EP0905813B1 - Polarisationsweiche zur Ausleuchtung einer Antenne - Google Patents

Polarisationsweiche zur Ausleuchtung einer Antenne Download PDF

Info

Publication number
EP0905813B1
EP0905813B1 EP98402074A EP98402074A EP0905813B1 EP 0905813 B1 EP0905813 B1 EP 0905813B1 EP 98402074 A EP98402074 A EP 98402074A EP 98402074 A EP98402074 A EP 98402074A EP 0905813 B1 EP0905813 B1 EP 0905813B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
rectangular
attached
shaped body
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402074A
Other languages
English (en)
French (fr)
Other versions
EP0905813A3 (de
EP0905813A2 (de
Inventor
Daniel Dr. Wojtkowiak
Karl-Heinz Reimann
Hans-Peter Quade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP0905813A2 publication Critical patent/EP0905813A2/de
Publication of EP0905813A3 publication Critical patent/EP0905813A3/de
Application granted granted Critical
Publication of EP0905813B1 publication Critical patent/EP0905813B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a polarization diverter for illuminating the parabolic reflector of a directional antenna, consisting of a suitable for simultaneous transmission of two orthogonal, linearly polarized electromagnetic waves, designed as a waveguide shaped body, to which two the two electromagnetic waves separated leading rectangular waveguide are connected, in which a rectangular waveguide in the course of the shaped body is connected with its end face in the radial direction incident on the same with the wall, wherein between the radially connected rectangular waveguide and the associated, designed as a diaphragm opening designed as a cavity with an approximately rectangular cross-section first junction is mounted while the other rectangular waveguide is connected to the same at one end face of the shaped body, and in which both rectangular waveguide electromagnetically verbu the openings via openings nden, between which a short-circuit element is disposed within the same.
  • a polarization filter is known from GB 767 518 ,
  • Directional antennas are used to wirelessly transmit electromagnetic waves from one place to another. They are used, for example, for radio relay, satellite radio and radio location and should have the highest possible efficiency. For this they are equipped with exciters, which have a very high attenuation of the sidelobes in the disturbing directions, good adaptation and high profit for the antennas.
  • the pathogens which are usually equipped with a feeding horn, can be arranged at the focal point in the case of parabolic antennas.
  • the antennas can also be equipped as so-called "backfire antennas" with a sub-reflector.
  • Antennas are also known which are used for two separate electromagnetic waves. In such antennas, a polarization diverter is used, in which two feed lines lead the two waves separately.
  • the two waves are separated with reduced effort.
  • the second rectangular waveguide is connected to one of its flat sides on one end face of the polarization diverter. This end face is closed by the second rectangular waveguide.
  • the two rectangular waveguides are thereby connected with 90 ° offset from each other polarization direction of the polarization switch.
  • the two waves are therefore fed directly at right angles to each other. They are perfectly decoupled in this way without additional parts.
  • adjustable tuning elements are used for anechoic coupling and decoupling of the waves adjustable tuning elements.
  • the invention has for its object to make the initially described polarization switch easier.
  • This object is achieved according to the teaching of claim 1.
  • This polarization filter is easy to produce. Before attaching the two rectangular waveguide need only the two transitions formed in the molding or with to be connected to it. Thereafter, the two rectangular waveguides can be connected directly and without additional elements to the molding or the second transition. The two transitions ensure reflection-free coupling and decoupling of the shafts for both rectangular waveguides. An additional vote is not required. Separate tuning elements can therefore be dispensed with.
  • the reflector of a parabolic antenna is referred to, which is a so-called “backfire antenna” in the illustrated embodiment.
  • a polarization diverter 2 is arranged, the structure of which is apparent from FIGS. 2 to 7 in more detail.
  • To the polarization splitter 2 are two connected to a transmitting and receiving device rectangular waveguide 3 and 4 - hereinafter referred to as "first waveguide 3" and “second waveguide 4" called - connected.
  • the trained according to the subreflector principle exciter 5 is also connected via a waveguide 6 with the polarization splitter 2.
