EP2400233B1 - Vorrichtung zur Erzeugung eines Luftschleiers - Google Patents

Vorrichtung zur Erzeugung eines Luftschleiers Download PDF

Info

Publication number
EP2400233B1
EP2400233B1 EP11170413.6A EP11170413A EP2400233B1 EP 2400233 B1 EP2400233 B1 EP 2400233B1 EP 11170413 A EP11170413 A EP 11170413A EP 2400233 B1 EP2400233 B1 EP 2400233B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
air
air curtain
core
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11170413.6A
Other languages
English (en)
French (fr)
Other versions
EP2400233A2 (de
EP2400233A3 (de
Inventor
Thomas Höller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teddington Luftschleieranlagen GmbH
Original Assignee
Teddington Luftschleieranlagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teddington Luftschleieranlagen GmbH filed Critical Teddington Luftschleieranlagen GmbH
Publication of EP2400233A2 publication Critical patent/EP2400233A2/de
Publication of EP2400233A3 publication Critical patent/EP2400233A3/de
Application granted granted Critical
Publication of EP2400233B1 publication Critical patent/EP2400233B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present invention relates to a device for generating an air flow, in particular an air curtain, comprising at least one arranged in a housing Beerausblasdüse whose nozzle body comprises at least two spaced nozzle segments which form a nozzle slot between them, wherein the contour of the nozzle segments arched at the mutually facing inner surfaces is and these nozzle segments form a converging in the flow direction of the air at least partially nozzle slot, wherein an arranged between the two nozzle segments, Trag perennialförmiger core beam profile is provided, which the air flow in two partial beams, namely a lying on the outside air side (outside) of the air curtain Kernstrahl and a lying on the inside of the air curtain support beam divided.
  • the GB 983 901 A describes a device for generating an air flow with the features of the type mentioned.
  • this known device is a conventional room fan, which can be parked for example on a table.
  • this known device is not provided for the production of an air curtain, as used in the prior art to foreclose door openings or door openings and to prevent the passage of air from one room area to the other or from an outdoor area into the interior of a building.
  • Such air curtains typically use a comparatively strong air flow, which is either horizontal from one side to the other or vertically from top to bottom and thereby seals off said opening.
  • the fan is an about provided cylindrical housing which receives a rotor and in the region of the exit slot are two concave guide walls, of which one guide wall is very short and already ends at about the pivot point of the core beam profile, so that this guide wall on the further course of the exiting flow no longer influences.
  • the radius of curvature is significantly smaller than that of the other longer guide wall, which ends earlier with respect to the core beam profile, even before the center thereof.
  • the core beam profile is therefore here only to a very small extent in the slot formed by the two guide walls and the air flow already tears off from where the guide walls end.
  • the core beam profile is here in principle only a lamella, through which the air is aligned.
  • a tangential blower generates a rotating air flow in the housing, with the air rotating in a vortex on the shorter guide wall.
  • An arrangement according to the preamble of claim 1 is from the document JP H06 313603 A known.
  • the object of the present invention is to provide an apparatus for producing an air curtain of the type mentioned above, which works at relatively high shielding effect of the air curtain generated energy efficient and with reduced noise.
  • the core beam profile is in an apparatus for producing an air curtain and it is within the nozzle slot of this device in which generates a laminar air flow, first compressed by the convergence of the nozzle slot, then through the core beam profile in two Operastahlen also laminar Split flow and further compressed, and then emerge as a laminar core jet and laminar support jet from the nozzle slot of the air curtain.
  • the nozzle whose inner nozzle segments are convexly curved, acts as a pressure chamber and provides resistance to air flow, which is particularly combined with a radial fan.
  • the airfoil-shaped core beam profile increases airspeed and throw distance.
  • Air curtain with two partial beams generated, wherein a (seen in the flow direction) predominantly or completely disposed between the two nozzle segments, wing-shaped core beam profile is present, which the air flow in two partial beams, namely on the side facing the outside air side (outside) of the Air curtain lying core beam and a lying on the inside of the air curtain, inductive support beam divided.
  • Air curtains of the type according to the invention are generally used for partitioning entrance areas of buildings, that is to say for example on doors, gates of buildings or the like. The task of the air curtain is thus to prevent the ingress of cool (or in summer warm) outside air from the outside into the interior of the building.
  • the outside of the air curtain is therefore by definition the side facing the exterior and the inside is the one facing the interior, ie the interior of the building.
  • the present invention by dividing the air flow by means of the core profile with only one exhaust nozzle, produces a double air curtain from the outside towards the inside, an outer core jet and an inner jet.
  • the core beam thus shields directly against the outside air from the inner support beam amplifies the core beam, supports and stabilizes him, for example, against wind loads, and adjacent to the inside of the inside air (air volume inside the building).
  • the core jet profile dividing the air flow can be formed asymmetrically, preferably in such a way that the predominant part of the air flow emerging from the air jet nozzle is blown out with the core jet.
  • the important core beam is thus stronger than the underlying support beam.
  • the flow channel of the support beam is significantly more divergent in its lower region than the flow channel of the core jet. It is thus possible, for example, to achieve a partial alignment of the support beam on its side facing the core jet in the direction of the core jet, as a result of which a convergence of support beam and core jet can be achieved after leaving the nozzle.
  • a room air induction that is an enrichment of the support beam with room air, which is also advantageous in cooler weather, because the room air is usually warmer than the outside air.
  • the core beam profile (viewed in the flow direction of the air) is arranged predominantly or completely between the convexly curved inner surfaces of the two nozzle segments, that is, it lies within the nozzle structure, so that the core beam profile both in its upper half and in its lower half in each case influenced the laminar air flows between the core beam profile and the outer and the inner nozzle segment.
  • the core beam profile in the form of an airfoil is convexly curved on both sides. Furthermore, the core-beam profile (seen in the flow direction of the air) is preferably arranged in a lower section of the flow channel between the two nozzle segments, which connects downstream to an upper convergent section of the flow channel.
  • the side facing the support beam of the core beam profile may have a convex curvature with a smaller radius of curvature than the side facing the beam beam.
  • the core and support jet converge immediately after exiting the nozzle to an increased total flow. This is characterized in that on the inside of the air curtain significantly more room air is induced than on the outside outside air.
