EP2363912A1 - Diplexer für eine Reflektorantenne - Google Patents

Diplexer für eine Reflektorantenne Download PDF

Info

Publication number
EP2363912A1
EP2363912A1 EP11001735A EP11001735A EP2363912A1 EP 2363912 A1 EP2363912 A1 EP 2363912A1 EP 11001735 A EP11001735 A EP 11001735A EP 11001735 A EP11001735 A EP 11001735A EP 2363912 A1 EP2363912 A1 EP 2363912A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
signal
diplexer
mode
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11001735A
Other languages
English (en)
French (fr)
Other versions
EP2363912B1 (de
Inventor
Ralf Gehring
Christian Hartwanger
Un Pyo Hong
Enrico Reiche
Michael Dr. Schneider
Ernst Sommer
Helmut Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Publication of EP2363912A1 publication Critical patent/EP2363912A1/de
Application granted granted Critical
Publication of EP2363912B1 publication Critical patent/EP2363912B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2133Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/162Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion absorbing spurious or unwanted modes of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters

Definitions

  • the invention relates to a diplexer for a reflector antenna for transmitting microwave signals.
  • the invention further relates to a method for processing a received signal fed into a diplexer.
  • beacon signal emitted by the remote station is used.
  • a directional diagram with a zero point in the main beam direction is required.
  • an additional signal is received, which can be used to correct the direction deviation.
  • the transmission, separation and evaluation of the beacon signal is in addition to the transmission of the actual communication signal.
  • the beacon signal must not influence the communication signal.
  • a reflector antenna for transmitting microwave signals typically includes a diplexer having a common signal waveguide for transmitting a transmit signal and a receive signal.
  • the common signal waveguide includes first and second ends. Connected to the first end of the common signal waveguide is a horn, via which a decoupling of the transmission signal and an injection of the transmission signal into the common signal waveguide takes place.
  • the common signal waveguide is usually coupled to a plurality of waveguide gates for feeding the transmit signal into the diplexer and for coupling the received signal from the diplexer in a receiving network.
  • the waveguide gates are, for example, symmetrically distributed on the outside of the common signal waveguide and in each case communicatively connected to the common signal waveguide.
  • the purpose of the diplexer is to process a mode mixture of modes of the received signal in such a way that it is possible to distinguish between the actual communication signal and correction data for the communication signal.
  • the diplexer must correctly transmit a transmission signal fed into the plurality of signal waveguides for coupling out through the horn.
  • a coaxial diplexer for a reflector antenna for transmitting microwave signals comprises a first circular waveguide in which a first signal can propagate. It further comprises a second, circular waveguide, in which a second signal can propagate at a lower frequency than the first signal, wherein the second waveguide surrounds the first waveguide.
  • a portion of the second waveguide is formed as a groove waveguide having a number of itself along a circumferentially annularly extending grooves.
  • the US 2003/0222733 A1 discloses the separation of modes by reducing the diameter of the horn below the critical diameter by means of a virtual short circuit. A common decoupling of received signal (from the perspective of the satellite) and tracking signal with simultaneous separation of the transmission signal is not possible.
  • the disclosure relates to ground station applications where due to reverse assignment of transmit and receive bands the indicated feed system structure can be used. Filters are mandatory in the side arms.
  • the invention provides a diplexer for a reflector antenna for transmitting microwave signals. It comprises a common, circular signal waveguide for transmitting a transmission signal and a reception signal comprising a first end and a second end, wherein at the first end a common gate is formed.
  • the diplexer further comprises a waveguide arrangement, which is arranged in the region of a second end of the signal waveguide coaxial with the signal waveguide. Further, a cylindrical coupling portion is provided, which is arranged between the first and the second end of the signal waveguide and connects the waveguide arrangement with the common signal waveguide.
  • the invention is characterized in that the waveguide arrangement for forming a first and second coaxial waveguide gate comprises a first, circular and a second circular waveguide.
  • a first signal can propagate during operation of the diplexer, wherein an inner conductor is arranged in the interior of the first waveguide.
  • a received signal also referred to as receiving band hereinafter
  • a second signal may propagate at a lower frequency than the first signal, wherein the second waveguide surrounds the first waveguide.
  • the invention further provides a method for processing a signal fed into a diplexer according to the invention.
  • a TE11 mode is fed into the common port.
  • a TM11 mode is excited in the signal waveguide and superimposed with the TE11 mode such that the entire energy of the second signal (in the transmission band) by a constructive superposition of outer field components and a destructive superposition of inner field components in the second, outer waveguide flows and that the entire energy of the first signal (in the receiving band) flows through a constructive superposition of internal field components and a destructive superposition of external field components in the first, inner waveguide.
  • the first signal (in the receiving band) is transferred at feeding the TM01 mode at the common gate in the TEM mode of the first waveguide. From the TE11 mode and the TM01 mode of the first signal (in the receiving band), an information for aligning the reflector antenna is determined by processing the modes.
  • the invention thus proposes to separate the transmit and receive signal and at the same time to perform a transformation of the mode TM01 in the TEM mode in the receive band, so that a tracking signal for antenna alignment is available in the receive band in addition to the communication signal.
  • This is made possible by the use of an inner conductor, which is arranged in the interior of the first waveguide.
  • An advantage of this procedure is that the sum and difference signals required for the tracking are coupled out under the same conditions, in particular at the same temperature. As a result, phase errors are avoided by different temperatures in the RF paths.
  • Another advantage is that the tracking signal is decoupled only after the transmit and receive signals have been separated. As a result, disturbances of the transmission signal are avoided by a Trackingmodenkoppler.
  • the diplexer according to the invention is a coaxial diplexer. This is due to the coaxial arrangement of the first, circular waveguide, which is surrounded by the second circular waveguide.
  • the inner conductor is formed pin-shaped.
  • the first waveguide and the inner conductor end at the same or different height.
  • a further embodiment provides that the coupling portion is formed as a first groove waveguide, which has to the interior of the signal waveguide through a number of annularly extending grooves along an inner circumference.
  • the first groove waveguide adjoins the second end of the signal waveguide.
  • the second waveguide is at least partially formed as a second groove waveguide, the inside of the signal waveguide towards a number of along an inner circumference annularly extending grooves.
  • the second groove waveguide preferably adjoins the coupling section or the second end of the signal waveguide.
  • the grooves of the first and / or second groove waveguide are each arranged equidistant from each other. In a specific embodiment it can be provided that the distance between respective grooves of the first groove waveguide is different than the distance between respective grooves of the second groove waveguide.
  • the diplexer according to the invention is further distinguished by the fact that the second waveguide port (in the transmission band) is coupled with a turnstile branching and two 180 ° hybrid couplers or with two coaxial sidearm orthomode transformers to produce dual linearly polarized signals.