  • the polarization splitter 2 can also be used for direct illumination of the reflector 1.
  • the polarization splitter 2 is shown enlarged in FIG. It consists of a hollow body enclosing molded body 7, which has a square cross-section in the illustrated embodiment.
  • the shaped body 7 could also have a round or geometrically arbitrary cross-section.
  • the enclosed hollow conductor can have a circular or square cross-section.
  • the first waveguide 3 is connected to the molded body 7 so that it is fixed radially on the same tapered with its end face on the wall.
  • the second waveguide 4 is connected with its end face at the free end of the second transition 8. It is rotated at its connection point on the molding 7 by 90 ° relative to the first waveguide 3.
  • an opening is mounted in the wall of the molding 7, which is designed as a diaphragm 9.
  • the two separately fed via the same electromagnetic waves rotated by 90 ° in their polarization direction in the waveguide of the molded body 7 is fed. This is indicated by the drawn in Figs. 3 and 4 arrows.
  • FIG. 3 shows an end view of the second transition 8.
  • the two guided by the waveguides 3 and 4 waves are properly decoupled in this way in the feed, so that no elements are required for the decoupling in the waveguide of the molding 7 itself.
  • On or in the molded body 7 only elements are provided to ensure a reflection and trouble-free guidance of the waves.
  • connection points of the two waveguides 3 and 4 or between the aperture 9 and the second transition 8 an example of pins 10 existing shorting element can be provided.
  • the short-circuit element can also be designed as a sheet metal. It is achieved by the fact that the wave fed by the first waveguide 3 can propagate only in the direction of the open end A of the shaped body 7.
  • connection points of the two waveguides 3 and 4 and the waveguide of the molded body 7 transitions are arranged, which ensure a low-reflection coupling of the waves in the waveguide. These transitions are shown in FIGS. 5 to 7 in a further enlarged representation:
  • the first transition according to FIGS. 5 and 6 is provided for the first waveguide 3. It consists of a cavity 11 with an approximately rectangular cross section, at the end of the aperture 9 is located. "Approximately rectangular” means that the corners do not have to be rectangular. They can - due to production - also be rounded.
  • two webs 12 and 13 are mounted, which are in alignment with each other. They are from the wider walls of the cavity 11 from.
  • the webs 12 and 13 extend in the axial direction of the cavity 11. They have a distance X from each other, which is preferably 50% to 90% of the determined by the shorter walls height H of the cavity 11. Its axial length is dimensioned as a function of the wavelength ⁇ of the guided in the first waveguide 3 wave.
  • the webs 12 and 13 therefore do not necessarily extend over the entire length of the cavity 11. Their length is preferably between 0.25 ⁇ and 0.5 ⁇ .
  • the first waveguide 3 is connected directly to the cavity 11, as it is indicated in Fig. 6.
  • the second transition 8 lies between the second waveguide 4 and the shaped body 7, the enclosed waveguide of which forms the opening for coupling the shaft. It is designed as a step transition, with the usual technique, for example, a rectangular waveguide with a circular or square waveguide is connectable.
  • the second transition 8 has as well as the cavity 11 has an approximately rectangular cavity.
  • the individual steps have a rectangular cross-section with rounded corners.
  • the second transition 8 has three stages S1, S2 and S3.
  • the second waveguide 4 is connected with its front side directly to the second transition 8.
  • the central axis of the second waveguide 4 is equal to the central axis of the shaped body 7.
  • the second waveguide 4 can also be offset and attached to the second transition 8. Its central axis is then offset, for example, in the direction of the electric field with respect to the central axis of the molded body 7.
  • the molded body 7 shown in Fig. 2, for example, as a galvanoplastics are made in one piece and very accurate, so that the low-reflection feeding of the waves can be improved.
  • the polarization splitter 2 has been described above in the case that two waves are sent simultaneously, that is to be emitted by the reflector 1. However, it is just as well suited for the simultaneous reception of two rotated by 90 ° in their polarization direction waves. This polarization switch can also be used for simultaneous transmission and reception of one of these waves.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