  • the smallest distance dimension in the flow channel of the support beam between inner nozzle segment and core beam profile is smaller than the smallest distance dimension in the flow channel of the core beam between outer nozzle segment and core beam profile. The majority of the air flow will exit with the core jet.
  • a further improvement can be achieved within the scope of a preferred embodiment of the invention, when the outer nozzle segment on its leading edge on the outside has a groove through which a sharp spoiler is formed in the outflow. This virtually creates an induction brake on the outside of the air curtain, minimizes the external air induction and increases the penetration depth of the core jet.
  • the inner nozzle segment is formed on its leading edge on the outside with continuous curvature without a groove.
  • the inner nozzle segment is deliberately created an admixture of room air in the inner support beam. This room air is usually warmer than the outside air. The admixture of warm room air stabilizes the temperature of the air curtain.
  • the solution according to the invention achieves a good compromise between shielding efficiency, energy efficiency and noise development.
  • an air curtain with a high shielding capacity is produced with a relatively small volume of air throughput.
  • a further reduction of the noise results, for example, by the use of particularly quiet motors and highly effective sound insulation of the device.
  • a device due to the shape and design of the nozzle segments they can be adjusted by rotation about a longitudinal axis of the nozzle slot and thus the radiation angle (angle of attack) of the air curtain is changeable.
  • the air curtains are not aligned vertically, but at an angle to the vertical towards the outside. This can counteract the ingress of outside air, in which case the angle of attack can be changed depending on the occurring wind load or pressure conditions in buildings by adjusting the nozzle segments.
  • the inventive construction of nozzle segments and core beam profile allows evenly distributed over the device length airflow.
  • FIG. 1 shows in a highly schematically simplified representation of a cross section through an exemplary Beerausblasdüse invention of the device for producing an air curtain. Only the essential components are shown here in order to explain the principle according to the invention.
  • the nozzle basically comprises three essential components, namely an outer nozzle segment 11, an inner nozzle segment 12 and a core beam profile 13 arranged between them in the nozzle slot.
  • the two nozzle segments 11, 12 and also the core beam profile 13 can be extruded profiles, for example.
  • FIG. 1 left nozzle segment 11 faces the outer region and is therefore referred to herein as the outer nozzle segment 11. It has a convexly curved outer surface 16, the contour of which may in principle be formed by a partial surface of a cylinder. It also has a convexly curved inner surface 17, which is also of the Partial surface of a cylinder may be formed, wherein the outer surface 16 and inner surface 17 top and bottom intersect at an acute angle whereby a vertex edge 25 is formed at the top and a tear-off edge 19.
  • the outer nozzle segment 11 and the inner nozzle segment 12 are spaced apart, resulting between the two nozzle segments 11, 12 of the nozzle slot 10, which, seen from top to bottom (in the drawing) and thus in the flow direction of the outflowing air due to the convex design the mutually facing surfaces 17, 20 of the two nozzle segments and their arrangement to one another, is convergent in its upper and central regions, that is, the width of the nozzle slot decreases and leads to an increase in pressure.
  • the core beam profile 13 is arranged, which divides the air jet and through which two flow channels are formed, namely the flow channel 14 of the core jet between the outer nozzle segment 11 and core beam profile 13 and the flow channel 15 of the support beam between the inner nozzle segment 12 and core beam profile 13th
  • the inner nozzle segment 12 has a convexly curved inner surface 20, which is a partial surface of a cylinder and a convex outer surface 21, wherein the curvature of the outer surface 21 has a smaller radius of curvature than that of the inner surface 20, similar to the outer nozzle segment 11, however in mirror-symmetrical arrangement to this, mirrored at a median plane through the nozzle slot 10.
  • the inner nozzle segment 12 has the bottom outside no groove, but a smooth leading edge 22 with outwardly convex curvature. This has the effect of inducing induction and introducing some of the intake room air into the support jet, which is desirable to stabilize the air curtain air temperature and provide volume balance. As a result, the entire air curtain is significantly increased, the shielding effect significantly increased.
  • the core beam profile 13 has a convexly curved outer surface 23, which faces the outer nozzle segment 11 and a convexly curved inner surface 24, which faces the inner nozzle segment 12, wherein the core beam profile 13 is smaller than the two nozzle segments and wherein the core beam 13 is not exact must be arranged in the middle between the two nozzle segments.
  • the core beam profile 13 in its outer Contour asymmetric, since the convex curved inner surface 24 has a smaller radius of curvature than the convex curved outer surface 23.
  • Both surfaces may also be part surfaces of cylinders (circular curvature) and intersect at the top and bottom at a respective acute angle. Due to this asymmetry and a slightly off-center arrangement of the core beam profile 13, two effects are achieved.
  • the flow channel 15 of the support beam is initially more convergent in its upper region, somewhat narrower at its narrowest point B 2 than the flow channel 14 of the core jet, but in its lower region then again significantly more divergent than the core jet. A greater proportion of the air is directed into the core stream.
  • the core jet which faces the outside air, is thus stronger than the support beam, which faces the interior.
  • the width B 1 at the narrowest point of the core beam is slightly larger than the width B 2 , which corresponds to the smallest distance dimension in the flow channel 15 of the support beam.
  • the air thus passes into the nozzle slot 10, where it is first compressed by the convergence in the upper region of the common flow channel and then divided by the core beam profile 13 into two air streams, wherein the greater proportion of the air flow passes into the flow channel 14 and forms the core jet , while the smaller proportion of the air flow enters the flow channel 15 and forms the support beam.
  • the curvature on the outer surface 23 of the core profile 13 has a larger radius of curvature than the curvature 24 of the inside, the convergence in the flow channel 14 of the core jet is slightly lower than in the flow channel 15 of the support beam.
  • the upper opening width of the flow channel 14 is greater than that of the flow channel 15, whereby more air passes into the outer flow channel 14 of the core jet.
  • the lower opening width of the flow channel 14 of the core jet is significantly lower than that in the flow channel 15, whereby the core beam is compressed more strongly and thus becomes stronger than the support beam.
  • Another advantageous effect is that, when leaving the nozzle, the core jet and the support jet are aligned by the contour of the core beam profile 13 in such a way that they move towards one another. Here, therefore, there is a convergence of the two partial beams after the nozzle exit, so that together they form an effective air curtain.
