with a compound of the formula V under conditions as described above.
  • the reaction is preferably carried out in acetonitrile at 100 ° C with the addition of NaHCO 3 .
  • Compounds of the formula I can furthermore preferably be obtained by reacting a compound of the formula VI with a compound of the formula V.
  • L is preferably OH.
  • the carboxy group is preferably converted into an active ester.
  • Activated esters are conveniently formed in situ, e.g. B. by the addition of HOBt or N-hydroxysuccinimide.
  • the reaction is preferably carried out in the presence of a dehydrating agent such as a carbodiimide such as N, N'-dicyclohexylcarbodiimide (“DCCI”), 1,1'-carbonyl-diimidazole (CDI) or N-3-dimethylaminopropyl-N'-ethyl-carbodiimide (“DAPECI”), also propanephosphonic anhydride (cf. Angew. Chem. 92, 129 (1980 )), Diphenylphosphoryl azide or 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline.
  • a dehydrating agent such as a carbodiimide such as N, N'-dicyclohexylcarbodiimide (“DCCI”), 1,1'-carbonyl-diimidazole (CDI) or N-3-dimethylaminopropyl-N'-ethyl-carbodiimide (“DAPECI”), also
  • the reaction is usually carried out in an inert solvent.
  • the reaction time is between a few minutes and 14 days depending on the conditions used, the reaction temperature between about -15 ° and 150 °, normally between -5 ° and 90 °, more preferably between 20 ° and 60 ° C.
  • the reaction is preferably carried out in DMF at room temperature and preferably with the addition of N-methylmorpholine.
  • Compounds of the formula I can furthermore preferably be obtained by reacting a compound of the formula VII with a compound of the formula VIII and a compound selected from the group carbonyldiimidazole, phosgene, diphosgene, triphosgene, implements.
  • the reaction is carried out in an inert solvent and under conditions as described above.
  • the reaction preferably takes place in DMF at room temperature and with the addition of a carbonyl component such as CDI.
  • Compounds of the formula I can furthermore preferably be obtained by reacting a compound of the formula IX with a compound of the formula V and a compound selected from the group carbonyldiimidazole, phosgene, diphosgene, triphosgene, implements.
  • the reaction is carried out in an inert solvent and under conditions as described above.
  • the reaction preferably takes place in DMF at room temperature and with addition of a carbonyl component such as CDI and a base such as triethylamine.
  • Compounds of the formula I can furthermore preferably be obtained by reacting a compound of the formula VX with a compound of the formula XI.
  • the reaction is preferably carried out under conditions such as the reaction of the compound of the formula VI with a compound of the formula V.
  • the abovementioned compounds according to the invention can be used in their final non-salt form.
  • the present invention also encompasses the use of these compounds in the form of their pharmaceutically acceptable salts, which can be derived from various organic and inorganic acids and bases according to procedures known in the art.
  • Pharmaceutically acceptable salt forms of the compounds of formula I are for the most part prepared conventionally. If the compound of the formula I contains a carboxylic acid group, one of its suitable salts can be formed by reacting the compound with a suitable base to give the corresponding base addition salt.
  • Such bases include, for example, alkali metal hydroxides, including potassium hydroxide, sodium hydroxide and lithium hydroxide; Alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide; Alkali metal alcoholates, eg, potassium ethanolate and sodium propanolate; and various organic bases such as piperidine, diethanolamine and N-methylglutamine.
  • alkali metal hydroxides including potassium hydroxide, sodium hydroxide and lithium hydroxide
  • Alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide
  • Alkali metal alcoholates eg, potassium ethanolate and sodium propanolate
  • various organic bases such as piperidine, diethanolamine and N-methylglutamine.
  • the aluminum salts of the compounds of formula I are also included.
  • acid addition salts can be formed by reacting these compounds with pharmaceutically acceptable organic and inorganic acids, for example hydrogen halides, such as hydrogen chloride, hydrogen bromide or hydrogen iodide, other mineral acids and their corresponding salts, such as sulfate, nitrate or phosphate, and the like. and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate, as well as other organic acids and their corresponding salts such as acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like.
  • organic and inorganic acids for example hydrogen halides, such as hydrogen chloride, hydrogen bromide or hydrogen iodide, other mineral acids and their corresponding salts, such as sulfate, nitrate or phosphate, and the like. and monoarylsulfonates such as ethanes
  • pharmaceutically acceptable acid addition salts of the compounds of formula I include the following: acetate, adipate, alginate, arginate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate , Cyclopentane propionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulphate, ethanesulphonate, fumarate, galacterate (from mucic acid), galacturonate, Glucoheptanoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate
  • the base salts of the compounds according to the invention include aluminum, ammonium, calcium, copper, iron (III), iron (II), lithium, magnesium, manganese (III), manganese (II), potassium , Sodium and zinc salts, but this should not be limiting.
  • Preferred among the above salts are ammonium; the alkali metal salts sodium and potassium, and the alkaline earth metal salts calcium and magnesium.
  • Salts of compounds of formula I derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines, including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, e.g.
  • Arginine betaine, caffeine, chloroprocaine, choline, N, N'-dibenzylethylenediamine (benzathine), dicyclohexylamine, diethanolamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, Histidine, hydrabamine, iso-propylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris- (hydroxymethyl) - methylamine (tromethamine), which is not intended to be limiting.
  • Compounds of the present invention containing basic nitrogen-containing groups can be reacted with agents such as (C 1 -C 4 ) alkyl halides, eg, methyl, ethyl, isopropyl, and tert-butyl chloride, bromide, and iodide; Di (C 1 -C 4 ) alkyl sulfates, for example, dimethyl, diethyl and diamyl sulfate; (C 10 -C 18 ) alkyl halides, for example decyl, dodecyl, lauryl, myristyl and stearyl chloride, bromide and iodide; and aryl (C 1 -C 4 ) alkyl halides, eg benzyl chloride and phenethyl bromide, quaternize. With such salts both water and oil-soluble compounds of the invention can be prepared.
  • agents such as (C 1 -C 4 ) al
  • Preferred pharmaceutical salts include acetate, trifluoroacetate, besylate, citrate, fumarate, gluconate, hemisuccinate, hippurate, hydrochloride, hydrobromide, isethionate, mandelate, meglumine, nitrate, oleate, phosphonate, pivalate, sodium phosphate, stearate, Sulfate, sulfosalicylate, tartrate, thiomalate, tosylate and tromethamine, which is not intended to be limiting.
  • the acid addition salts of basic compounds of formula I are prepared by contacting the free base form with a sufficient amount of the desired acid to form the salt in a conventional manner.
  • the free base can be regenerated by contacting the salt form with a base and isolating the free base in a conventional manner.
  • the free base forms in some sense differ from their corresponding salt forms in terms of certain physical properties such as solubility in polar solvents; however, in the context of the invention, the salts otherwise correspond to their respective free base forms.
  • the pharmaceutically acceptable base addition salts of the compounds of formula I are formed with metals or amines such as alkali metals and alkaline earth metals or organic amines.
  • metals are sodium, potassium, magnesium and calcium.
  • Preferred organic amines are N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methyl-D-glucamine and procaine.
  • the base addition salts of acidic compounds of this invention are prepared by contacting the free acid form with a sufficient amount of the desired base to form the salt in a conventional manner.
  • the free acid can be regenerated by contacting the salt form with an acid and isolating the free acid in a conventional manner.
  • the free acid forms in some sense differ from their corresponding salt forms in terms of certain physical properties such as solubility in polar solvents; However, in the context of the invention, the salts otherwise correspond to their respective free acid forms.
  • a compound according to the invention contains more than one group which can form such pharmaceutically acceptable salts, the invention also encompasses multiple salts.
  • Typical multiple salt forms include, for example, bitartrate, diacetate, difumarate, dimeglumine, diphosphate, disodium and trihydrochloride, but this is not intended to be limiting.
  • the term "pharmaceutically acceptable salt” in the present context means an active ingredient which contains a compound of the formula I in the form of one of its salts, especially if this salt form is the active ingredient in the Imparts improved pharmacokinetic properties to the free form of the active ingredient or any other salt form of the active ingredient which has previously been used.
  • the pharmaceutically acceptable salt form of the active substance may also first impart a desired pharmacokinetic property to this active ingredient which it has not previously possessed, and may even positively influence the pharmacodynamics of this active ingredient in terms of its therapeutic activity in the body.
  • the invention furthermore relates to medicaments comprising at least one compound of the formula I and / or pharmaceutically usable compounds thereof Salts and stereoisomers, including mixtures thereof in all ratios, and optionally excipients and / or adjuvants.
  • compositions may be presented in the form of dosage units containing a predetermined amount of active ingredient per unit dose.
  • a moiety may contain, for example, 0.5 mg to 1 g, preferably 1 mg to 700 mg, more preferably 5 mg to 100 mg of a compound of the invention, depending on the condition being treated, the route of administration and the age, weight and condition of the patient, or pharmaceutical formulations may be presented in the form of dosage units containing a predetermined amount of active ingredient per unit dose.
  • Preferred dosage unit formulations are those containing a daily or partial dose as indicated above or a corresponding fraction thereof of an active ingredient.
  • such pharmaceutical formulations can be prepared by any of the methods well known in the pharmaceutical art.