  • the second waveguide port (in the transmit band) is coupled to one polarizer, one turnstile branch and two 180 ° hybrid couplers, or to one turnstile branch, two 180 ° hybrid couplers, and one 90 ° hybrid coupler for dual circular polarization generation.
  • the first waveguide port (in the receive band) is for generating linear polarization with a turnstile branch and three 180 ° hybrid couplers coupled.
  • the first waveguide port (in the receive band) is coupled to a turnstile branch, three 180 ° hybrid couplers, and a 90 ° hybrid coupler to produce circular polarization.
  • the FIGS. 1 to 3 show a coaxial diplexer 1 according to the invention for a reflector antenna for transmitting microwave signals.
  • the diplexer 1 comprises a common, circular signal waveguide 2 for transmitting a transmission signal and a reception signal.
  • the signal waveguide 2 comprises a first end 3 and a second end 4.
  • a common gate 20 is formed at the first end 3.
  • a cylindrical coupling section 6 is arranged between the first and the second end 3, 4 of the signal waveguide 2, the cylindrical coupling section 6 adjoining the second end 4.
  • the cylindrical one Coupling section 6 is formed as a first groove waveguide 10. This has to the interior of the signal waveguide 2 towards a number of along an inner circumference annularly extending grooves 11.
  • the grooves 11 are arranged equidistant from each other.
  • a waveguide assembly 5 connects. This is arranged coaxially with the signal waveguide 2.
  • the waveguide assembly 5 comprises a first, circular waveguide 7, in which a first signal in the receiving band can propagate during operation of the diplexer, wherein a pin-shaped inner conductor 8 is arranged in the interior of the first waveguide 7 is.
  • the first waveguide 7 and the inner conductor 8 terminate in the embodiment at an equal height, but this is not mandatory.
  • a second, circular waveguide 9, which adjoins the second end of the signal waveguide 2, surrounds the first waveguide 7.
  • a second signal may propagate in the transmission band at a lower frequency than the first signal in the reception band during operation of the diplexer ,
  • the second waveguide 9 is formed at least in sections as a second groove waveguide 12.
  • the second groove waveguide directly adjoins the second end of the signal waveguide 2 or the coupling section 6 or first groove waveguide 10.
  • the second groove waveguide 12 has a number of grooves 13 extending annularly along an inner circumference towards the interior of the signal waveguide.
  • the grooves of the second groove waveguide 12 are arranged only by way of example equidistant from each other.
  • the distance between the grooves 13 of the second groove waveguide 12 is greater than the distance between the grooves 11 of the first groove waveguide 10th
  • each four symmetrically arranged transmitting waveguide 15 and receive waveguide 14 are provided. These each have a rectangular cross-section and are arranged orthogonal with respect to a longitudinal or symmetry axis of the coaxial diplexer 1.
  • the TM11 mode is excited within the diplexer. It overlaps with the TE11 mode such that in the transmit band (i.e., a lower frequency band), all of the energy flows into the outer, coaxial waveguide (i.e., the second waveguide 9) through constructive superposition of the outer and destructive superposition of the inner field components.
  • the transmit band i.e., a lower frequency band
  • the inner field components overlap constructively and the outer field components destructively.
  • all the energy flows into the inner coaxial waveguide, i. the first waveguide 7, in the interior of which the inner conductor 8 is arranged.
  • the necessary information for aligning the antenna can be obtained by signal processing.
  • the diplexer With the diplexer according to the invention, it is possible, by means of a suitable network of hybrid couplers, a turnstile branch, to split the received mixture of modes into individual modes and, if necessary, to recombine them. In this way, the received communication signal can be separated from the tracking modes and a tracking signal can be generated which contains the information about the amount and direction of the registration deviation. This allows a direct correction of the antenna alignment.
  • the coaxial diplexer in the transmit band is supplemented by a turnstile branching and two 180 ° hybrid couplers or by two coaxial sidearm orthomode transducers (OMTs).
  • OMTs coaxial sidearm orthomode transducers
  • a polarizer In dual circular polarization, a polarizer, a turnstile junction and two 180 ° hybrid couplers or a turnstile junction, two 180 ° hybrid couplers, and a 90 ° hybrid coupler may be provided in the transmit band.
  • a turnstile branch and three 180 ° hybrid couplers are used in linear polarization. With circular polarization, an additional 90 ° hybrid coupler is added.
  • FIGS. 4 to 6 show various block diagrams for the application of the diplexer according to the invention.
  • the reference numeral 30 in each case denotes a horn which is coupled to the coaxial diplexer 1 according to the invention.
  • Tx is a transmission path
  • Rx a reception path is indicated.
  • a coaxial polarizer 41 is connected to the diplexer 1. Further, a coaxial orthomode transformer 42 is connected to the coaxial polarizer 41.
  • the co-orthomode transmitter receives payload data Tx LHCP and Tx RHCP to be transmitted.
  • a turnstile branch 43 is connected to the coaxial diplexer 1. This is coupled to two 180 ° hybrid couplers 44, 46.
  • a respective difference signal ⁇ is supplied to a 90 ° hybrid coupler 45 to which received payload data Rx LHCP and Rx RHCP are provided.
  • the sum signals ( ⁇ ) of the 180 ° hybrid coupler are fed to another 180 ° hybrid coupler 47, which forms a sum and a difference signal ( ⁇ , ⁇ ).
  • the sum signal ( ⁇ ) represents the tracking signal ( ⁇ TP) necessary for correcting the antenna alignment.
  • a coaxial orthomode transformer 42 is coupled to the diplexer 1.
  • the turnstile branch 43 is coupled to the diplexer 1.
  • the turnstile branch 43 is coupled to two 180 ° hybrid couplers 44, 46. These each form a sum and difference signal ( ⁇ , ⁇ ). From the difference signals ⁇ received user data Rx HP and Rx VP can be obtained. The sum signals ( ⁇ ) are fed to a further 180 ° hybrid coupler 47, the tracking information ( ⁇ TP) being obtained from a sum signal ( ⁇ ) formed by the same.
  • Fig. 6 In the embodiment of Fig. 6 is the reception path Rx according to the in Fig. 4 shown receiving path formed.
  • a coaxial turnstile branch 50 is likewise provided, which is connected to the diplexer 1.
  • Turnstile junction 50 is coupled to two 180 ° hybrid couplers 51, 52.
  • a 90 ° hybrid coupler 53 to which payload data Tx LHCP and Tx RHCP to be transmitted are supplied, is coupled to differential inputs ( ⁇ ) of the 180 ° hybrid couplers 51, 52.
  • the receiving network of the illustrated embodiments simultaneously serves to decouple the TEM mode with the tracking information.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Die Erfindung beschreibt einen Diplexer (1) für eine Reflektorantenne zur Übertragung von Mikrowellensignalen. Der erfindungsgemäße Diplexer (1) umfasst einen gemeinsamen, kreisförmigen Signalhohlleiter (2) zur Übertragung eines Sendesignals und eines Empfangssignals, wobei der Signalhohlleiter (1) ein erstes Ende (3) und ein zweites Ende (4) umfasst. An dem ersten Ende (3) ist ein gemeinsames Tor ausgebildet. Die Erfindung weist weiterhin eine Hohlleiteranordnung (5) auf, die im Bereich des zweiten Endes des Signalhohlleiters (2) koaxial zu dem Signalhohlleiter (2) angeordnet ist, sowie einen zylinderförmigen Koppelabschnitt (6), der zwischen dem ersten und dem zweiten Ende des Signalhohlleiters (2) angeordnet ist und die Hohlleiteranordnung mit dem gemeinsamen Signalhohlleiter verbindet. Die Hohlleiteranordnung (5) umfasst zur Ausbildung eines ersten und eines zweiten koaxialen Hohlleitertors (21, 22) einen ersten, kreisförmigen Hohlleiter (7), in dem sich im Betrieb des Diplexers (1) ein erstes Signal ausbreiten kann, wobei im Inneren des ersten Hohlleiters ein Innenleiter (8) angeordnet ist, und einen zweiten, kreisförmigen Hohlleiter (9), in dem sich im Betrieb des Diplexers (1) ein zweites Signal mit einer geringeren Frequenz als das erste Signal ausbreiten kann, wobei der zweite Hohlleiter (9) den ersten Hohlleiter (7) umgibt.