  • the inner nozzle segment 12 does not have the groove 18 in the region of the air outlet, which is located at the bottom on the outer nozzle segment 11, the inner nozzle segment 12 is at the same profile which is also used for the outer nozzle segment 11. This leads to manufacturing advantages, since only one type of nozzle segment has to be manufactured for the nozzle of the device.
  • the inner nozzle segment 12 results simply by an installation position rotated by 180 ° relative to the outer nozzle segment about its longitudinal axis, so that the groove 18 at the inner nozzle segment lies above and outside and is inoperative.
  • FIG. 2 This is a diagram in which in each case the courses of the air flows are shown in a schematically simplified representation of a cross section through the nozzle area of a device according to the invention. Smaller arrows symbolize air currents at lower speeds and larger arrows symbolize air currents at higher speeds. It can be seen above the inlet into the nozzle, the wide air flow 30 of the entering into the space between the two nozzle segments 11, 12 air. This air flow 31 experiences through the nozzle segments a first compression, which increases in the further course of the flow, wherein there is an increase in the speed of the air flow 32 in the nozzle.
  • the upper undivided section of the nozzle channel is as shown in FIG. 2 sees convergent and narrows to the area where the core beam profile 13 begins, the latter being located only in about the lower half of the entire nozzle channel, so that in this embodiment at least about the upper half of the nozzle channel is undivided.
  • the air flow 31 and the gradually compressing air flow 31 in this undivided portion of the nozzle channel is laminar. Only then does the flow channel split through the core beam profile 13 into two separate narrower flow channels.
  • the two resulting narrower flow channels are each convergent in their upper region, in the flow direction approximately to the middle of the core beam profile 13, that is approximately to the widest point of the core beam profile.
  • the lower one Tip of the core beam profile 13 is in the embodiment approximately on an imaginary circle through the two convex outer surfaces 16, 21, which connects them together in the outlet region of the nozzle assembly. Also in the lower region of the core beam profile 13 are thus formed between this and the respective nozzle segments 11 and 12 on both sides of the core beam profile each channels, the core beam 35 or support beam 36 form.
  • the air thus encounters the core beam profile 13 and this results in a second compression and a division in an unequal ratio, due to the asymmetric shape of the core beam profile, so that a stronger air flow 33 is formed, which then forms the core beam and a slightly weaker air flow 34, which then forms the support beam.
  • You can in FIG. 2 good to recognize the orientation of the core beam 35, which is directed at a slight angle to the vertical to the outside.
  • the support beam 36 is somewhat more divergent and partially directed outward at a somewhat greater angle to vertical, toward the support beam 35. This alignment is due to the shape of the core beam profile in its lower region and creates a convergence of support beam 36 and core beam 35 after leaving the nozzle.
  • the above-described groove 18 at the lower end on the outside of the outer nozzle segment 11 has the effect of rejecting cool outside air, which is indicated by the arrow 37, so that the induction of outside air is reduced to a minimum. Due to the airfoil effect of the nozzle segment 11 and the core beam profile 13, there is an increase in the speed of the air emerging as the core jet 35 from the nozzle. At the same time, the resulting core jet 38 is displaced to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Duct Arrangements (AREA)
  • Looms (AREA)
  • Air-Flow Control Members (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Erzeugung einer Luftströmung, insbesondere eines Luftschleiers, umfassend wenigstens eine in einem Gehäuse angeordnete Luftausblasdüse, deren Düsenkörper wenigstens zwei beabstandete Düsensegmente umfasst, die zwischen sich einen Düsenschlitz ausbilden, wobei die Kontur der Düsensegmente an deren einander zugewandten Innenflächen gewölbt ist und diese Düsensegmente einen in Strömungsrichtung der Luft zumindest abschnittsweise konvergenten Düsenschlitz ausbilden, wobei ein zwischen den beiden Düsensegmenten angeordnetes, tragflächenförmiges Kernstrahlprofil vorgesehen ist, welches die Luftströmung in zwei Teilstrahlen, nämlich einen an der zur Außenluft hin gewandten Seite (Außenseite) des Luftschleiers liegenden Kernstrahl und einen an der Innenseite des Luftschleiers liegenden Stützstrahl unterteilt.
  • Aus der DE 44 15 079 C2 ist eine Vorrichtung zur Erzeugung eines Luftschleiers bekannt geworden, bei der die Innenflächen der einander zugewandten Düsensegmente gewölbt sind und durch die konvergente Ausbildung des Düsenschlitzes in Strömungsrichtung der Luft zum Austrittsbereich der Düse hin sich die angestrebte Druckerhöhung ergibt. Bei diesem bekannten Düsenkörper ist jedoch der Düsenschlitz zwischen den Innenflächen der beiden gewölbten Düsensegmente frei.
  • Die GB 983 901 A beschreibt eine Vorrichtung zur Erzeugung einer Luftströmung mit den Merkmalen der eingangs genannten Gattung. Bei dieser bekannten Vorrichtung handelt es sich um einen herkömmlichen Raumventilator, der beispielsweise auch auf einem Tisch abgestellt werden kann. Diese bekannte Vorrichtung ist jedoch nicht zur Erzeugung eines Luftschleiers vorgesehen, wie er nach dem Stand der Technik dazu verwendet wird, um Türöffnungen oder Toröffnungen abzuschotten und einen Luftdurchtritt von einem Raumbereich in den anderen oder von einem Außenbereich ins Innere eines Gebäudes zu verhindern. Derartige Luftschleier verwenden in der Regel eine vergleichsweise starke Luftströmung, die entweder horizontal von einer Seite zur anderen oder vertikal von oben nach unten verläuft und dadurch die genannte Öffnung abschottet. Bei dem bekannten Ventilator ist ein etwa zylindrisches Gehäuse vorgesehen, das einen Rotor aufnimmt und im Bereich des Austrittsschlitzes befinden sich zwei konkav gekrümmt Führungswände, von denen die eine Führungswand sehr kurz ist und bereits etwa in Höhe des Schwenkpunkts des Kernstrahlprofils endet, so dass diese Führungswand auf den weiteren Verlauf der austretenden Strömung keinen Einfluss mehr nimmt. Der Krümmungsradius ist erheblich kleiner als bei der anderen längeren Führungswand, die in Bezug auf das Kernstrahlprofil noch früher endet, bereits vor dessen Mitte. Das Kernstrahlprofil liegt daher hier nur zu einem ganz geringen Teil in dem durch die beiden Führungswände gebildeten Schlitz und die Luftströmung reißt außen bereits dort ab, wo jeweils die Führungswände enden. Das Kernstrahlprofil ist hier im Prinzip nur eine Lamelle, durch die die Luft ausgerichtet wird. Durch ein Tangentialgebläse wird hier zudem eine rotierende Luftströmung im Gehäuse erzeugt, wobei an der kürzeren Führungswand die Luft in einem Wirbel rotiert.
  • Eine Anordnung gemäß dem Oberbegriff von Anspruch 1 ist aus der Druckschrift JP H06 313603 A bekannt.
  • Hier setzt die vorliegende Erfindung ein. Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung zur Erzeugung eines Luftschleiers der eingangs genannten Gattung zur Verfügung zu stellen, die bei vergleichsweise großer Abschirmwirkung des erzeugten Luftschleiers energieeffizient und mit verringerter Geräuschentwicklung arbeitet.
  • Die Lösung dieser Aufgabe wird mit einer Vorrichtung zur Erzeugung einer Luftströmung gemäß Anspruch 1 gelöst.
