EP2396629A2 - Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes - Google Patents

Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes

Info

Publication number
EP2396629A2
EP2396629A2 EP10708741A EP10708741A EP2396629A2 EP 2396629 A2 EP2396629 A2 EP 2396629A2 EP 10708741 A EP10708741 A EP 10708741A EP 10708741 A EP10708741 A EP 10708741A EP 2396629 A2 EP2396629 A2 EP 2396629A2
Authority
EP
European Patent Office
Prior art keywords
sensor
sensor element
molding compound
mold cavity
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10708741A
Other languages
English (en)
French (fr)
Inventor
Nedelco Christov
Rostislav Slavik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2396629A2 publication Critical patent/EP2396629A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • B29C45/14073Positioning or centering articles in the mould using means being retractable during injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/10Protective devices, e.g. casings for preventing chemical attack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components

Definitions

  • the invention relates to a method for producing a sensor with seamless encapsulation of a sensor element and a sensor produced by this method.
  • Injection molding is a method in which a sensor element is inserted into a mold cavity, after which the liquid and hot injection molding compound is injected into the mold cavity and fills it, wherein the sensor element is enclosed by the injection molding compound.
  • injection molding is a method in which a sensor element is inserted into a mold cavity, after which the liquid and hot injection molding compound is injected into the mold cavity and fills it, wherein the sensor element is enclosed by the injection molding compound.
  • the injected under high pressure injection molding compound may shift the sensor element in its position in the mold cavity, which would ultimately lead to a low-quality sensor.
  • the object of the invention to provide a method for producing a sensor and a sensor produced by this method, in which the sensor element is enclosed as close as possible from the injection molding compound, whereby the penetration of water, acid, oil or other aggressive substances from the environment of the sensor is permanently prevented in the sensor.
  • the sensor should be as inexpensive to produce.
  • the object is achieved according to the independent claims by a method for producing a sensor with seamless encapsulation of a sensor element and a sensor produced by this method.
  • the sensor element By inserting the sensor element in a mold cavity and the mechanical fixation of the sensor element in the mold cavity by at least one movable fixing element which engages in a second region of the mold cavity in the mold cavity, the sensor element can be very accurately fixed in its position in the mold cavity.
  • the fixation is mechanically stable so that the later injected injection molding compound can not move the sensor element from its position.
  • the position of the sensor element in the sensor is maintained very accurately, resulting in high quality sensors.
  • the sensor element is a Hall sensor element intended to detect the change in an external magnetic field, it is of great importance that the sensor element is located exactly at the prescribed position in the sensor. This is permanently ensured by the engaging in the mold cavity fixing element.
  • the relative position of the sensor element in the mold cavity remains unchanged.
  • the injection-molding compound has cured sufficiently far in a first region of the mold cavity that the injection-molding compound hardened in the first region fixes the sensor element in its position, a further fixation of the sensor element is achieved which is sufficient to prevent a subsequent displacement of the sensor element. Effectively prevent sorides.
  • the removal of the fixing element takes place before the injection molding compound located in the second region hardens, so that the still liquid injection molding compound at least partially fills the free space left by the removed fixing element in the mold cavity.
  • the still liquid injection molding material at least partially fills the free space left by the removed fixing element in the mold cavity results in a completely seamless enclosure of the sensor element with the injection molding compound.
  • the sensor element After the curing of the injection molding composition, the sensor element thus has a seamless sheathing through which no water, acid, oil or other aggressive substances from the environment of the sensor can penetrate into the sensor.
  • a pre-coating may also be understood as a pre-coating, for example with a metal or with a ceramic material.
  • the thermal conductivity can be improved towards the sensor, which may be of great importance, for example, in temperature sensors.
  • an externally applied magnetic flux is concentrated towards the sensor element by means of a pre-extrusion with a suitable material.
  • At least one receiving element for the fixing element is injection-molded onto the sensor element with the pre-injection. This achieves a particularly good fixation of the sensor element in the mold cavity, which leads to a very accurate positioning of the sensor element in the sensor.
  • the fixing element engage in the receiving element and thus mechanically fix the sensor element until the hardened in the first area Injection molding the sensor element sufficiently fixed in position.
  • FIG. 3 shows the sensor element known from FIG. 2 with the stamped grid in a mold cavity
  • FIG. 5 shows the injection-molding compound solidified in the mold cavity in a first region
  • FIG. 11 shows the fixing elements which are moved out of the mold cavity
  • FIG. 12 shows a sensor produced by the method
  • FIG. 15 shows a section through the sensor known from FIG. 14, FIG.
  • FIG. 17 shows the sensor known from FIG. 16 from a different perspective
  • Fig. 1 shows a sensor 9 according to the prior art.
  • This sensor 9 may be, for example, a temperature sensor, in particular an oil temperature sensor, a rotational speed sensor or another sensor 9, in which the sensor element 2 must be well protected against the effects of dirt, gaseous or liquid media.
  • the sensor element 2 is usually pre-molded with a plastic and the pre-injection 7, a further injection molding compound 6 is molded. This is necessary because the sensor element 2 is forced from the injection molding compound 6 during injection molding process by the high injection pressure from its position, which ultimately the position of the sensor element 2 in the pre-injection 7 and relative to the injection molding material 6 is not clearly defined, resulting in massive inaccuracies in the function of the sensor 9 can lead.
  • the sensor element 2 is generally mounted on a stamped grid 10, which is also referred to as a leadframe, wherein the stamped grid 10 for the mechanical stabilization of the sensor Sorides in Unumspritzten state is used. After the extrusion of the sensor element 2 with a plastic, the stamped grid is used for the electrical connection of the sensor element with the subsequent evaluation electronics.
  • an evaluation for the sensor element 2 may be placed on the lead frame 10, wherein the transmitter may also be enclosed by the pre-injection 7 or the injection molding compound 6.
  • the connection to the subsequent electronics is ensured via the electrical connection pins 11, which are kept free in the injection molding process.
  • a connection element 14 is formed by the injection molding compound 6.
  • connecting elements 13 can be seen, which are also formed from the injection molding compound 6 and which serve for the mechanical connection of the sensor 9 with other components, for example in the vehicle. It is conceivable, for example, that such a sensor 9 is designed as a temperature sensor and is clipped into a container containing the medium whose temperature is to be measured, or is screwed. Important in all these sensors 9 is that the sensor element 2 is effectively protected against mechanical damage, chemical damage by aggressive media and the ingress of liquids and gases. With regard to the tightness with respect to the media just mentioned, the connection area 12 between the pre-encapsulation 7 and the injection-molding compound 6 represents a particular weak point.
  • connection area 12 between the Vorumspritzung 7 and the injection molding compound 6 thermal stresses arise, which can be leaking the connection portion 12, which at this point aggressive media can penetrate into the sensor 9 particularly easy. This can lead to the destruction of the sensor 9.
  • a particularly high demand is placed on the robustness and the longevity of such sensors. Therefore, it is desirable to have as few or no connection partners as possible.
  • a method for producing a sensor 9 with seamless encapsulation of a sensor element 2 is shown in FIGS. 2 to 6 and FIGS. 7 to 12.
  • FIG. 2 shows a sensor element 2 which is mounted on a stamped grid 10. At the stamped grid 10, the electrical connection pins 11 can be seen.
  • the sensor element known from FIG. 2 with the stamped grid 10 is inserted into a mold cavity 1.
  • the position of the sensor element 2 in the mold cavity 1 is determined by movable fixing elements 5.
