EP2376761A1 - Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine - Google Patents

Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine

Info

Publication number
EP2376761A1
EP2376761A1 EP09764836A EP09764836A EP2376761A1 EP 2376761 A1 EP2376761 A1 EP 2376761A1 EP 09764836 A EP09764836 A EP 09764836A EP 09764836 A EP09764836 A EP 09764836A EP 2376761 A1 EP2376761 A1 EP 2376761A1
Authority
EP
European Patent Office
Prior art keywords
pulse
fuel
injection system
electromagnetic actuator
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09764836A
Other languages
English (en)
French (fr)
Other versions
EP2376761B1 (de
Inventor
Uwe Richter
Rainer Wilms
Matthias Schumacher
Joerg Kuempel
Matthias Maess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2376761A1 publication Critical patent/EP2376761A1/de
Application granted granted Critical
Publication of EP2376761B1 publication Critical patent/EP2376761B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing

Definitions

  • the invention relates to a method for operating a fuel system of an internal combustion engine according to the preamble of claim 1.
  • the invention also relates to a computer program, an electrical storage medium and a control and regulating device.
  • the known quantity control valve is realized as a magnetically actuated by a solenoid solenoid valve with a magnet armature and associated Wegbegrenzungsanellen.
  • the known solenoid valve is open in the energized state of the coil.
  • known from the market are also such quantity control valves, which are closed in the de-energized state of the solenoid.
  • the solenoid is driven with a constant voltage or a pulsed voltage (pulse width modulation - "PWM”), whereby the current in the magnetic coil increases in a characteristic manner. After the voltage has been switched off, the current again drops in a characteristic manner, as a result of which the quantity control valve closes (in the case of the normally closed valve) or opens (in the case of the normally open valve).
  • the Electromagnetic actuator shortly before the end of the opening movement energized again like a pulse.
  • a braking force is applied to the armature, before it contacts the stop. The braking force reduces the speed, which reduces the impact noise.
  • the object of the present invention is to provide a method for operating a fuel injection system of an internal combustion engine, in which the quietest possible operation of the fuel injection system is achieved.
  • the magnetic actuator can differ from one copy to another.
  • the reason for this is on the one hand production-related tolerances, but also environmental parameters that can differ from one fuel injection system to another and above all from an operating situation of a fuel injection system to another.
  • fast-absorbing that is to say efficient, electromagnetic actuators
  • slow-moving that is, rather inefficient electromagnetic actuators. Because of these variances, it has so far been possible that the braking pulse was not optimal. This risk is excluded or at least significantly reduced with the present invention.
  • the braking pulse for example, from a supply voltage of a voltage source and / or a temperature in particular a component of the fuel injection system or the internal combustion engine can depend.
  • This is also taken into account by the invention, for example via a characteristic map, which can be determined for a nominal quantity control valve as functions of a nominal, temperature-dependent resistance and the voltage of a voltage source, for example a vehicle battery.
  • the reason for the consideration of the temperature is that the electrical resistances of electrical lines, with which the quantity control valve is connected, for example, to an output stage of a control unit, depends on the current temperature of these electrical lines. This can be taken into account by the method according to the invention.
  • the present invention therefore makes it possible to reduce the impact speed of the valve element on a stop and thereby the noise during operation of the quantity control valve. By using an adaptation method, this succeeds for individual quantity control valves, whereby the demands on the manufacturing tolerance can be reduced. This can reduce the cost of manufacturing the fuel injection system. In a repeated application of the method according to the invention over the life of the high-pressure pump also wear and / or aging-related effects can be compensated, whereby a robust operation over the entire life of the quantity control valve is achieved. In addition to reducing noise emissions, the scattering of the noise, measured over a given sample size, is also minimized. Specified noise limits can therefore be maintained more reliably. By reducing the velocity of the stop, the load on the stops is reduced.
  • PWM phase occurring pull-in pulse duty cycle or current level during a holding phase of the braking pulse, duty cycle or current level at the end of a holding phase of the braking pulse.
  • a deviation of an actual pressure in the fuel rail can be used by a target pressure. This is based, for example, in a normally open quantity control valve, the idea that in the adaptation process, when the energization of the electromagnetic actuator has been lowered so far that the quantity control valve does not close anymore, a pressure drop or even pressure breakdown occurs in the fuel rail then the high-pressure pump promotes no more fuel.
  • the parameter of a braking pulse may also be the form of the braking pulse, which is defined in a simple manner by following several PWM phases, several tightening pulse phases without PWM, current-controlled phases, defined step deletions and / or Zener deletions.
  • Another measure for reducing the noise emissions is that an energized holding phase of the electromagnetic Although actuator begins during a delivery stroke, but is terminated shortly after the end of the delivery stroke. As a result, tolerances of the movement of a piston of the high-pressure pump and thus a position of the top dead center between the delivery and suction phases are reduced.
  • a holding phase is terminated at a defined, for example, falling PWM edge. This will be the beginning of a
  • Figure 1 is a schematic representation of a fuel injection system of a
  • Figure 2 is a partial section through the quantity control valve of Figure 1;
  • FIG 3 is a schematic representation of various functional states of the high-pressure pump and the quantity control valve of Figure 1 with an associated timing diagram;
  • FIG. 4 shows three diagrams, in which a drive voltage, a current supply to a magnet coil, and a stroke of a valve element of the quantity control valve of FIG. 1 are plotted over time
  • Figure 5 is a diagram in which a course of energization of
  • Quantity control valve of Figure 1 is plotted over time in the realization of a braking pulse;
  • Figure 6 is a diagram similar to Figure 5, in a variant of the current waveform;
  • FIG. 7 is a flow chart of a method for operating the fuel injection system of FIG. 1.
  • a fuel injection system bears the overall reference numeral 10. It comprises an electric fuel pump 12 with which fuel is conveyed from a fuel tank 14 to a high-pressure pump 16.
  • the high-pressure pump 16 compresses the fuel to a very high pressure and promotes it further into a fuel rail 18.
  • injectors 20 are connected, which inject the fuel in them associated combustion chambers.
  • the pressure in the fuel rail 18 is detected by a pressure sensor 22.
  • the high-pressure pump 16 is a piston pump with a delivery piston 24, which can be offset by a camshaft, not shown, in a reciprocating motion (double arrow 26).