  • Die Erfindung bezieht sich auf eine Polarisationsweiche zur Ausleuchtung des parabolischen Reflektors einer Richtantenne, bestehend aus einem zur simultanen Übertragung zweier orthogonaler, linear polarisierter elektromagnetischer Wellen geeigneten, als Hohlleiter ausgebildeten Formkörper, an welchen zwei die beiden elektromagnetischen Wellen getrennt führende Rechteckhohlleiter angeschlossen sind, bei welcher der eine Rechteckhohlleiter im Verlauf des Formkörpers mit seiner Stirnseite in radialer Richtung auf denselben auftreffend mit dessen Wandung verbunden ist, wobei zwischen dem radial angeschlossenen Rechteckhohlleiter und der zugehörigen, als Blende ausgeführten Öffnung ein als Hohlraum mit etwa rechteckigem Querschnitt ausgebildeter erster Übergang angebracht ist, während der andere Rechteckhohlleiter an einer Stirnseite des Formkörpers an denselben angeschlossen ist, und bei welcher beide Rechteckhohlleiter über Öffnungen elektromagnetisch mit dem Formkörper verbunden sind, zwischen denen innerhalb desselben ein Kurzschlusselement angeordnet ist. Eine solche Polarisationsweiche ist bekannt aus GB 767 518 .
  • Richtantennen dienen zur drahtlosen Übertragung elektromagnetischer Wellen von einem Ort zu einem anderen. Sie werden dabei beispielsweise für Richtfunk, Satellitenfunk und Funkortung eingesetzt und sollen einen möglichst hohen Wirkungsgrad haben. Dazu werden sie mit Erregern ausgerüstet, die für die Antennen eine sehr hohe Dämpfung der Nebenzipfel in den störenden Richtungen, gute Anpassung und hohen Gewinn aufweisen. Die in der Regel mit einem Speisehorn ausgerüsteten Erreger können bei Parabolantennen im Brennpunkt angeordnet sein. Die Antennen können aber auch als sogenannte "Backfire-Antennen" mit einem Subreflektor ausgerüstet sein. Es sind auch Antennen bekannt, die für zwei voneinander getrennte elektromagnetische Wellen benutzt werden. Bei derartigen Antennen wird eine Polarisationsweiche eingesetzt, in welche zwei die beiden Wellen getrennt führende Speiseleitungen münden.
  • Bei einer solchen, aus der US 3,864,688 A1 bekannten Polarisationsweiche, die gleichzeitig Erreger ist, sind die beiden als Rechteckhohlleiter ausgebildeten Speiseleitungen in der gleichen Ebene an die rohrförmige Polarisationsweiche angeschlossen. Sie können dadurch leicht in einer Ebene hintereinander geführt werden. Es ergibt sich durch einen derartigen Anschluß allerdings der Nachteil, daß für die Trennung der beiden elektromagnetischen Wellen in der Polarisationsweiche ein erheblicher Aufwand mit Präzisionsfertigung getrieben werden muß, da die eine Welle ohne Störung der anderen Welle reflexionsarm um 90° gedreht werden muß. Dazu sind bei dieser bekannten Polarisationsweiche zwischen den Einspeisestellen der beiden Hohlleiter in axialer Richtung und in Umfangsrichtung gegeneinander versetzte Stifte oder ein in sich verdrehter Blechstreifen angeordnet.
  • Bei der ebenfalls als Erreger verwendeten Polarisationsweiche nach der eingangs erwähnten DE 32 41 890 C2 . werden die beiden Wellen mit vermindertem Aufwand getrennt. Der zweite Rechteckhohlleiter ist dazu mit einer seiner Flachseiten an einer Stirnseite der Polarisationsweiche angeschlossen. Diese Stirnseite wird durch den zweiten Rechteckhohlleiter verschlossen. Die beiden Rechteckhohlleiter sind dadurch mit um 90° gegeneinander versetzter Polarisationsrichtung an die Polarisationsweiche angeschlossen. Die beiden Wellen werden daher direkt rechtwinklig zueinander eingespeist. Sie sind auf diese Weise ohne zusätzliche Teile einwandfrei entkoppelt. Zur reflexionsarmen Ein- und Auskopplung der Wellen werden verstellbare Abstimmelemente verwendet.