  • These movable fixing elements 5 engage through holes in the mold cavity 1 into the interior of the mold cavity 1 and hold the sensor element 2 and the stamped grid 10 in the desired position.
  • the sensor element 2 is held exactly on the central axis of symmetry of the mold cavity 1 by the movable fixing elements 5.
  • the mold cavity 1 is not yet injected with injection molding compound 6.
  • FIG. 4 shows how the injection-molding compound 6 has penetrated into the mold cavity 1 under the pressure P, the injection molding compound 6 having enclosed the sensor element 2 and the stamped grid 10 in the desired manner.
  • the injection-molding compound 6 is still in the liquid and thus in a warm state.
  • the movable fixing elements 5 can now be pulled out of the still liquid injection-molding compound 6 in the second region.
  • the cavities left behind by the movable fixing elements 5 are filled by the still liquid injection molding compound 6.
  • the sensor element 2 Since the injection-molding compound 6 has already hardened in the first region 3, the sensor element 2 remains in its predetermined position within the mold cavity 1 even after the removal of the movable fixing elements 5. By the subsequent flowing of the still liquid injection molding compound 6 into the cavities left by the movable fixing elements 5 This results in a completely seamless encapsulation of the sensor element 2 and of the stamped grid 10 attached thereto, which can be seen very clearly in FIG.
  • Fig. 6 shows the finished sensor 9 after removal from the mold cavity 1. It can be seen that the injection molding compound 6, the sensor element 2 and the lead frame 10 completely and seamlessly encloses. Only the electrical connection pins 11 project out of the injection-molding compound 6. By means of a suitable design of the sensor 9, however, care can be taken that no aggressive media occur in the region of the exit points of the electrical connection pins 11, so that the sensor element 2 is permanently protected by the seamless encapsulation with the injection molding compound 6, resulting in a more durable and less expensive Sensor 9 is provided.
  • FIGS. 7 to 12 once again show the method according to the invention for producing the sensor 9 with seamless encapsulation of a sensor element 2, in which case a pre-injection 7 takes place.
  • a pre-injection 7 takes place.
  • the sensor element 2 may only be covered by a very specific material.
  • the sensor element is surrounded by the injection-molding compound 6, for example with a ceramic compound, before the actual encapsulation, which of course does not take place in a conventional injection molding process, but by pressing and tempering the ceramic material.
  • Fig. 7 the sensor element 2 with the connected lead frame 10 and the electrical connection pins 11 can be seen.
  • the sensor element 2 from FIG. 7 is inserted into a preform nest 15 in FIG. 8.
  • Vorformnest 15 for example, a shotcrete be injected for pre-injection or a ceramic material are introduced, which then surrounds the sensor element 2 and parts of the lead frame 10.
  • the thus prepared sensor element 2 is then, as shown in Fig. 9, inserted with the pre-injection 7 in the mold cavity 1.
  • the sensor element 2 is in turn fixed with the movable fixing elements 5, which engage in the mold cavity 1 through recesses in the walls of the mold cavity 1.
  • FIG. 10 shows how the injection-molding compound 6 is injected into the mold cavity 1 under the pressure P, the injection-molding compound 6 enclosing the sensor element 2 and the pre-injection 7 as well as parts of the stamped grid 10.
  • the injected injection molding compound 6 cools down, as a result of which it becomes solid or at least viscous and thus ensures mechanical fixation of the sensor element 2 in the mold cavity.
  • the cooling of the injection-molding compound 6 in the first region 3 of the mold cavity 1 can be assisted by a cooling element 16. It is conceivable that the cooling element 16 as
  • Coolant leading piping system is placed around the first region 3 of the mold cavity 1.
  • a coolant for example, cold air or a liquid such as water or oil can be used. It is important that the first area 3 of the cavity form a rapid cooling of the
  • Injection molding compound 6 leads, while the injection molding compound 6 in the second region 4 of the mold cavity continues to be liquid. Since the injection-molding compound 6 is now cooled in the first region of the mold cavity 1 and thus a mechanical stabilization of the sensor element 2 in the mold cavity is ensured, the movable fixation elements 5 are pulled out of the mold cavity 1, which is illustrated in FIG. 11. After the movable fixing elements 5 have been pulled out of the mold cavity 1, the still liquid injection molding compound 6 in the second region 4 of the mold cavity 1 can fill the cavities left behind by the movable fixing elements 5. This in turn leads to the production of a sensor 9 with a completely seamless encapsulation of the sensor element 2.
  • FIG. a sensor 9 can be seen, in which the sensor element 2 and the pre-extrusion 7 are completely and seamlessly enclosed by the injection-molding compound 6.
  • the sensor 9 shown here is classified as extremely robust and durable, where it is very inexpensive to produce.
  • FIG. 13 shows a special embodiment of the pre-extrusion molding 7.
  • the mold cavity 1, which is filled with the injection-molding compound 6 under the pressure P, can be seen once again.
  • the pre-injection 7 now has receiving elements 8, in which the movable guide elements 5 engage.
  • the method for producing the sensor 9 according to FIG. 13 is analogous to the production of the sensor 9 according to FIGS. 7 to 12.
  • the movable fixing elements 5 are removed from the mold cavity 1, wherein they release their connection with the receiving elements 8.
  • FIGS. 14 to 18 show sensors 9 which are produced by the method according to the invention for producing a sensor 9 with seamless encapsulation of the sensor element 2.
  • FIG. 14 shows a sensor 9, which has a completely seamless encapsulation of the sensor element 2, connecting elements 13 having been formed by the injection molding compound which serve for a mechanical connection of the sensor 9, for example to a liquid container.
  • FIG. 15 shows a section through the sensor 9 known from FIG. 14 with seamless encapsulation of the sensor element 2. It can be seen that no seams are present in the entire injection-molding compound 6 which could lead to the penetration of an aggressive medium into the sensor ,
  • FIG. 16 shows a further section through a sensor 9 with seamless encapsulation of a sensor element 2.
  • the sensor element 2 has a pre-encapsulation 7.
  • This pre-extrusion 7 is also completely surrounded by the injection-molding compound 6, which in turn does not form any seams in the injection-molding compound 6.
  • the electrical connection pins 11 of the sensor 9 can be seen in FIG. 16, which can be protected in a suitable manner from aggressive media.
  • FIG. 17 shows the sensor 9 known from FIG. 16 from a different perspective. Again, it can be seen that the sensor element 2 and the pre-injection 7 are completely and seamlessly surrounded by the injection-molding compound 6.
  • FIG. 18 again shows the principle of removing the movable fixing elements 5 after the injection molding compound 6 has been injected into the mold cavity 1.
  • the already cooled injection molding compound 6 in the first region 3 of the mold cavity 1 holds the sensor element 2 in its position.
  • the movable fixing elements 5 are removed from the still liquid injection molding compound 6 in the second region of the mold cavity 1 from this.
  • the additional flow of the still liquid injection molding compound 6 into the cavities left by the movable fixing elements 5 after removal results in the desired seamless encapsulation of the sensor element 2 and of the stamped grid 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Sensors mit nahtloser Umspritzung eines Sensorelementes sowie einen nach diesem Verfahren hergestellten Sensor. Um ein Verfahren zur Herstellung eines Sensors sowie einen nach diesem Verfahren hergestellten Sensor anzugeben, bei dem das Sensorelement möglichst dicht von der Spritzgussmasse umschlossen ist, wodurch das Eindringen von Wasser, Säure, Öl oder anderen aggressiven Stoffen aus der Umgebung des Sensors in den Sensor dauerhaft verhindert wird, werden die folgenden Verfahrensschritte ausgeführt: Einlegen des Sensorelementes (2) in ein Formnest (1) mechanische Fixierung des Sensorelementes (2) in dem Formnest (1) durch mindestens ein bewegliches Fixierungselement (5), das in einem zweiten Bereich (4) des Formnestes (1) in das Formnest (1) eingreift Einspritzen einer Spritzgussmasse (6) in das Formnest (1) Abwarten bis die Spritzgussmasse (6) in einem ersten Bereich (3) des Formnestes (1) so weit ausgehärtet ist, dass die im ersten Bereich (3) verhärtete Spritzgussmasse (6) das Sensorelement (2) in seiner Position fixiert Entfernen des beweglichen Fixierungselementes (5), bevor die im zweiten Bereich (4) befindliche Spritzgussmasse (6) verhärtet, so dass die noch flüssige Spritzgussmasse (6) den von dem entfernten Fixierungselement (5) in dem Formnest (1) hinterlassenen Hohlraum zumindest teilweise ausfüllt.