  • compositions may be administered by any suitable route, for example, oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) Ways, adapt.
  • Such formulations can be prepared by any method known in the pharmaceutical art, for example, by bringing the active ingredient together with the carrier (s) or excipient (s).
  • compositions adapted for oral administration may be presented as separate entities, such as capsules or tablets; Powder or granules; Solutions or suspensions in aqueous or non-aqueous liquids; edible foams or foam foods; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.
  • the active ingredient component may be mixed with an oral, non-toxic and pharmaceutically acceptable inert carrier, such as e.g. Ethanol, glycerin, water and the like combine.
  • an oral, non-toxic and pharmaceutically acceptable inert carrier such as e.g. Ethanol, glycerin, water and the like combine.
  • Powders are prepared by comminuting the compound to a suitable fine size and mixing it with a similarly comminuted pharmaceutical excipient, e.g. an edible carbohydrate such as starch or mannitol.
  • a flavor, preservative, dispersant and dye may also be present.
  • Capsules are made by preparing a powder mix as described above and filling shaped gelatin casings therewith.
  • Lubricants such as e.g. fumed silica, talc, magnesium stearate, calcium stearate or polyethylene glycol in solid form can be added to the powder mixture before the filling process.
  • a disintegrants or solubilizers e.g. Agar-agar, calcium carbonate or sodium carbonate may also be added to improve the availability of the drug after ingestion of the capsule.
  • suitable binding, lubricating and disintegrants as well as dyes can also be incorporated into the mixture.
  • suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose, polyethylene glycol, waxes, and the like.
  • the lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • the disintegrating agents include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.
  • the tablets are formulated by, for example, preparing a powder mixture, granulating or dry-pressing, a lubricant and a Blasting agents are added and the whole thing is compressed into tablets.
  • a powder mixture is prepared by dissolving the appropriately comminuted compound with a diluent or base as described above and optionally with a binder such as carboxymethyl cellulose, an alginate, gelatin or polyvinylpyrrolidone, a dissolution reducer such as paraffin, a resorption accelerator, such as a quaternary salt and / or an absorbent, such as bentonite, kaolin or dicalcium phosphate.
  • a binder such as carboxymethyl cellulose, an alginate, gelatin or polyvinylpyrrolidone
  • a dissolution reducer such as paraffin
  • a resorption accelerator such as a quaternary salt and / or an absorbent, such as bentonite, kaolin or dicalcium phosphate.
  • the powder mixture can be granulated by wetting it with a binder such as syrup, starch paste, Acadia slime, or solutions of cellulosic or polymeric materials and pressing it through a sieve.
  • a binder such as syrup, starch paste, Acadia slime, or solutions of cellulosic or polymeric materials and pressing it through a sieve.
  • the powder mixture can be run through a tabletting machine to produce non-uniformly shaped lumps which are broken up into granules.
  • the granules may be greased by the addition of stearic acid, a stearate salt, talc or mineral oil to prevent sticking to the tablet molds. The greased mixture is then compressed into tablets.
  • the compounds according to the invention can also be combined with a free-flowing inert carrier and then pressed directly into tablets without carrying out the granulation or dry-pressing steps.
  • a transparent or opaque protective layer consisting of a shellac sealant, a layer of sugar or poly
  • Oral fluids such as solution, syrups and elixirs may be prepared in unit dosage form such that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared by dissolving the compound in an aqueous solution of suitable taste, while elixirs are prepared using a non-toxic alcoholic vehicle.
  • suspensions can be formulated by dispersing the compound in a non-toxic vehicle.
  • Solubilizers and emulsifiers such as, for example, ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavoring additives, such as, for example, peppermint oil or natural sweeteners or saccharin or other artificial sweeteners, or the like. can also be added.
  • the unit dosage formulations for oral administration may optionally be encapsulated in microcapsules.
  • the formulation may also be prepared to prolong or retard the release, such as by coating or embedding particulate material in polymers, wax, and the like.
  • the compounds of formula I as well as salts, solvates and physiologically functional derivatives thereof can also be administered in the form of liposome delivery systems, such as e.g. small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • liposomes can be prepared from various phospholipids, such as e.g. Cholesterol, stearylamine or phosphatidylcholines.
  • the compounds of formula I as well as the salts, solvates and physiologically functional derivatives thereof can also be delivered using monoclonal antibodies as individual carriers to which the compound molecules are coupled.
  • the compounds can also be coupled with soluble polymers as targeted drug carriers.