  • Der Erfindung liegt die Aufgabe zugrunde, die eingangs geschilderte Polarisationsweiche einfacher zu gestalten.
  • Diese Aufgabe wird gemäß der Lehre des Anspruchs 1 gelöst. Diese Polarisationsweiche ist einfach herstellbar. Vor der Anbringung der beiden Rechteckhohlleiter brauchen nur die beiden Übergänge im Formkörper ausgeformt bzw. mit demselben verbunden zu werden. Danach können die beiden Rechteckhohlleiter direkt und ohne Zusatzelemente an dem Formkörper bzw. dem zweiten Übergang angeschlossen werden. Die beiden Übergänge stellen das reflexionsarme Ein- und Auskoppeln der Wellen für beide Rechteckhohlleiter sicher. Eine zusätzliche Abstimmung ist nicht erforderlich. Auf gesonderte Abstimmelemente kann daher verzichtet werden.
  • Ein Ausführungsbeispiel des Erfindungsgegenstandes ist in den Zeichnungen dargestellt.
  • Es zeigen:
    • Fig. 1 in schematischer Darstellung eine Antenne mit Polarisationsweiche nach der Erfindung.
    • Fig. 2 eine Ansicht der Polarisationsweiche mit angeschlossenem zweitem Übergang in vergrößerter Darstellung.
    • Fig. 3 und 4 zwei Teilansichten der Polarisationsweiche nach Fig. 2.
    • Fig. 5 bis 7 Einzelheiten der Polarisationsweiche in weiter vergrößerter Darstellung.
  • Mit 1 ist der Reflektor einer Parabolantenne bezeichnet, bei der es sich im dargestellten Ausführungsbeispiel um eine sogenannte "Backfire-Antenne" handelt. Am Reflektor 1 ist eine Polarisationsweiche 2 angeordnet, deren Aufbau aus den Fig. 2 bis 7 genauer hervorgeht. An die Polarisationsweiche 2 sind zwei mit einer Sende- und Empfangseinrichtung verbundene Rechteckhohlleiter 3 und 4 - im folgenden kurz "erster Hohlleiter 3" und "zweiter Hohlleiter 4" genannt - angeschlossen. Der nach dem Subreflektorprinzip ausgebildete Erreger 5 ist über einen Hohlleiter 6 ebenfalls mit der Polarisationsweiche 2 verbunden. In Abweichung von der zeichnerischen Darstellung kann die Polarisationsweiche 2 auch zur direkten Ausleuchtung des Reflektors 1 verwendet werden.
  • Die Polarisationsweiche 2 ist in Fig. 2 vergrößert dargestellt. Sie besteht aus einem einen Hohlleiter umschließenden Formkörper 7, der im dargestellten Ausführungsbeispiel einen quadratischen Querschnitt hat. Der Formkörper 7 könnte auch einen runden oder geometrisch beliebigen Querschnitt haben. Der umschlossene Hohlhleiter kann einen kreisrunden oder quadratischen Querschnitt haben. Am Ende A des Formkörpers 7 ist der Hohlleiter 6 angeschlossen, während am anderen Ende B stirnseitig ein zweiter Übergang 8 angebracht ist, dessen genauerer Aufbau aus Fig. 7 hervorgeht. Der erste Hohlleiter 3 ist an den Formkörper 7 so angeschlossen, daß er radial auf denselben zulaufend mit seiner Stirnseite an dessen Wandung festgelegt ist. Der zweite Hohlleiter 4 ist mit seiner Stirnseite am freien Ende des zweiten Übergangs 8 angeschlossen. Er ist an seiner Anschlußstelle am Formkörper 7 um 90° gegenüber dem ersten Hohlleiter 3 gedreht.
  • An der Anschlußstelle des ersten Hohlleiters 3 ist in der Wandung des Formkörpers 7 eine Öffnung angebracht, die als Blende 9 ausgeführt ist. Bei der geschilderten Anordnung der Hohlleiter 3 und 4 am Formkörper 7 werden die beiden über dieselben getrennt zugeführten elektromagnetischen Wellen um 90° in ihrer Polarisationsrichtung gedreht in den Hohlleiter des Formkörpers 7 eingespeist. Das ist durch die in den Fig. 3 und 4 eingezeichneten Pfeile angedeutet. Dabei ist in Fig. 3 der Einfachheit halber nur die Blende 9 eingezeichnet, während Fig. 4 eine Stirnansicht des zweiten Übergangs 8 wiedergibt. Die beiden von den Hohlleitern 3 und 4 geführten Wellen sind auf diese Weise bei der Einspeisung einwandfrei entkoppelt, so daß für die Entkopplung im Hohlleiter des Formkörpers 7 selbst keine Elemente benötigt werden. An oder im Formkörper 7 sind nur noch Elemente vorgesehen, die eine reflexions- und störungsfreie Führung der Wellen gewährleisten.