Description

Beschreibung
Verfahren zur Herstellung eines Sensors mit nahtloser Um- spritzung eines Sensorelementes
Die Erfindung betrifft ein Verfahren zur Herstellung eines Sensors mit nahtloser Umspritzung eines Sensorelementes sowie einen nach diesem Verfahren hergestellten Sensor.
Es ist bekannt Sensorelemente mit Kunststoffmaterialien zu umspritzen, um das Sensorelement vor mechanischen Beschädigungen sowie vor Schmutz und aggressiven Umwelteinflüssen, wie Spritzwasser, Spritzwasser mit Streusalz, Öl, Säuren und ähnlichem zu schützen. Gerade bei Anwendungen im Automobilbau werden sehr hohe Anforderung an die Robustheit und Langlebigkeit von Sensoren gestellt. Dabei sollten die Sensoren sehr preiswert und in großen Stückzahlen herstellbar sein. Mit dem Spritzgießen (Injection Moulding) ist ein Verfahren bekannt bei dem ein Sensorelement in ein Formnest eingelegt wird wo- nach die flüssige und heiße Spritzgussmasse in das Formnest eingespritzt wird und dieses ausfüllt, wobei das Sensorelement von der Spritzgussmasse umschlossen wird. Die unter hohem Druck eingespritzte Spritzgussmasse kann das Sensorelement jedoch in seiner Lage im Formnest verschieben, was letztlich zu einem minderwertigen Sensor führen würde. Daher ist es notwendig das Sensorelement in Formnest zu fixieren. Durch die Fixierung des Sensorelementes im Formnest kommt es aber zu Bereichen die nicht von der Spritzgussmasse erreicht werden. Diese werden dann in einer weiteren Umspritzung aus- gefüllt, wodurch es zu Nahtstellen zwischen der ersten und er zweiten Umspritzung kommt, die potentielle Schwachstellen darstellen, durch die Wasser, Säure, Öl oder anderen aggressiven Stoffen aus der Umgebung des Sensors in den Sensor eindringen können. Dadurch wird die Langlebigkeit des Sensors stark gefährdet. Daher ist es die Aufgabe der Erfindung ein Verfahren zur Herstellung eines Sensors sowie einen nach diesem Verfahren hergestellten Sensor anzugeben, bei dem das Sensorelement möglichst dicht von der Spritzgussmasse umschlossen ist, wodurch das Eindringen von Wasser, Säure, Öl oder anderen aggressiven Stoffen aus der Umgebung des Sensors in den Sensor dauerhaft verhindert wird. Dabei soll der Sensor möglichst preiswert herstellbar sein.
Die Aufgabe wird entsprechend der unabhängigen Ansprüche durch ein Verfahren zur Herstellung eines Sensors mit nahtloser Umspritzung eines Sensorelementes und einen nach diesem Verfahren hergestellten Sensor gelöst.
Mit dem Einlegen des Sensorelementes in ein Formnest und der mechanischen Fixierung des Sensorelementes in dem Formnest durch mindestens ein bewegliches Fixierungselement, das in einem zweiten Bereich des Formnestes in das Formnest eingreift kann das Sensorelement sehr genau in seiner Position im Formnest fixiert werden. Die Fixierung ist mechanisch so stabil, dass die später eingespritzte Spitzgussmasse das Sensorelement nicht aus seiner Lage verschieben kann. Dadurch wird die Lage des Sensorelementes im Sensor sehr genau eingehalten, was zu qualitativ hochwertigen Sensoren führt. Wenn das Sensorelement zum Beispiel ein Hall Sensorelement ist, das die Änderung eines äußeren Magnetfeldes erfassen soll, ist es von hoher Bedeutung, dass sich das Sensorelement genau an der vorgeschriebenen Position im Sensor befindet. Dies wird durch das in das Formnest eingreifende Fixierungselement nachhaltig sichergestellt. Beim Einspritzen einer Spritzgussmasse in das Formnest bleibt die relative Lage des Sensorelementes im Formnest unverändert. Durch ein Abwarten bis die Spritzgussmasse in einem ersten Bereich des Formnestes so weit ausgehärtet ist, dass die im ersten Bereich verhärtete Spritzgussmasse das Sensorelement in seiner Position fixiert, wird eine weitere Fixierung das Sensorelementes erreicht, die ausreichend ist, um eine nachfolgende Verschiebung des Sen- sorelementes wirkungsvoll zu verhindern. Nun erfolgt das Entfernen des Fixierungselementes, bevor die im zweiten Bereich befindliche Spritzgussmasse verhärtet, so dass die noch flüssige Spritzgussmasse den von dem entfernten Fixierungselement in dem Formnest hinterlassenen Freiraum zumindest teilweise ausfüllt. Dadurch, dass die noch flüssige Spritzgussmasse den von dem entfernten Fixierungselement in dem Formnest hinterlassenen Freiraum zumindest teilweise ausfüllt entsteht eine völlig nahtlose Umschließung des Sensorelementes mit der Spritzgussmasse. Nach der Aushärtung der Spritzgussmasse weist das Sensorelement damit eine nahtlose Ummantelung auf, durch die keinerlei Wasser, Säure, Öl oder anderen aggressiven Stoffen aus der Umgebung des Sensors in den Sensor eindringen kann.
Wenn vor dem Einlegen des Sensorelementes in das Formnest eine Vorumspritzung des Sensorelementes erfolgt, können für das Sensorelement wichtige Funktionsvorrausetzungen geschaffen werden. Der Begriff der Vorumspritzung ist hier sehr breit auszulegen. Als Vorumspritzung kann auch eine Vorummantelung zum Beispiel mit einem Metall oder mit einer Keramikmasse verstanden werden. Hierdurch kann zum Beispiel die Wärmeleitfähigkeit hin zum Sensor verbessert werden, was beispielsweise bei Temperatursensoren von großer Bedeutung sein kann. Es ist auch denkbar, dass mittels einer Vorumspritzung mit einem geeigneten Material ein von außen angelegter magnetischer Fluss zum Sensorelement hin gebündelt wird.
Bei einer Weiterbildung der Erfindung wird mit der Vorum- spritzung mindestens ein Aufnahmeelement für das Fixierungselement an das Sensorelement angespritzt. Hierdurch erreicht man eine besonders gute Fixierung des Sensorelementes in dem Formnest, was zu einer sehr genauen Positionierung des Sensorelementes im Sensor führt. Dazu kann das Fixierungselement in das Aufnahmeelement eingreifen und damit das Sensorelement mechanisch fixieren, bis die im ersten Bereich verhärtete Spritzgussmasse das Sensorelement in seiner Position ausreichend fixiert.