  • Bei der erfindungsgemäßen Lösung befindet sich somit das Kernstrahlprofil in einer Vorrichtung zur Erzeugung eines Luftschleiers und es liegt innerhalb des Düsenschlitzes dieser Vorrichtung, in dem eine laminare Luftströmung erzeugt, durch die Konvergenz des Düsenschlitzes zunächst verdichtet, dann durch das Kernstrahlprofil in zwei Teilstahlen mit ebenfalls laminarer Strömung geteilt und weiter verdichtet wird, um dann als laminarer Kernstrahl und laminarer Stützstrahl aus dem Düsenschlitz der Luftschleiervorrichtung auszutreten. Die Düse, deren innere Düsensegmente konvex gewölbt sind, fungiert als Druckkammer und bietet der Luftströmung Widerstand, wobei diese insbesondere mit einem Radialgebläse kombiniert wird. Durch das tragflächenförmige Kernstrahlprofil werden die Luftgeschwindigkeit und die Wurfweite erhöht.
  • Es wird ein Luftschleier mit zwei Teilstrahlen erzeugt, wobei ein (in Strömungsrichtung gesehen) überwiegend oder vollständig zwischen den beiden Düsensegmenten angeordnetes, tragflächenförmiges Kernstrahlprofil vorhanden ist, welches die Luftströmung in zwei Teilstrahlen, nämlich einen an der zur Außenluft hin gewandten Seite (Außenseite) des Luftschleiers liegenden Kernstrahl und einen an der Innenseite des Luftschleiers liegenden, induktiven Stützstrahl unterteilt. Luftschleier der erfindungsgemäßen Art werden im allgemeinen zur Abschottung von Eingangsbereichen von Gebäuden, das heißt beispielsweise an Türen, Toren von Gebäuden oder dergleichen, eingesetzt. Die Aufgabe des Luftschleiers ist es somit, ein Eindringen von kühler (oder im Sommer auch warmer) Außenluft aus dem Außenraum in das Innere des Gebäudes zu verhindern. Die Außenseite des Luftschleiers ist daher definitionsgemäß diejenige Seite, die dem Außenbereich zugewandt ist und die Innenseite ist diejenige, die dem Innenbereich, also dem Gebäudeinneren, zugewandt ist. Die vorliegende Erfindung erzeugt durch die Teilung der Luftströmung mittels des Kernprofils mit nur einer Ausblasdüse einen doppelten Luftschleier aus von der Außenseite zur Innenseite hin betrachtet einem äußeren Kernstrahl und einem inneren Stützstrahl. Der Kernstrahl schirmt somit unmittelbar gegen die Außenluft ab der innere Stützstrahl verstärkt den Kernstrahl, stützt und stabilisiert ihn, zum Beispiel gegen Windlasten, und grenzt innenseitig an die Innenluft (Luftvolumen im Gebäudeinneren) an.
  • Besonders vorteilhaft ist, dass man bei der erfindungsgemäßen Lösung das die Luftströmung teilende Kernstrahlprofil asymmetrisch ausbilden kann, bevorzugt derart, dass der überwiegende Teil des aus der Luftausblasdüse austretenden Luftstroms mit dem Kernstrahl ausgeblasen wird. Dadurch wird an der Außenseite des Luftschleiers, also dort wo eine besonders starke Abschirmung gegen den Außenbereich gewünscht ist, ein starker, induktionsarmer Kernstrahl erzeugt. Der wichtige Kernstrahl ist somit stärker als der dahinter liegende Stützstrahl.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist der Strömungskanal des Stützstrahls in seinem unteren Bereich deutlich stärker divergent ist als der Strömungskanal des Kernstrahls. Man kann so beispielsweise eine teilweise Ausrichtung des Stützstrahls an dessen dem Kernstrahl zugewandter Seite in Richtung auf den Kernstrahl erzielen, wodurch sich eine Konvergenz von Stützstrahl und Kernstrahl nach Verlassen der Düse erreichen lässt. An der Innenseite des Stützstrahls kann man bevorzugt eine Raumluftinduktion erreichen, das heißt eine Anreicherung des Stützstrahls mit Raumluft, was bei kühlerer Witterung auch deshalb vorteilhaft ist, weil die Raumluft in der Regel wärmer ist als die Außenluft.
  • Anders als in dem zuvor genannten Stand der Technik ist gemäß einer bevorzugten Weiterbildung der Erfindung das Kernstrahlprofil (in Strömungsrichtung der Luft gesehen) überwiegend oder vollständig zwischen den konvex gewölbten Innenflächen der beiden Düsensegmente angeordnet, das heißt es liegt innerhalb der Düsenkonstruktion, so dass das Kernstrahlprofil sowohl in seiner oberen Hälfte als auch in seiner unteren Hälfte jeweils die laminaren Luftströmungen zwischen dem Kernstrahlprofil und dem äußeren bzw. dem inneren Düsensegment beeinflusst.
  • Besonders bevorzugt ist das Kernstrahlprofil in Tragflächenform beidseitig konvex gewölbt ausgebildet. Weiter ist bevorzugt das Kernstrahlprofil (in Strömungsrichtung der Luft gesehen) in einem unteren Abschnitt des Strömungskanals zwischen den beiden Düsensegmenten angeordnet, der sich stromabwärts an einen oberen konvergenten Abschnitt des Strömungskanals anschließt. Es gibt somit quasi drei Abschnitte des Düsenkanals, den obersten breiten ungeteilten Düsenabschnitt, der in Strömungsrichtung konvergent ausgebildet ist mit konvexen Innenflächen der Düsensegmente, einen daran in Strömungsrichtung anschließenden geteilten Abschnitt, in dem die obere Hälfte des Kernstrahlprofils wirksam wird, mit weiterer Konvergenz beider Strömungskanäle etwa bis zur breitesten Stelle des Kernstrahlprofils und danach einen geteilten Abschnitt mit zwei jeweils divergenten Strömungskanälen, in dem die untere Hälfte des Kernstrahlprofils wirksam wird.
  • Weiterhin kann beispielsweise die dem Stützstrahl zugewandte Seite des Kernstrahlprofils eine konvexe Wölbung mit einem kleineren Krümmungsradius aufweisen als die dem Kemstrahl zugewandte Seite. Man kann so den Kernstrahl an die Außenseite des Luftstromes verlagern. Durch die stärkere Krümmung (kleinerer Krümmungsradius) des Kernstrahlprofils an der Seite des Stützstrahls kann man dort streckenweise eine stärkere Konvergenz der Luftströmung in dem Abschnitt des Strömungswegs zwischen Kernstrahlprofil und innerem Düsensegment erzeugen. Zudem konvergieren Kern- und Stützstrahl unmittelbar nach dem Austritt aus der Düse zu einer verstärkten Gesamtströmung. Diese ist dadurch gekennzeichnet, dass auf der Innenseite des Luftschleiers deutlich mehr Raumluft induziert wird als auf der Außenseite Außenluft.
  • Man kann weiterhin beispielsweise vorsehen, dass das geringste Abstandsmaß im Strömungskanal des Stützstrahls zwischen innerem Düsensegment und Kernstrahlprofil kleiner ist als das geringste Abstandsmaß im Strömungskanal des Kernstrahls zwischen äußerem Düsensegment und Kernstrahlprofil. Es wird der überwiegende Anteil der Luftströmung mit dem Kernstrahl austreten.
  • Eine weitere Verbesserung kann man im Rahmen einer bevorzugten Weiterbildung der Erfindung erreichen, wenn das äußere Düsensegment an seiner Anströmkante außenseitig eine Hohlkehle aufweist, durch die in dem Ausströmbereich eine scharfe Abrisskante gebildet ist. Dadurch schafft man quasi eine Induktionsbremse an der Außenseite des Luftschleiers, minimiert die Außenluftinduktion und erhöht die Eindringtiefe des Kernstrahls.
  • Dagegen ist es bevorzugt so, dass gemäß einer Weiterbildung der Erfindung das innere Düsensegment an seiner Anströmkante außenseitig mit durchgehender Wölbung ohne Hohlkehle ausgebildet ist. Dadurch erzeugt man bei dem inneren Stützstrahl bewusst eine Beimischung von Raumluft. Diese Raumluft ist in der Regel wärmer als die Außenluft. Die Beimischung von warmer Raumluft stabilisiert die Temperatur des Luftschleiers.
  • Dabei ist es konstruktiv möglich, sowohl für das äußere als auch für das innere Düsensegment die gleiche Bauform zu verwenden, wenn nämlich inneres Düsensegment und äußeres Düsensegment ein identisches Profil aufweisen, jedoch das innere Düsensegment in der Funktionslage in einer gegenüber dem äußeren Düsensegment um 180 ° verdrehten Position angeordnet ist. Die Hohlkehle des inneren Düsensegments liegt dann in einem Bereich, in dem sie nicht wirksam wird. Diese Ausführungsvariante der Erfindung hat fertigungstechnische Vorteile, da nur ein Typ des Düsensegments gefertigt werden muss. Die Düsensegmente können beispielsweise Strangpressprofile sein.
