EP2407012B1 - Plasmabrenner mit lateralinjektor - Google Patents

Plasmabrenner mit lateralinjektor Download PDF

Info

Publication number
EP2407012B1
EP2407012B1 EP10712528.8A EP10712528A EP2407012B1 EP 2407012 B1 EP2407012 B1 EP 2407012B1 EP 10712528 A EP10712528 A EP 10712528A EP 2407012 B1 EP2407012 B1 EP 2407012B1
Authority
EP
European Patent Office
Prior art keywords
injection
cathode
plasma torch
plasma
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10712528.8A
Other languages
English (en)
French (fr)
Other versions
EP2407012A2 (de
Inventor
Alain Alimant
Dominique Billieres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority to PL10712528T priority Critical patent/PL2407012T3/pl
Publication of EP2407012A2 publication Critical patent/EP2407012A2/de
Application granted granted Critical
Publication of EP2407012B1 publication Critical patent/EP2407012B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles

Definitions

  • the invention relates to a plasma generator and a plasma torch using such a plasma generator.
  • the plasma spraying technique is conventionally used to form a coating on a substrate. It consists, in general, to produce an electric arc, to inject a plasmagene gas through this electric arc so as to generate a plasma flow at very high temperature and at high speed, and then to inject particles into the plasma stream. to project them on the substrate. Classically, the particles melt, at least partially, in the plasma and can thus adhere effectively to each other and on the substrate during their cooling.
  • This technique can thus be used to coat the surface of a metal substrate, ceramic, cermet, polymer, organic material or composite material, in particular organic matrix.
  • This technique is used in particular for coating parts of various shapes, for example having plane or revolution geometries, in particular cylindrical, or complex geometries, these parts being of variable size, the only limit being the accessibility by the jet of particles.
  • the objective may be, for example, to provide the substrate surface functionality such as abrasion resistance, modification of the coefficient of friction, the thermal barrier or electrical insulation.
  • This technique can also be used to manufacture massive pieces, by a so-called "plasma forming” technique. With this technique, it is possible to apply a coating with a thickness of several millimeters, or even more than 10 mm.
  • Plasma torches, or " plasmatrons" are for example described in WO 96/18283 , US 5,406,046 , US5,332,885 , WO 01/05198 or WO 95/35647 or US5420391 or US 3,591,759 or US5,444,209 .
  • An object of the present invention is to provide a plasma torch satisfying, at least partially, these criteria.
  • the invention provides a plasma generator according to claim 1.
  • Claim 10 claims a first embodiment.
  • Claim 12 claims a second embodiment.
  • the ratio R " is preferably greater than 1.25.
  • the inventors have found that a plasma generator according to the invention makes it possible to produce a deposit with a very high productivity and efficiency, with an electric consumption and a pollution by the cathode limited.
  • the invention leads to excellent performance when the plasma gas rotates around the cathode, forming a vortex.
  • the invention also relates to a plasmagene gas injection device shaped so as to create a vortex around the cathode, in particular around the downstream part of the cathode which extends into the arc chamber.
  • the means for injecting the material to be projected may open inside the plasma generator, and in particular in the arc chamber, or open out of the plasma generator, in particular at the mouth of the plasma generator. arc chamber.
  • Said injection means of the material to be sprayed can be arranged to inject said material to be projected along an axis extending in a radial plane (passing through the X axis) and forming with a plane transverse to the X axis an angle ⁇ , in absolute value, less than 40 °, less than 30 °, less than 20 °, an angle less than 15 ° being well adapted.
  • a "transverse plane” is a plane perpendicular to the X axis.
  • a "radial plane” is a plane containing the X axis.
  • axial position is meant a position along the X axis. In other words, the axial position of a point is given by its normal projection on the X axis.
  • the axial position p AC of maximum radial approximation of the anode and the cathode is defined as the position, on the X axis, of the transverse plane in which the distance between the anode and the cathode is minimal.
  • This radial distance (that is, measured in a transverse plane) is called the "minimum radial distance" and denoted y AC as represented on the figure 2 . If the distance between the anode and the cathode is minimal in several transverse planes, the position p AC designates the position of the most upstream plane.
  • the “chamber” is the volume that extends from the exit aperture through which the plasma exits from said plasma generator to the interior of the plasma generator.
  • the chamber consists, upstream, of a “relaxation chamber” in which the plasma gas is injected, and an “arc chamber” in which the electric arc is generated. It is considered that the plane transverse to the position p AC delimits the boundary between the expansion chamber and the arc chamber.
  • the largest transverse dimension of the cathode in the arc chamber is measured by taking into account only that portion of the cathode that extends into the arc chamber.
  • the cathode comprises, extending in the arc chamber, a cylindrical portion of circular section, ending in a conical portion forming a tip, this transverse dimension corresponds to the diameter of the cylindrical portion of the cathode.
  • a plasma torch 10 conventionally comprises a plasma generator 20 and injection means 21 for a material to be projected in the plasma stream produced by the plasma generator 20.
  • the plasma generator 20 comprises a cathode 22 extending along an axis X and an anode 24 arranged so as to be able to generate, in a chamber 26, an electric arc E under the effect of an electric voltage produced by means of An electric generator 28.
  • the plasma generator 20 also comprises an injection device 30 for injecting a plasma gas G into the chamber 26.
  • the plasma generator may also comprise a chamber for pressurizing or standardizing the pressure of the plasmagenic gas, not shown, upstream of the injection device 30.
  • the plasma generator 20 finally has a body 34 for securing the other organs.