  • the delivery piston 24 defines a delivery chamber 28, which can be connected via a quantity control valve 30 to the outlet of the electric fuel pump 12. Via an outlet valve 32, the delivery chamber 28 can also be connected to the fuel rail 18.
  • the quantity control valve 30 comprises an electromagnetic actuator 34 which operates in the energized state against the force of a spring 36. When de-energized, the mass control valve 30 is open, in the energized state, it has the function of a normal inlet check valve.
  • the exact structure of the quantity control valve 30 is shown in FIG. 2:
  • the quantity control valve 30 comprises a disc-shaped valve element 38, which is acted upon by a valve spring 40 against a valve seat 42.
  • the latter three elements form the above-mentioned inlet check valve.
  • the electromagnetic actuating device 34 comprises a magnetic coil 44 which cooperates with a magnetic armature 46 of an actuating tappet 48.
  • the spring 36 acts on the actuating plunger 48 in the currentless solenoid 44 against the valve element 38 and forces it to its open position.
  • the corresponding end position of the actuating plunger 48 is defined by a first stop 50.
  • the high-pressure pump 16 and the quantity control valve 30 operate as follows (see FIG. 3):
  • FIG. 3 a stroke of the piston 34 is applied at the top and below this an energization of the magnetic coil 44 is plotted over time.
  • the high pressure pump 16 is shown schematically in various operating conditions.
  • the magnet coil 44 is de-energized, whereby the actuation tappet 48 is pressed by the spring 36 against the valve element 38 and moves it into its open position. In this way, fuel can flow from the electric fuel pump 12 into the delivery chamber 28.
  • the delivery stroke of the delivery piston 24 begins. This is shown in Figure 2 in the middle.
  • the solenoid 44 is still de-energized, whereby the mass control valve 30 is further forced to open.
  • the fuel is discharged from the delivery piston 24 via the open quantity control valve 30 to the electric fuel pump 12.
  • the exhaust valve 32 remains closed. A promotion in the fuel rail 18 does not take place.
  • the solenoid coil 44 is energized, whereby the actuating plunger 48 is pulled away from the valve element 38. It should be noted at this point that in Figure 3, the course of energization of the solenoid 44 is shown only schematically. As will be explained below, the actual coil current is not constant, but may drop due to mutual induction effects. In addition, in the case of a pulse-width-modulated drive voltage, the coil current is wave-shaped or jagged.
  • the amount of fuel delivered by the high-pressure pump 16 to the fuel rail 18 is influenced.
  • the time ti is determined by a control and regulating device 54 ( Figure 1) so that an actual pressure in the fuel rail 18 as closely as possible corresponds to a target pressure.
  • 54 signals supplied by the pressure sensor 22 are processed in the control and regulating device.
  • actuating plunger 48 When stopping the energization of the solenoid 44, the actuating plunger 48 is again moved against the first stop 50. In order to reduce the impact velocity at the first stop 50, a braking pulse 56 is generated, by which the speed of movement of the actuating plunger 48 is reduced shortly before impinging on the first stop 50.
  • At least one parameter of the braking pulse 56 depends on the efficiency of the electromagnetic actuator 34. This efficiency is determined by an adaptation method, which will now be explained with reference to FIG. Thereafter, after a first cycle of the high-pressure pump 16 (a working cycle consists of a suction stroke and a delivery stroke) a duty cycle of a pulse width modulated drive voltage after a first so-called "suit pulse” 58 is set to a first value, in which it is ensured that the actuating plunger 48 from the valve element 38 is moved away.
  • suitable pulse The corresponding course of the coil current is designated 60a in FIG.
  • This limit duty cycle which can also be referred to as the "final value" is used to characterize the efficiency of the electromagnetic actuator 34. Namely, a mass control valve 30 having a more efficient electromagnetic actuator 34 has a lower final value than a mass control valve 30 having a more inefficient electromagnetic actuator 34. The thus determined efficiency of the individual electromagnetic actuator 34 is now used to parameterize the braking pulse 56.
  • the level of a supply voltage for example, a battery of a motor vehicle, in which the internal combustion engine is installed, and a temperature, for example, of the fuel used for the parameterization of the braking pulse.
  • the parameter of the braking pulse 56 may be a start of the braking pulse, a duration of a pulse-width modulated phase or (in the case of a current-controlled output stage) the duration of a current-controlled phase of the braking pulse 56.
  • the duration of the starting pulse 58 occurring before the pulse-width-modulated phase may also be such a parameter.
  • a duty cycle or a current level during the holding phase before the braking pulse 56, and / or a duty cycle or a current level at the end of the holding phase before the braking pulse 56th Referring now to Figure 5, a coil current 60 is plotted against time, including the brake pulse 56.
  • a hold phase 64 is seen extending into the suction phase above top dead center.
  • the holding phase 64 is terminated on a falling edge of the pulse-width-modulated voltage signal.
  • the current initially drops freely ("freewheeling"), before a rapid quenching is performed by applying a countercurrent. Freewheeling and rapid quenching are within a period 66, which elapses from the end of the holding phase until the beginning of the braking pulse 56.
  • the braking pulse 56 itself is in turn generated a pulse width modulated signal whose duration is designated 68 in FIG.
  • the duty cycle can be changed so that an increase in the effective coil current 60 results.
  • the shape of the brake pulse 56 may be defined by following a plurality of pulse width modulated phases, pull pulse phases without pulse width modulation, current controlled phases, defined step clearances, and / or Zener clearances. Overall, for noise reduction, the brake pulse 56 will be applied to an electromagnetic actuator 34 of higher efficiency sooner and / or shorter and / or less pronounced than an electromagnetic actuator 34 of lower efficiency.
  • FIG. 7 shows a method for operating the fuel injection system 10.
  • the actual pressure in the fuel rail 18 is compared with the target pressure.
  • the end value of the pulse duty factor and from this a variable characterizing the efficiency of the electromagnetic actuator 34 are determined in 72.
  • a duty ratio which just closes the flow control valve 30
  • a reduced speed when striking the actuating plunger 48 on the second stop 52 and thereby a noise reduction is achieved (block 74).
  • 76 the voltage of the vehicle battery and the temperature of the fuel are detected.
  • These sensed values become 78 in conjunction with the efficiency of the electromagnetic actuator 34 for parameterizing the brake pulse 56 as determined by the method of FIG. 72 used. This results in 80 a noise reduction when hitting the actuating plunger 48 on the first stop 50th
  • a braking pulse is generated only below a certain speed of a crankshaft of the internal combustion engine or a drive shaft of the high-pressure pump 16. In a further embodiment, not shown, the braking pulse is generated above such a speed, it takes place above this speed but no adjustment of the braking pulse more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