  • Die erfindungsgemäße Lösung erzielt einen guten Kompromiss zwischen Abschirmeffizienz, Energieeffizienz und Geräuschentwicklung. Man schafft bei der erfindungsgemäßen Ausbildung der Vorrichtung einen Luftschleier mit einer hohen Abschirmleistung bei Durchsatz eines vergleichsweise geringen Luftvolumens. Eine weitere Reduzierung der Geräuschentwicklung ergibt sich beispielsweise durch die Verwendung besonders leiser Motoren und eine hochwirksame Schallisolierung der Vorrichtung.
  • Weitere Vorteile bei einer erfindungsgemäßen Vorrichtung liegen darin, dass sich aufgrund der Form und Ausbildung der Düsensegmente diese durch Drehung um eine Längsachse des Düsenschlitzes verstellen lassen und damit der Abstrahlwinkel (Anstellwinkel) des Luftschleiers veränderbar ist. Meist werden die Luftschleier nicht genau vertikal ausgerichtet, sondern in einem Winkel zur Vertikalen in Richtung auf den Außenbereich. Damit kann man dem Eindringen von Außenluft entgegenwirken, wobei dann der Anstellwinkel je nach auftretender Windlast oder Druckverhältnissen in Gebäuden durch Verstellung der Düsensegmente verändert werden kann. Bei Vorrichtungen dieses Typs ist in der Regel ein langgestreckter Düsenschlitz (in diesem Fall durch das Kernstrahlprofil doppelter Düsenschlitz) vorhanden, der sich in Längsrichtung des Geräts erstreckt. Die erfindungsgemäße Ausbildung von Düsensegmenten und Kernstrahlprofil ermöglicht einen gleichmäßig über die Gerätelänge verteilten Luftstrom.
  • Die in den Unteransprüchen genannten Merkmale betreffen bevorzugte Weiterbildungen der erfindungsgemäßen Aufgabenlösung. Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Detailbeschreibung.
  • Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben.
  • Dabei zeigen:
    • Figur 1 eine schematisch vereinfachte Darstellung eines Querschnitts durch den Düsenbereich einer erfindungsgemäßen Vorrichtung zur Erzeugung eines Luftschleiers;
    • Figur 2 eine schematisch vereinfachte Darstellung der Strömungsverhältnisse bei einer erfindungsgemäßen Vorrichtung.
  • Zunächst wird auf die Figur 1 Bezug genommen. Diese zeigt in stark schematisch vereinfachter Darstellung einen Querschnitt durch eine beispielhafte erfindungsgemäße Luftausblasdüse der Vorrichtung zur Erzeugung eines Luftschleiers. Es sind hier nur die wesentlichen Bauelemente dargestellt, um das erfindungsgemäße Prinzip zu erläutern. Wie man sieht, umfasst die Düse im Prinzip drei wesentliche Bauelemente, nämlich ein äußeres Düsensegment 11, ein inneres Düsensegment 12 und ein zwischen diesen im Düsenschlitz angeordnetes Kernstrahlprofil 13. Die beiden Düsensegmente 11, 12 und auch das Kernstrahlprofil 13 können beispielsweise Strangpressprofile sein. Die Darstellung ist so zu verstehen, dass ein Querschnitt durch eine Düsenanordnung dargestellt ist, wobei sich der Düsenschlitz 10, die Düsensegmente 11 und 12 und das Kernstrahlprofil 13 in Längsrichtung, das heißt senkrecht zur Zeichenebene erstrecken, bei gleichbleibenden Abständen zwischen den Düsensegmenten. Es ergibt sich also ein langgestreckter Düsenschlitz 10 durch den die Luft strömt und aus dem die Luft unterseitig in einem zweigeteilten Strahl austritt, wodurch der hier doppelte Luftschleier gebildet wird.
  • Das in der Zeichnung Figur 1 linke Düsensegment 11 ist dem Außenbereich zugewandt und wird daher hierin als äußeres Düsensegment 11 bezeichnet. Es weist eine konvex gewölbte Außenfläche 16 auf, deren Kontur im Prinzip von einer Teilfläche eines Zylinders gebildet sein kann. Es weist weiterhin eine konvex gewölbte Innenfläche 17 auf, die ebenfalls von der Teilfläche eines Zylinders gebildet sein kann, wobei sich Außenfläche 16 und Innenfläche 17 oben und unten jeweils in einem spitzen Winkel schneiden wodurch oben eine Scheitelkante 25 gebildet ist und unten eine Abrisskante 19. Dabei ist an der Außenseite neben der Abrisskante 19 im unteren Endbereich des äußeren Düsensegments noch eine Hohlkehle 18 angeordnet, die einen besonderen Effekt erzielt, nämlich die Außenluftinduktion, das heißt das Mitreißen von kühler Außenluft in den Luftstrom des Luftschleiers, stark zu verringern.
  • Das äußere Düsensegment 11 und das innere Düsensegment 12 sind voneinander beabstandet, wobei sich zwischen den beiden Düsensegmenten 11, 12 der Düsenschlitz 10 ergibt, welcher, von oben nach unten (in der Zeichnung) gesehen und somit in Strömungsrichtung der ausströmenden Luft aufgrund der konvexen Ausbildung der einander zugewandten Flächen 17, 20 der beiden Düsensegmente und deren Anordnung zueinander, in seinem oberen und mittleren Bereich konvergent ausgebildet ist, das heißt, die Breite des Düsenschlitzes nimmt ab und führt zu einer Druckerhöhung. Im unteren Bereich des Düsenschlitzes 10 ist dann das Kernstrahlprofil 13 angeordnet, welches den Luftstrahl aufteilt und durch welches zwei Strömungskanäle gebildet werden, nämlich der Strömungskanal 14 des Kernstrahls zwischen äußerem Düsensegment 11 und Kernstrahlprofil 13 und der Strömungskanal 15 des Stützstrahls zwischen innerem Düsensegment 12 und Kernstrahlprofil 13.
  • Das innere Düsensegment 12 hat eine konvex gewölbte Innenfläche 20, die eine Teilfläche eines Zylinders darstellt und eine ebenfalls konvex gewölbte Außenfläche 21, wobei die Krümmung der Außenfläche 21 einen kleineren Krümmungsradius hat als diejenige der Innenfläche 20, ähnlich wie bei dem äußeren Düsensegment 11, jedoch in spiegelsymmetrischer Anordnung zu diesem, gespiegelt an einer Mittelebene durch den Düsenschlitz 10. Im Unterschied zu dem äußeren Düsensegment 11 hat jedoch das innere Düsensegment 12 unten außenseitig keine Hohlkehle, sondern eine glatte Anströmkante 22 mit außen durchgehender konvexer Wölbung. Dies hat den Effekt, dass es hier zu einer Induktion kommt und eingesaugte Raumluft in gewissem Umfang in den Stützstrahl beigemischt wird, was erwünscht ist, um die Lufttemperatur des Luftschleiers zu stabilisieren und einen Volumenausgleich herbei zu führen. Der gesamte Luftschleier wird hierdurch deutlich verstärkt, die Abschirmwirkung signifikant gesteigert.
  • Das Kernstrahlprofil 13 hat eine konvex gekrümmte Außenfläche 23, die dem äußeren Düsensegment 11 zugewandt ist und eine konvex gekrümmte Innenfläche 24, die dem inneren Düsensegment 12 zugewandt ist, wobei das Kernstrahlprofil 13 hier kleiner ist als die beiden Düsensegmente und wobei das Kernstrahl 13 nicht exakt in der Mitte zwischen den beiden Düsensegmenten angeordnet sein muss. Zudem ist das Kernstrahlprofil 13 in seiner äußeren Kontur asymmetrisch, da die konvex gekrümmte Innenfläche 24 einen kleineren Krümmungsradius hat als die konvex gekrümmte Außenfläche 23. Beide Flächen können ebenfalls Teilflächen von Zylindern sein (Kreislinienwölbung) und sich oben und unten in einem jeweils spitzen Winkel schneiden. Durch diese Asymmetrie und eine leicht außermittige Anordnung des Kernstrahlprofils 13 werden zwei Effekte erzielt. Der Strömungskanal 15 des Stützstrahls ist in seinem oberen Bereich zunächst stärker konvergent, an seiner engsten Stelle B2 etwas schmaler als der Strömungskanal 14 des Kernstrahls, in seinem unteren Bereich aber dann wiederum deutlich stärker divergent als der Kernstrahl. Es wird ein größerer Anteil der Luft in den Kernstrahl gelenkt. Der Kernstrahl, welcher der Außenluft zugewandt ist, ist somit stärker als der Stützstrahl, der dem Innenraum zugewandt ist. Die Breite B1 an der schmalsten Stelle des Kernstrahls ist etwas größer als die Breite B2, die dem geringsten Abstandsmaß im Strömungskanal 15 des Stützstrahls entspricht.