  • the body 34 accommodates a cathode support 36 on which is fixed the cathode 22, an anode support 38 on which is fixed the anode 24 and an electrically insulating body 40 interposed between the assembly consisting of the cathode support 36 and the cathode 22 on the one hand and the assembly consisting of the anode support 38 and the anode 24 on the other hand, so as to isolate them electrically from each other.
  • the body 34 is generally formed of two shells 34 'and 34 "which are clamped around the cathode anode supports and the injection device as shown in FIG. figure 1 .
  • the body 34 is monobloc.
  • the injection device constitutes with the anode support a one-piece body, as represented for example on the figure 8 .
  • a one-piece body makes it possible to improve the centering of the parts with respect to the axis of the torch and makes assembly and disassembly of the torch easier.
  • the electrically insulating body 40 is preferably made of a material resistant to plasma radiation.
  • the nature of the means used for the electrical insulation can also be adapted according to the local temperature.
  • an insulating piece 41 of reduced thermal resistance can be arranged in the region which is not directly exposed to the plasma.
  • the cathode supports 36 and the anode 38 are respectively at the same electrical potential as the cathode 22 and the anode 24.
  • the cathode 22 and the anode 24 are conventionally wear parts made of copper and tungsten.
  • the cathode bodies 36 and anode 38 are conventionally made of copper alloy.
  • the terminals + and - of the electric generator 28 are connected directly or indirectly respectively to the anode 24 and the cathode 22.
  • the electric generator 28 is conventionally adapted to be able to create between the anode and the cathode a voltage greater than 40V and / or less than 120V.
  • the figure 2 shows that the cathode 22, rod-shaped axis X, comprises successively, coaxially, from upstream to downstream, a frustoconical portion 45, of decreasing diameter, a cylindrical portion 46 of circular cross section and a conical portion 48 of rounded top.
  • the cylindrical portion has a diameter greater than 5 mm, greater than 6 mm and / or less than 11 mm, less than 10 mm, a diameter of about 8 mm being well suited.
  • the diameter of the cylindrical portion 46 is called “cathode diameter”, and is preferably about 8 mm.
  • the axial position of the downstream end 50 of the cathode 22 is noted hereinafter pc.
  • the cathode 22 may be made of tungsten, optionally doped with a dopant making it possible to lower the extraction potential of the metal constituting the cathode relative to that of tungsten.
  • the tungsten may be doped with an oxide of thorium and / or lanthanum and / or cerium and / or yttrium. This advantageously makes it possible to increase the current density at the melting point of the metal or to reduce the operating temperature by a few hundred ° C. relative to the use of a pure tungsten cathode.
  • the cathode may be of the same material or not.
  • the cathode 22 comprises a rod 22 "tungsten, doped or not, and a copper portion 22 ', for attachment to the cathode support.
  • the anode 24 has the shape of a sleeve of axis X, the inner surface 54 comprises successively, from upstream to downstream, a frustoconical portion 56 and a cylindrical portion 58, of circular section.
  • the anode can be of the same material or not.
  • At least a portion of the inner surface 54 of the anode, and in particular downstream of the arc initiation zone (located on the frustoconical portion 56) is made of a refractory and conductive metal, preferably tungsten.
  • the inner surface of the cylindrical portion 58 of the anode may also be protected by a coating or jacket 57, for example of tungsten, as shown in FIG. figure 8 .
  • the axial position of the anode 24 is such that a part of the cylindrical portion 46 and the conical portion 48 of the cathode 22 are arranged facing the frustoconical portion 56, that is to say in the volume of the chamber 26 delimited radially by the frustoconical portion 56.
  • the axial position p AC is located substantially at the junction between the cylindrical portion 46 and the conical portion 48 of the cathode 22.
  • the chamber 26 comprises successively, from upstream to downstream, an expansion chamber 26 'extending axially from the bottom 59 of the chamber 26, to the position p AC , then an arc chamber 26 " extending axially from the position p AC to the position p A of an outlet opening 60 delimited by the downstream end of the anode and through which the plasma exits the plasma generator.
  • the diameter of the outlet opening 60 is greater than 4 mm, preferably greater than 5 mm and / or less than 15 mm, preferably less than 9 mm.
  • the chamber 26 may open through the outlet opening 60 via a nozzle extending preferably along the X axis and whose diameter may vary according to the position of the cross section considered, as represented for example on the figure 4 or be constant, as represented on the figure 1 .
  • the injection device 30, shown in more detail on the Figures 3a and 3b is shaped and arranged so as to create a flow of gas rotating around the cylindrical portion 46, or even around the conical portion 48, of the cathode 22.
  • the injection device 30 has the shape of a crown of axis X.
  • the side wall 70 of this ring is pierced with eight injection ducts 72, substantially rectilinear.
  • Each injection conduit 72 opens into the interior of the The center of an injection orifice 74 defines the axial position p i and the radial distance y i of this injection orifice.
  • the cross section of an injection conduit 72 is substantially cylindrical and has a diameter D of between 0.5 mm and 5 mm.
  • the radial distance y i between the axis X and the center of any one of the injection orifices is constant. It is preferably greater than 10 mm and / or less than 20 mm, a radial distance y i of about 12 mm being well adapted.
  • An injection conduit 72 opens towards the axis of the ring, along an injection axis I i .
  • the projection of the injection axis I i forms, with the axis X, an angle ⁇ of 45 °, as represented on FIG. figure 3a .
  • the injection axis I i forms, with a radius passing through the axis X and the center of said injection orifice 74, a angle ⁇ of 25 °, as represented on the figure 3b .
  • the injection device 30 is disposed in the expansion chamber 26 '.
  • X is the axial distance between the axial position p AC of maximum radial approximation of the cathode 22 and the anode 24 and the position p of the injection ports of the plane P, the most downstream.
  • X ' is the axial distance between the axial position p C of the downstream end 50 of the cathode 22 and the position p.
  • y is about 13 mm and the ratio R "is about 1.63.