Description

  • Die Erfindung betrifft einen Diplexer für eine Reflektorantenne zur Übertragung von Mikrowellensignalen. Die Erfindung betrifft weiter ein Verfahren zum Verarbeiten eines in einen Diplexer eingespeisten Empfangssignals.
  • Große Reflektorantennen benötigen aufgrund ihrer sehr schmalen Strahlungscharakteristik eine sehr genaue Ausrichtung bezüglich eines Senders und/oder Empfängers, allgemein einer Gegenstelle. Zur Ausrichtung wird ein von der Gegenstelle abgestrahltes Bakensignal genutzt. Zur Auswertung des Bakensignals durch die Reflektorantenne bzw. eine mit der Reflektorantenne gekoppelte Auswertungseinheit wird ein Richtdiagramm mit einer Nullstelle in Hauptstrahlrichtung benötigt. Im Falle einer Abweichung des Bakensignals von der Hauptstrahlrichtung wird ein zusätzliches Signal empfangen, das zur Korrektur der Richtungsabweichung genutzt werden kann. Die Übertragung, Separierung und Auswertung des Bakensignals erfolgt zusätzlich zur Übertragung des eigentlichen Kommunikationssignals. Dabei darf das Bakensignal das Kommunikationssignal nicht beeinflussen.
  • Eine Reflektorantenne zur Übertragung von Mikrowellensignalen umfasst typischerweise einen Diplexer, der einen gemeinsamen Signalhohlleiter zur Übertragung eines Sendesignals und eines Empfangssignals aufweist. Der gemeinsame Signalhohlleiter umfasst ein erstes und ein zweites Ende. Mit dem ersten Ende des gemeinsamen Signalhohlleiters ist ein Horn verbunden, über welches eine Auskopplung des Sendesignals aus und eine Einkopplung des Sendesignals in den gemeinsamen Signalhohlleiter erfolgt. Mit dem gemeinsamen Signalhohlleiter ist in der Regel eine Mehrzahl an Hohlleitertoren zur Einspeisung des Sendesignals in den Diplexer und zur Auskopplung des Empfangssignals aus dem Diplexer in ein Empfangsnetzwerk gekoppelt. Die Hohlleitertore sind z.B. symmetrisch an der Außenseite des gemeinsamen Signalhohlleiters verteilt angeordnet und jeweils kommunikativ mit dem gemeinsamen Signalhohlleiter verbunden.
  • Der Diplexer hat insbesondere die Aufgabe, ein Modengemisch von Moden des Empfangssignals derart aufzubereiten, dass eine Unterscheidung des eigentlichen Kommunikationssignals und von Korrekturdaten für das Kommunikationssignal möglich ist. Gleichzeitig muss der Diplexer ein in die Mehrzahl an Signalhohlleitern eingespeistes Sendesignal korrekt zur Auskopplung durch das Horn übertragen. Der dabei bestehende Zielkonflikt, sowohl das Empfangssignal hinsichtlich seines Kommunikationssignals und der Korrekturinformationen korrekt aufzuteilen und das Sendesignal mit gewünschter Polarisation aus der Reflektorantenne auszukoppeln, ist dabei bislang nicht immer zufriedenstellend gelöst.
  • Aus der US 3,922,621 ist ein koaxialer Diplexer für eine Reflektorantenne zur Übertragung von Mikrowellensignalen bekannt. Der Diplexer umfasst einen ersten, kreisförmigen Hohlleiter, in dem sich ein erstes Signal ausbreiten kann. Er umfasst weiter einen zweiten, kreisförmigen Hohlleiter, in dem sich ein zweites Signal mit einer geringeren Frequenz als das erste Signal ausbreiten kann, wobei der zweite Hohlleiter den ersten Hohlleiter umgibt. Ein Abschnitt des zweiten Hohlleiters ist als Rillenhohlleiter ausgebildet, der eine Anzahl an sich entlang eines in Umfangsrichtung ringförmig erstreckender Rillen aufweist. Hierdurch wird eine effektive Entkopplung von Sende- und Empfangssignal bewirkt. Allerdings ist in dem Diplexer der US 3,922,621 keine Ausbreitung eines Tracking-Signals möglich, mit dem eine Korrektur der Richtungsabweichung der Reflektorantenne bestimmbar ist.
  • Aus der nicht veröffentlichten deutschen Patentanmeldung DE 10 2008 004 895.8 ist eine Signal-Verzweigung mit einem gemeinsamen Signalhohlleiter zur Übertragung eines Sende- und eines Empfangssignals bekannt. Es ist eine Mehrzahl an Sende-Signalhohlleitern zur Einspeisung des Sendesignals vorgesehen, wobei die Sende-Signalhohlleiter symmetrisch an der Außenseite des gemeinsamen Signalhohlleiters verteilt angeordnet sind und kommunikativ mit dem gemeinsamen Signalhohlleiter verbunden sind. Ebenso ist eine Mehrzahl an Empfangs-Signalhohlleitern zur Übertragung des Empfangssignals vorgesehen, wobei die Empfangs-Signalhohlleiter symmetrisch an den gemeinsamen Signalleiter angeschlossen und ebenfalls kommunikativ mit dem gemeinsamen Signalhohlleiter verbunden sind. Um ein Trackingsignal ermitteln zu können, ist die Anordnung von Filtern in den Empfangs-Signalhohlleitern erforderlich.
  • Aus der US 6,937,202 B2 ist es bekannt, Moden durch Verringerung des Horndurchmessers unterhalb eines kritischen Durchmessers zu trennen. Dies wird als virtueller Kurzschluss bezeichnet. Eine gemeinsame Auskopplung von Empfangssignal (aus Sicht eines Satelliten) und Trackingsignal bei gleichzeitiger Abtrennung des Sendesignals ist nicht möglich. In den Seitenarmen sind hierzu Filter erforderlich.
  • Die US 2003/0222733 A1 offenbart die Trennung von Moden durch Verringerung des Horndurchmessers unterhalb des kritischen Durchmessers mittels eines virtuellen Kurzschlusses. Eine gemeinsame Auskopplung von Empfangssignal (aus Sicht des Satelliten) und Trackingsignal bei gleichzeitiger Abtrennung des Sendesignals ist nicht möglich. Die Offenbarung bezieht sich auf Bodenstationsanwendungen, wo aufgrund umgekehrter Zuordnung von Sende- und Empfangsband die angegebene Struktur des Speisesystems verwendet werden kann. In den Seitenarmen sind Filter zwingend erforderlich.