  • Such polymers may include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol or polyethyleneoxidepolylysine substituted with palmitoyl radicals.
  • the compounds may be useful in a class of biodegradable polymers suitable for controlled release of a drug, eg, polylactic acid, polyepsilone-caprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydroxypyrans, polycyanoacrylates, and the like cross-linked or amphipathic block copolymers of hydrogels.
  • a drug eg, polylactic acid, polyepsilone-caprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydroxypyrans, polycyanoacrylates, and the like cross-linked or amphipathic block copolymers of hydrogels.
  • compositions adapted for transdermal administration may be presented as discrete plasters for prolonged, intimate contact with the epidermis of the recipient.
  • the active substance can be supplied from the plaster by means of iontophoresis, as in Pharmaceutical Research, 3 (6), 318 (1986 ) in general.
  • Pharmaceutical compounds adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.
  • the formulations are preferably applied as a topical ointment or cream.
  • the active ingredient can be used with either a paraffinic or water miscible cream base.
  • the active ingredient can be formulated into a cream with an oil-in-water cream base or a water-in-oil base.
  • eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
  • compositions adapted for topical application in the mouth include lozenges, lozenges and mouthwashes.
  • compositions adapted for rectal administration may be presented in the form of suppositories or enemas.
  • compositions adapted for nasal administration in which the vehicle is a solid contain a coarse powder having a particle size, for example in the range of 20-500 microns, which is administered in the manner in which snuff is received, i. by rapid inhalation via the nasal passages from a container held close to the nose with the powder.
  • Suitable formulations for administration as a nasal spray or nasal drops with a liquid carrier include drug solutions in water or oil.
  • Fine particulate dusts or mists which may be generated by various types of pressurized dosing dispensers with aerosols, nebulizers or insufflators.
  • compositions adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations.
  • compositions adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions containing anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the recipient to be treated; and aqueous and non-aqueous sterile suspensions which may contain suspending agents and thickeners.
  • the formulations may be presented in single or multi-dose containers, such as sealed vials and vials, and stored in freeze-dried (lyophilized) condition so that only the addition of the sterile carrier liquid, eg water for injection, is required immediately before use.
  • Injection solutions and suspensions prepared by formulation can be prepared from sterile powders, granules and tablets.
  • formulations in addition to the above particularly mentioned ingredients, may contain other conventional agents in the art with respect to the particular type of formulation; for example, formulations suitable for oral administration may contain flavorings.
  • a therapeutically effective amount of a compound of formula I depends on a number of factors including, but not limited to, the age and weight of the animal, the exact condition requiring treatment, as well as its severity, nature of the formulation and route of administration determined by the attending physician or veterinarian.
  • an effective amount of a compound of the invention for the treatment of neoplastic growth, eg, colon or breast carcinoma will generally range from 0.1 to 100 mg / kg body weight of the recipient (mammal) per day, and more typically in the range of 1 to 10 mg / kg body weight per day.
  • the actual amount per day would usually be between 70 and 700 mg, this amount as a single dose per day or more commonly in a number of divided doses (such as two, three, four, five or six) per Day can be given so that the total daily dose is the same.
  • An effective amount of a salt or solvate or a physiologically functional derivative thereof can be determined as a proportion of the effective amount of the compound of the invention per se . It can be assumed that similar dosages are suitable for the treatment of the other, above-mentioned disease states.
  • the invention furthermore relates to medicaments comprising at least one compound of the formula I and / or pharmaceutically usable derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and at least one further active pharmaceutical ingredient.
  • the kit contains suitable containers, such as boxes or boxes, individual bottles, bags or ampoules.
  • the set may e.g. containing separate ampoules, in each of which an effective amount of a compound of formula I and / or its pharmaceutically acceptable derivatives, solvates and stereoisomers, including mixtures thereof in all proportions, and an effective amount of another drug substance is dissolved or in lyophilized form.
  • the medicaments of Table 1 are combined with the compounds of the formula I.
  • a combination of Formula I and Drugs of Table I can also be combined with compounds of Formula VI.