Weitere Merkmale, Vorteile und Weiterbildungen ergeben sich aus dem nachfolgend in Verbindung mit den Figuren erläuterten Beispielen. Es zeigen:
Fig. 1 einen Sensor nach dem Stand der Technik,
Fig. 2 ein Sensorelement auf einem Stanzgitter,
Fig. 3 das aus Fig. 2 bekannte Sensorelement mit dem Stanzgitter in einem Formnest,
Fig. 4 eine Spritzgussmasse, die unter dem Druck P in das Formnest eingedrungen ist,
Fig. 5 die in dem Formnest in einem ersten Bereich erstarrte Spritzgussmasse,
Fig. 6 den fertigen Sensor nach der Entnahme aus dem Formnest,
Fig. 7 das Sensorelement mit dem angeschlossenen Stanzgit- ter,
Fig. 8 das in ein Vorformnest eingelegte Sensorelement,
Fig. 9 das Sensorelement mit der Vorumspritzung in einem Formnest,
Fig. 10 die unter dem Druck P in das Formnest eingespritzte Spritzgussmasse,
Fig. 11 die aus dem Formnest herausgezogen beweglichen Fixierungselemente, Fig. 12 einen nach dem Verfahren hergestellten Sensor,
Fig. 13 eine besondere Ausführungsform der Vorumspritzung,
Fig. 14 einen Sensor mit einer vollständig nahtlose Um- spritzung des Sensorelementes,
Fig. 15 einen Schnitt durch den aus Fig. 14 bekannten Sensor,
Fig. 16 einen weiteren Schnitt durch einen Sensor mit nahtloser Umspritzung eines Sensorelementes,
Fig. 17 den aus Fig. 16 bekannten Sensor aus einer anderen Perspektive,
Fig. 18 das Prinzip des Entfernens der beweglichen Fixierungselemente .
Fig. 1 zeigt einen Sensor 9 nach dem Stand der Technik. Bei diesem Sensor 9 kann es sich beispielsweise um einen Temperatursensor, insbesondere einen Öltemperatursensor, einen Drehzahlsensor oder auch einen anderen Sensor 9 handeln, bei dem das Sensorelement 2 gut gegen die Einflüsse von Schmutz, gas- förmigen oder flüssigen Medien geschützt sein muss. Hierzu wird das Sensorelement 2 in der Regel mit einem Kunststoff vorumspritzt und an die Vorumspritzung 7 wird eine weitere Spritzgussmasse 6 angespritzt. Dies ist deshalb notwendig, weil das Sensorelement 2 von der Spritzgussmasse 6 bei Spritzgussprozess durch den hohen Spritzdruck aus seiner Position gedrängt wird, womit letztendlich die Lage des Sensorelementes 2 in der Vorumspritzung 7 und relativ zur Spritzgussmasse 6 nicht eindeutig festgelegt ist, was zu massiven Ungenauigkeiten in der Funktion des Sensors 9 führen kann. Das Sensorelement 2 ist in der Regel auf einem Stanzgitter 10, das auch als Leadframe bezeichnet wird, gelagert, wobei das Stanzgitter 10 zur mechanischen Stabilisierung des Sen- sorelementes im unumspritzten Zustand dient. Nach der Um- spritzung des Sensorelementes 2 mit einem Kunststoff dient das Stanzgitter zur elektrischen Verbindung des Sensorelementes mit der nachfolgenden Auswerteelektronik. Darüber hinaus kann auf dem Stanzgitter 10 auch eine Auswerteelektronik für das Sensorelement 2 platziert sein, wobei die Auswerteelektronik ebenfalls durch die Vorumspritzung 7 oder die Spritzgussmasse 6 umschlossen sein kann. Die Verbindung zur nachfolgenden Elektronik wird über die elektrischen Anschluss- stifte 11 gewährleistet, die im Spritzgussprozess freigehalten werden. Hierzu wird von der Spritzgussmasse 6 ein Anschlusselement 14 geformt. Darüber hinaus sind Verbindungselemente 13 zu erkennen, die ebenfalls aus der Spritzgussmasse 6 geformt sind und die zur mechanischen Verbindung des Sensors 9 mit anderen Bauteilen, zum Beispiel im Fahrzeug, dienen. Es ist beispielsweise denkbar, dass ein derartiger Sensor 9 als Temperatursensor ausgebildet ist und in einen Behälter, der das Medium beinhaltet, dessen Temperatur gemessen werden soll, eingeklipst wird oder eingeschraubt wird. Wichtig bei all diesen Sensoren 9 ist es, dass das Sensorelement 2 wirksam vor mechanischen Beschädigungen, chemischen Beschädigungen durch aggressive Medien und das Eindringen von Flüssigkeiten und Gasen geschützt ist. Bezüglich der Dichtheit gegenüber den soeben genannten Medien stellt der Verbin- dungsbereich 12 zwischen der Vorumspritzung 7 und der Spritzgussmasse 6 eine besondere Schwachstelle dar. Durch unterschiedliche Temperaturen, die im Laufe des Einsatzes des Sensors 9 zwangsläufig auf diesen einwirken, können im Verbindungsbereich 12 zwischen der Vorumspritzung 7 und der Spritz- gussmasse 6 thermische Spannungen entstehen, die den Verbindungsbereich 12 undicht werden lassen, wodurch an dieser Stelle aggressive Medien besonders einfach in den Sensor 9 eindringen können. Dies kann zur Zerstörung des Sensors 9 führen. Gerade im Bereich der Sensorik für Kraftfahrzeuge wird an die Robustheit und die Langlebigkeit solcher Sensoren ein besonders hoher Anspruch gestellt. Daher ist es wünschenswert, möglichst wenige oder gar keine Verbindungsberei- che 12 zwischen einer Vorumspritzung 7 und einer Spritzgussmasse 6 zu erzeugen. Jegliche Naht innerhalb der Spritzgussmasse 6 oder der Vorumspritzung 7 beziehungsweise zwischen der Spritzgussmasse und der Vorumspritzung 7 bildet eine po- tentielle Schwachstelle, in die schädliche Medien eindringen können. Daher ist es wünschenswert, einen Sensor 9 herzustellen, der keinerlei Nähte in der ausgehärteten Spritzgussmasse 6 aufweist. Ein Verfahren zur Herstellung eines Sensors 9 mit nahtloser Umspritzung eines Sensorelementes 2 wird in den Fi- guren 2 bis 6 sowie den Figuren 7 bis 12 dargestellt.
Fig. 2 zeigt ein Sensorelement 2, das auf einem Stanzgitter 10 montiert ist. An dem Stanzgitter 10 sind die elektrischen Anschlussstifte 11 zu erkennen.