  • Hierfür kann zwischen den Anschlußstellen der beiden Hohlleiter 3 und 4 bzw. zwischen der Blende 9 und dem zweiten Übergang 8 ein beispielweise aus Stiften 10 bestehendes Kurzschlußelement vorgesehen werden. Das Kurzschlußelement kann auch als Blech ausgeführt werden. Es wird dadurch erreicht, daß die vom ersten Hohlleiter 3 eingespeisete Welle sich nur in Richtung des offenen Endes A des Formkörpers 7 ausbreiten kann.
  • Zwischen den Anschlußstellen der beiden Hohlleiter 3 und 4 und dem Hohlleiter des Formkörpers 7 sind Übergänge angeordnet, die eine reflexionsarme Einkopplung der Wellen in den Hohlleiter sicherstellen. Diese Übergänge gehen aus den Fig. 5 bis 7 in nochmals vergrößerter Darstellung hervor:
  • Der erste Übergang gemäß den Fig. 5 und 6 ist für den ersten Hohlleiter 3 vorgesehen. Er besteht aus einem Hohlraum 11 mit etwa rechteckigem Querschnitt, an dessen Ende sich die Blende 9 befindet. "Etwa rechteckig" bedeutet dabei, daß die Ecken nicht rechtwinklig sein müssen. Sie können - fertigungsbedingt - auch abgerundet sein. Im Hohlraum 11 sind zwei Stege 12 und 13 angebracht, die einander fluchtend gegenüber liegen. Sie stehen von den breiteren Wandungen des Hohlraums 11 ab. Die Stege 12 und 13 verlaufen in Achsrichtung des Hohlraums 11. Sie haben einen Abstand X voneinander, der vorzugsweise 50 % bis 90 % der durch die kürzeren Wandungen bestimmten Höhe H des Hohlraums 11 beträgt. Ihre axiale Länge ist in Abhängigkeit von der Wellenlänge λ der im ersten Hohlleiter 3 geführten Welle bemessen. Die Stege 12 und 13 erstrecken sich daher nicht unbedingt über die ganze Länge des Hohlraums 11. Ihre Länge liegt vorzugsweise zwischen 0,25 λ und 0,5 λ. Der erste Hohlleiter 3 ist direkt an den Hohlraum 11 angeschlossen, so wie es in Fig. 6 angedeutet ist.
  • Der zweite Übergang 8 nach Fig. 7 liegt zwischen dem zweiten Hohlleiter 4 und dem Formkörper 7, dessen umschlossener Hohlleiter hier die Öffnung zur Einkopplung der Welle bildet. Er ist als Stufenübergang ausgebildet, mit dem in üblicher Technik beispielweise ein Rechteckhohlleiter mit einem kreisrunden oder quadratischen Hohlleiter verbindbar ist. Der zweite Übergang 8 weist ebenso wie der Hohlraum 11 einen etwa rechteckigen Hohlraum auf. Dabei haben die einzelnen Stufen einen rechteckigen Querschnitt mit abgerundeten Ecken. Im dargestellten Ausführungsbeispiel hat der zweite Übergang 8 drei Stufen S1, S2 und S3. Der zweite Hohlleiter 4 ist mit seiner Stirnseite direkt an den zweiten Übergang 8 angeschlossen. In bevorzugter Ausführungsform ist die Mittelachse des zweiten Hohlleiters 4 gleich der Mittelachse des Formkörpers 7. Der zweite Hohlleiter 4 kann aber auch versetzt am zweiten Übergang 8 angebracht werden. Seine Mittelachse ist dann beispielsweise in Richtung des E-Feldes gegenüber der Mittelachse des Formkörpers 7 versetzt.
  • Der in Fig. 2 dargestellte Formkörper 7 kann beispielsweise als Galvanoplastik einteilig und sehr maßgenau hergestellt werden, so daß die reflexionsarme Einspeisung der Wellen noch verbessert werden kann.
  • Die Polarisationsweiche 2 ist im Vorangehenden für den Fall geschildert worden, daß gleichzeitig zwei Wellen gesendet, also vom Reflektor 1 abgestrahlt werden sollen. Sie ist jedoch genau so gut für den gleichzeitigen Empfang von zwei um 90° in ihrer Polarisationsrichtung gedrehten Wellen geeignet. Auch für gleichzeitiges Senden und Empfangen je einer dieser Wellen ist diese Polarisationsweiche verwendbar.