  • the inventors have found that when at least one of the ratios R, R 'and R "is in accordance with the invention, the performance of the plasma torch are particularly remarkable, especially when the plasma gas is injected upstream of the cathode, and in particular injected so as to be able to rotate around the cathode.
  • the use of an injection device according to the invention has proved particularly advantageous for this purpose.
  • the plasmagenic gas is injected very close to the downstream end of the cathode.
  • the plasma gas jet is weakly damped over this short distance and the plasma gas is also less warmed by the time it reaches the arc.
  • the rotation of the gas around the cathode also advantageously makes it possible to limit the wear of the electrodes.
  • the plasma gas G whose flow is represented on the figure 2 by the arrow F, is preferably a gas selected from argon and / or hydrogen and / or helium and / or nitrogen.
  • the plasma generator 20 also comprises cooling means capable of cooling the anode 24 and / or the cathode 22 and / or the cathode support 36 and / or the anode support 38.
  • these cooling means can comprising means for circulating a refrigerant, for example water, preferably with a turbulent regime, the Reynolds number defining the turbulent regime of this fluid may be preferably greater than 3000, more preferably greater than 10000.
  • a cooling chamber 76, of X axis, may in particular be formed in the anode support 38 so as to allow a circulation of the refrigerant liquid close to the anode 24.
  • the cooling means may also be common to the body 34, to the anode and to the cathode, as shown in FIG. figure 8 .
  • the plasma torch 10 comprises, in addition to the plasma generator 20, injection means 21 arranged, in the embodiment shown, so as to inject particulate material to be sprayed near the outlet opening 60 of the 26. All injection means conventionally used, inside or outside the arc chamber 26 ", can be envisaged, thus the injection means of the particulate material to be sprayed are not necessarily external to the plasma generator, but can be integrated therein, as shown in FIG. figure 5 .
  • the injection means 21 are arranged so that at least a portion of the material to be sprayed is injected towards the axis X along an axis forming with a transverse plane P 'an angle ⁇ of about 0 °.
  • the angle ⁇ is about 15 °.
  • the figure 9 represents a variant for the cathode 22.
  • the cathode 22 has a tungsten rod 22 "and a copper portion 22 'into which the tungsten rod 22" is inserted.
  • upstream portion 22a and a downstream portion 22b of the cathode intended to extend out of the chamber 26 and into the chamber 26, respectively (see for example the figure 2 ). In the remainder of the description, only the downstream portion 22b is described.
  • the free end of the downstream portion 22b is a conical portion 82 in the form of a rounded tip.
  • the radius of curvature of this end is greater than 1 mm and less than 4 mm.
  • the apex angle ⁇ of this conical portion is approximately 45 °.
  • the length L 82 , along the axis of the cathode, of the conical portion 82 is greater than 3 mm and less than 8 mm.
  • the largest diameter D 82 of this conical portion (at its base) is greater than 6 mm and less than 10 mm.
  • the cathode 22 comprises, immediately upstream of the conical portion 82, a cylindrical portion 84 of circular section, having a diameter equal to D 82 .
  • the cylindrical portion 84 has a length L 84 greater than 5 mm and less than 15 mm.
  • the cathode further comprises, immediately upstream of the cylindrical portion 84, a frustoconical portion 86.
  • the apex angle ⁇ of this frustoconical portion 86 is greater than 30 ° and less than 45 °.
  • the length L 86 of the frustoconical portion 86 is greater than 5 mm and less than 15 mm.
  • the largest diameter D 86 of the frustoconical portion 86 is greater than 6 mm and / or less than 18 mm.
  • the smaller diameter of said frustoconical portion 86 is substantially equal to D 82 , so that the frustoconical portion 86 extends in the extension of the cylindrical portion 84.
  • the cathode is shaped so that in use, at least one, preferably all the injection orifices are arranged in a transverse plane Pi intersecting said frustoconical portion 86.
  • the figure 10 represents an alternative for the anode 24.
  • This anode comprises a first portion 24a copper or copper alloy and a second portion 24b tungsten or tungsten alloy.
  • the second portion 24b is inserted into the first portion 24a so as to define with it a downstream portion of the chamber 26, extending downstream of an upstream cylindrical portion 26a, shown in phantom, and defined by the device of FIG. injection 30.
  • the second part 24b is in particular intended to define the arc chamber.
  • the downstream portion of the chamber 26 comprises successively, from upstream to downstream, an intermediate convergent (downstream) portion 26b and a downstream cylindrical portion 26c.
  • the intermediate convergent portion 26b has first and second frustoconical portions, 26b 'and 26b', extending coaxially in the extension of one another.
  • the length L 26a of the upstream cylindrical portion 26a is between 5 and 20 mm.
  • the length L 26b of the intermediate convergent portion 26b is about 24 mm.
  • the length L 26b ' of the first frustoconical portion 26b' is between 2 and 10 mm, for example about 5 mm.
  • the length L 26c of the downstream cylindrical portion 26c is between 20 and 30 mm.
  • the diameter D 26a of the upstream cylindrical portion 26a is greater than 10 mm and less than 30 mm.
  • the largest diameter D 26b of the intermediate convergent portion 26b (base) is about 18 mm.
  • the diameter D 26a of the upstream cylindrical portion is greater than the larger diameter D 26b of the intermediate convergent portion, so that there is a recess 80 between these two parts.
  • the smallest diameter d 26b of the intermediate convergent portion 26b is greater than 4 mm and less than 9 mm.
  • the diameter of the downstream cylindrical portion 26c is equal to d 26b .
  • the length L 26a of the upstream cylindrical portion 26a is greater than the length L 86 of the frustoconical portion 86 of the cathode 24. More preferably, the sum (L 26a + L 26b ) of the length of the cylindrical portion upstream 26a and the party intermediate convergent 26b is greater than the length L 22b of the cathode 22 in the chamber 26.
  • the free end of the cathode extends preferably substantially mid-length of the intermediate convergent portion of the chamber.
  • Plasmagene gas G is then injected with a flow rate typically greater than 30 l / min and less than 100 1 / min, at a temperature above 0 ° C and below 50 ° C, and at an absolute pressure of less than 10 bar by means of the injection device 30 upstream of the downstream end 50 of the cathode 22. flow of plasma gas G rotates around the cathode 22 while progressing in the chamber 26 towards the outlet opening 60.