In Fig. 3 ist das aus Fig. 2 bekannte Sensorelement mit dem Stanzgitter 10 in ein Formnest 1 eingelegt. Die Lage des Sensorelementes 2 im Formnest 1 wird durch bewegliche Fixierungselemente 5 bestimmt. Diese beweglichen Fixierungselemen- te 5 greifen durch Löcher im Formnest 1 in das Innere des Formnestes 1 ein und halten das Sensorelement 2 und das Stanzgitter 10 in der gewünschten Position. In der Fig. 3 wird das Sensorelement 2 genau auf der zentralen Symmetrieachse des Formnestes 1 durch die beweglichen Fixierungsele- mente 5 gehalten. In Fig. 3 ist das Formnest 1 noch nicht mit Spritzgussmasse 6 zugespritzt.
In Fig. 4 wird gezeigt, wie die Spritzgussmasse 6 unter dem Druck P in das Formnest 1 eingedrungen ist, wobei die Spritz- gussmasse 6 das Sensorelement 2 und das Stanzgitter 10 in der gewünschten Weise umschlossen hat. In Fig. 4 ist die Spritzgussmasse 6 noch im flüssigen und damit in warmem Zustand.
Fig. 5 zeigt, wie die Spritzgussmasse 6 in dem Formnest 1 in einem ersten Bereich 3 erstarrt ist, also vom flüssigen Zustand in den Festen oder zumindest in einen zähflüssigen Zustand übergegangen ist, so dass die Spritzgussmasse 6 im ers- ten Bereich 3 in der Lage ist, das Sensorelement 2 sowie das Stanzgitter 10 mechanisch zu fixieren. Da die Spritzgussmasse 6 im zweiten Bereich 4 noch in flüssigem Zustand ist, können nun die beweglichen Fixierungselemente 5 aus der noch flüssi- gen Spritzgussmasse 6 im zweiten Bereich herausgezogen werden. Die von den beweglichen Fixierungselementen 5 hinterlas- senen Hohlräume werden von der noch flüssigen Spritzgussmasse 6 ausgefüllt. Da im ersten Bereich 3 die Spritzgussmasse 6 schon ausgehärtet ist, bleibt das Sensorelement 2 auch nach der Entfernung der beweglichen Fixierungselemente 5 in seiner vorbestimmten Lage innerhalb des Formnestes 1. Durch das Nachfließen der noch flüssigen Spritzgussmasse 6 in die von den beweglichen Fixierungselementen 5 hinterlassenen Hohlräume entsteht eine vollkommen nahtlose Umspritzung des Sensor- elementes 2 und des daran angebrachten Stanzgitters 10, was in Fig. 6 sehr deutlich zu erkennen ist.
Fig. 6 zeigt den fertigen Sensor 9 nach der Entnahme aus dem Formnest 1. Zu erkennen ist, dass die Spritzgussmasse 6, das Sensorelement 2 und das Stanzgitter 10 vollständig und nahtlos umschließt. Lediglich die elektrischen Anschlussstifte 11 ragen aus der Spritzgussmasse 6 heraus. Durch eine geeignete Ausbildung des Sensors 9 kann jedoch dafür gesorgt werden, dass im Bereich der Austrittsstellen der elektrischen An- schlussstifte 11 keine aggressiven Medien vorkommen, sodass das Sensorelement 2 durch die nahtlose Umspritzung mit der Spritzgussmasse 6 dauerhaft geschützt ist, womit ein langlebiger und preiswerter Sensor 9 zur Verfügung gestellt wird.
Die Figuren 7 bis 12 zeigen noch einmal das erfindungsgemäße Verfahren zur Herstellung des Sensors 9 mit nahtloser Umspritzung eines Sensorelementes 2, wobei hier eine Vorum- spritzung 7 erfolgt. Für eine solche Vorumspritzung 7 kann es mehrere Gründe geben. Zum einen ist es denkbar, dass das Sen- sorelement 2 nur von einem ganz bestimmten Material bedeckt werden darf. Darüber hinaus ist es möglich, an die Vorumspritzung 7 Aufnahmeelemente 8 einzubringen, was später mit Fig. 13 genauer dargestellt wird. Zudem ist es denkbar, dass das Sensorelement vor der eigentlichen Umspritzung mit der Spritzgussmasse 6, zum Beispiel mit einer Keramikmasse umgeben wird, was dann natürlich nicht in einem üblichen Spritz- gussverfahren erfolgt, sondern durch Pressen und Tempern der Keramikmasse .
In Fig. 7 ist das Sensorelement 2 mit dem angeschlossenen Stanzgitter 10 sowie den elektrischen Anschlussstiften 11 zu sehen. Das Sensorelement 2 aus Fig. 7 ist in Fig. 8 in ein Vorformnest 15 eingelegt. In dieses Vorformnest 15 kann zum Beispiel eine Spritzungsmasse zur Vorumspritzung eingespritzt werden oder ein Keramikmaterial eingebracht werden, das dann das Sensorelement 2 und Teile des Stanzgitters 10 umgibt. Das so vorbereitete Sensorelement 2 wird dann, wie in Fig. 9 dargestellt, mit der Vorumspritzung 7 in das Formnest 1 eingelegt. Fixiert wird das Sensorelement 2 wiederum mit den beweglichen Fixierungselementen 5, die durch Ausnehmungen in den Wänden des Formnestes 1 in das Formnest 1 eingreifen.
Fig. 10 zeigt, wie die Spritzgussmasse 6 unter dem Druck P in das Formnest 1 eingespritzt wird, wobei die Spritzgussmasse 6 das Sensorelement 2 und die Vorumspritzung 7 sowie Teile des Stanzgitters 10 umschließt. In dem ersten Bereich 3 des Form- nestes 1 erkaltet die eingespritzte Spritzgussmasse 6, wodurch sie fest oder zumindest zähflüssig wird und damit für eine mechanische Fixierung des Sensorelementes 2 im Formnest sorgt. Das Erkalten der Spritzgussmasse 6 im ersten Bereich 3 des Formnestes 1 kann durch ein Kühlungselement 16 unter- stützt werden. Denkbar ist, dass das Kühlungselement 16 als
Kühlmittel führendes Rohrleitungssystem um den ersten Bereich 3 des Formnestes 1 gelegt ist. Als Kühlmittel kann zum Beispiel kalte Luft oder eine Flüssigkeit wie Wasser oder Öl eingesetzt werden. Wichtig dabei ist es, dass der erste Be- reich 3 des Formnestes zu einer schnellen Abkühlung der
Spritzgussmasse 6 führt, während die Spritzgussmasse 6 im zweiten Bereich 4 des Formnestes weiterhin flüssig ist. Da die Spritzgussmasse 6 im ersten Bereich des Formnestes 1 nun abgekühlt ist und damit eine mechanische Stabilisierung des Sensorelementes 2 im Formnest gewährleistet ist, werden die beweglichen Fixierungselemente 5 aus dem Formnest 1 he- rausgezogen, was in Fig. 11 dargestellt ist. Nachdem die beweglichen Fixierungselemente 5 aus dem Formnest 1 herausgezogen wurden, kann die noch flüssige Spritzgussmasse 6 im zweiten Bereich 4 des Formnestes 1 die von den beweglichen Fixierungselementen 5 hinterlassenen Hohlräume ausfüllen. Dies führt wiederum zur Herstellung eines Sensors 9 mit einer vollkommen nahtlosen Umspritzung des Sensorelementes 2.