  • Table 1. alkylating agent cyclophosphamide lomustine busulfan procarbazine ifosfamide altretamine melphalan estramustine phosphate hexamethylmelamine mechlorethamine thiotepa streptozocin chlorambucil temozolomide dacarbazine semustine carmustine platinum agents cisplatin carboplatin oxaliplatin ZD-0473 (AnorMED) spiro platinum Lobaplatine (Aetema) Carboxyphthalatoplatinum Satraplatin (Johnson Tetra platinum Matthey) Ormiplatin BBR-3464 (Hoffrnann-La Roche) iproplatin SM-11355 (Sumitomo) AP-5280 (Access) Antimetabolites azacytidine
  • CLL-Thera (Vasogen) Melanoma vaccine CTL Immuno) p21 RAS vaccine
  • GemVa Hormonal and anti-hormonal Mitt estrogens prednisone conjugated estrogens methylprednisolone ethinyl estradiol prednisolone chlorotrianisene aminoglutethimide Idenestrol leuprolide hydroxyprogesterone goserelin medroxyprogesterone Leuporelin testosterone bicalutamide testosterone flutamide Fluoxymesteron octreotide methyltestosterone nilutamide diethylstilbestrol mitotane megestrol P-04 (Novogen) tamoxifen 2methoxyestradiol Toremofin (EntreMed) dexamethasone Arzoxifen (Eli Lilly) Photodynamic agents Talaporfin (Light Sciences) Pd-Bacterio
  • CLL-Thera (Vasogen) Melanoma vaccine CTL Immuno) p21 RAS vaccine
  • GemVa Hormonal and anti-hormonal Mitt estrogens prednisone conjugated estrogens methylprednisolone ethinyl estradiol prednisolone chlorotrianisene aminoglutethimide Idenestrol leuprolide hydroxyprogesterone goserelin medroxyprogesterone Leuporelin testosterone bicalutamide testosterone flutamide Fluoxymesteron octreotide methyltestosterone nilutamide diethylstilbestrol mitotane megestrol P-04 (Novogen) tamoxifen 2-Methoxyestradiol (EntreMed) Toremofin dexamethasone Arzoxifen (Eli Lilly) Photodynamic agents Talaporfin (Light Sciences) Pd-Bacterio
  • Estrogen receptor modulators refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of how this occurs.
  • Estrogen receptor modulators include, for example, tamoxifen, raloxifene, idoxifen, LY353381, LY 117081, toremifene, fulvestrant, 4- [7- (2,2-dimethyl-1-oxopropoxy-4-methyl-2- [4- [2- (2- 1-piperidinyl) ethoxy] phenyl] -2H-1-benzopyran-3-yl] phenyl 2,2-dimethyl-propanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenylhydrazone and SH646, but this is not intended to be limiting ,
  • Androgen receptor modulators refers to compounds that interfere with or inhibit the binding of androgens to the receptor, regardless of how this occurs.
  • the androgen receptor modulators include, for example, finasteride and other 5 ⁇ -reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.
  • Retinoid receptor modulators refers to compounds that interfere with or inhibit the binding of retinoids to the receptor, regardless of how this occurs.
  • retinoid receptor modulators include, for example, bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis-retinoic acid, ⁇ -difluoromethylornithine, ILX23-7553, trans-N- (4'-hydroxyphenyl) -retinamide and N-4-carboxyphenylretinamide.
  • Cytotoxic agents refers to compounds that cause cell death, primarily by direct action on cell function, or that inhibit or interfere with cell myosis, including alkylating agents, tumor necrosis factors, intercalators, microtubulin inhibitors, and topoisomerase inhibitors.
  • the cytotoxic agents include, for example, tirapazimine, Sertenef, cachectin, ifosfamide, tasonermine, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcite, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improvisulfan-tosylate, trofosfamide, nimustine, dibrospidium Chloride, Pumitepa, Lobaplatin, Satraplatin, Profiromycin, Cisplatin, Irofulvene, Dexifosfamide, cis -amino dichloro (2-methylpyridine) platinum, benzylguanine, glufosfamide, GPX100, (trans, trans, trans) -bis-mu (hexane-1,6-diamine) -mu- [
  • microtubulin inhibitors include, for example, paclitaxel, vindesine sulfate, 3 ', 4'-didehydro-4'-deoxy-8'-norvincaleukoblastin, docetaxol, rhizoxin, dolastatin, mivobulinisethionate, auristatin, cemadotin, RPR109881, BMS184476, Vinflunine, Cryptophycin, 2,3,4,5,6-pentafluoro-N- (3-fluoro-4-methoxyphenyl) benzenesulfonamide, anhydrovinblastine, N, N-dimethyl-L-valyl-L-valyl-N-methyl-L -valyl-L-prolyl-L-proline t-butylamide, TDX258 and BMS188797.
  • paclitaxel vindesine sulfate
  • Topoisomerase inhibitors are, for example, topotecan, hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3 ', 4'-O-exo-benzylidene-chartreusine, 9-methoxy-N, N-dimethyl-5-nitropyrazolo [3,4, 5-kl] acridine-2- (6H) propanamine, 1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H, 12H-benzo [de] -pyrano [ 3 ', 4': b, 7] indolizino [1,2b] quinoline-10,13 (9H, 15H) -dione, lurtotecan, 7- [2- (N-isopropylamino) ethyl] - (20S) camptothecin, BNP1350 , BNPI1100, BN80915, BN80942,
  • Antiproliferative agents include antisense RNA and DNA oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231 and INX3001, and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabinocfosfate, Fosteabin Sodium Hydrate, Raltitrexed, Paltitrexide, Emitefur, Tiazofurin, Decitabine, Nolatrexed, Pemetrexed, Nelzarabine, 2'-Deoxy-2'-methylidenecytidine, 2'-fluoromethylene-2'-deoxycytidine, N- [5- (2,3- Dihydrobenzo-furyl) sulfonyl] -N '- (3,4-dichlorophenyl) urea, N6
  • antiproliferative agents also include other monoclonal antibodies against growth factors already mentioned among the “angiogenesis inhibitors”, such as trastuzumab, as well as tumor suppressor genes, such as p53, which can be delivered via recombinant virus-mediated gene transfer (see, eg U.S. Patent No. 6,069,134 ).
  • Particularly preferred is the use of the compound according to the invention for the treatment and prophylaxis of tumor diseases.