In einem Kraftstoffsystem (10) einer Brennkraftmaschine wird Kraftstoff von einer Hochdruckpumpe (16) in ein Kraftstoffrail (18) gefördert. Die Menge des geförderten Kraftstoffs wird durch ein von einer elektromagnetischen Betätigungseinrichtung (34) betätigtes Mengensteuerventil (30) beeinflusst. Es wird vorgeschlagen, dass mindestens ein Parameter eines Bremsimpulses der elektromagnetischen Betätigungseinrichtung (34) von einer Effizienz der elektromagnetischen Betätigungseinrichtung und/oder von einer Versorgungsspannung einer Spannungsquelle und/oder von einer Temperatur, insbesondere einer Komponente des Kraftstoffeinspritzsystems (10) oder der Brennkraftmaschine abhängt.

Description

Beschreibung
Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftstoff Systems einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1. Gegenstand der Erfindung sind ferner ein Computerprogramm, ein elektrisches Speichermedium sowie eine Steuer- und Regeleinrichtung.
Die DE 101 48 218 A1 beschreibt ein Verfahren zum Betreiben eines Kraftstoffeinspritzsystems unter Nutzung eines Mengensteuerventils. Das bekannte Mengensteuerventil ist als ein durch eine Magnetspule elektromagnetisch betätigtes Magnetventil mit einem Magnetanker und zugeordneten Wegbegrenzungsanschlägen realisiert. Das bekannte Magnetventil ist im bestromten Zustand der Spule offen. Vom Markt her bekannt sind jedoch auch solche Mengensteuerventile, welche im stromlosen Zustand der Magnetspule geschlossen sind. Im letzteren Falle wird zum Öffnen des Mengensteuerventils die Magnetspule mit einer konstanten Spannung oder einer getakteten Spannung (Pulsweitenmodulation - "PWM") angesteuert, wodurch der Strom in der Magnetspule in charakteristischer weise ansteigt. Nach dem Abschalten der Spannung fällt der Strom wiederum in charakteristischer Weise ab, wodurch das Mengensteuerventil schließt (bei stromlos geschlossenem Ventil) beziehungsweise öffnet (bei stromlos geöffnetem Ventil).
Um bei dem in der DE 101 48 218 A1 gezeigten stromlos geschlossenen Ventil zu verhindern, dass der Anker während der Öffnungsbewegung des Mengensteuerventils mit voller Geschwindigkeit am Anschlag anschlägt, was zu einer deutlichen Geräuschentwicklung führen könnte, wird die elektromagnetische Betätigungseinrichtung kurz vor dem Ende der Öffnungsbewegung nochmals impulsartig bestromt. Durch diesen Stromimpuls wird eine Bremskraft auf den Anker ausgeübt, noch bevor dieser den Anschlag kontaktiert. Durch die Bremskraft wird die Geschwindigkeit reduziert, wodurch das Anschlaggeräusch vermindert wird.
Offenbarung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine bereitzustellen, bei dem ein möglichst geräuscharmer Betrieb des Kraftstoffeinspritzsystems erzielt wird.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben. Weitere Lösungsmöglichkeiten sind darüber hinaus in den nebengeordneten Patentansprüchen genannt. Für die Erfindung wichtige Merkmale finden sich ferner in der nachfolgenden Beschreibung und in der Zeichnung, wobei diese Merkmale sowohl in Alleinstellung als auch in unterschiedlichen Kombinationen für die Erfindung wesentlich sein können, ohne dass hierauf jeweils explizit hingewiesen wird.
Erfindungsgemäß wurde festgestellt, dass sich die magnetische Betätigungseinrichtung von einem Exemplar zum anderen unterscheiden kann. Ursache hierfür sind zum Einen fertigungsbedingte Toleranzen, aber auch Umgebungsparameter, die sich von einem Kraftstoffeinspritzsystem zum anderen und vor allem von einer Betriebssituation eines Kraftstoffeinspritzsystems zur anderen unterscheiden können. Insbesondere wurde erkannt, dass zwischen schnell anziehenden, das heißt effizienten elektromagnetischen Betätigungseinrichtungen und langsam anziehenden, also eher ineffizienten elektromagnetischen Betätigungseinrichtungen unterschieden werden kann. Aufgrund dieser Varianzen konnte es bisher dazu kommen, dass der Bremsimpuls nicht optimal war. Dieses Risiko wird mit der vorliegenden Erfindung ausgeschlossen oder zumindest erheblich reduziert.
Außerdem wurde festgestellt, dass der Bremsimpuls beispielsweise auch von einer Versorgungsspannung einer Spannungsquelle und/oder einer Temperatur insbesondere einer Komponente des Kraftstoffeinspritzsystems oder der Brennkraftmaschine abhängen kann. Auch dies wird durch die Erfindung berücksichtigt, beispielsweise über ein Kennfeld, welches für ein nominales Mengensteuerventil als Funktionen eines nominalen, temperaturabhängigen Widerstands und der Spannung einer Spannungsquelle, beispielsweise einer Fahrzeugbatterie bestimmt werden kann. Der Grund für die Berücksichtigung der Temperatur ist, dass die elektrischen Widerstände von elektrischen Leitungen, mit denen das Mengensteuerventil beispielsweise an eine Endstufe eines Steuergeräts angeschlossen ist, von der aktuellen Temperatur dieser elektrischen Leitungen abhängt. Dies kann durch das erfindungsgemäße Verfahren berücksichtigt werden.
Die vorliegende Erfindung gestattet es daher, die Anschlaggeschwindigkeit des Ventilelements an einem Anschlag und hierdurch das Geräusch beim Betrieb des Mengensteuerventils zu reduzieren. Durch die Verwendung eines Adaptionsverfahrens gelingt dies dabei für individuelle Mengensteuerventile, wodurch die Anforderungen an die Fertigungstoleranz reduziert werden können. Hierdurch können die Kosten bei der Fertigung des Kraftstoffeinspritzsystems verringert werden. Bei einer wiederholten Anwendung des erfindungsgemäßen Verfahrens über die Lebensdauer der Hochdruckpumpe können auch verschleiß- und/oder alterungsbedingte Effekte kompensiert werden, wodurch ein robuster Betrieb über die gesamte Lebensdauer des Mengensteuerventils erzielt wird. Neben einer Reduzierung der Geräuschemissionen wird auch die Streuung des Geräusches, gemessen über einen gegebenen Stichprobenumfang, minimiert. Spezifizierte Geräuschobergrenzen können daher zuverlässiger eingehalten werden. Durch die Reduzierung der Anschlaggeschwindigkeit wird die Belastung auf die Anschläge gesenkt. Hierdurch sinkt das entsprechende Lastkollektiv, so dass geringere Verschleiß- und Festigkeitsanforderungen an das Mengensteuerventil gestellt werden können. Dies reduziert die Kosten. Darüber hinaus wird das Risiko von Ausfällen vermindert. Zusätzliche Hardware zur Realisierung des erfindungsgemäßen Verfahrens ist nicht erforderlich, es entstehen insoweit keine zusätzliche Stückkosten.
Als Parameter des Bremsimpulses eignen sich besonders gut: Beginn des Bremsimpulses, Dauer einer PWM-Phase ("PWM" = Pulsweitenmodulation) oder einer stromgeregelten Phase des Bremsimpulses, Dauer eines vor der ersten - A -