  • Es ist daher Aufgabe der vorliegenden Erfindung, einen Diplexer für eine Reflektorantenne zur Übertragung von Mikrowellensignalen anzugeben, welcher eine verbesserte Korrektur der Richtungsabweichung der Reflektorantenne erlaubt. Es ist ferner Aufgabe der vorliegenden Erfindung, ein Verfahren zum Verarbeiten eines in einen Diplexer eingespeisten Empfangssignals anzugeben, welches eine verbesserte Genauigkeit zur Korrektur der Richtungsabweichung ermöglicht.
  • Diese Aufgaben werden durch die Merkmale der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich jeweils aus den abhängigen Patentansprüchen.
  • Die Erfindung schafft einen Diplexer für eine Reflektorantenne zur Übertragung von Mikrowellensignalen. Dieser umfasst einen gemeinsamen, kreisförmigen Signalhohlleiter zur Übertragung eines Sendesignals und eines Empfangssignals, der ein erstes Ende und ein zweites Ende umfasst, wobei an dem ersten Ende ein gemeinsames Tor ausgebildet ist. Der Diplexer umfasst ferner eine Hohlleiteranordnung, die im Bereich eines zweiten Endes des Signalhohlleiters koaxial zu dem Signalhohlleiter angeordnet ist. Weiter ist ein zylinderförmiger Koppelabschnitt vorgesehen, der zwischen dem ersten und dem zweiten Ende des Signalhohlleiters angeordnet ist und die Hohlleiteranordnung mit dem gemeinsamen Signalhohlleiter verbindet. Die Erfindung zeichnet sich dadurch aus, dass die Hohlleiteranordnung zur Ausbildung eines ersten und zweiten koaxialen Hohlleitertors einen ersten, kreisförmigen und einen zweiten, kreisförmigen Hohlleiter umfasst. In dem ersten, kreisförmigen Hohlleiter kann sich im Betrieb des Diplexers ein erstes Signal ausbreiten, wobei im Inneren des ersten Hohlleiters ein Innenleiter angeordnet ist. Durch den ersten, kreisförmigen Hohlleiter wird ein Empfangssignal (später auch als Empfangsband bezeichnet) geleitet. In einem zweiten, kreisförmigen Hohlleiter kann sich im Betrieb des Diplexers ein zweites Signal (ein Sendesignal oder Sendeband) mit einer geringeren Frequenz als das erste Signal ausbreiten, wobei der zweite Hohlleiter den ersten Hohlleiter umgibt.
  • Die Erfindung schafft weiter ein Verfahren zum Verarbeiten eines in einen erfindungsgemäß ausgebildeten Diplexers eingespeisten Signals. Bei dem erfindungsgemäßen Verfahren wird in das gemeinsame Tor ein TE11-Mode gespeist. Ein TM11-Mode wird in dem Signalhohlleiter angeregt und überlagert sich mit dem TE11-Mode derart, dass die gesamte Energie des zweiten Signals (im Sendeband) durch eine konstruktive Überlagerung von äußeren Feldanteilen und eine destruktive Überlagerung von inneren Feldanteilen in den zweiten, äußeren Hohlleiter fließt und dass die gesamte Energie des ersten Signals (im Empfangsband) durch eine konstruktive Überlagerung von inneren Feldanteilen und eine destruktive Überlagerung von äußeren Feldanteilen in den ersten, inneren Hohlleiter fließt. Das erste Signal (im Empfangsband) wird bei Einspeisung des TM01-Modes am gemeinsamen Tor in den TEM-Mode des ersten Hohlleiters überführt. Aus dem TE11-Mode und dem TM01-Mode des ersten Signals (im Empfangsband) wird durch Verarbeitung der Moden eine Information zur Ausrichtung der Reflektorantenne ermittelt.
  • Die Erfindung schlägt somit vor, das Sende- und Empfangssignal zu trennen und gleichzeitig im Empfangsband eine Transformation des Modes TM01 in den TEM-Mode vorzunehmen, so dass im Empfangsband zusätzlich zum Kommunikationssignal ein Trackingsignal zur Antennenausrichtung zur Verfügung steht. Ermöglicht wird dies durch die Verwendung eines Innenleiters, der im Inneren des ersten Hohlleiters angeordnet ist.
  • Ein Vorteil dieser Vorgehensweise besteht darin, dass die für das Tracking benötigten Summen- und Differenzsignale unter gleichen Bedingungen, insbesondere bei gleicher Temperatur, ausgekoppelt werden. Hierdurch werden Phasenfehler durch unterschiedliche Temperaturen in den HF-Pfaden vermieden.
  • Ein weiterer Vorteil besteht darin, dass das Trackingsignal erst ausgekoppelt wird, nachdem Sende- und Empfangssignal getrennt wurden. Dadurch werden Störungen des Sendesignals durch einen Trackingmodenkoppler vermieden.
  • Gegenüber den aus dem Stand der Technik bekannten Lösungen sind zur Abtrennung des Sendesignals keine Filter in den Seitenarmen erforderlich. Damit ist das Speisesystem wesentlich unempfindlicher gegen Fertigungsunsicherheiten.
  • Zweckmäßigerweise ist der erfindungsgemäße Diplexer ein koaxialer Diplexer. Dies ergibt sich durch die koaxiale Anordnung des ersten, kreisförmigen Hohlleiters, welcher von dem zweiten, kreisförmigen Hohlleiter umgeben ist.
  • Es ist weiterhin zweckmäßig, wenn der Innenleiter stiftförmig ausgebildet ist. Insbesondere enden der erste Hohlleiter und der Innenleiter auf einer gleichen oder unterschiedlichen Höhe.
  • Eine weitere Ausgestaltung sieht vor, dass der Koppelabschnitt als erster Rillenhohlleiter ausgebildet ist, der zum Inneren des Signalhohlleiters hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen aufweist. Der erste Rillenhohlleiter grenzt dabei an das zweite Ende des Signalhohlleiters an.
  • Es ist weiterhin vorgesehen, dass der zweite Hohlleiter zumindest abschnittsweise als zweiter Rillenhohlleiter ausgebildet ist, der zum Inneren des Signalhohlleiters hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen aufweist. Der zweite Rillenhohlleiter grenzt vorzugsweise an den Koppelabschnitt bzw. an das zweite Ende des Signalhohlleiters an.
  • Die Rillen des ersten und/oder zweiten Rillenhohlleiters sind jeweils äquidistant zueinander angeordnet. In einer konkreten Ausgestaltung kann vorgesehen sein, dass der Abstand zwischen jeweiligen Rillen des ersten Rillenhohlleiters anders ist als der Abstand jeweiliger Rillen des zweiten Rillenhohlleiters.