  • the plasma gas G While passing through the electric arc E, the plasma gas G is transformed into plasma at very high temperature, typically at a temperature greater than 8000 K, or even greater than 10000 K.
  • the plasma flow exits the chamber 26, substantially along the X axis, at a speed typically greater than 400 m / s and less than 800 m / s.
  • the material to be sprayed, in particulate form is injected into the plasma stream by means of the injection means 21.
  • the material to be sprayed may in particular be an inorganic, metallic and / or ceramic powder and / or cermet, or even an organic powder, or possibly a liquid such as a suspension or a solution of the material to be sprayed.
  • This material is then entrained by the plasma flow and reheated or melted by the heat of the plasma.
  • the plasma torch 10 When the plasma torch 10 is oriented towards a substrate, the material is thus projected against this substrate. On cooling, it solidifies and adheres to the substrate.
  • Two plasma torches T1 and T2 similar to that shown on the figure 8 , were compared to two commercial torches available on the market, a conventional "F4" type torch and a latest-generation tri-cathode torch.
  • the conditions of use correspond to the nominal conditions recommended by the manufacturer or conditions considered better.
  • the conditions of use of plasma torches T1 and T2 were chosen so as to obtain the best possible performance.
  • the following Table 1 summarizes the technical characteristics of the plasma torches tested and the conditions of the test.
  • the two commercial plasma torches comprise plasma gas injection orifices opening onto the bottom of the chamber.
  • the dimensional parameters defining the plasma gas injection device according to the invention therefore do not apply to these two plasma torches.
  • a plasma torch according to the invention achieves a particularly high efficiency and productivity, for reduced energy consumption.
  • a plasma torch according to the invention may be of any known type, in particular of the "blown arc plasma” or “hot cathode” type, in particular "hot rod type cathode” type.
  • the number and shape of the anodes and cathodes are not limited to those described and shown.
  • the plasma generator comprises several anodes and / or several cathodes, and in particular at least three cathodes.
  • the plasma generator comprises a single cathode and / or a single anode.
  • the plasma generator is easier to control.
  • the shape of the room is not limiting either.
  • the injection device may also be different from that shown on the figure 1 .
  • it may comprise a single crown or several crowns.
  • injection pipes are not limiting. Their section is not necessarily circular, and could be, for example oblong or polygonal, particularly rectangular.
  • the arrangement of the injection ducts could also be different from that shown on the figure 1 .
  • the injection ducts could for example extend along a helix or, in general, be arranged so that the injection orifices are not all in the same transverse plane. In particular, they could extend in two (as shown in figure 6 ), three, four or more transverse planes.
  • injection orifices 74 are distributed in first and second transverse planes, P 1 and P 2 .
  • Eight injection orifices 74 1 equiangularly distributed around the axis X, extend in the first transverse plane P 1 . They all have the same diameter D 1 and the same radial distance, y 1 .
  • the projection of an injection pin I 1 of an injection orifice 74 1 in a transverse plane forms an angle ⁇ 1 with a radius extending in said transverse plane and passing through the axis X and by the center said injection port.
  • the twelve other equiangularly distributed injection orifices 74 2 extend in the second transverse plane P 2 , downstream of P 1 , and have the same diameter D 2 , greater than D 1 , and the same radial distance y 2 , equal to y 1 .
  • the projection of an injection pin I 2 of an injection orifice 74 2 in a transverse plane forms an angle ⁇ 2 with a radius extending in said transverse plane and passing through the axis X and through the center said injection port.
  • the angle ⁇ 2 is smaller than the angle ⁇ 1 .
  • the sum of the areas of all the cross-sections of a set of orifices is called a "cumulative section".
  • y 1 could be different from y 2 .
  • the orifices belonging to the same transverse plane could also have radial distances y i different from each other.
  • Injection ports could also be grouped in groups of two, three or more.
  • the injection device may comprise four pairs of holes, said pairs being preferably distributed equiangularly.
  • the injection orifices of a first plane may be aligned in the direction of the X axis or offset with those of a second plane, for example angularly offset from a constant angle.
  • injection orifices 74 are distributed in first and second transverse planes, P 1 and P 2 .
  • Eight injection orifices 74 1 equiangularly distributed around the axis X, extend in the first transverse plane P 1 . They all have the same diameter D 1 and the same radial distance, y 1 .
  • the projection of an injection pin I 1 of an injection orifice 74 1 in a transverse plane forms an angle ⁇ 1 with a radius extending in said transverse plane and passing through the axis X and by the center said injection port.
  • the twelve other equiangularly distributed injection orifices 74 2 extend in the second transverse plane P 2 , downstream of P 1 , and have the same diameter D 2 , greater than D 1 , and the same radial distance y 2 , equal to y 1 .
  • the projection of an injection pin I 2 of an injection orifice 74 2 in a transverse plane forms an angle ⁇ 2 with a radius extending in said transverse plane and passing through the axis X and through the center said injection port.
  • the angle ⁇ 2 is smaller than the angle ⁇ 1 .
  • the sum of the areas of all the cross-sections of a set of orifices is called a "cumulative section".
  • y 1 could be different from y 2 .
  • the orifices belonging to the same transverse plane could also have radial distances y i different from each other.
  • Injection ports could also be grouped in groups of two, three or more.
  • the injection device may comprise four pairs of holes, said pairs being preferably distributed equiangularly.
  • the injection orifices of a first plane may be aligned in the direction of the X axis or offset with those of a second plane, for example angularly offset from a constant angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (16)