PWM-Phase stattfindenden Anzugsimpulses, Tastverhältnis oder Stromhöhe während einer Haltephase des Bremsimpulses, Tastverhältnis oder Stromhöhe am Ende einer Haltephase des Bremsimpulses.
Auswirkungen auf den Bremsimpuls hat es ferner, wenn das Tastverhältnis oder die Stromhöhe am Ende einer Haltephase des Bremsimpulses erhöht wird. Dies kann bei einer diskreten Endstufe durch eine Änderung des Tastverhältnisses, bei einer stromgeregelten Endstufe durch Steuerung des Stromniveaus erzielt werden. Ebenso sind Endstufen denkbar, bei denen sich stromgeregelte Phasen und PWM-gesteuerte Phasen abwechseln. Die Nutzung dieser Eingriffsmöglichkeiten zur Ausgabe eines angepassten Bremsimpulses kann hierbei abschnittsweise erfolgen.
Insgesamt hat es sich zur Geräuschminderung als vorteilhaft herausgestellt, wenn bei einer elektromagnetischen Betätigungseinrichtung mit höherer Effizienz der Bremsimpuls später liegt und/oder kürzer dauert und/oder schwächer ausgeprägt ist als bei einer elektromagnetischen Betätigungseinrichtung mit niedrigerer Effizienz.
Zur Detektion, ob das Magnetventil gerade nicht mehr schließt oder gerade erst öffnet, kann eine Abweichung eines Istdrucks im Kraftstoffrail von einem Solldruck herangezogen werden. Dem liegt beispielsweise bei einem stromlos offenen Mengensteuerventil der Gedanke zugrunde, dass es bei dem Adaptionsverfahren dann, wenn die Bestromung der elektromagnetischen Betätigungseinrichtung so weit abgesenkt wurde, dass das Mengensteuerventil nicht mehr schließt, zu einem Druckabfall oder sogar zu einem Druckzusammenbruch im Kraftstoffrail kommt, da dann die Hochdruckpumpe keinerlei Kraftstoff mehr fördert.
Der Parameter eines Bremsimpulses kann auch die Form des Bremsimpulses sein, die in einfacher Weise durch Abfolgen mehrerer PWM-Phasen, mehrere Anzugsimpulsphasen ohne PWM, stromgeregelte Phasen, definierte Stufenlöschungen und/oder Zenerlöschungen definiert wird.
Eine weitere Maßnahme zur Reduzierung der Geräuschemissionen besteht darin, dass eine bestromte Haltephase der elektromagnetischen Betätigungseinrichtung zwar während eines Förderhubs beginnt, jedoch erst kurz nach dem Ende des Förderhubs beendet wird. Hierdurch werden Toleranzen der Bewegung eines Kolbens der Hochdruckpumpe und somit einer Lage des oberen Totpunkts zwischen Förder- und Saugphase verringert.
Um einen unrunden Geräuscheindruck durch stochastische Effekte bei der Verwendung einer diskreten Endstufe, also einer Ansteuerung der elektromagnetischen Betätigungseinrichtung mit pulsweiten Modulation zu vermeiden, wird vorgeschlagen, dass eine Haltephase bei einer definierten, beispielsweise fallenden PWM-Flanke beendet wird. Damit wird der Beginn einer
Löschung des Spulenstroms bei einem definierten Stromniveau eingeleitet. Das Ventilelement fällt daher in reproduzierbarer Weise ab, wodurch eine Variation der Wirkung des Bremsimpulses vermieden wird.
Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:
Figur 1 eine schematische Darstellung eines Kraftstoffeinspritzsystems einer
Brennkraftmaschine mit einer Hochdruckpumpe und einem Mengensteuerventil;
Figur 2 einen teilweisen Schnitt durch das Mengensteuerventil von Figur 1 ;
Figur 3 eine schematische Darstellung verschiedener Funktionszustände der Hochdruckpumpe und des Mengensteuerventils von Figur 1 mit einem zugehörigen Zeitdiagramm;
Figur 4 drei Diagramme, in denen eine Ansteuerspannung, eine Bestromung einer Magnetspule, und ein Hub eines Ventilelements des Mengensteuerventils von Figur 1 über der Zeit aufgetragen sind, bei
Durchführung eines Adaptionsverfahrens;
Figur 5 ein Diagramm, in dem ein Verlauf einer Bestromung des
Mengensteuerventils von Figur 1 über der Zeit bei Realisierung eines Bremsimpulses aufgetragen ist; Figur 6 ein Diagramm ähnlich zu Figur 5, bei einer Variante des Stromverlaufs; und
Figur 7 ein Flussdiagramm eines Verfahrens zum Betreiben des Kraftstoffeinspritzsystems von Figur 1.
Ein Kraftstoffeinspritzsystem trägt in Figur 1 insgesamt das Bezugszeichen 10. Es umfasst eine elektrische Kraftstoffpumpe 12, mit der Kraftstoff aus einem Kraftstofftank 14 zu einer Hochdruckpumpe 16 gefördert wird. Die Hochdruckpumpe 16 verdichtet den Kraftstoff auf einen sehr hohen Druck und fördert ihn weiter in ein Kraftstoffrail 18. An dieses sind mehrere Injektoren 20 angeschlossen, die den Kraftstoff in ihnen zugeordnete Brennräume einspritzen. Der Druck im Kraftstoffrail 18 wird von einem Drucksensor 22 erfasst.
Bei der Hochdruckpumpe 16 handelt es sich um eine Kolbenpumpe mit einem Förderkolben 24, der von einer nicht gezeigten Nockenwelle in eine Hin- und Herbewegung (Doppelpfeil 26) versetzt werden kann. Der Förderkolben 24 begrenzt einen Förderraum 28, der über ein Mengensteuerventil 30 mit dem Auslass der elektrischen Kraftstoffpumpe 12 verbunden werden kann. Über ein Auslassventil 32 kann der Förderraum 28 ferner mit dem Kraftstoffrail 18 verbunden werden.
Das Mengensteuerventil 30 umfasst eine elektromagnetische Betätigungseinrichtung 34, die im bestromten Zustand gegen die Kraft einer Feder 36 arbeitet. Im stromlosen Zustand ist das Mengensteuerventil 30 offen, im bestromten Zustand hat es die Funktion eines normalen Einlass- Rückschlagventils. Der genaue Aufbau des Mengensteuerventils 30 geht aus Figur 2 hervor:
Das Mengensteuerventil 30 umfasst ein scheibenförmiges Ventilelement 38, welches von einer Ventilfeder 40 gegen einen Ventilsitz 42 beaufschlagt wird. Die letztgenannten drei Elemente bilden das oben erwähnte Einlass- Rückschlagventil.
Die elektromagnetische Betätigungseinrichtung 34 umfasst eine Magnetspule 44, die mit einem Magnetanker 46 eines Betätigungsstößels 48 zusammenarbeitet. Die Feder 36 beaufschlagt den Betätigungsstößel 48 bei stromloser Magnetspule 44 gegen das Ventilelement 38 und zwingt dieses in seine geöffnete Stellung. Die entsprechende Endstellung des Betätigungsstößels 48 wird durch einen ersten Anschlag 50 definiert. Bei bestromter Magnetspule wird der Betätigungsstößel 48 gegen die Kraft der Feder 36 vom Ventilelement 38 weg gegen einen zweiten Anschlag 52 bewegt.
Die Hochdruckpumpe 16 und das Mengensteuerventil 30 arbeiten folgendermaßen (siehe Figur 3):