  • the tumor is preferably selected from the group of tumors of squamous epithelium, bladder, stomach, kidney, head and neck, esophagus, cervix, thyroid, intestine, liver, Brain, prostate, genitourinary tract, lymphatic system, stomach, larynx and / or lungs.
  • the tumor is furthermore preferably selected from the group of lung adenocarcinoma, small cell lung carcinoma, pancreatic cancer, ovarian carcinoma, glioblastoma, colon carcinoma and breast carcinoma.
  • a tumor of the blood and immune system preferably for the treatment of a tumor selected from the group of acute myelotic leukemia, chronic myelotic leukemia, acute lymphoblastic leukemia and / or chronic lymphocytic leukemia.
  • the invention includes a treatment of a patient having a neoplasm such as a cancer by administering a compound of the formula (I) in combination with an antiproliferative agent.
  • Suitable antiproliferative agents include those provided in Table 1.
  • “usual workup” means adding water if necessary, adjusting to pH values between 2 and 10, if necessary, depending on the constitution of the final product, extracted with ethyl acetate or dichloromethane, separating, drying organic phase over sodium sulfate, evaporated and purified by chromatography on silica gel and / or by crystallization. Rt values are determined by HPLC with mentioned eluents.
  • Mass spectrometry EI (Electron Impact Ionization) M + FAB (Fast Atom Bombardment) (M + H) + ESI (electrospray ionization) (M + H) + APCI-MS (atmospheric pressure chemical ionization - mass spectrometry) (M + H) +
  • Solvent A water + 0.05% formic acid
  • Solvent B acetonitrile + 0.04% formic acid
  • the autotaxin activity is measured indirectly with the Amplex Red reagent.
  • Amplex Red is measured as a fluorogenic indicator for the resulting H 2 O 2 .
  • autotaxine converts the substrate lysophosphatidylcholine (LPC) into phosphocholine and lysophosphatidic acid (LPS).
  • LPC substrate lysophosphatidylcholine
  • LPS lysophosphatidic acid
  • the phosphocholine is activated with alkaline phosphatase to inorganic phosphate and choline.
  • choline is oxidized to betaine by choline oxidase to form H 2 O 2 .
  • H 2 O 2 reacts in the presence of peroxidase (horseradish peroxidase) with the Amplex Red reagent in a 1: 1 stoichiometry and forms the highly fluorescent resorufin.
  • the fluorescence is measured in a reaction-dependent kinetic mode in order to be able to correct for the fluorescent signals of possible other fluorescents that are not involved in the reaction.
  • microtiter PS microplate, 384 wells, small volume, black Corning, Cat # 3677 Protein: Recombinant Autotaxin (Baculoviral Hi5 Expression) substrate: L- ⁇ -lysophosphatidylcholine (chicken egg)); Avanti Polar Lipids # 830071P Default: C14 LPA, Avanti Polar Lipids, Cat # 857120P Detection reagent: Amplex Red reagent; Invitrogen # A12222; dissolved in 1,923 ml of DMSO peroxidase Type VI-A (horseradish) from Sigma # P6782; dissolved in 7.45 ml assay buffer, choline oxidase; Sigma # C5896; dissolved in 2.47 ml of test buffer Detection Reagent Mix: 1: 100 dilution of Amplex Red Regenerates in test buffer Test buffer: 200mM Tris-HCl, Merck, Cat # 1.08219, pH 7.9, 0.1% BSA, lipid
  • Example B Injection jars
  • a solution of 100 g of an active compound of the formula I and 5 g of disodium hydrogen phosphate is adjusted to pH 6.5 in 2 l of bidistilled water with 2N hydrochloric acid, filtered sterile, filled into injection jars, lyophilized under sterile conditions and sealed sterile. Each injection jar contains 5 mg of active ingredient.
  • a mixture of 20 g of an active compound of the formula I is melted with 100 g of soya lecithin and 1400 g of cocoa butter, poured into molds and allowed to cool. Each suppository contains 20 mg of active ingredient.
  • a solution of 1 g of an active ingredient of the formula I, 9.38 g of NaH 2 PO 4 2 H 2 O, 28.48 g of Na 2 HPO 4 12 H 2 O and 0.1 g of benzalkonium chloride in 940 ml of bidistilled water is prepared , Adjust to pH 6.8, make up to 1 liter and sterilize by irradiation. This solution can be used in the form of eye drops.
  • 500 mg of an active compound of the formula I are mixed with 99.5 g of Vaseline under aseptic conditions.
  • a mixture of 1 kg of active ingredient of the formula I, 4 kg of lactose, 1.2 kg of potato starch, 0.2 kg of talc and 0.1 kg of magnesium stearate is compressed in the usual way to tablets, such that each tablet contains 10 mg of active ingredient.
  • Tablets are pressed analogously to Example E, which are then coated in the usual way with a coating of sucrose, potato starch, talc, tragacanth and dye.
  • a solution of 1 kg of active compound of the formula I in 60 l of bidistilled water is sterile filtered, filled into ampoules, lyophilized under sterile conditions and sealed sterile. Each vial contains 10 mg of active ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Indole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
EP10706554.2A 2009-04-02 2010-03-03 Heterocyclische verbindungen als autotaxin-inhibitoren Not-in-force EP2414327B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10706554.2A EP2414327B1 (de) 2009-04-02 2010-03-03 Heterocyclische verbindungen als autotaxin-inhibitoren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09004858 2009-04-02
PCT/EP2010/001324 WO2010112116A1 (de) 2009-04-02 2010-03-03 Heterocyclische verbindungen als autotaxin-inhibitoren
EP10706554.2A EP2414327B1 (de) 2009-04-02 2010-03-03 Heterocyclische verbindungen als autotaxin-inhibitoren