  1. Plasmabrenner, umfassend:
    - einen Plasmagenerator, umfassend:
    - eine Kathode (22), die sich entlang einer Achse X erstreckt, und eine Anode (24), wobei die Kathode und die Anode derart angeordnet sind, um in einer Kammer (26) unter der Einwirkung einer elektrischen Spannung einen Lichtbogen zwischen der Anode und der Kathode erzeugen zu können, und
    - eine Vorrichtung zum Einspritzen (30) eines plasmagenen Gases, die eine Einspritzleitung (72) aufweist, die entlang einer Einspritzachse (Ii) durch eine Einspritzöffnung (74) in die Kammer mündet,
    - Mittel zum Einspritzen eines zu projizierenden Materials in einen Plasmastrom, der von dem Plasmagenerator erzeugt wird,
    wobei der Plasmabrenner dadurch gekennzeichnet ist, dass
    - das Verhältnis R" zwischen:
    - dem radialen Abstand (yi) der Einspritzöffnung, der als der Mindestabstand zwischen der Achse X und der Mitte der Einspritzöffnung definiert ist,
    - der größten Querabmessung (Dc) der Kathode in dem Bereich der Kammer nachgelagert nach der Position pAC, wobei pAC die Axialposition der maximalen radialen Annäherung der Anode und der Kathode bezeichnet,
    geringer als 2,5 ist, und
    - die Projektion der Einspritzachse (Ii) in eine Querebene, die durch die Mitte der Einspritzöffnung der Einspritzleitung verläuft, einen Winkel β, der kleiner als 45° und größer als 5° ist, mit einem Radius bildet, der sich in der Querebene erstreckt und durch die Achse X und durch die Mitte der Einspritzöffnung verläuft,
    wobei die Kammer (26) von stromaufwärts nach stromabwärts nacheinander eine Entspannungskammer (26'), die sich axial von dem Boden (59) der Kammer (26) bis zu der Position pAC erstreckt, und dann eine Bogenkammer (26") aufweist, die sich axial von der Position pAC bis zu der Position pA einer Austrittsöffnung (60) erstreckt, die durch das nachgelagerte Ende der Anode begrenzt ist und durch die das Plasma von dem Plasmagenerator austritt,
    wobei die Axialposition eine Position entlang der Achse X bezeichnet.
  2. Plasmabrenner nach dem vorhergehenden Anspruch, wobei die Projektion der Einspritzachse (Ii) in eine radiale Ebene, die durch die Mitte der Einspritzöffnung der Einspritzleitung (72) verläuft, einen Winkel α mit der Achse X bildet, der größer als 10° und kleiner als 70° ist.
  3. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei
    - der Winkel α größer als 20° und kleiner als 60° ist und/oder
    - der Winkel β kleiner als 30° ist.
  4. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei unter der Gesamtheit der Einspritzöffnungen der Vorrichtung zum Einspritzen die Einspritzöffnung jene oder eine von jenen ist, die die am weitesten nachgelagerte Axialposition (pi) aufweist oder aufweisen.
  5. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei der radiale Abstand (yi) der Einspritzöffnung kleiner als 27 mm und größer als 6 mm ist.
  6. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung zum Einspritzen (30) vorgelagert vor der Position pAC angeordnet ist.
  7. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei die Kathode einen kegelstumpfförmigen Abschnitt (86) aufweist und die oder alle Einspritzöffnungen in einer oder mehreren Querebenen (Pi) angeordnet ist oder sind, die den kegelstumpfförmigen Abschnitt schneiden.
  8. Plasmabrenner nach dem unverzüglich vorhergehenden Anspruch, wobei die Querebene oder Querebenen in einem Abstand von der Basis des kegelstumpfförmigen Abschnitts (86) angeordnet ist oder sind, der zwischen 30 % und 90 % der Länge des kegelstumpfförmigen Abschnitts beträgt.
  9. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei der Axialabstand x", der die Axialposition pAC von der Axialposition (PA) des am weitesten nachgelagerten Punktes der Anode trennt, größer als 30 mm und/oder kleiner als 60 mm ist.
  10. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei das Verhältnis R zwischen:
    - dem axialen Abstand x zwischen der Axialposition pAC und der Axialposition (pi) der Einspritzöffnung und
    - der größten Querabmessung (Dc) der Kathode in dem Bereich der Kammer nachgelagert nach der Position pAC
    kleiner als 3,2 ist.
  11. Plasmabrenner nach dem vorhergehenden Anspruch, wobei der axiale Abstand x größer als 5 mm und kleiner als 25 mm ist.
  12. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei das Verhältnis R' zwischen:
    - dem axialen Abstand x', der die Axialposition pc von dem nachgelagerten Ende der Kathode und die Axialposition (pi) der Einspritzöffnung trennt, und
    - der größten Querabmessung (Dc) der Kathode in dem Bereich der Kammer nachgelagert nach der Position pAC
    kleiner als 3,5 ist.
  13. Plasmabrenner nach dem vorhergehenden Anspruch, wobei der axiale Abstand x' größer als 9 mm und kleiner als 30 mm ist.
  14. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei das Verhältnis R''' zwischen dem minimalen radialen Abstand yAC zwischen der Anode und der Kathode an der Position pAC und der größten Querabmessung (Dc) der Kathode in dem Bereich der Kammer nachgelagert nach der Position pAC kleiner als 1,25 ist.
  15. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung zum Einspritzen mehrere Einspritzöffnungen aufweist, wobei mindestens eine der Bedingungen für die Verhältnisse R, R' und R" und für die Abstände x, x', x" und den radialen Abstand yi erfüllt wird, unabhängig von der betrachteten Einspritzöffnung.
  16. Plasmabrenner nach einem der vorhergehenden Ansprüche, wobei die Kathode (22) in Form eines Stabes mit Achse X nacheinander koaxial von stromaufwärts nach stromabwärts einen kegelstumpfförmigen Abschnitt (45) mit abnehmendem Durchmesser, einen zylindrischen Abschnitt (46) mit kreisförmigem Querschnitt und einen konischen Abschnitt (48) mit abgerundeter Spitze aufweist.
EP10712528.8A 2009-03-12 2010-03-12 Plasmabrenner mit lateralinjektor Active EP2407012B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10712528T PL2407012T3 (pl) 2009-03-12 2010-03-12 Palnik plazmowy z bocznym wtryskiwaczem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901158A FR2943209B1 (fr) 2009-03-12 2009-03-12 Torche a plasma avec injecteur lateral
PCT/IB2010/051085 WO2010103497A2 (fr) 2009-03-12 2010-03-12 Torche a plasma avec injecteur lateral