Claims (4)

  1. Polarisationsweiche (2) zur Ausleuchtung des parabolischen Reflektors (1) einer Richtantenne, bestehend aus einem zur simultanen Übertragung zweier orthogonaler, linear polarisierter elektromagnetischer Wellen geeigneten, als Hohlleiter ausgebildeten Formkörper (7), an welchen zwei die beiden elektromagnetischen Wellen getrennt führende Rechteckhohlleiter (3, 4) angeschlossen sind, bei welcher der eine Rechteckhohlleiter(3) im Verlauf des Formkörpers mit seiner Stirnseite in radialer Richtung auf denselben auftreffend mit dessen Wandung verbunden ist, wobei zwischen dem radial angeschlossenen Rechteckhohlleiter (3) und der zugehörigen, als Blende (9) ausgeführten Öffnung ein als Hohlraum (11) mit etwa rechteckigem Querschnitt ausgebildeter erster Übergang angebracht ist, während der andere Rechteckhohlleiter (4) an einer Stirnseite (B) des Formkörpers an denselben angeschlossen ist, und bei welcher beide Rechteckhohlleiter (3, 4) über Öffnungen elektromagnetisch mit dem Formkörper verbunden sind, zwischen denen innerhalb desselben ein Kurzschlusselement (10) angeordnet ist, dadurch gekennzeichnet,
    - dass, zwei in Achsrichtung des Hohlraums (11) verlaufende, von den breiteren Wandungen des Hohlraums (11) abstehende und einander fluchtend gegenüber liegende Stege (12, 13) angeordnet sind und
    - dass zwischen dem Formstück (7) und dem stirnseitig angeschlossenen Rechteckhohlleiter (4) ein einen Hohlraum mit etwa rechteckigem Querschnitt umschliessender, in Stufen verlaufender zweiter Übergang (8) angebracht ist, wobei der Rechteckhohlleiter (4) mit seiner Stirnseite mit dem zweiten Übergang (8) verbunden ist.
  2. Polarisationsweiche nach Anspruch 1, dadurch gekennzeichnet, daß die Mittelachse des stirnseitig angeschlossenen Rechteckhohlleiters (4) gleich der Mittelachse des Formkörpers (7) ist.
  3. Polarisationsweiche nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Abstand (X) der beiden Stege (12,13) voneinander 50 % bis 90 % der durch die kürzeren Wandungen des Hohlraums (11) bestimmten Höhe (H) desselben beträgt.
  4. Polarisationsweiche nach einem der Ansprüch 1 bis 3, dadurch gekennzeichnet, daß die axiale Länge der beiden Stege (12,13) zwischen dem 0,25-fachen und dem 0,5-fachen der Wellenlänge λ der Hohlleiterwelle liegt.
EP98402074A 1997-09-24 1998-08-14 Polarisationsweiche zur Ausleuchtung einer Antenne Expired - Lifetime EP0905813B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19741999A DE19741999A1 (de) 1997-09-24 1997-09-24 Polarisationsweiche zur Ausleuchtung einer Antenne
DE19741999 1997-09-24