  • Die Luft gelangt somit in den Düsenschlitz 10, wird dort zunächst komprimiert durch die Konvergenz im oberen Bereich des gemeinsamen Strömungskanals und teilt sich dann durch das Kernstrahlprofil 13 auf in zwei Luftströmungen, wobei der größere Anteil der Luftströmung in den Strömungskanal 14 gelangt und den Kernstrahl bildet, während der geringere Anteil der Luftströmung in den Strömungskanal 15 gelangt und den Stützstrahl bildet. Da die Wölbung an der Außenfläche 23 des Kernprofils 13 einen größeren Krümmungsradius hat als die Wölbung 24 der Innenseite, ist die Konvergenz in dem Strömungskanal 14 des Kernstrahls etwas geringer als in dem Strömungskanal 15 des Stützstrahls. Andererseits ist durch diese Form des Kernstrahlprofils 13 die obere Öffnungsweite des Strömungskanals 14 größer als diejenige des Strömungskanals 15, wodurch mehr Luft in den äußeren Strömungskanal 14 des Kernstrahls gelangt. Jedoch ist die untere Öffnungsweite des Strömungskanals 14 des Kernstrahls deutlich geringer als diejenige in dem Strömungskanal 15, wodurch der Kernstrahl stärker komprimiert wird und somit kräftiger wird als der Stützstrahl. Diese Effekte ergeben sich somit im Wesentlichen aus der Asymmetrie und der etwas außermittigen Anordnung des Kernstrahlprofils.
  • Ein weiterer vorteilhafter Effekt besteht darin, dass beim Verlassen der Düse Kernstrahl und Stützstrahl durch die Kontur des Kernstrahlprofils 13 so ausgerichtet werden, dass sie sich aufeinander zu bewegen. Hier besteht somit eine Konvergenz beider Teilstrahlen nach dem Düsenaustritt, so dass diese gemeinsam einen effektiven Luftschleier ausbilden.
  • Aus Figur 1 kann man eine weitere Besonderheit erkennen. Obwohl das innere Düsensegment 12 im Bereich des Luftaustritts nicht die Hohlkehle 18 aufweist, die sich unten an dem äußeren Düsensegment 11 befindet, handelt es sich bei dem inneren Düsensegment 12 um das gleiche Profil, welches auch für das äußere Düsensegment 11 verwendet wird. Dies führt zu fertigungstechnischen Vorteilen, da für die Düse der Vorrichtung nur ein Typ Düsensegment gefertigt werden muss. Das innere Düsensegment 12 ergibt sich einfach durch eine im Vergleich zum äußeren Düsensegment um 180 ° um seine Längsachse gedrehte Einbaulage, so dass die Hohlkehle 18 bei dem inneren Düsensegment oben und außen liegt und funktionslos ist.
  • Weitere Einzelheiten ergeben sich aus Figur 2, auf die nachfolgend Bezug genommen wird. Es handelt sich hier um ein Diagramm, bei dem in einer schematisch vereinfachten Darstellung eines Querschnitts durch den Düsenbereich einer erfindungsgemäßen Vorrichtung jeweils die Verläufe der Luftströmungen eingezeichnet sind. Dabei symbolisieren kleinere Pfeile Luftströmungen mit kleinerer Geschwindigkeit und größere Pfeile Luftströmungen mit größerer Geschwindigkeit. Man erkennt zunächst oberhalb des Eintritts in die Düse die breite Luftströmung 30 der in den Raum zwischen den beiden Düsensegmenten 11, 12 eintretenden Luft. Diese Luftströmung 31 erfährt durch die Düsensegmente eine erste Kompression, die sich im weiteren Strömungsverlauf verstärkt, wobei es zu einer Geschwindigkeitserhöhung der Luftströmung 32 in der Düse kommt.
  • Der obere ungeteilte Abschnitt des Düsenkanals ist wie man in Figur 2 sieht konvergent und verengt sich bis zu dem Bereich, wo das Kernstrahlprofil 13 beginnt, wobei letzteres nur etwa in der unteren Hälfte des gesamten Düsenkanals angeordnet ist, so dass in diesem Ausführungsbeispiel mindestens etwa die obere Hälfte des Düsenkanals ungeteilt ist. Dabei ist die Luftströmung 31 und die sich allmählich verdichtende Luftströmung 31 in diesem ungeteilten Abschnitt des Düsenkanals laminar. Dann erst teilt sich der Strömungskanal durch das Kernstrahlprofil 13 in zwei separate schmalere Strömungskanäle auf. Auch die beiden entstehenden schmaleren Strömungskanäle sind jeweils in ihrem oberen Bereich konvergent, in Strömungsrichtung etwa bis zur Mitte des Kernstrahlprofils 13, das heißt etwa bis zur breitesten Stelle des Kernstrahlprofils. Erst in dem sich jeweils daran in Strömungsrichtung anschließenden unteren Abschnitt sind beide schmaleren Strömungskanäle dann jeweils divergent. Die Konvergenz in dem oberen Abschnitt des Strömungskanals 15 des Stützstrahls ist etwas stärker als diejenige in dem oberen Abschnitt des Strömungskanals 14 des Kernstrahls, jedoch bleibt es auch in diesen Abschnitten bei laminaren Strömungen beider Luftströme. Die Divergenz in dem unteren Abschnitt des Strömungskanals 15 des Stützstrahls ist etwas stärker als die Divergenz im unteren Abschnitt des Strömungskanals 14 des Kernstrahls. Man sieht weiterhin, dass das Kernstrahlprofil 13 fast bis zu seinem unteren Ende und somit weit überwiegend (oder vollständig) innerhalb des zwischen den beiden Düsensegmenten 11 und 12 gebildeten Düsenkanals liegt und aus diesem allenfalls geringfügig herausragt. Die untere Spitze des Kernstrahlprofils 13 liegt in dem Ausführungsbeispiel etwa auf einer gedachten Kreislinie durch die beiden konvex gewölbten Außenflächen 16, 21, die diese im Austrittsbereich der Düsenanordnung miteinander verbindet. Auch in dem unteren Bereich des Kernstrahlprofils 13 sind somit zwischen diesem und den jeweiligen Düsensegmenten 11 bzw. 12 beidseitig des Kernstrahlprofils jeweils Kanäle ausgebildet, die Kernstrahl 35 bzw. Stützstrahl 36 formen.
  • Im weiteren Strömungsverlauf trifft die Luft somit auf das Kernstrahlprofil 13 und es kommt dadurch zu einer zweiten Kompression und einer Aufteilung in einem ungleichen Verhältnis, bedingt durch die asymmetrische Form des Kernstrahlprofils, so dass eine stärkere Luftströmung 33 entsteht, die dann den Kernstrahl bildet und eine etwas schwächere Luftströmung 34, die dann den Stützstrahl bildet. Man kann in Figur 2 gut die Ausrichtung des Kernstrahls 35 erkennen, der in einem leichten Winkel zur Vertikalen nach außen hin gerichtet ist. Der Stützstrahl 36 ist etwas stärker divergent und teilweise in einem etwas stärkeren Winkel zu Vertikalen nach außen hin gerichtet, in Richtung auf den Stützstrahl 35. Diese Ausrichtung ist bedingt durch die Form des Kernstrahlprofils in seinem unteren Bereich und erzeugt eine Konvergenz von Stützstrahl 36 und Kernstrahl 35 nach Verlassen der Düse.
  • Die bereits oben beschriebene Hohlkehle 18 am unteren Ende außen an dem äußeren Düsensegment 11 hat den Effekt, kühle Außenluft abzuweisen, was durch den Pfeil 37 angedeutet wird, so dass die Induktion von Außenluft auf ein Minimum reduziert wird. Durch den Tragflächeneffekt des Düsensegments 11 und des Kernstrahlprofils 13 kommt es zu einer Geschwindigkeitserhöhung der als Kernstrahl 35 aus der Düse autretenden Luft. Gleichzeitig wird der resultierende Kernstrahl 38 zur Außenseite hin verlagert.
  • Auf der Innenseite des Stützstrahls 36 kommt es zu Raumluftinduktion, die zu einem Volumenausgleich führt, was durch die Pfeile 39 in Figur 2 angedeutet ist. Der resultierende mit Raumluft angereicherte Stützstrahl ist mit dem Bezugszeichen 40 bezeichnet. Beide Strahlen 38, 40 konvergieren wie man sieht unmittelbar nach Verlassen des Düsenkörpers zu einem starken Luftschleier mit hoher Abschirm- und Energieeffizienz.
  • Bezugszeichenliste
  • 10
    Düsenschlitz
    11
    äußeres Düsensegment
    12
    inneres Düsensegment
    13
    Kernstrahlprofil
    14
    Strömungskanal des Kernstrahls
    15
    Strömungskanal des Stützstrahls
    16
    konvex gewölbte Außenfläche
    17
    konvex gewölbte Innenfläche
    18
    Hohlkehle
    19
    Abrisskante
    20
    konvex gewölbte Innenfläche
    21
    konvex gewölbte Außenfläche
    22
    Anströmkante
    23
    konvex gekrümmte Außenfläche
    24
    konvex gekrümmte Innenfläche
    25
    Scheitelkante
    30
    eintretende Luftströmung
    31
    Luftströmung mit Kompression
    32
    Luftströmung mit Kompression
    33
    geteilte stärkere Luftströmung
    34
    geteilte schwächere Luftströmung
    35
    Kernstrahl
    36
    Stützstrahl
    37
    kühlende Außenluft abweisender Effekt
    38
    resultierender Kernstrahl
    39
    Raumluftinduktion innenseitig am Stützstrahl
    40
    resultierender Stützstrahl