In Figur 3 ist oben ein Hub des Kolbens 34 und darunter eine Bestromung der Magnetspule 44 über der Zeit aufgetragen. Außerdem ist die Hochdruckpumpe 16 in verschiedenen Betriebszuständen schematisch gezeigt. Während eines Saughubs (linke Darstellung in Figur 3) ist die Magnetspule 44 stromlos, wodurch der Betätigungsstößel 48 durch die Feder 36 gegen das Ventilelement 38 gedrückt wird und dieses in seine geöffnete Stellung bewegt. Auf diese Weise kann Kraftstoff von der elektrischen Kraftstoffpumpe 12 in den Förderraum 28 strömen. Nach dem Erreichen des unteren Totpunktes UT beginnt der Förderhub des Förderkolbens 24. Dies ist in Figur 2 in der Mitte dargestellt. Die Magnetspule 44 ist weiter stromlos, wodurch das Mengensteuerventil 30 weiterhin zwangsweise geöffnet ist. Der Kraftstoff wird vom Förderkolben 24 über das geöffnete Mengensteuerventil 30 zur elektrischen Kraftstoffpumpe 12 ausgestoßen. Das Auslassventil 32 bleibt geschlossen. Eine Förderung in das Kraftstoffrail 18 findet nicht statt. Zu einem Zeitpunkt t-i wird die Magnetspule 44 bestromt, wodurch der Betätigungsstößel 48 vom Ventilelement 38 weggezogen wird. Dabei sei an dieser Stelle darauf hingewiesen, dass in Figur 3 der Verlauf der Bestromung der Magnetspule 44 nur schematisch dargestellt ist. Wie weiter unten noch ausgeführt werden wird, ist der tatsächliche Spulenstrom nicht konstant, sondern aufgrund von Gegeninduktionseffekten unter Umständen abfallend. Bei einer pulsweitenmodulierten Ansteuerspannung ist darüber hinaus der Spulenstrom wellen- bzw. zackenförmig.
Aufgrund des Drucks im Förderraum 28 legt sich das Ventilelement 38 an den Ventilsitz 42 an, das Mengensteuerventil 30 ist also geschlossen. Nun kann sich im Förderraum 28 ein Druck aufbauen, der zu einem Öffnen des Auslassventils 32 und zu einer Förderung in das Kraftstoffrail 18 führt. Dies ist in Figur 3 ganz rechts dargestellt. Kurz nach dem Erreichen des oberen Totpunktes OT des Förderkolbens 24 wird die Bestromung der Magnetspule 44 beendet, wodurch das Mengensteuerventil 30 wieder in seine zwangsweise geöffnete Position gelangt.
Durch eine Variation des Zeitpunktes t-i wird die von der Hochdruckpumpe 16 zum Kraftstoffrail 18 geförderte Kraftstoff menge beeinflusst. Der Zeitpunkt ti wird von einer Steuer- und Regeleinrichtung 54 (Figur 1 ) so festgelegt, dass ein Istdruck im Kraftstoffrail 18 möglichst genau einem Solldruck entspricht. Hierzu werden in der Steuer- und Regeleinrichtung 54 vom Drucksensor 22 gelieferte Signale verarbeitet.
Beim Beenden der Bestromung der Magnetspule 44 wird der Betätigungsstößel 48 wieder gegen den ersten Anschlag 50 bewegt. Um die Auftreffgeschwindigkeit am ersten Anschlag 50 zu reduzieren, wird ein Bremsimpuls 56 erzeugt, durch den die Bewegungsgeschwindigkeit des Betätigungsstößels 48 kurz vor dem Auftreffen auf dem ersten Anschlag 50 reduziert wird.
Bei dem in Figur 1 gezeigten Kraftstoffeinspritzsystem 10 hängt mindestens ein Parameter des Bremsimpulses 56 von der Effizienz der elektromagnetischen Betätigungseinrichtung 34 ab. Diese Effizienz wird durch ein Adaptionsverfahren bestimmt, welches nun unter Bezugnahme auf Figur 4 erläutert wird. Danach wird nach einem ersten Arbeitsspiel der Hochdruckpumpe 16 (ein Arbeitsspiel besteht aus einem Saughub und einem Förderhub) ein Tastverhältnis einer pulsweitenmodulierten Ansteuerspannung nach einem ersten sogenannten "Anzugsimpuls" 58 auf einen ersten Wert eingestellt, bei dem sichergestellt ist, dass der Betätigungsstößel 48 vom Ventilelement 38 weggezogen wird. Der entsprechende Verlauf des Spulenstroms ist in Figur 4 mit 60a bezeichnet. Man erkennt, dass aufgrund der Bewegung des Betätigungsstößels 48 und des mit diesem gekoppelten Magnetankers 46 in der Magnetspule 44 eine Gegeninduktion erzeugt wird, die zu einer Reduzierung des effektiven Spulenstroms führt. Die Bewegung des Betätigungsstößels 48 und des Ventilelements 38, also deren Hub H ist für diesen Fall in Figur 4 mit 62a bezeichnet. Bei einem nachfolgenden Arbeitsspiel wird das Tastverhältnis so eingestellt, dass sich eine niedrigere effektive Bestromung der Magnetspule 44 ergibt, entsprechend einer Kurve 60b in Figur 4. In der Folge ergibt sich eine verzögerte Bewegung des Betätigungsstößels 48 und des Ventilelements 38, entsprechend der Kurve 62b. Das Tastverhältnis wird sukzessive weiter verändert, so dass der effektive Spulenstrom weiter sinkt. Bei einem exemplarisch als Kurve 60c gezeigten Spulenstrom, entsprechend einem "Grenz-Tastverhältnis", wird der Betätigungsstößel 48 nicht mehr ausreichend vom Ventilelement 38 wegbewegt, das Mengensteuerventil 30 bleibt also geöffnet (Kurve 62c). Es findet somit keine Förderung von Kraftstoff in das Kraftstoffrail 18 statt. Dies wiederum führt aufgrund des Kraftstoffabflusses mittels der Injektoren 20 aus dem Kraftstoffrail 18 zu einem starken Druckabfall im Kraftstoffrail 18, also zu einer starken und plötzlichen Abweichung des Istdrucks im Kraftstoffrail 18 vom Solldruck, was vom Steuer- und Regelgerät 54 erkannt wird. Mit diesem Adaptionsverfahren kann also jenes Tastverhältnis ermittelt werden, bei dem das Mengensteuerventil 30 gerade nicht mehr beziehungsweise gerade noch öffnet.
Dieses auch als "Endwert" bezeichenbare Grenz-Tastverhältnis wird zur Charakterisierung der Effizienz der elektromagnetischen Betätigungseinrichtung 34 verwendet. Ein Mengensteuerventil 30 mit einer effizienteren elektromagnetischen Betätigungseinrichtung 34 weist nämlich einen niedrigeren Endwert auf als ein Mengensteuerventil 30 mit einer ineffizienteren elektromagnetischen Betätigungseinrichtung 34. Die so festgestellte Effizienz der individuellen elektromagnetischen Betätigungseinrichtung 34 wird nun zur Parametrierung des Bremsimpulses 56 verwendet. Zusätzlich wird für die Parametrierung des Bremsimpulses noch das Niveau einer Versorgungsspannung beispielsweise einer Batterie eines Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, und eine Temperatur beispielsweise des Kraftstoffes verwendet. Als Parameter des Bremsimpulses 56 kann ein Beginn des Bremsimpulses dienen, eine Dauer einer pulsweitenmodulierten Phase oder (bei einer stromgeregelten Endstufe) die Dauer einer stromgeregelten Phase des Bremsimpulses 56. Auch die Dauer des vor der pulsweitenmodulierten Phase stattfindenden Anzugsimpulses 58 kann ein solcher Parameter sein, ferner ein Tastverhältnis oder eine Stromhöhe während der Haltephase vor dem Bremsimpuls 56, und/oder ein Tastverhältnis oder eine Stromhöhe am Ende der Haltephase vor dem Bremsimpuls 56. Nun wird auf Figur 5 Bezug genommen: In dieser ist ein Spulenstrom 60 über der Zeit aufgetragen, einschließlich des Bremsimpulses 56. Man erkennt eine Haltephase 64, die sich über den oberen Totpunkt in die Saugphase hinein erstreckt. Man erkennt, dass die Haltephase 64 bei einer fallenden Flanke des