Publications (3)

Publication Number Publication Date
EP0905813A2 EP0905813A2 (de) 1999-03-31
EP0905813A3 EP0905813A3 (de) 2000-04-12
EP0905813B1 true EP0905813B1 (de) 2007-12-19

Family

ID=7843376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402074A Expired - Lifetime EP0905813B1 (de) 1997-09-24 1998-08-14 Polarisationsweiche zur Ausleuchtung einer Antenne

Country Status (5)

Country Link
US (1) US6130649A (de)
EP (1) EP0905813B1 (de)
KR (1) KR19990030061A (de)
AU (1) AU739731B2 (de)
DE (2) DE19741999A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961237A1 (de) * 1999-12-18 2001-06-21 Alcatel Sa Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen
US7053849B1 (en) 2004-11-26 2006-05-30 Andrew Corporation Switchable polarizer
US8077103B1 (en) 2007-07-07 2011-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cup waveguide antenna with integrated polarizer and OMT

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB767518A (en) * 1954-02-08 1957-02-06 British Thomson Houston Co Ltd Improvements relating to electrical waveguide systems
US3369197A (en) * 1965-01-05 1968-02-13 Bell Telephone Labor Inc Waveguide mode coupler
US3696434A (en) * 1971-01-15 1972-10-03 Radiation Inc Independent mode antenna feed system
US3864688A (en) * 1972-03-24 1975-02-04 Andrew Corp Cross-polarized parabolic antenna
US4077039A (en) * 1976-12-20 1978-02-28 Bell Telephone Laboratories, Incorporated Launching and/or receiving network for an antenna feedhorn
US4258366A (en) * 1979-01-31 1981-03-24 Nasa Multifrequency broadband polarized horn antenna
FR2582449B1 (fr) * 1979-07-24 1988-08-26 Thomson Csf Dispositif diplexeur de polarisations a large bande et antenne associee a un radar ou a un dispositif de contre-mesure comportant un tel dispositif
IT1155664B (it) * 1982-03-25 1987-01-28 Sip Dispositivo di guida d onda per la separazione di segnali a radiofrequenza di diversa frequenza e polarizzazione
DE3241890A1 (de) * 1982-11-12 1984-05-17 kabelmetal electro GmbH, 3000 Hannover Polarisationsweiche mit speisehorn
US4797681A (en) * 1986-06-05 1989-01-10 Hughes Aircraft Company Dual-mode circular-polarization horn
CA1260609A (en) * 1986-09-12 1989-09-26 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Wide bandwidth multiband feed system with polarization diversity
US5162808A (en) * 1990-12-18 1992-11-10 Prodelin Corporation Antenna feed with selectable relative polarization
DE4113760C2 (de) * 1991-04-26 1994-09-01 Hirschmann Richard Gmbh Co Anordnung zur Umwandlung eines Mikrowellentyps
US5434585A (en) * 1992-11-20 1995-07-18 Gardiner Communications, Inc. Microwave antenna having a ground isolated feedhorn
DE29511273U1 (de) * 1995-07-12 1995-09-21 Alcatel Kabel Ag Polarisationsweiche zur Ausleuchtung einer Antenne

Also Published As

Publication number Publication date
US6130649A (en) 2000-10-10
DE19741999A1 (de) 1999-03-25
DE59814142D1 (de) 2008-01-31
EP0905813A3 (de) 2000-04-12
EP0905813A2 (de) 1999-03-31
KR19990030061A (ko) 1999-04-26
AU739731B2 (en) 2001-10-18
AU8422098A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
DE3241890C2 (de)
DE3246317A1 (de) Wellenleiter fuer zweifach polarisierte zwei-frequenz-signale und verfahren zur wellenleitung solcher signale
EP0059927A1 (de) Mikrowellen-Empfangseinrichtung
DE1491921C3 (de) Empfangsantenne zur automatischen Zielverfolgung einer bewegten Strahlungsquelle
DE3111731A1 (de) Mikrowellenuebertragungseinrichtung mit mehrmodendiversity-kombinationsempfang
DE2811070C2 (de) Filteranordnung aus mehreren Hohlraumresonator-Bandpaßfiltern
DE2800101A1 (de) Strahler fuer eine antenne, u.a. fuer satellitensignale
DE3634772C2 (de)
DE3027497A1 (de) Polarisationsweiche mit speisehorn
EP0905813B1 (de) Polarisationsweiche zur Ausleuchtung einer Antenne
DE2719283C2 (de) Antennenspeisesystem für Doppelpolarisation
DE2828047C2 (de) Frequenzabhängiges Koppelsystem
DE3241889C2 (de)
DE3421313C2 (de)
EP0634667B1 (de) Monopuls-Kleinradar
DE3439414A1 (de) Antennenerreger fuer mindestens zwei unterschiedliche frequenzbaender
EP1109245A2 (de) Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen
DE3439413A1 (de) Antennenerreger fuer mindestens zwei unterschiedliche frequenzbaender
EP0898323A2 (de) Polarisationsweiche für zwei unterschiedliche Frequenzbänder
EP0419892B1 (de) Mikrowellen-Polarisationsweiche
DE2800913A1 (de) Kombinationsantenne, insbesondere fuer automatischen radiokompass-empfaenger
DE4113760C2 (de) Anordnung zur Umwandlung eines Mikrowellentyps
DE3439416C2 (de)
DE2353277C2 (de) Parabolreflektorantenne mit vier Primärstrahlern
DE3607846C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000313

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20061108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59814142

Country of ref document: DE

Date of ref document: 20080131

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100823

Year of fee payment: 13

Ref country code: FR

Payment date: 20100901

Year of fee payment: 13

Ref country code: DE

Payment date: 20100823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100819

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110814

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814142

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110814

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521