Publications (2)

Publication Number Publication Date
EP2407012A2 EP2407012A2 (de) 2012-01-18
EP2407012B1 true EP2407012B1 (de) 2017-08-02

Family

ID=41258730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10712528.8A Active EP2407012B1 (de) 2009-03-12 2010-03-12 Plasmabrenner mit lateralinjektor

Country Status (18)

Country Link
US (1) US8389888B2 (de)
EP (1) EP2407012B1 (de)
JP (1) JP5597652B2 (de)
KR (1) KR101771249B1 (de)
CN (1) CN102349355B (de)
AU (1) AU2010222559B2 (de)
BR (1) BRPI1008981A2 (de)
CA (1) CA2753762C (de)
DK (1) DK2407012T3 (de)
EA (1) EA021709B1 (de)
ES (1) ES2645029T3 (de)
FR (1) FR2943209B1 (de)
MX (1) MX2011009388A (de)
NO (1) NO2407012T3 (de)
PL (1) PL2407012T3 (de)
SG (1) SG174232A1 (de)
UA (1) UA103233C2 (de)
WO (1) WO2010103497A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023118767A1 (fr) 2021-12-23 2023-06-29 Saint-Gobain Centre De Recherche Et D'etudes Europeen Support de cuisson de poudre alcaline avec revêtement de porosité contrôlée