Das Ergebnis dieses Herstellungsverfahrens ist in Fig. 12 gezeigt. Hier ist ein Sensor 9 zu sehen, bei dem das Sensorele- ment 2 und die Vorumspritzung 7 vollständig und nahtlos von der Spritzgussmasse 6 umschlossen sind. Der hier dargestellte Sensor 9 ist als äußerst robust und langlebig einzustufen, wobei er sehr kostengünstig herstellbar ist.
Fig. 13 zeigt eine besondere Ausführungsform der Vorumspritzung 7. Zu erkennen ist wiederum das Formnest 1, das mit der Spritzgussmasse 6 unter dem Druck P ausgefüllt wird. Die Vorumspritzung 7 weist nun Aufnahmeelemente 8 auf, in die die beweglichen Führungselemente 5 eingreifen. Dadurch ist eine besonders sichere mechanische Fixierung des Sensorelementes 2 in dem Formnest 1 gewährleistet. Im Übrigen läuft das Verfahren zur Herstellung des Sensors 9 nach Fig. 13 analog zur Herstellung des Sensors 9 nach den Figuren 7 bis 12 ab. Nach dem Erkalten der Spritzgussmasse 6 im ersten Bereich 3 werden die beweglichen Fixierungselemente 5 aus dem Formnest 1 entfernt, wobei sie ihre Verbindung mit den Aufnahmeelementen 8 lösen. Die von den beweglichen Fixierungselementen 5 hinterlassenen Hohlräume in der Spritzgussmasse 6 werden von der noch flüssigen Spritzgussmasse 6 im zweiten Bereich des Form- nestes 1 ausgefüllt, wodurch wiederum ein Sensor 9 erzeugt wird, der eine vollständig nahtlose Umspritzung des Sensorelementes 2 aufweist. In den Figuren 14 bis 18 werden Sensoren 9 gezeigt, die nach dem erfindungsgemäßen Verfahren zur Herstellung eines Sensors 9 mit nahtloser Umspritzung des Sensorelementes 2 hergestellt sind.
Fig. 14 zeigt einen Sensor 9, der eine vollständig nahtlose Umspritzung des Sensorelementes 2 aufweist, wobei durch die Spritzgussmasse Verbindungselemente 13 ausgebildet wurden, die zum einen mechanischen Anschluss des Sensors 9, zum Bei- spiel an einem Flüssigkeitsbehälter dienen.
Fig. 15 zeigt einen Schnitt durch den aus Fig. 14 bekannten Sensor 9 mit nahtloser Umspritzung des Sensorelementes 2. Zu erkennen ist, dass in der gesamten Spritzgussmasse 6 keiner- lei Nähte vorhanden sind, die zum Eindringen eines aggressiven Mediums in den Sensor führen könnten.
In Fig. 16 ist ein weiterer Schnitt durch einen Sensor 9 mit nahtloser Umspritzung eines Sensorelementes 2 dargestellt. Hier weist das Sensorelement 2 eine Vorumspritzung 7 auf.
Auch diese Vorumspritzung 7 ist vollständig von der Spritzgussmasse 6 umgeben, womit wiederum keinerlei Nähte in der Spritzgussmasse 6 ausgebildet sind. Zudem sind in Fig. 16 die elektrischen Anschlussstifte 11 des Sensors 9 zu erkennen, die in geeigneter Weise vor aggressiven Medien geschützt werden können.
Fig. 17 zeigt den aus Fig. 16 bekannten Sensor 9 aus einer anderen Perspektive. Wiederum ist zu erkennen, dass das Sen- sorelement 2 und die Vorumspritzung 7 vollständig und nahtlos von der Spritzgussmasse 6 umgeben sind.
In Fig. 18 wird noch einmal das Prinzip des Entfernens der beweglichen Fixierungselemente 5 nach dem Einspritzen der Spritzgussmasse 6 in das Formnest 1 dargestellt. Auch hier hält die bereits erkaltete Spritzgussmasse 6 im ersten Bereich 3 des Formnestes 1 das Sensorelement 2 in seiner Posi- tion, wenn die beweglichen Fixierungselemente 5 aus der noch flüssigen Spritzgussmasse 6 im zweiten Bereich des Formnestes 1 aus diesem entfernt werden. Das Nachfließen der noch flüssigen Spritzgussmasse 6 in die von den beweglichen Fixierungselementen 5 nach deren Entfernung hinterlassenen Hohlräume ergibt die gewünschte nahtlose Umspritzung des Sensorelementes 2 sowie des Stanzgitters 10.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Sensors (9) mit nahtloser Umspritzung eines Sensorelementes (2) mit den Verfahrens- schritten:
Einlegen des Sensorelementes (2) in ein Formnest (1) mechanische Fixierung des Sensorelementes (2) in dem Formnest (1) durch mindestens ein bewegliches Fixierungselement (5), das in einem zweiten Bereich (4) des Form- nestes (1) in das Formnest (1) eingreift
Einspritzen einer Spritzgussmasse (6) in das Formnest (1) Abwarten bis die Spritzgussmasse (6) in einem ersten Bereich (3) des Formnestes (1) so weit ausgehärtet ist, dass die im ersten Bereich (3) verhärtete Spritzgussmasse (6) das Sensorelement (2) in seiner Position fixiert
Entfernen des beweglichen Fixierungselementes (5) , bevor die im zweiten Bereich (4) befindliche Spritzgussmasse (6) verhärtet, so dass die noch flüssige Spritzgussmasse (6) den von dem entfernten Fixierungselement (5) in dem Formnest (1) hinterlassenen Hohlraum zumindest teilweise ausfüllt .
2. Verfahren zur Herstellung eines Sensors (9) mit nahtloser Umspritzung eines Sensorelementes (2) nach Anspruch 1, wobei vor dem Einlegen des Sensorelementes (2) in das Formnest (1) eine Vorumspritzung (7) des Sensorelementes (2) erfolgt.
3. Verfahren zur Herstellung eines Sensors (9) mit nahtlo- ser Umspritzung eines Sensorelementes (2) nach Anspruch
2, wobei mit der Vorumspritzung (7) mindestens ein Aufnahmeelement (8) für das Fixierungselement (5) an das Sensorelement (2) angespritzt wird.
4. Verfahren zur Herstellung eines Sensors (9) mit nahtloser Umspritzung eines Sensorelementes (2) nach Anspruch
3, wobei das Fixierungselement (5) in das Aufnahmeele- ment (8) eingreift und damit das Sensorelement (2) mechanisch fixiert, bis die im ersten Bereich (3) verhärtete Spritzgussmasse (6) das Sensorelement (2) in seiner Position fixiert.
5. Sensor (9) hergestellt nach einem Verfahren der Ansprüche 1 bis 4.
EP10708741A 2009-02-11 2010-02-09 Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes Withdrawn EP2396629A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008457A DE102009008457A1 (de) 2009-02-11 2009-02-11 Verfahren zur Herstellung eines Sensors mit nahtloser Umspritzung eines Sensorelementes
PCT/EP2010/051527 WO2010092029A2 (de) 2009-02-11 2010-02-09 Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes

Publications (1)

Publication Number Publication Date
EP2396629A2 true EP2396629A2 (de) 2011-12-21

Family

ID=42317539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10708741A Withdrawn EP2396629A2 (de) 2009-02-11 2010-02-09 Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes

Country Status (5)

Country Link
US (1) US20120043131A1 (de)
EP (1) EP2396629A2 (de)
JP (1) JP2012517367A (de)
DE (1) DE102009008457A1 (de)
WO (1) WO2010092029A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186067A1 (ko) 2023-03-06 2024-09-12 삼성이앤에이 주식회사 건설용 3d 프린터 제어 방법

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029192A1 (de) * 2008-03-13 2009-09-24 Epcos Ag Fühler zum Erfassen einer physikalischen Größe und Verfahren zur Herstellung des Fühlers
DE102011121412A1 (de) * 2011-12-17 2013-06-20 Continental Automotive Gmbh Verfahren zur Herstellung eines Sensors und Sensor
JP5829159B2 (ja) * 2012-03-16 2015-12-09 株式会社デンソー ガスセンサ素子及びその製造方法
JP5996986B2 (ja) * 2012-09-25 2016-09-21 有限会社吉井電子工業 インサート成形品の製造方法
DE102012110858A1 (de) 2012-11-12 2014-05-15 Epcos Ag Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
US9833576B2 (en) 2013-02-19 2017-12-05 Novo Nordisk A/S Rotary sensor module with axial switch
CN105007964B (zh) 2013-02-19 2018-01-30 诺和诺德股份有限公司 用于给药装置的剂量捕获筒模块
EP2958612B1 (de) 2013-02-19 2018-04-11 Novo Nordisk A/S Arzneimittelabgabevorrichtung mit dosierungserfassungsmodul
DE102013220908B4 (de) 2013-10-15 2015-09-24 Continental Automotive Gmbh Sensorelement
WO2015075134A1 (en) * 2013-11-21 2015-05-28 Novo Nordisk A/S Rotary sensor assembly with space efficient design
EP3071259B1 (de) 2013-11-21 2019-04-10 Novo Nordisk A/S Rotierende sensoranordnung mit axialschalter- und redundanzfunktion
CN105764549A (zh) 2013-11-21 2016-07-13 诺和诺德股份有限公司 具有再同步特征的旋转传感器模块
DE102013224466A1 (de) * 2013-11-28 2015-05-28 Continental Teves Ag & Co. Ohg Werkzeug zum Urformen eines Gehäuses für einen Sensor
DE102014208595A1 (de) * 2014-05-08 2015-11-12 Zf Friedrichshafen Ag Kunststoffumspritzte Anordnung zum Halten zumindest eines Sensors
DE102014013312A1 (de) 2014-09-08 2016-03-10 Wabco Gmbh Träger für ein Sensorelement, Bauteilgruppe und Drehzahlsensor
DE102014013356A1 (de) 2014-09-08 2016-03-10 Wabco Gmbh Träger für ein Sensorelement, Bauteilgruppe und Drehzahlsensor
DE102015219004A1 (de) * 2015-10-01 2017-04-06 Robert Bosch Gmbh Verfahren zum Herstellen einer Sensoranordnung für ein Getriebesteuergerät
ES2846879T3 (es) * 2015-10-13 2021-07-30 Lilly Co Eli Sistema de detección de posición cero para dispositivo de administración de medicación
DE102015226113A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Sensorvorrichtung und Sensorsystem
DE102016207664A1 (de) * 2016-05-03 2017-11-09 Continental Teves Ag & Co. Ohg Sensorelement für ein kraftfahrzeug
US20180038741A1 (en) * 2016-08-02 2018-02-08 Honeywell International Inc. Temperature sensor with overmolded connector
US10388437B2 (en) 2016-08-10 2019-08-20 Siemens Energy, Inc. Assembly and method for manufacturing insulation layer of electrical conductors
CN111347615A (zh) * 2018-12-21 2020-06-30 大陆-特韦斯股份有限公司 制造传感器的方法、定位销直接固定构件壳体
CN111503277B (zh) * 2019-01-31 2022-04-22 杭州三花研究院有限公司 阀组件及其制造方法
DE102019210375A1 (de) * 2019-07-12 2021-01-14 Continental Teves Ag & Co. Ohg Verfahren zur Herstellung eines robusten Sensors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576245B1 (fr) * 1985-01-23 1987-04-30 Jaeger Procede d'enrobage d'un capteur allonge, dispositif de moulage pour la mise en oeuvre du procede, capteur obtenu et armature intervenant dans la fabrication du capteur
US4727239A (en) * 1985-10-17 1988-02-23 Casco Products Corporation Plug having encapsulated thermal sensor, for engine block heater
JP2643253B2 (ja) * 1988-03-15 1997-08-20 松下電器産業株式会社 温度センサ
EP0511162A1 (de) * 1991-04-24 1992-10-28 Ciba-Geigy Ag Wärmeleitende Klebfilme, Laminate mit wärmeleitenden Klebschichten und deren Verwendung
JPH06109553A (ja) * 1992-09-30 1994-04-19 Komatsu Ltd 温度検知器
JP2858220B2 (ja) * 1994-09-13 1999-02-17 川惣電機工業株式会社 温度測定装置における測温センサーエレメント
JP3775376B2 (ja) * 1995-05-19 2006-05-17 株式会社デンソー インサート品成形方法およびインサート品成形装置
JP3206873B2 (ja) * 1995-09-06 2001-09-10 ナイルス部品株式会社 温度検出センサの成形方法及び成形金型
US5818224A (en) * 1995-10-13 1998-10-06 Bently Nevada Corporation Encapsulated transducer with an integrally formed full length sleeve and a component alignment preform and method of manufacture
US5770941A (en) * 1995-10-13 1998-06-23 Bently Nevada Corporation Encapsulated transducer and method of manufacture
JP3962295B2 (ja) * 2002-07-29 2007-08-22 株式会社日本製鋼所 電子基板のインサート射出成形用金型
JP4569886B2 (ja) * 2003-12-25 2010-10-27 株式会社大泉製作所 温度センサーの製造方法
JP4721774B2 (ja) * 2004-05-28 2011-07-13 パナソニック電工Sunx株式会社 インサート成形方法、インサート成形装置及び近接センサ
JP4429962B2 (ja) * 2005-04-22 2010-03-10 三菱電機株式会社 埋設部材成形体の製造方法
US20070187869A1 (en) * 2006-02-15 2007-08-16 Siemens Vdo Automotive Corporation Single mold active speed sensor
JP4867437B2 (ja) * 2006-04-05 2012-02-01 株式会社デンソー 温度センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010092029A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186067A1 (ko) 2023-03-06 2024-09-12 삼성이앤에이 주식회사 건설용 3d 프린터 제어 방법