pulsweitenmodulierten Spannungssignals beendet wird. Dabei fällt der Strom zunächst frei ab ("Freilauf"), ehe durch Anlegen eines Gegenstroms eine Schnelllöschung durchgeführt wird. Freilauf und Schnelllöschung liegen innerhalb eines Zeitraums 66, der vom Ende der Haltephase bis zum Beginn des Bremsimpulses 56 verstreicht. Der Bremsimpuls 56 selbst wird wiederum ein pulsweitenmoduliertes Signal erzeugt, dessen Dauer in Figur 5 mit 68 bezeichnet ist. Wie aus Figur 6 ersichtlich ist, kann am Ende der Haltephase 64 das Tastverhältnis so geändert werden, dass sich eine Erhöhung des effektiven Spulenstroms 60 ergibt. Die Form des Bremsimpulses 56 kann durch Abfolgen mehrerer pulsweiten modulierter Phasen, Anzugsimpulsphasen ohne pulsweiten Modulation, stromgeregelte Phasen, definierte Stufenlöschungen, und/oder Zenerlöschungen definiert werden. Insgesamt wird man zur Geräuschreduktion den Bremsimpuls 56 bei einer elektromagnetischen Betätigungseinrichtung 34 mit höherer Effizienz eher später legen und/oder kürzer dauern lassen und/oder schwächer ausprägen als bei einer elektromagnetischen Betätigungseinrichtung 34 mit niedrigerer Effizienz.
In Figur 7 ist ein Verfahren zum Betreiben des Kraftstoffeinspritzsystems 10 dargestellt. In 70 wird auf der Basis des Signals des Drucksensors 22 der Istdruck im Kraftstoffrail 18 mit dem Solldruck verglichen. Mit dem oben in Zusammenhang mit Figur 4 erläuterten Adaptionsverfahren wird in 72 der Endwert des Tastverhältnisses und hieraus eine die Effizienz der elektromagnetischen Betätigungseinrichtung 34 charakterisierende Größe ermittelt. Durch die Verwendung eines solchen Tastverhältnisses, das das Mengensteuerventil 30 gerade noch schließt, wird bereits eine reduzierte Geschwindigkeit beim Anschlagen des Betätigungsstößels 48 am zweiten Anschlag 52 und hierdurch eine Geräuschreduzierung erreicht (Block 74). In 76 werden die Spannung der Fahrzeugbatterie und die Temperatur des Kraftstoffes erfasst. Diese erfassten Werte werden in 78 zusammen mit der aus dem Verfahren von 72 ermittelten Effizienz der elektromagnetischen Betätigungseinrichtung 34 für die Parametrierung des Bremsimpulses 56 verwendet. Hierdurch ergibt sich in 80 eine Geräuschreduzierung beim Anschlagen des Betätigungsstößels 48 an dem ersten Anschlag 50.
Bei einer nicht gezeigten Ausführungsform wird ein Bremsimpuls nur unterhalb einer bestimmten Drehzahl einer Kurbelwelle der Brennkraftmaschine oder einer Antriebswelle der Hochdruckpumpe 16 erzeugt. Bei einer weiteren nicht gezeigten Ausführungsform wird der Bremsimpuls auch oberhalb einer solchen Drehzahl erzeugt, es erfolgt oberhalb dieser Drehzahl aber keine Anpassung des Bremsimpulses mehr.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Kraftstoffeinspritzsystems (10) einer Brennkraftmaschine, bei dem Kraftstoff von einer Hochdruckpumpe (16) in ein Kraftstoffrail (18) gefördert wird, und bei dem die Menge des geförderten Kraftstoffs durch ein von einer elektromagnetischen Betätigungseinrichtung (34) betätigtes Mengensteuerventil beeinflusst wird, dadurch gekennzeichnet, dass mindestens ein Parameter eines Bremsimpulses (56) der elektromagnetischen Betätigungseinrichtung (34) von einer Effizienz der elektromagnetischen Betätigungseinrichtung und/oder von einer Spannung einer Spannungsquelle und/oder von einer Temperatur, insbesondere einer Komponente des Kraftstoffeinspritzsystems (10) oder der Brennkraftmaschine, abhängt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in einem Adaptionsverfahren eine der elektromagnetischen Betätigungseinrichtung zugeführte Energie von einem Startwert sukzessive bis zu einem solchen Endwert verändert wird, bei dem ein Schließen beziehungsweise Öffnen des Magnetsteuerventils 30 wenigstens mittelbar nicht mehr bzw. gerade erst detektiert wird, und dass der Endwert oder eine auf diesem basierende Größe zur Charakterisierung der Effizienz der elektromagnetischen Betätigungseinrichtung (34) verwendet wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Parameter ein Beginn des Bremsimpulses, eine Dauer einer PWM-Phase oder einer stromgeregelten Phase des Bremsimpulses, eine Dauer eines vor der ersten PWM-Phase stattfindenden Anzugsimpulses, ein Tastverhältnis oder eine Stromhöhe während einer Haltephase vor dem Bremsimpuls, und/oder ein Tastverhältnis oder eine Stromhöhe am Ende einer Haltephase vor dem Bremsimpuls ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer elektromagnetischen Betätigungseinrichtung (34) mit höherer Effizienz der Bremsimpuls (56) später liegt und/oder kürzer dauert und/oder schwächer ausgeprägt ist als bei einer elektromagnetischen Betätigungseinrichtung (34) mit niedrigerer Effizienz.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Öffnen beziehungsweise Schließen des Magnetventils (30) detektiert wird, indem eine Abweichung eines Istdrucks im Kraftstoffrail (18) von einem Solldruck überwacht wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Form des Bremsimpulses (56) durch Abfolgen mehrerer PWM-Phasen, Anzugsimpulsphasen ohne PWM, stromgeregelte Phasen, definierte Stufenlöschungen, und/oder Zenerlöschungen definiert wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine bestromte Haltephase (64) der elektromagnetischen Betätigungseinrichtung (34) während eines Förderhubs beginnt und nach dem Ende des Förderhubs beendet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer Ansteuerung mit PWM eine Haltephase (64) bei einer definierten, beispielsweise fallenden PWM-Flanke beendet wird.
9. Computerprogramm, dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der vorhergehenden Ansprüche programmiert ist.
10. Elektrisches Speichermedium für eine Steuer- und/oder Regeleinrichtung (54) eines Kraftstoff-Einspritzsystems (10), dadurch gekennzeichnet, dass auf ihm ein Computerprogramm zur Anwendung in einem Verfahren der Ansprüche 1 bis 9 abgespeichert ist.
1. Steuer- und/oder Regeleinrichtung (54) für ein Kraftstoff-Einspritzsystem (10), dadurch gekennzeichnet, dass sie zur Anwendung in einem Verfahren nach einem der Ansprüche 1 bis 9 programmiert ist.
EP09764836.4A 2008-12-11 2009-12-07 Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine Active EP2376761B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054512.0A DE102008054512B4 (de) 2008-12-11 2008-12-11 Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
PCT/EP2009/066483 WO2010066663A1 (de) 2008-12-11 2009-12-07 Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2376761A1 true EP2376761A1 (de) 2011-10-19
EP2376761B1 EP2376761B1 (de) 2015-11-04