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943209B1 (fr) * 2009-03-12 2013-03-08 Saint Gobain Ct Recherches Torche a plasma avec injecteur lateral
FR2998561B1 (fr) 2012-11-29 2014-11-21 Saint Gobain Ct Recherches Poudre haute purete destinee a la projection thermique
US9227214B2 (en) * 2013-03-13 2016-01-05 General Electric Company Adjustable gas distribution assembly and related adjustable plasma spray device
US11432393B2 (en) 2013-11-13 2022-08-30 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
US11278983B2 (en) 2013-11-13 2022-03-22 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US9981335B2 (en) 2013-11-13 2018-05-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US10456855B2 (en) 2013-11-13 2019-10-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
US11684995B2 (en) 2013-11-13 2023-06-27 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
EP2942144A1 (de) * 2014-05-07 2015-11-11 Kjellberg-Stiftung Plasmaschneidbrenneranordnung sowie die Verwendung von Verschleißteilen bei einer Plasmaschneidbrenneranordnung
RU2693233C2 (ru) 2014-08-12 2019-07-01 Гипертерм, Инк. Затратоэффективная головка для плазменно-дуговой горелки
CN104780700B (zh) * 2015-04-18 2017-09-26 衢州迪升工业设计有限公司 一种圆盘体阴极
EP4243575A3 (de) 2015-08-04 2023-10-25 Hypertherm, Inc. Kartusche für einen flüssigkeitsgekühlten plasmabogenbrenner
TWI599431B (zh) * 2015-11-03 2017-09-21 財團法人工業技術研究院 雷射加工裝置及雷射排屑裝置
DE102017112821A1 (de) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Elektroden für gas- und flüssigkeitsgekühlte Plasmabrenner, Anordnung aus einer Elektrode und einem Kühlrohr, Gasführung, Plasmabrenner, Verfahren zur Gasführung in einem Plasmabrenner und Verfahren zum Betreiben eines Plasmabrenners
FR3077286B1 (fr) 2018-01-31 2022-08-12 Saint Gobain Ct Recherches Barriere environnementale
FR3077287B1 (fr) 2018-01-31 2023-09-22 Saint Gobain Ct Recherches Poudre pour revetement de chambre de gravure
FR3077288A1 (fr) 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour barriere thermique
KR102082566B1 (ko) * 2018-04-27 2020-04-23 (주)엔노피아 플라즈마 토치
KR102169411B1 (ko) * 2018-09-14 2020-10-26 유니셈 주식회사 애노드 수명이 증가된 폐가스 처리용 플라즈마 토치
RU187848U1 (ru) * 2018-11-21 2019-03-20 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Трехфазный генератор плазмы переменного тока
EP3862135A1 (de) * 2020-02-10 2021-08-11 Ceratizit Luxembourg Sàrl Fokussierrohr und verwendung davon
US11979974B1 (en) 2020-06-04 2024-05-07 Inno-Hale Ltd System and method for plasma generation of nitric oxide
CN113115505A (zh) * 2021-04-07 2021-07-13 南通三信塑胶装备科技股份有限公司 自引弧降压热等离子束发生装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313908A (en) * 1966-08-18 1967-04-11 Giannini Scient Corp Electrical plasma-torch apparatus and method for applying coatings onto substrates
US3591759A (en) * 1969-06-04 1971-07-06 Sealectro Corp Method of depositing heat fusible material and apparatus therefor
JPS6012166A (ja) * 1983-07-02 1985-01-22 Kakooki:Kk プラズマジエツト溶射装置
JPS61159283A (ja) * 1984-12-28 1986-07-18 Daido Steel Co Ltd プラズマト−チ
JPS61187959A (ja) * 1985-02-15 1986-08-21 Purazumeito:Kk プラズマト−チの冷却方法
JPS61259777A (ja) * 1985-05-13 1986-11-18 Onoda Cement Co Ltd 単ト−チ型プラズマ溶射方法及び装置
US4649257A (en) * 1986-05-06 1987-03-10 The Perkin-Elmer Corporation Gas distribution ring for plasma gun
JPS6391160A (ja) * 1986-10-06 1988-04-21 Nippon Sharyo Seizo Kaisha Ltd プラズマ溶射銃
DE3884653T2 (de) * 1987-04-03 1994-02-03 Fujitsu Ltd Verfahren und Vorrichtung zur Gasphasenabscheidung von Diamant.
JPH0245158U (de) * 1988-09-20 1990-03-28
JP2516804B2 (ja) * 1988-12-26 1996-07-24 株式会社小松製作所 プラズマト−チ
DE4105407A1 (de) 1991-02-21 1992-08-27 Plasma Technik Ag Plasmaspritzgeraet zum verspruehen von festem, pulverfoermigem oder gasfoermigem material
JPH0719673B2 (ja) * 1991-10-14 1995-03-06 豊信 吉田 直流プラズマ発生トーチ
DE9215133U1 (de) 1992-11-06 1993-01-28 Plasma-Technik Ag, Wohlen, Ch
JPH07185823A (ja) * 1992-11-27 1995-07-25 Komatsu Ltd プラズマトーチ
US5591356A (en) * 1992-11-27 1997-01-07 Kabushiki Kaisha Komatsu Seisakusho Plasma torch having cylindrical velocity reduction space between electrode end and nozzle orifice
US5444209A (en) * 1993-08-11 1995-08-22 Miller Thermal, Inc. Dimensionally stable subsonic plasma arc spray gun with long wearing electrodes
US5420391B1 (en) 1994-06-20 1998-06-09 Metcon Services Ltd Plasma torch with axial injection of feedstock
US5556558A (en) 1994-12-05 1996-09-17 The University Of British Columbia Plasma jet converging system
FR2735710B1 (fr) * 1995-06-23 1997-07-25 Soudure Autogene Francaise Tete de torche a plasma et torche a plasma la comportant
JP3928018B2 (ja) * 1997-03-17 2007-06-13 株式会社ダイヘン フロンのプラズマアーク分解方法及び装置
US6114649A (en) 1999-07-13 2000-09-05 Duran Technologies Inc. Anode electrode for plasmatron structure
US6202939B1 (en) * 1999-11-10 2001-03-20 Lucian Bogdan Delcea Sequential feedback injector for thermal spray torches
US6392189B1 (en) * 2001-01-24 2002-05-21 Lucian Bogdan Delcea Axial feedstock injector for thermal spray torches
JP3893460B2 (ja) * 2002-12-27 2007-03-14 独立行政法人物質・材料研究機構 高周波熱プラズマ流の均質化方法
JP4988164B2 (ja) * 2005-03-08 2012-08-01 株式会社日清製粉グループ本社 微粒子の製造方法と装置
JP5318463B2 (ja) * 2008-05-27 2013-10-16 住友金属鉱山株式会社 微粒子の製造方法およびそれに用いる製造装置
FR2943209B1 (fr) * 2009-03-12 2013-03-08 Saint Gobain Ct Recherches Torche a plasma avec injecteur lateral