Publications (2)

Publication Number Publication Date
EP2414327A1 EP2414327A1 (de) 2012-02-08
EP2414327B1 true EP2414327B1 (de) 2014-11-19

Family

ID=42102768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706554.2A Not-in-force EP2414327B1 (de) 2009-04-02 2010-03-03 Heterocyclische verbindungen als autotaxin-inhibitoren

Country Status (16)

Country Link
US (1) US8841324B2 (pt)
EP (1) EP2414327B1 (pt)
JP (1) JP5767205B2 (pt)
KR (1) KR20120027192A (pt)
CN (1) CN102365271B (pt)
AR (1) AR076006A1 (pt)
AU (1) AU2010230646B2 (pt)
BR (1) BRPI1009800A2 (pt)
CA (1) CA2757413C (pt)
EA (1) EA201101399A1 (pt)
ES (1) ES2527788T3 (pt)
IL (1) IL215258A0 (pt)
MX (1) MX2011010207A (pt)
SG (1) SG174520A1 (pt)
WO (1) WO2010112116A1 (pt)
ZA (1) ZA201107986B (pt)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010234087B2 (en) * 2009-04-02 2016-05-12 Merck Patent Gmbh Piperidine and piperazine derivatives as autotaxin inhibitors
NZ702334A (en) 2012-06-13 2016-11-25 Hoffmann La Roche New diazaspirocycloalkane and azaspirocycloalkane
DK2900669T3 (da) 2012-09-25 2019-11-04 Hoffmann La Roche Hexahydropyrrolo[3,4-C]pyrrolderivater og relaterede forbindelser som autotaxin (ATX)-inhibitorer og som inhibitorer af lysophosphatidsyre (LPA)-produktion til behandling af f.eks. nyresygdomme
US9409895B2 (en) 2012-12-19 2016-08-09 Novartis Ag Autotaxin inhibitors
US20140171404A1 (en) 2012-12-19 2014-06-19 Novartis Ag Autotaxin inhibitors
AR095079A1 (es) 2013-03-12 2015-09-16 Hoffmann La Roche Derivados de octahidro-pirrolo[3,4-c]-pirrol y piridina-fenilo
ES2742077T3 (es) 2013-07-18 2020-02-13 Novartis Ag Inhibidores de autotaxina que comprenden un núcleo de anillo heteroaromático de bencil-amida cíclica
WO2015008229A1 (en) * 2013-07-18 2015-01-22 Novartis Ag Autotaxin inhibitors
EP3046909A4 (en) 2013-09-17 2017-03-29 Pharmakea, Inc. Heterocyclic vinyl autotaxin inhibitor compounds
JP2016530209A (ja) 2013-09-17 2016-09-29 ファーマケア,インク. ビニルオートタキシン阻害剤化合物
WO2015048301A1 (en) * 2013-09-26 2015-04-02 Pharmakea, Inc. Autotaxin inhibitor compounds
CN105764903B (zh) 2013-11-22 2018-09-18 法玛克亚公司 四环自分泌运动因子抑制剂
SI3071561T1 (sl) * 2013-11-22 2021-11-30 Sabre Therapeutics Llc Spojine, ki inhibirajo avtotaksin
WO2015078803A1 (en) 2013-11-26 2015-06-04 F. Hoffmann-La Roche Ag NEW OCTAHYDRO-CYCLOBUTA [1,2-c;3,4-c']DIPYRROL-2-YL
JP6554481B2 (ja) 2014-03-26 2019-07-31 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft オートタキシン(atx)及びリゾホスファチジン酸(lpa)産生の阻害剤としての縮合[1,4]ジアゼピン化合物
AU2015238537B2 (en) 2014-03-26 2019-08-01 F. Hoffmann-La Roche Ag Bicyclic compounds as autotaxin (ATX) and lysophosphatidic acid (LPA) production inhibitors
MD20160116A2 (ro) 2014-04-04 2017-04-30 X-Rx Discovery, Inc Inhibitori spirociclici substituiţi ai autotaxinei
WO2015162558A1 (en) 2014-04-24 2015-10-29 Novartis Ag Autotaxin inhibitors
US9051320B1 (en) 2014-08-18 2015-06-09 Pharmakea, Inc. Methods for the treatment of metabolic disorders by a selective small molecule autotaxin inhibitor
MX2017009452A (es) 2015-01-20 2017-11-08 Novartis Ag Agentes de imagenologia para tomografia de emision de positrones (pet).
GB201501870D0 (en) 2015-02-04 2015-03-18 Cancer Rec Tech Ltd Autotaxin inhibitors
GB201502020D0 (en) 2015-02-06 2015-03-25 Cancer Rec Tech Ltd Autotaxin inhibitory compounds
MA41898A (fr) 2015-04-10 2018-02-13 Hoffmann La Roche Dérivés de quinazolinone bicyclique
IL280863B1 (en) 2015-05-27 2024-03-01 Sabre Therapeutics Llc Ototaxin inhibitors and their uses
CA2988306A1 (en) 2015-06-05 2016-12-08 Vertex Pharmaceuticals Incorporated Triazoles for the treatment of demyelinating diseases
RU2746481C1 (ru) 2015-09-04 2021-04-14 Ф. Хоффманн-Ля Рош Аг Феноксиметильные производные
MX2018002217A (es) 2015-09-24 2018-03-23 Hoffmann La Roche Nuevos compuestos biciclicos como inhibidores de autotaxina (atx).
KR20180054634A (ko) 2015-09-24 2018-05-24 에프. 호프만-라 로슈 아게 이중 오토탁신(atx)/탄산 무수화효소(ca) 억제제로서 신규한 이환형 화합물
RU2018112230A (ru) 2015-09-24 2019-10-30 Ф. Хоффманн-Ля Рош Аг Бициклические соединения в качестве ингибиторов atx
RU2725138C2 (ru) 2015-09-24 2020-06-30 Ф. Хоффманн-Ля Рош Аг Новые бициклические соединения в качестве двойных ингибиторов аутотаксина (atx)/карбоангидразы (ca)
WO2018106641A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Pyrazoles for the treatment of demyelinating diseases
WO2018106643A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Heterocyclic azoles for the treatment of demyelinating diseases
WO2018106646A1 (en) 2016-12-06 2018-06-14 Vertex Pharmaceuticals Incorporated Aminotriazoles for the treatment of demyelinating diseases
WO2018167001A1 (en) 2017-03-16 2018-09-20 F. Hoffmann-La Roche Ag Heterocyclic compounds useful as dual atx/ca inhibitors
JP7090099B2 (ja) 2017-03-16 2022-06-23 エフ.ホフマン-ラ ロシュ アーゲー Atxインヒビターとしての新規二環式化合物
US10961242B2 (en) 2017-05-17 2021-03-30 Legochem Biosciences, Inc. Compounds as autotaxin inhibitors and pharmaceutical compositions comprising the same
KR101798840B1 (ko) 2017-05-17 2017-11-17 주식회사 레고켐 바이오사이언스 신규 오토탁신 저해 화합물 및 이를 함유하는 약제학적 조성물
KR101966286B1 (ko) 2018-01-26 2019-04-05 조재석 소변의 비산 방지용 양변기