Claims (14)

  1. Vorrichtung zur Erzeugung eines Luftschleiers, umfassend wenigstens eine in einem Gehäuse angeordnete langgestreckte Luftausblasdüse, deren Düsenkörper wenigstens zwei beabstandete Düsensegmente (11, 12) umfasst, die zwischen sich einen Düsenschlitz ausbilden, wobei die Kontur der Düsensegmente an deren einander zugewandten Innenflächen (17, 20) gewölbt ist und diese Düsensegmente einen in Strömungsrichtung der Luft zumindest abschnittsweise konvergenten Düsenschlitz ausbilden,
    wobei ein zwischen den beiden Düsensegmenten (11, 12) angeordnetes Kernstrahlprofil (13) vorgesehen ist, welches die Luftströmung in zwei Teilstrahlen, nämlich einen an der zur Außenluft hin gewandten Seite (Außenseite) des Luftschleiers liegenden Kernstrahl und einen an der Innenseite des Luftschleiers liegenden Stützstrahl unterteilt, wobei der Strömungskanal (15) des Stützstrahls und der Strömungskanal (14) des Kernstrahls im oberen Bereich jeweils zunächst konvergent und im unteren Bereich jeweils divergent sind,
    dadurch gekennzeichnet, dass das äußere Düsensegment (11) eine konvex gewölbte Innenfläche (17) aufweist, dass das innere Düsensegment (12) eine konvex gewölbte Innenfläche (20) aufweist und dass das Kernstrahlprofil (13) asymmetrisch und tragflächenförmig ausgebildet ist, derart, dass der überwiegende Teil des aus der Luftausblasdüse austretenden Luftstroms mit dem Kernstrahl (35) ausgeblasen wird.
  2. Vorrichtung zur Erzeugung eines Luftschleiers nach Anspruch 1, dadurch gekennzeichnet, dass der Strömungskanal (15) des Stützstrahls in seinem unteren Bereich deutlich stärker divergent ist als der Strömungskanal (14) des Kernstrahls.
  3. Vorrichtung zur Erzeugung eines Luftschleiers nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kernstrahlprofil (13) (in Strömungsrichtung der Luft gesehen) überwiegend oder vollständig zwischen den konvex gewölbten Innenflächen (17, 20) der beiden Düsensegmente (11, 12) angeordnet ist.
  4. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Kernstrahlprofil (13) (in Strömungsrichtung der Luft gesehen) in einem unteren Abschnitt (33, 34) des Strömungskanals zwischen den beiden Düsensegmenten (11, 12) angeordnet ist, der sich stromabwärts an einen oberen konvergenten Abschnitt (31, 32) des Strömungskanals anschließt.
  5. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass in einem oberen konvergenten Abschnitt des Düsenschlitzes zunächst eine ungeteilte laminare Strömung zwischen den beiden Düsensegmenten (11, 12) ausgebildet wird, die dann in einem unteren Abschnitt des Düsenschlitzes durch das Kernstrahlprofil (13) in zwei ebenfalls laminare, in zwei separaten ebenfalls zunächst konvergenten Strömungskanälen (14, 15) des Düsenschlitzes strömende Luftströmungen aufgeteilt wird.
  6. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Konvergenz in dem Strömungskanal (14) des Kernstrahls etwas geringer ist als in dem Strömungskanal (15) des Stützstrahls.
  7. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass das Kernstrahlprofil (13) beidseitig konvex gewölbt ausgebildet ist.
  8. Vorrichtung zur Erzeugung eines Luftschleiers nach Anspruch 7, dadurch gekennzeichnet, dass die dem Stützstrahl zugewandte Innenseite (24) des Kernstrahlprofils (13) eine konvexe Wölbung mit einem kleineren Krümmungsradius aufweist als die dem Kernstrahl zugewandte Seite.
  9. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das geringste Abstandsmaß (B2) im Strömungskanal des Stützstrahls zwischen innerem Düsensegment (12) und Kernstrahlprofil (13) kleiner ist als das geringste Abstandsmaß (B1) im Strömungskanal des Kernstrahls zwischen äußerem Düsensegment (11) und Kernstrahlprofil (13).
  10. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das äußere Düsensegment (11) an seiner Anströmkante außenseitig eine Hohlkehle (18) aufweist, durch die in dem Ausströmbereich eine scharfe Abrisskante (19) gebildet ist.
  11. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das innere Düsensegment (12) an seiner Anströmkante außenseitig mit durchgehender Wölbung (22) ohne Hohlkehle ausgebildet ist.
  12. Vorrichtung zur Erzeugung eines Luftschleiers nach Anspruch 11, dadurch gekennzeichnet, dass inneres Düsensegment (12) und äußeres Düsensegment (11) ein identisches Profil aufweisen, jedoch das innere Düsensegment in der Funktionslage in einer gegenüber dem äußeren Düsensegment um 180 ° verdrehten Position angeordnet ist.
  13. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die konvex gewölbte Innenfläche (17) des äußeren Düsensegments (11) von einer Teilfläche eines Zylinders gebildet ist.
  14. Vorrichtung zur Erzeugung eines Luftschleiers nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die konvex gewölbte Innenfläche (20) des inneren Düsensegments (12) eine Teilfläche eines Zylinders darstellt.
EP11170413.6A 2010-06-25 2011-06-17 Vorrichtung zur Erzeugung eines Luftschleiers Active EP2400233B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010017595 DE102010017595A1 (de) 2010-06-25 2010-06-25 Vorrichtung zur Erzeugung eines Luftschleiers