Family

ID=41566096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764836.4A Active EP2376761B1 (de) 2008-12-11 2009-12-07 Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine

Country Status (7)

Country Link
US (1) US9121360B2 (de)
EP (1) EP2376761B1 (de)
JP (1) JP5254461B2 (de)
KR (1) KR101666693B1 (de)
CN (1) CN102245881B (de)
DE (1) DE102008054512B4 (de)
WO (1) WO2010066663A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008054513A1 (de) * 2008-12-11 2010-06-17 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
DE102009046783A1 (de) 2009-11-17 2011-05-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Mengensteuerventils
DE102009046825A1 (de) 2009-11-18 2011-05-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Mengensteuerventils
CN103180587B (zh) * 2010-10-28 2016-04-13 舍弗勒技术股份两合公司 用于控制执行机构或阀的方法
EP2453122B1 (de) * 2010-11-12 2016-09-07 Hitachi, Ltd. Verfahren und Steuergerät zur Steuerung einer Hochdruckkraftstoffförderpumpe zur Speisung von Kraftstoff unter Druck in einen Verbrennungsmotor
DE102011075270A1 (de) * 2011-05-04 2012-11-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Ventils
JP5798799B2 (ja) * 2011-05-30 2015-10-21 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
JP5639970B2 (ja) * 2011-08-03 2014-12-10 日立オートモティブシステムズ株式会社 電磁弁の制御方法、高圧燃料供給ポンプの電磁吸入弁の制御方法および電磁吸入弁の電磁駆動機構の制御装置
US9013124B2 (en) * 2012-02-14 2015-04-21 Texas Instruments Incorporated Reverse current protection control for a motor
DE102012211798B4 (de) 2012-07-06 2019-12-05 Robert Bosch Gmbh Verfahren zur Betätigung eines Schaltelements einer Ventileinrichtung
DE102012212242A1 (de) 2012-07-12 2014-01-16 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Aktuators
US9671033B2 (en) * 2012-12-11 2017-06-06 Hitachi, Ltd. Method and apparatus for controlling a solenoid actuated inlet valve
JP6044366B2 (ja) * 2013-01-30 2016-12-14 株式会社デンソー 高圧ポンプの制御装置
DE102013203130A1 (de) * 2013-02-26 2014-08-28 Robert Bosch Gmbh Verfahren zur Steuerung eines Einspritzvorgangs eines Magnetinjektors
DE102013206674A1 (de) * 2013-04-15 2014-10-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Mengensteuerventils
JP6079487B2 (ja) * 2013-07-18 2017-02-15 株式会社デンソー 高圧ポンプの制御装置
FR3011280B1 (fr) * 2013-10-02 2019-05-10 Continental Automotive France Procede de determination d'une temporisation optimale entre une commande d'actionnement et une commande de test d'un obturateur mobile d'une electrovanne
DE102014203538A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Verfahren zur geräuschmindernden Steuerung von schaltbaren Ventilen, insbesondere von Einspritzventilen einer Brennkraftmaschine eines Kraftfahrzeugs
DE102014206231A1 (de) * 2014-04-02 2015-10-08 Continental Automotive Gmbh Verfahren zum Betreiben einer Hochdruckpumpe eines Einspritzsystems und Einspritzsystem
KR101556627B1 (ko) 2014-05-21 2015-10-02 주식회사 현대케피코 이중 완충구조를 가지는 내연기관용 고압 펌프
DE102015217955A1 (de) 2014-10-21 2016-04-21 Robert Bosch Gmbh Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
WO2016117400A1 (ja) * 2015-01-21 2016-07-28 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料供給装置
DE102015201463A1 (de) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Verfahren zum Betreiben einer Kolbenpumpe, einer Steuereinrichtung und Kolbenpumpe
DE102015202389A1 (de) * 2015-02-11 2016-08-11 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102015206729A1 (de) 2015-04-15 2016-10-20 Continental Automotive Gmbh Steuern eines Kraftstoffeinspritz-Magnetventils
DE102015207274A1 (de) * 2015-04-22 2016-10-27 Robert Bosch Gmbh Verfahren zur geräuschmindernden Ansteuerung von schaltbaren Ventilen, insbesondere von Einspritzventilen einer Brennkraftmaschine eines Kraftfahrzeugs
JP6432471B2 (ja) 2015-09-08 2018-12-05 株式会社デンソー 高圧燃料ポンプの電磁弁の制御装置及び高圧燃料ポンプの電磁弁の制御方法
JP6710045B2 (ja) 2015-12-25 2020-06-17 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプの制御方法およびそれを用いた高圧燃料供給ポンプ
DE102016219890B3 (de) 2016-10-12 2017-08-03 Continental Automotive Gmbh Verfahren und Steuereinrichtung zum Steuern eines Schaltventils
DE102016219956B3 (de) * 2016-10-13 2017-08-17 Continental Automotive Gmbh Verfahren zum Einstellen eines Dämpfungsstroms eines Einlassventils eines Kraftfahrzeug-Hochdruckeinspritzsystems, sowie Steuervorrichtung, Hochdruckeinspritzsystem und Kraftfahrzeug
DE102016224682A1 (de) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Verfahren zur Erwärmung eines Gasventils, insbesondere eines Kraftstoffinjektors
IT201700050454A1 (it) * 2017-05-10 2018-11-10 Magneti Marelli Spa Metodo per il controllo di un dispositivo attuatore per un motore a combustione interna
DE102017209272A1 (de) * 2017-06-01 2018-12-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Förderpumpe
CN112576398B (zh) * 2020-12-08 2022-11-29 潍柴动力股份有限公司 一种发动机控制方法、装置及车辆