  • Der erfindungsgemäße Diplexer zeichnet sich weiterhin dadurch aus, dass das zweite Hohlleitertor (im Sendeband) zur Erzeugung dual linear polarisierter Signale mit einer Turnstile-Verzweigung und zwei 180°-Hybridkopplern, oder mit zwei koaxialen Seitenarm-Orthomode-Übertragern gekoppelt ist. Alternativ ist das zweite Hohlleitertor (im Sendeband) zur Erzeugung dual zirkularer Polarisation mit einem Polarisator, einer Turnstile-Verzweigung und zwei 180°-Hybridkopplern oder mit einer Turnstile-Verzweigung, zwei 180°-Hybridkopplern und einem 90°-Hybridkoppler gekoppelt.
  • In einer weiteren Ausgestaltung ist das erste Hohlleitertor (im Empfangsband) zur Erzeugung linearer Polarisation mit einer Turnstile-Verzweigung und drei 180°-Hybridkopplern gekoppelt. Alternativ ist das erste Hohlleitertor (im Empfangsband) zur Erzeugung zirkularer Polarisation mit einer Turnstile-Verzweigung, drei 180°-Hybridkopplern und einem 90°-Hybridkoppler gekoppelt.
  • Die Erfindung wird nachfolgend näher anhand der Figuren erläutert. Es zeigen:
    • Fig. 1 eine perspektivische Darstellung eines erfindungsgemäßen Diplexers,
    • Fig. 2 eine perspektivische, geschnittene Darstellung eines erfindungsgemäßen Diplexers,
    • Fig. 3 einen teilweisen Ausschnitt eines erfindungsgemäßen und teilweise geschnittenen Diplexers,
    • Fig. 4 ein Blockschaltbild für die Anwendung des erfindungsgemäßen Diplexers gemäß einer ersten Ausführungsvariante,
    • Fig. 5 ein Blockschaltbild für die Anwendung des erfindungsgemäßen Diplexers gemäß einer zweiten Ausführungsvariante, und
    • Fig. 6 ein Blockschaltbild für die Anwendung des erfindungsgemäßen Diplexers gemäß einer dritten Ausführungsvariante.
  • Die Figuren 1 bis 3 zeigen einen erfindungsgemäßen, koaxialen Diplexer 1 für eine Reflektorantenne zur Übertragung von Mikrowellensignalen. Der Diplexer 1 umfasst einen gemeinsamen, kreisförmigen Signalhohlleiter 2 zur Übertragung eines Sendesignals und eines Empfangssignals. Der Signalhohlleiter 2 umfasst ein erstes Ende 3 und ein zweites Ende 4. An dem ersten Ende 3 ist ein gemeinsames Tor 20 ausgebildet. Ein zylinderförmiger Koppelabschnitt 6 ist zwischen dem ersten und dem zweiten Ende 3, 4 des Signalhohlleiters 2 angeordnet, wobei der zylinderförmige Koppelabschnitt 6 an das zweite Ende 4 grenzt. Der zylinderförmige Koppelabschnitt 6 ist als erster Rillenhohlleiter 10 ausgebildet. Dieser weist zum Inneren des Signalhohlleiters 2 hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen 11 auf. Die Rillen 11 sind äquidistant zueinander angeordnet. Im Inneren des gemeinsamen Signalhohlleiters 2 und angrenzend an das zweite Ende 4 des Signalhohlleiters 2 schließt eine Hohlleiteranordnung 5 an. Diese ist koaxial zu dem Signalhohlleiter 2 angeordnet.
  • Zur Ausbildung eines ersten und eines zweiten koaxialen Hohlleitertors 21, 22 umfasst die Hohlleiteranordnung 5 einen ersten, kreisförmigen Hohlleiter 7, in dem sich im Betrieb des Diplexers ein erstes Signal im Empfangsband ausbreiten kann, wobei im Inneren des ersten Hohlleiters 7 ein stiftförmiger Innenleiter 8 angeordnet ist. Der erste Hohlleiter 7 und der Innenleiter 8 enden im Ausführungsbeispiel auf einer gleichen Höhe, wobei dies nicht zwingend ist. Ein zweiter, kreisförmiger Hohlleiter 9, welcher an das zweite Ende des Signalhohlleiters 2 anschließt, umgibt den ersten Hohlleiter 7. In dem zweiten Hohlleiter 9 kann sich im Betrieb des Diplexers ein zweites Signal im Sendeband mit einer geringeren Frequenz als das erste Signal im Empfangsband ausbreiten.
  • Der zweite Hohlleiter 9 ist zumindest abschnittsweise als zweiter Rillenhohlleiter 12 ausgebildet. Der zweite Rillenhohlleiter grenzt unmittelbar an das zweite Ende des Signalhohlleiters 2 bzw. an den Koppelabschnitt 6 bzw. ersten Rillenhohlleiter 10. Der zweite Rillenhohlleiter 12 weist zum Inneren des Signalhohlleiters hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen 13 auf. Die Rillen des zweiten Rillenhohlleiters 12 sind lediglich beispielhaft äquidistant zueinander angeordnet. Der Abstand der Rillen 13 des zweiten Rillenhohlleiters 12 ist dabei größer als der Abstand der Rillen 11 des ersten Rillenhohlleiters 10.
  • Am von dem gemeinsamen Signalhohlleiter abgewandten Ende des ersten Hohlleiters 7 und des zweiten Hohlleiters 9 sind jeweils vier symmetrisch zueinander angeordnete Sende-Hohlleiter 15 bzw. Empfangs-Hohlleiter 14 vorgesehen. Diese weisen jeweils einen rechteckigen Querschnitt auf und sind orthogonal bezüglich einer Längs- bzw. Symmetrieachse des koaxialen Diplexers 1 angeordnet.
  • Das gemeinsame Tor 20, das mit einem Horn verbunden wird, wird vom TE11-Mode gespeist. Durch eine geeignete Dimensionierung der Rillen 11 wird innerhalb des Diplexers der TM11-Mode angeregt. Er überlagert sich mit dem TE11-Mode derart, dass im Sendeband (d.h. einem unteren Frequenzband) durch eine konstruktive Überlagerung der äußeren und eine destruktive Überlagerung der inneren Feldanteile die gesamte Energie in den äußeren, koaxialen Hohlleiter (d.h. den zweiten Hohlleiter 9) fließt. Im Empfangsband (oberes Frequenzband) überlagern sich die inneren Feldanteile konstruktiv und die äußeren Feldanteile destruktiv. Dadurch fließt die gesamte Energie in den inneren koaxialen Hohlleiter, d.h. den ersten Hohlleiter 7, in dessen Inneren der Innenleiter 8 angeordnet ist.