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023118767A1 (fr) 2021-12-23 2023-06-29 Saint-Gobain Centre De Recherche Et D'etudes Europeen Support de cuisson de poudre alcaline avec revêtement de porosité contrôlée
FR3131295A1 (fr) 2021-12-23 2023-06-30 Saint-Gobain Centre De Recherches Et D'etudes Europeen support de cuisson de poudre alcaline avec revêtement de porosité contrôlée

Also Published As

Publication number Publication date
US8389888B2 (en) 2013-03-05
EP2407012A2 (de) 2012-01-18
FR2943209A1 (fr) 2010-09-17
CN102349355A (zh) 2012-02-08
AU2010222559B2 (en) 2015-01-22
JP2012520171A (ja) 2012-09-06
CA2753762C (fr) 2017-06-27
PL2407012T3 (pl) 2018-01-31
KR101771249B1 (ko) 2017-09-05
CA2753762A1 (fr) 2010-09-16
KR20110134406A (ko) 2011-12-14
EA201190213A1 (ru) 2012-01-30
JP5597652B2 (ja) 2014-10-01
DK2407012T3 (da) 2017-11-06
WO2010103497A2 (fr) 2010-09-16
AU2010222559A1 (en) 2011-10-06
ES2645029T3 (es) 2017-12-01
FR2943209B1 (fr) 2013-03-08
MX2011009388A (es) 2011-10-11
US20120055907A1 (en) 2012-03-08
SG174232A1 (en) 2011-10-28
UA103233C2 (uk) 2013-09-25
NO2407012T3 (de) 2017-12-30
WO2010103497A3 (fr) 2010-11-04
EA021709B1 (ru) 2015-08-31
CN102349355B (zh) 2015-10-14
BRPI1008981A2 (pt) 2016-03-22

Similar Documents

Publication Publication Date Title
EP2407012B1 (de) Plasmabrenner mit lateralinjektor
EP0064891A1 (de) Schweissanordnungen mit elektrischen Entladungen, insbesondere zum Lichtbogenschweissen
FR2852541A1 (fr) Procede de coupage plasma avec double flux de gaz
EP0910554A1 (de) Spinndüsebodenplatte mit ausgestochenem nippel
EP1446258A1 (de) Verfahren und vorrichtung zum hybridschweissen
FR2987967A1 (fr) Tuyere pour torche a plasma d'arc avec element interne demontable
EP2209579B1 (de) Auftragsschweissverfahren eines werkstückes, in dem keramischen partikel in der schweissung eingebaut werden.
EP1147692B1 (de) Aus kupfer-legierung hergestelltes verschleissteil für lichtbogenbrenner
KR20080082283A (ko) 플라즈마 용사 코팅 방법
WO1992010325A1 (fr) Ouverture d'un trou de coulee avec une torche a plasma
EP0924968A1 (de) Ternäre Gasmischung und ihre Verwendung für Feuerfestmaterial-Plasmaspritzen
EP3835455B1 (de) Klemmplatte mit heizelement und elektrochemische vorrichtung mit dieser klemmplatte
EP0706308A1 (de) Durch Gasschutz stabilisierter Plasmabogenbrenner
FR3000866A1 (fr) Torche a plasma d'arc avec regulation selective du debit de gaz plasmagene
CA2930180C (fr) Procede integre de frittage pour microfissuration et tenue a l'erosion des barrieres thermiques
FR3054462A1 (fr) Procede d'atomisation de gouttes metalliques en vue de l'obtention d'une poudre metallique
EP2600699B1 (de) Lichtbogenplasmabrenner mit verbesserter elektrischer Isolierung
EP3174373A1 (de) Lichtbogenplasmabrenner mit wolfram-elektrode
FR2652981A1 (fr) Generateur de plasma a cathode creuse pour le traitement de poudres par plasma.
FR2537479A1 (fr) Perfectionnements aux equipements d'usinage electrique par fusion metallique
EP3065908B1 (de) Verfahren für lichtbogen-oberflächenbehandlung mit gasschutz aus einem argon-/heliumgemisch
EP1181126B1 (de) Verfahren und anlage zum automatischen mehr-plasmaschweissen
FR3104485A1 (fr) procédé de fabrication additive d’un élément chauffant
FR2986396A1 (fr) Torche a plasma d'arc avec amelioration du centrage axial de l'electrode
FR2798247A1 (fr) Torche a plasma avec systeme d'electrode a longue duree de vie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110909

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161115

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 915751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010044040

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171102

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2645029

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170802

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E034135

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010044040

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180312

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 915751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20210219

Year of fee payment: 12

Ref country code: FI

Payment date: 20210219

Year of fee payment: 12

Ref country code: CZ

Payment date: 20210223

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210218

Year of fee payment: 12

Ref country code: SE

Payment date: 20210223

Year of fee payment: 12

Ref country code: DK

Payment date: 20210219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210401

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230202

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230221

Year of fee payment: 14

Ref country code: DE

Payment date: 20230221

Year of fee payment: 14

Ref country code: BE

Payment date: 20230221

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240329

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240328

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240322

Year of fee payment: 15

Ref country code: GB

Payment date: 20240329

Year of fee payment: 15