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747469A (en) 1991-03-06 1998-05-05 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
GB9904387D0 (en) 1999-02-25 1999-04-21 Pharmacia & Upjohn Spa Antitumour synergistic composition
AU4972900A (en) 1999-04-08 2000-11-14 Arch Development Corporation Use of anti-vegf antibody to enhance radiation in cancer therapy
DE10050236A1 (de) * 2000-10-11 2002-04-25 Merck Patent Gmbh Verwendung bestimmter Substanzen, die an den Sigma-Rezeptor binden, zur Behandlung von Sarkomen und Karzinomen
WO2002080928A1 (en) * 2001-04-03 2002-10-17 Merck & Co., Inc. N-substituted nonaryl-heterocyclo amidyl nmda/nr2b antagonists
DE10210779A1 (de) * 2002-03-12 2003-10-09 Merck Patent Gmbh Cyclische Amide
EP1578737B1 (en) * 2003-01-03 2009-09-16 Cv Therapeutics, Inc. Substituted heterocyclic compounds
DE102007047737A1 (de) 2007-10-05 2009-04-30 Merck Patent Gmbh Piperidin- und Piperazinderivate

Also Published As

Publication number Publication date
AU2010230646B2 (en) 2015-11-26
JP2012522733A (ja) 2012-09-27
EP2414327A1 (de) 2012-02-08
SG174520A1 (en) 2011-10-28
IL215258A0 (en) 2011-12-29
US20120015959A1 (en) 2012-01-19
AR076006A1 (es) 2011-05-11
CN102365271B (zh) 2014-05-14
JP5767205B2 (ja) 2015-08-19
US8841324B2 (en) 2014-09-23
AU2010230646A1 (en) 2011-11-17
ZA201107986B (en) 2012-07-25
ES2527788T3 (es) 2015-01-30
BRPI1009800A2 (pt) 2016-03-15
KR20120027192A (ko) 2012-03-21
CA2757413C (en) 2017-01-10
EA201101399A1 (ru) 2012-08-30
CN102365271A (zh) 2012-02-29
MX2011010207A (es) 2011-10-14
CA2757413A1 (en) 2010-10-07
WO2010112116A1 (de) 2010-10-07

Similar Documents

Publication Publication Date Title
EP2414327B1 (de) Heterocyclische verbindungen als autotaxin-inhibitoren
EP2193118B1 (de) Piperidin- und piperazinderivate zur behandlung von tumoren
EP2193122B1 (de) Imidazolderivate
EP2209777B1 (de) Thiazolderivate zur behandlung von krebs
EP2552914B1 (de) Benzonaphthyridinamine als autotaxin-inhibitoren
WO2010060532A1 (de) Benzo-naphtyridin verbindungen als inhibitoren von autotaxin
EP2454258A1 (de) Heterocyclische verbindungen als autotaxin-inhibitoren
DE102006060598A1 (de) Tetrahydrobenzoisoxazole
WO2006125555A2 (de) Chinazolinone
EP2033959B1 (de) Tetrahydropyranochinolinderivate
EP1891076B1 (de) Substituierte tetrahydrochinoline
EP2121700B1 (de) Substituierte tetrahydrochinoline
EP1891013B1 (de) Tetrahydrochinolinderivate
EP2903992A1 (de) 7-azaindol-2,7-naphthyridin-derivat zur behandlung von tumoren
DE102007013854A1 (de) Tetrahydrochinoline
WO2006094602A1 (de) Indane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 696923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008283

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2527788

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150130

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141119

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150319

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008283

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150303

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 696923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200219

Year of fee payment: 11

Ref country code: IT

Payment date: 20200221

Year of fee payment: 11

Ref country code: DE

Payment date: 20200218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200313

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200401

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010008283

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210304