  • Durch den Innenleiter wird im Empfangsband bei Einspeisung des TM01-Modes am gemeinsamen Signalhohlleiter die Energie in den TEM-Mode des inneren koaxialen Hohlleiters, d.h. des ersten Hohlleiters 7, überführt. Aus dem TE11-Mode und dem TM01-Mode im Empfangsband können durch Signalverarbeitung die nötigen Informationen zur Ausrichtung der Antenne gewonnen werden.
  • Mit dem erfindungsgemäßen Diplexer ist es möglich, durch ein geeignetes Netzwerk aus Hybridkopplern, einer Turnstile-Verzweigung das empfangene Modengemisch in einzelne Moden zu zerlegen und gegebenenfalls neu zu kombinieren. Auf diese Weise kann das empfangene Kommunikationssignal von den Tracking-Moden getrennt und ein Trackingsignal erzeugt werden, das die Information über Betrag und Richtung der Ausrichtungsabweichung enthält. Damit ist eine direkte Korrektur der Antennenausrichtung möglich.
  • Für die Erzeugung dual linear polarisierter Signale wird der koaxiale Diplexer im Sendeband durch eine Turnstile-Verzweigung und zwei 180°-Hybridkoppler oder durch zwei koaxiale Seitenarm-Orthomode-Übertrager (OMT) ergänzt.
  • Bei dual zirkularer Polarisation können im Sendeband ein Polarisator, eine Turnstile-Verzweigung und zwei 180º-Hybridkoppler oder eine Turnstile-Verzweigung, zwei 180°-Hybridkoppler und ein 90°-Hybridkoppler vorgesehen werden.
  • Im Empfangsband werden bei linearer Polarisation eine Turnstile-Verzweigung und drei 180°-Hybridkoppler verwendet. Bei zirkularer Polarisation kommt zusätzlich ein 90°-Hybridkoppler hinzu.
  • Diese Ausführungsvarianten sind nachfolgend in den Figuren 4 bis 6 dargestellt.
  • Die Figuren 4 bis 6 zeigen verschiedene Blockschaltbilder für die Anwendung des erfindungsgemäßen Diplexers. Mit dem Bezugszeichen 30 ist dabei jeweils ein Horn bezeichnet, das mit dem erfindungsgemäßen koaxialen Diplexer 1 gekoppelt ist. Mit Tx ist ein Sendepfad, mit Rx ist ein Empfangspfad gekennzeichnet.
  • Im Sendepfad der Fig. 4 ist ein koaxialer Polarisator 41 mit dem Diplexer 1 verbunden. Weiter ist ein koaxialer Orthomode-Übertrager 42 mit dem koaxialen Polarisator 41 verbunden. Der koaxale Orthomode-Übertrager empfängt zu sendende Nutzdaten Tx LHCP und Tx RHCP. Im Empfangspfad Rx ist mit dem koaxialen Diplexer 1 eine Turnstile-Verzweigung 43 verbunden. Diese ist mit zwei 180°-Hybridkopplern 44, 46 gekoppelt. Ein jeweiliges Differenzsignal Δ wird einem 90°-Hybridkoppler 45 zugeführt, an welchem empfangene Nutzdaten Rx LHCP und Rx RHCP bereitgestellt werden. Die Summensignale ( ∑ ) der 180°-Hybridkoppler werden einem weiteren 180°-Hybridkoppler 47 zugeführt, der ein Summen- und ein Differenzsignal ( ∑, Δ ) bildet. Das Summensignal ( ∑ ) stellt das für die Korrektur der Antennenausrichtung notwendige Trackingsignal ( Δ TP ) dar.
  • Im Sendepfad der Fig. 5 ist lediglich ein koaxialer Orthomode-Übertrager 42 mit dem Diplexer 1 gekoppelt. Dieser empfängt zu sendende Nutzdaten Tx HP und Tx VP. Im Empfangspfad Rx ist die Turnstile-Verzweigung 43 mit dem Diplexer 1 gekoppelt. Ausgangsseitig ist die Turnstile-Verzweigung 43 mit zwei 180°-Hybridkopplern 44, 46 gekoppelt. Diese bilden jeweils ein Summen- und Differenzsignal ( ∑ , Δ ). Aus den Differenzsignalen Δ können empfangene Nutzdaten Rx HP und Rx VP gewonnen werden. Die Summensignale ( ∑ ) werden einem weiteren 180°-Hybridkoppler 47 zugeführt, wobei aus einem von diesem gebildeten Summensignal ( ∑ ) die Trackinginformation ( Δ TP ) gewonnen wird.
  • In dem Ausführungsbeispiel der Fig. 6 ist der Empfangspfad Rx entsprechend dem in Fig. 4 gezeigten Empfangspfad ausgebildet. Im Sendepfad Tx ist ebenfalls eine koaxiale Turnstile-Verzweigung 50 vorgesehen, welche mit dem Diplexer 1 verbunden ist. Die Turnstile-Verzweigung 50 ist mit zwei 180°-Hybridkopplern 51, 52 gekoppelt. Ein 90°-Hybridkoppler 53, welchem zu sendende Nutzdaten Tx LHCP und Tx RHCP zugeführt werden, ist mit Differenzeingängen ( Δ ) der 180°-Hybridkoppler 51, 52 gekoppelt.
  • Das Empfangsnetzwerk der dargestellten Ausführungsvarianten dient gleichzeitig dazu, den TEM-Mode mit den Trackinginformationen auszukoppeln. Die eng benachbarte Auskopplung des TE11-Modes im Empfangsband und des TEM-Modes, insbesondere die ähnlichen thermischen Bedingungen, führen dazu, dass die automatische Antennenausrichtung anhand der Trackinginformationen sehr genau und temperaturstabil ist.
  • Bezugszeichenliste
  • 1
    Diplexer
    2
    gemeinsamer Signalhohlleiter
    3
    erstes Ende des gemeinsamen Signalhohlleiters
    4
    zweites Ende des gemeinsamen Signalhohlleiters
    5
    Hohlleiteranordnung
    6
    Koppelabschnitt
    7
    erster Hohlleiter
    8
    Innenleiter
    9
    zweiter Hohlleiter
    10
    erster Rilllenhohlleiter
    11
    Rillen
    12
    zweiter Rillenhohlleiter
    13
    Rillen
    14
    Empfangs-Hohlleiter
    15
    Sende-Hohlleiter
    20
    gemeinsames Tor
    21
    erstes Hohlleitertor
    22
    zweites Hohlleitertor
    30
    Horn
    41
    koaxialer Polarisator
    42
    koaxialer Orthomode-Übertrager
    43
    Turnstile
    44
    180°-Hybridkoppler
    45
    90°- Hybridkoppler
    46
    180°-Hybridkoppler
    47
    180°-Hybridkoppler
    50
    Turnstile-Verzweigung
    51
    180°-Hybridkoppler
    52
    90°- Hybridkoppler
    53
    180°-Hybridkoppler
    Tx
    Sendepfad
    Rx
    Empfangspfad
    Tx LHCP
    Nutzdaten eines Sendesignals
    Tx RHCP
    Nutzdaten eines Sendesignals
    Rx LHCP
    Nutzdaten eines Empfangssignals
    Rx RHCP
    Nutzdaten eines Empfangssignals
    Tx HP
    Nutzdaten eines Sendesignals
    Tx VP
    Nutzdaten eines Sendesignals
    Rx HP
    Nutzdaten eines Empfangssignals
    Rx VP
    Nutzdaten eines Empfangssignals