Also Published As

Publication number Publication date
DE102009008457A1 (de) 2010-08-12
JP2012517367A (ja) 2012-08-02
WO2010092029A2 (de) 2010-08-19
US20120043131A1 (en) 2012-02-23
WO2010092029A3 (de) 2011-04-14

Similar Documents

Publication Publication Date Title
WO2010092029A2 (de) Verfahren zur herstellung eines sensors mit nahtloser umspritzung eines sensorelementes
DE102014205922B4 (de) Modul zum Erfassen eines Vibrationsverhaltens einer mechanischen Komponente
DE19504608A1 (de) Positionssensor und Verfahren zur Herstellung desselben
EP3060364B1 (de) Stranggiesskokille mit einem temperatursensor und herstellungsverfahren für die stranggiesskokille mit dem temperatursensor
DE102014205921A1 (de) Modul
WO2011072935A1 (de) Spritzgiessverfahren zur herstellung eines funktionsteils mit einer aussparung
EP2454071B1 (de) VERFAHREN UND VORRICHTUNG ZUM SPRITZGIEßEN EINES FORMTEILS
DE102014205923A1 (de) Modul zum Erfassen einer physikalischen Größe eines gasförmigen Mediums
EP0804329B1 (de) Verfahren zum dünnwandigen umgiessen einer zu der umgossenen wand genau ausgerichteten elektronikschaltung und elektronikschaltung hierzu
DE102008061926B4 (de) Langgestrecktes Metallelement zur Einspritzung in ein Bauteil
DE10044460B4 (de) Baueinheit und Verfahren zur Herstellung derselben
EP3009811B1 (de) Sensoranordnung und verfahren zur herstellung einer sensoranordnung
DE102017005274A1 (de) Anordnung zum Einspritzen von Kunststoff in eine Kavität einer Kunststoffspritzmaschine
EP0656845B1 (de) Verfahren zum axialen fixieren einer welle in deren lagergehäuse bei wischeranlagen, sowie wischeranlage, insbesondere zur scheibenreinigung des kraftfahrzeugs
DE102018007404A1 (de) Verfahren zur Herstellung eines Fahrzeugbauteils aus Kunststoff mit mindestens einer spritzgegossenen Heizbahn
WO2014180624A1 (de) Verfahren zum herstellen einer elektronischen baueinheit und spritzgiessmaschine
DE102015221898B4 (de) Verfahren zum Herstellen einer Baueinheit und Baueinheit
DE102014206115A1 (de) Verfahren zur Herstellung von spritzgegossenen kunststoffgebundenen Dauermagneten aus einem Duroplast, welcher ein partikelförmiges magnetisches Material enthält, sowie Verfahren zur Herstellung eines spritzgegossenen kunststoffgebundenen Dauermagneten aus einem Duroplast, welcher ein partikelförmiges magnetisches Material enthält, als ein Zwei-Komponenten-Bauteil und spritzgegossener kunststoffgebundener Dauermagnet
DE102011003239A1 (de) Sensormodul, Montageelement und Verfahren zum Herstellen eines Sensormoduls
DE102013212257B4 (de) Verfahren und Vorrichtung zur Herstellung einer mediendichten Umspritzung eines elektrischen Anschlusselements einer Aktoreinheit
DE10116019A1 (de) Sensor sowie Verfahren zu dessen Herstellung
EP1662262A1 (de) Drehzahlsensor mit integrierter Elektronik, insbesondere zur Anwendung bei Schienenfahrzeugen
EP2982227B1 (de) Verfahren und vorrichtung zur herstellung einer abdichtung zwischen einem träger eines elektrischen bauteils und einer den träger zumindest teilweise umgebenden umspritzung
DE102019118074A1 (de) Feldgerät der Automatisierungstechnik und Verfahren zur Herstellung des Feldgerätes
DE102017127878A1 (de) Sensor und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111014

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140902