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213181A (en) * 1978-06-22 1980-07-15 The Bendix Corporation Energy dissipation circuit for electromagnetic injection
JPS5629273U (de) * 1979-08-14 1981-03-19
EP0670419B1 (de) * 1994-02-04 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha System zur Abschätzung des Luft/Kraftstoffverhältnisses für eine Brennkraftmaschine
US5975053A (en) 1997-11-25 1999-11-02 Caterpillar Inc. Electronic fuel injection quiet operation
JP2001207878A (ja) * 2000-01-21 2001-08-03 Toyota Motor Corp 電磁駆動弁を有する多気筒内燃機関
US6718935B2 (en) * 2000-01-24 2004-04-13 International Engine Intellectual Property Company, Llc Hydraulic fuel system
JP2001248517A (ja) * 2000-03-01 2001-09-14 Mitsubishi Electric Corp 可変吐出量燃料供給装置
US6382532B1 (en) * 2000-08-23 2002-05-07 Robert Bosch Corporation Overmold constrained layer damper for fuel injectors
US6332455B1 (en) * 2000-10-17 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Device for controlling fuel injection
DE60012331T2 (de) * 2000-10-19 2005-07-21 Mitsubishi Denki K.K. Vorrichtung zum Steuern der Kraftstoffeinspritzung
DE10052629A1 (de) * 2000-10-24 2002-05-08 Bosch Gmbh Robert Kraftstoffhochdruckpumpe mit veränderlicher Fördermenge
JP4110751B2 (ja) * 2001-06-18 2008-07-02 株式会社日立製作所 インジェクタ駆動制御装置
DE10148218B4 (de) * 2001-09-28 2005-08-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm, Steuer- und/oder Regelgerät, sowie Kraftstoffsystem für eine Brennkraftmaschine
DE60129329D1 (de) * 2001-10-15 2007-08-23 St Microelectronics Srl Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung eines Verbrennungsmotors, insbesondere eines Dieselmotors
JP3851140B2 (ja) * 2001-10-30 2006-11-29 ボッシュ株式会社 流量制御用電磁比例制御弁の駆動方法
JP3846272B2 (ja) * 2001-11-07 2006-11-15 株式会社デンソー 蓄圧式燃料噴射装置
DE10230267A1 (de) * 2002-07-05 2004-01-22 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Fluid-Dosiervorrichtung und Common-Rail-Injektor
DE10235196B4 (de) 2002-08-01 2013-07-11 Robert Bosch Gmbh Verfahren zum Ansteuern eines elektromagnetisch betätigten Schaltventils sowie eine Anlage mit einem solchen Schaltventil
US7111593B2 (en) * 2004-01-29 2006-09-26 Ford Global Technologies, Llc Engine control to compensate for fueling dynamics
US7128281B2 (en) * 2004-06-03 2006-10-31 Siemens Vdo Automotive Corporation Modular fuel injector with a damper member and method of reducing noise
US7258287B2 (en) * 2004-06-03 2007-08-21 Siemens Vdo Automotive Corporation Modular fuel injector with a spiral damper member and method of reducing noise
US7431226B2 (en) * 2004-06-03 2008-10-07 Continental Automotive Systems Us, Inc. Modular fuel injector with a harmonic annular damper member and method of reducing noise
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
US7013876B1 (en) * 2005-03-31 2006-03-21 Caterpillar Inc. Fuel injector control system
DE102006043677A1 (de) 2005-12-12 2007-06-14 Robert Bosch Gmbh Verfahren zur Ansteuerung eines Magnetventils
DE102006002893B3 (de) * 2006-01-20 2007-07-26 Siemens Ag Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
EP1843027B1 (de) * 2006-04-03 2018-12-19 Delphi International Operations Luxembourg S.à r.l. Treiberschaltung für eine Einspritzventilanordnung und Diagnosemethode
JP4582064B2 (ja) * 2006-07-21 2010-11-17 株式会社デンソー 燃料噴射制御装置
DE102007020968A1 (de) 2007-05-04 2008-11-06 Robert Bosch Gmbh Verfahren zum Ansteuern einer Hochdruck-Komponente
JP4691523B2 (ja) * 2007-05-09 2011-06-01 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の制御回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010066663A1 *

Also Published As

Publication number Publication date
CN102245881B (zh) 2014-02-05
JP5254461B2 (ja) 2013-08-07
US9121360B2 (en) 2015-09-01
KR20110106847A (ko) 2011-09-29
EP2376761B1 (de) 2015-11-04
KR101666693B1 (ko) 2016-10-17
WO2010066663A1 (de) 2010-06-17
JP2012511658A (ja) 2012-05-24
DE102008054512A1 (de) 2010-06-17
US20110288748A1 (en) 2011-11-24
DE102008054512B4 (de) 2021-08-05
CN102245881A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
EP2376761B1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine
EP2376762B1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE102007035316B4 (de) Verfahren zur Steuerung eines Magnetventils einer Mengensteuerung in einer Brennkraftmaschine
EP2379868B1 (de) Verfahren zur regelung eines magnetventils einer mengensteuerung in einer brennkraftmaschine
DE102004019152B4 (de) Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung
DE102012211798B4 (de) Verfahren zur Betätigung eines Schaltelements einer Ventileinrichtung
DE102011085277A1 (de) Verfahren zum Betreiben eines Schaltventils
EP2724011B1 (de) Verfahren und vorrichtung zum betreiben einer kraftstofffördereinrichtung einer brennkraftmaschine
EP2986835A1 (de) Verfahren und vorrichtung zur ansteuerung eines mengensteuerventils
WO2012175248A1 (de) Verfahren zum betreiben einer kraftstofffördereinrichtung
EP2852748B1 (de) Verfahren zum betreiben eines kraftstoffsystems für eine brennkraftmaschine
EP2501916B1 (de) Verfahren und vorrichtung zur ansteuerung eines mengensteuerventils
EP2501917B1 (de) Verfahren und vorrichtung zur ansteuerung eines mengensteuerventils
WO2018010897A1 (de) Ansteuerverfahren zum ansteuern eines einlassventils einer kraftstoffhochdruckpumpe und kraftstoffeinspritzsystem
DE102016216343A1 (de) Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Einlassventils
DE102015214940A1 (de) Verfahren zum Ansteuern einer Hochdruckpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 759372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011809

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011809

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

26N No opposition filed

Effective date: 20160805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 759372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201222

Year of fee payment: 12

Ref country code: FR

Payment date: 20201217

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201230

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 15