Claims (14)

  1. Diplexer für eine Reflektorantenne zur Übertragung von Mikrowellensignalen, umfassend:
    - einen gemeinsamen, kreisförmigen Signalhohlleiter (2) zur Übertragung eines Sendesignals und eines Empfangssignals, der ein erstes Ende (3) und ein zweites Ende (4) umfasst, wobei an dem ersten Ende (3) ein gemeinsames Tor ausgebildet ist;
    - eine Hohlleiteranordnung (5), die im Bereich des zweiten Endes des Signalhohlleiters (2) koaxial zu dem Signalhohlleiter (2) angeordnet ist und die Holleiteranordnung mit dem gemeinsamen Signalhohlleiter verbindet,
    - einen zylinderförmigen Koppelabschnitt (6), der zwischen dem ersten und dem zweiten Ende des Signalhohlleiters (2) angeordnet ist,
    dadurch gekennzeichnet, dass die Hohlleiteranordnung (5) zur Ausbildung eines ersten und eines zweiten koaxialen Hohlleitertors (21, 22) umfasst:
    - einen ersten, kreisförmigen Hohlleiter (7), in dem sich im Betrieb des Diplexers (1) ein erstes Signal ausbreiten kann, wobei im Inneren des ersten Hohlleiters ein Innenleiter (8) angeordnet ist, und
    - einen zweiten, kreisförmigen Hohlleiter (9), in dem sich im Betrieb des Diplexers (1) ein zweites Signal mit einer geringeren Frequenz als das erste Signal ausbreiten kann, wobei der zweite Hohlleiter (9) den ersten Hohlleiter (7) umgibt.
  2. Diplexer nach Anspruch 1, dadurch gekennzeichnet, dass der Innenleiter stiftförmig ausgebildet ist.
  3. Diplexer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Hohlleiter (7) und der Innenleiter (8) auf einer gleichen oder unterschiedlichen Höhe enden.
  4. Diplexer nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der Koppelabschnitt (6) als erster Rillenhohlleiter (10) ausgebildet ist, der zum Inneren des Signalhohlleiters (2) hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen (11) aufweist.
  5. Diplexer nach Anspruch 4, dadurch gekennzeichnet, dass der erste Rillenhohlleiter (10) an das zweite Ende des Signalhohlleiters (2) grenzt.
  6. Diplexer nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der zweite Hohlleiter (9) zumindest abschnittsweise als zweiter Rillenhohlleiter (12) ausgebildet ist, der zum Inneren des Signalhohlleiters (2) hin eine Anzahl an sich entlang eines Innenumfangs ringförmig erstreckenden Rillen (13) aufweist.
  7. Diplexer nach Anspruch 6, dadurch gekennzeichnet, dass der zweite Rillenhohlleiter (12) an den Koppelabschnitt (6) bzw. das zweite Ende des Signalhohlleiters (2) angrenzt.
  8. Diplexer nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Rillen des ersten und/oder zweiten Rillenhohlleiters (10, 12) jeweils äquidistant zueinander angeordnet sind.
  9. Diplexer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zweite Hohlleitertor (22) (im Sendeband) zur Erzeugung dual linear polarisierter Signale
    - mit einer Turnstile-Verzweigung und zwei 180°-Hybridkopplern, oder
    - mit zwei koaxialen Seitenarm-Orthomode-Übertragern gekoppelt ist.
  10. Diplexer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zweite Hohlleitertor (22) (im Sendeband) zur Erzeugung dual zirkularer Polarisation
    - mit einem Polarisator, einer Turnstile-Verzweigung und zwei 180°-Hybridkopplern, oder
    - mit einer Turnstile-Verzweigung, zwei 180°-Hybridkopplern und einem 90°-Hybridkoppler
    gekoppelt ist.
  11. Diplexer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das erste Hohlleitertor (21) (im Empfangsband) zur Erzeugung linearer Polarisation mit einer Turnstile-Verzweigung und drei 180°-Hybridkopplern gekoppelt ist.
  12. Diplexer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das erste Hohlleitertor (21) (Empfangsband) zur Erzeugung zirkularer Polarisation mit einer Turnstile-Verzweigung, drei 180°-Hybridkopplern und einem 90°-Hybridkoppler gekoppelt ist.
  13. Diplexer nach Anspruch einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieser ein koaxialer Diplexer ist.
  14. Verfahren zum Verarbeiten eines in einen gemäß einem der vorherigen Ansprüche ausgebildeten Diplexers (1) eingespeisten Signals, bei dem
    - in das gemeinsame Tor ein TE11-Mode gespeist wird,
    - ein TM11-Mode in dem Signalhohlleiter (2) angeregt wird und sich mit dem TE11-Mode derart überlagert, dass die gesamte Energie des zweiten Signals durch eine konstruktive Überlagerung von äußeren Feldanteilen und eine destruktive Überlagerung von inneren Feldanteilen in den zweiten Hohlleiter fließt und dass die gesamte Energie des ersten Signals durch eine konstruktive Überlagerung von inneren Feldanteilen und eine destruktive Überlagerung von äußeren Feldanteilen in den ersten, inneren koaxialen Hohlleiter fließt,
    - das erste Signal bei Einspeisung des TM01-Modes am gemeinsamen Tor in den TEM-Mode des ersten Hohlleiters überführt wird,
    - aus dem TE11-Mode und dem TM01-Mode des ersten Signals durch Verarbeitung der Moden eine Information zur Ausrichtung der Reflektorantenne ermittelt wird.
EP20110001735 2010-03-04 2011-03-02 Diplexer für eine Reflektorantenne Not-in-force EP2363912B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010010299 DE102010010299B4 (de) 2010-03-04 2010-03-04 Diplexer für eine Reflektorantenne