Publications (3)

Publication Number Publication Date
EP2400233A2 EP2400233A2 (de) 2011-12-28
EP2400233A3 EP2400233A3 (de) 2015-02-25
EP2400233B1 true EP2400233B1 (de) 2016-03-02

Family

ID=44594279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11170413.6A Active EP2400233B1 (de) 2010-06-25 2011-06-17 Vorrichtung zur Erzeugung eines Luftschleiers

Country Status (3)

Country Link
EP (1) EP2400233B1 (de)
DE (2) DE102010017595A1 (de)
PL (1) PL2400233T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228119A (zh) * 2020-01-30 2020-06-05 马尧顺 一种化工制药用包衣机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1103806A (fr) * 1953-04-30 1955-11-07 Paul Pollrich & Comp Grille d'aération, particlièrement pour installations de climatisation
DE1403552A1 (de) * 1960-03-11 1969-04-17 Firth Cleveland Ltd Luefter
GB1162605A (en) * 1966-05-09 1969-08-27 Svenska Flaektfabriken Ab A Valve for the Supply or Exhaust of Air Respectively To or From Rooms
US3394755A (en) * 1967-02-06 1968-07-30 Conditionaire Australia Pty Lt Air screen creating-air conditioning apparatus
DE1800098A1 (de) * 1968-10-01 1970-04-16 Gerbert Dipl Ing Heinz Verfahren und Vorrichtung zur Erzeugung eines Torluftvorhanges
GB1493205A (en) * 1976-02-18 1977-11-30 Hill H Ducted fan arrangement
US4326452A (en) * 1977-10-24 1982-04-27 Matsushita Electric Industrial Co., Ltd. Fluid diverting assembly
JPS59121209A (ja) * 1982-12-28 1984-07-13 Matsushita Electric Ind Co Ltd 流れ方向制御装置
FR2624641A1 (fr) * 1987-12-09 1989-06-16 Serva Soc Dispositif d'attenuation de la propagation des sons, pour bouches d'entree d'air
JP3013686B2 (ja) * 1993-02-17 2000-02-28 三菱電機株式会社 送風機
FR2712354B1 (fr) * 1993-11-10 1996-01-05 Tecnoma Dispositif pour produire un courant d'air ayant une forme aplatie en section transversale.
DE4415079C2 (de) 1994-04-29 1999-10-14 Teddington Controls Gmbh Kompakt-Luftschleieranlage
JPH0989344A (ja) * 1995-09-25 1997-04-04 Mitsubishi Electric Corp 送風機
DE10010101A1 (de) * 2000-03-02 2001-09-13 Christiani Gmbh Vorrichtung zum Erzeugen eines Luftschleiers
DE102008042803C5 (de) * 2008-10-13 2018-01-11 LGB Lufttechnische Anlagen und Gerätebau GmbH Vorrichtung zur Führung eines Luftstromes

Also Published As

Publication number Publication date
EP2400233A2 (de) 2011-12-28
PL2400233T3 (pl) 2016-09-30
EP2400233A3 (de) 2015-02-25
DE102010017595A1 (de) 2011-12-29
DE102011000066B4 (de) 2012-06-28
DE102011000066A1 (de) 2011-12-29

Similar Documents

Publication Publication Date Title
EP2544907B1 (de) Schalldämpfungsblende für entlüftungsventil
CH669431A5 (de)
EP1050684B1 (de) Strahlventilator
EP0164755A2 (de) Schallschutzfenster
EP2400233B1 (de) Vorrichtung zur Erzeugung eines Luftschleiers
DE4415079C2 (de) Kompakt-Luftschleieranlage
EP2626644A1 (de) Lüftungsbauteil, umfassend ein kanalförmiges Gehäuse mit umlaufend angeordneten Gehäusewandungen
EP3705802B1 (de) Schalldämmanordnung
DE1154252B (de) Abschirmung von Raumoeffnungen durch einen Luftschleier
EP2996923B1 (de) Luftauslass
DE3608804C2 (de)
DE202017100927U1 (de) Schalldämmeinsatz für dezentrale Wohnraumbelüftungsanlagen oder Außenluftdurchlasssysteme
DE10017019C1 (de) Schlitzauslass für Luftschleier-Anlagen
DE102006049616B4 (de) Anordnung eines Aerodynamischen Bauteils mit einer geschlitzten Hinter- oder Seitenkante in einer Strömung
DE3940277C1 (en) Sound damping structure - has silencer body with acoustic lining and contg. profiled and absorber
DE102014114491B3 (de) Schlitzauslass für Luftschott-Anlagen mit Strömungsumlenkung
DE2431065A1 (de) Verschlusseinrichtung
AT207088B (de) Abschirmung von Raumöffnungen durch einen Luftschleier
DE2306103A1 (de) Lueftungsvorrichtung fuer raeume
DE19710779C2 (de) Luftauslaß für Luftstrahlen mit großer Reichweite
EP3293463A1 (de) Schlitzauslass für luftschleiervorrichtungen
EP0020508A1 (de) Schalldämpfer für kolben-flugmotoren.
DE202013105736U1 (de) Ventilatoranlage mit Schalldämpfung
CH718750B1 (de) Schiebetür mit Leitblech
DE102022100478A1 (de) Luftausströmer für ein fahrzeug sowie luftausströmersystem

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 13/24 20060101ALI20150120BHEP

Ipc: F24F 13/072 20060101ALI20150120BHEP

Ipc: F24F 9/00 20060101AFI20150120BHEP

17P Request for examination filed

Effective date: 20150617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008961

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008961

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160617

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008961

Country of ref document: DE

Representative=s name: FRITZ & BRANDENBURG PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008961

Country of ref document: DE

Representative=s name: DUDA, RAFAEL THOMAS, DIPL.-ING. DR. RER. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230710

Year of fee payment: 13

Ref country code: CH

Payment date: 20230719

Year of fee payment: 13

Ref country code: AT

Payment date: 20230720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230630

Year of fee payment: 13

Ref country code: PL

Payment date: 20230707

Year of fee payment: 13

Ref country code: DE

Payment date: 20230817

Year of fee payment: 13

Ref country code: BE

Payment date: 20230630

Year of fee payment: 13