Publications (2)

Publication Number Publication Date
EP2363912A1 true EP2363912A1 (de) 2011-09-07
EP2363912B1 EP2363912B1 (de) 2015-05-06

Family

ID=44070516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110001735 Not-in-force EP2363912B1 (de) 2010-03-04 2011-03-02 Diplexer für eine Reflektorantenne

Country Status (5)

Country Link
US (1) US8878629B2 (de)
EP (1) EP2363912B1 (de)
CA (1) CA2732485C (de)
DE (1) DE102010010299B4 (de)
ES (1) ES2544459T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275727A (zh) * 2017-06-28 2017-10-20 北京理工大学 一种340GHz基于薄膜型器件准光型宽带双工器
CN107302123A (zh) * 2017-06-28 2017-10-27 北京理工大学 一种340GHz基于薄膜型器件宽带双工器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059682B2 (en) * 2008-07-14 2015-06-16 Macdonald, Dettwilwe And Associates Corporation Orthomode junction assembly with associated filters for use in an antenna feed system
DE202012100980U1 (de) 2012-03-19 2012-05-23 Dr. Schneider Kunststoffwerke Gmbh Einknopfbedienung für einen Luftausströmer
DE102013011651A1 (de) * 2013-07-11 2015-01-15 ESA-microwave service GmbH Antennen-Speisesystem im Mikrowellenbereich für Reflektorantennen
US9252470B2 (en) 2013-09-17 2016-02-02 National Instruments Corporation Ultra-broadband diplexer using waveguide and planar transmission lines
US9300042B2 (en) 2014-01-24 2016-03-29 Honeywell International Inc. Matching and pattern control for dual band concentric antenna feed
US11329391B2 (en) 2015-02-27 2022-05-10 Viasat, Inc. Enhanced directivity feed and feed array
DE102015218877B4 (de) 2015-09-30 2017-08-31 Airbus Ds Gmbh Koaxialer Diplexer und Signalkopplungseinrichtung
US10826179B2 (en) 2018-03-19 2020-11-03 Laurice J. West Short dual-driven groundless antennas
US11101880B1 (en) * 2020-03-16 2021-08-24 Amazon Technologies, Inc. Wide/multiband waveguide adapter for communications systems
CN114188689B (zh) * 2021-11-30 2022-09-16 中国电子科技集团公司第五十四研究所 一种宽带收发共用型同轴波导双工器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500258A (en) * 1968-12-18 1970-03-10 Bell Telephone Labor Inc Wave mode converter
US3922621A (en) 1974-06-03 1975-11-25 Communications Satellite Corp 6-Port directional orthogonal mode transducer having corrugated waveguide coupling for transmit/receive isolation
EP0443526A1 (de) * 1990-02-20 1991-08-28 Andrew A.G. Mikrowellenkoppeleinrichtung
JPH0583012A (ja) * 1991-09-24 1993-04-02 Fujitsu General Ltd 円形導波管−同軸線路変換器
US5399999A (en) * 1993-02-08 1995-03-21 Hughes Aircraft Company Wideband TM01 -to-TE11 circular waveguide mode convertor
US20030222733A1 (en) 2002-05-30 2003-12-04 Ergene Ahmet D. Tracking feed for multi-band operation
US6937202B2 (en) 2003-05-20 2005-08-30 Northrop Grumman Corporation Broadband waveguide horn antenna and method of feeding an antenna structure
US20090251233A1 (en) * 2008-04-04 2009-10-08 Mahon John P Ortho-Mode Transducer for Coaxial Waveguide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281843A (en) * 1963-12-09 1966-10-25 Electronic Specialty Co Electronically scanned antenna
GB1269950A (en) * 1968-11-15 1972-04-06 Plessey Co Ltd Improvements in or relating to antenna feed systems
US3665481A (en) * 1970-05-12 1972-05-23 Nasa Multi-purpose antenna employing dish reflector with plural coaxial horn feeds
US4725795A (en) * 1985-08-19 1988-02-16 Hughes Aircraft Co. Corrugated ridge waveguide phase shifting structure
US6329957B1 (en) * 1998-10-30 2001-12-11 Austin Information Systems, Inc. Method and apparatus for transmitting and receiving multiple frequency bands simultaneously
DE102008044895B4 (de) 2008-08-29 2018-02-22 Astrium Gmbh Signal-Verzweigung zur Verwendung in einem Kommunikationssystem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500258A (en) * 1968-12-18 1970-03-10 Bell Telephone Labor Inc Wave mode converter
US3922621A (en) 1974-06-03 1975-11-25 Communications Satellite Corp 6-Port directional orthogonal mode transducer having corrugated waveguide coupling for transmit/receive isolation
EP0443526A1 (de) * 1990-02-20 1991-08-28 Andrew A.G. Mikrowellenkoppeleinrichtung
JPH0583012A (ja) * 1991-09-24 1993-04-02 Fujitsu General Ltd 円形導波管−同軸線路変換器
US5399999A (en) * 1993-02-08 1995-03-21 Hughes Aircraft Company Wideband TM01 -to-TE11 circular waveguide mode convertor
US20030222733A1 (en) 2002-05-30 2003-12-04 Ergene Ahmet D. Tracking feed for multi-band operation
US6937202B2 (en) 2003-05-20 2005-08-30 Northrop Grumman Corporation Broadband waveguide horn antenna and method of feeding an antenna structure
US20090251233A1 (en) * 2008-04-04 2009-10-08 Mahon John P Ortho-Mode Transducer for Coaxial Waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275727A (zh) * 2017-06-28 2017-10-20 北京理工大学 一种340GHz基于薄膜型器件准光型宽带双工器
CN107302123A (zh) * 2017-06-28 2017-10-27 北京理工大学 一种340GHz基于薄膜型器件宽带双工器
CN107275727B (zh) * 2017-06-28 2019-10-22 北京理工大学 一种340GHz基于薄膜型器件准光型宽带双工器
CN107302123B (zh) * 2017-06-28 2019-10-22 北京理工大学 一种340GHz基于薄膜型器件宽带双工器

Also Published As

Publication number Publication date
US20110254640A1 (en) 2011-10-20
ES2544459T3 (es) 2015-08-31
DE102010010299B4 (de) 2014-07-24
CA2732485A1 (en) 2011-09-04
EP2363912B1 (de) 2015-05-06
US8878629B2 (en) 2014-11-04
CA2732485C (en) 2014-11-04
DE102010010299A1 (de) 2011-09-08

Similar Documents

Publication Publication Date Title
EP2363912B1 (de) Diplexer für eine Reflektorantenne
EP0059927B1 (de) Mikrowellen-Empfangseinrichtung
DE1002828B (de) Richtungskoppler im Mikrowellenbereich fuer unsymmetrische Bandleitungen
EP2897213B1 (de) Breitband-Signalverzweigung mit Summensignalabsorption
DE3246317A1 (de) Wellenleiter fuer zweifach polarisierte zwei-frequenz-signale und verfahren zur wellenleitung solcher signale
EP0061576A1 (de) Nachrichtenübertragungseinrichtung für Mikrowellen mit Mehrmodendiversity-Kombinationsempfang
DE3201454A1 (de) Vorrichtung zum koppeln linear polarisierter elektromagnetischer wellen
DE102011106590B4 (de) Orthomodenkoppler für ein Antennensystem
DE1942678C3 (de) Speiseanordnung für eine mit mehreren Wellentypen arbeitende Antenne
DE19605569A1 (de) Richtkoppler für den Hochfrequenzbereich
DE1491921B2 (de) Empfangsantenne zur automatischen zielverfolgung einer bewegten strahlungsquelle
EP0041077B1 (de) Antennenspeisesystem für eine nachführbare Antenne
DE102015108154B4 (de) Zweikanalige Polarisationskorrektur
EP2159870B1 (de) Signal-Verzweigung zur Verwendung in einem Kommunikationssystem
EP0128970A1 (de) Viertornetzwerk für Mikrowellenantennen mit Monopulsnachführung
DE3421313C2 (de)
EP0422431B1 (de) Winkeldiversityanordnung
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
DE2737125A1 (de) Uebertragungsleitungssystem
EP0905813B1 (de) Polarisationsweiche zur Ausleuchtung einer Antenne
DE102022100853A1 (de) Dualband-orthomoden-wandler
DE102017002230A1 (de) Federbelastete Wellenleiter-Kupplung
DE3740651C2 (de)
DE4212871A1 (de) Anordnung zum Ein- oder Auskoppeln von Wellen in ein oder aus einem Koaxialleitungssystem
DE6924060U (de) Wellentypwandler fuer sehr kurze elektromagnetische wellen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEHRING, RALF

Inventor name: HONG, UN PYO

Inventor name: SCHNEIDER, MICHAEL, DR.

Inventor name: HARTWANGER, CHRISTIAN

Inventor name: REICHE, ENRICO

Inventor name: WOLF, HELMUT

Inventor name: SOMMER, ERNST

17P Request for examination filed

Effective date: 20120308

17Q First examination report despatched

Effective date: 20130409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20150206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTWANGER, CHRISTIAN

Inventor name: SOMMER, ERNST

Inventor name: WOLF, HELMUT

Inventor name: SCHNEIDER, MICHAEL, DR.

Inventor name: GEHRING, RALF

Inventor name: HONG, UN PYO

Inventor name: REICHE, ENRICO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011006757

Country of ref document: DE

Effective date: 20150618

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2544459

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011006757

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160302

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170321

Year of fee payment: 7

Ref country code: CH

Payment date: 20170322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011006757

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180328

Year of fee payment: 8

REG Reference to a national code

Ref legal event code: PC2A

Owner name: AIRBUS DEFENCE AND SPACE GMBH

Effective date: 20180528

Ref country code: ES

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180327

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180303

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 726253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011006757

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303