EP2347025B1 - Procede de fabrication d'une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue - Google Patents

Procede de fabrication d'une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue Download PDF

Info

Publication number
EP2347025B1
EP2347025B1 EP09755981A EP09755981A EP2347025B1 EP 2347025 B1 EP2347025 B1 EP 2347025B1 EP 09755981 A EP09755981 A EP 09755981A EP 09755981 A EP09755981 A EP 09755981A EP 2347025 B1 EP2347025 B1 EP 2347025B1
Authority
EP
European Patent Office
Prior art keywords
block
binder phase
dense
temperature
dense material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09755981A
Other languages
German (de)
English (en)
Other versions
EP2347025A1 (fr
Inventor
Christophe Colin
Elodie Lefort
Alfazazi Dourfaye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varel Europe SAS
Original Assignee
Varel Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varel Europe SAS filed Critical Varel Europe SAS
Publication of EP2347025A1 publication Critical patent/EP2347025A1/fr
Application granted granted Critical
Publication of EP2347025B1 publication Critical patent/EP2347025B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component

Definitions

  • a part comprising a block of dense material consisting of hard particles dispersed in a binder phase by a thermo-chemical treatment, the part having a property gradient.
  • Many parts in particular drill bit cutters or machining tools, consist of blocks of hardened carbide type material consisting of carbide particles dispersed in a metal binder phase. These materials, which are extremely hard, and therefore resistant to wear, can also be fragile. Also, in order to reinforce their toughness, they are subjected to treatments intended to introduce within them a ductile phase composition gradient with or without the formation of new phases whose hardness is different from the initial hardness of the block which results either in blocks whose outer surface, or at least a part thereof, is extremely hard and the inner part is more tenacious, either to blocks whose outer surface or at least a part is more tenacious and the inner part is harder .
  • non-dense cemented carbide blocks having a porosity gradient can be produced by powder metallurgy and infiltrated by a binder phase to improve their ductility to the core.
  • This method is poorly suited in particular to the WC-Co type system, because it leads to the partial destruction of the pre-existing carbide skeleton infiltration, and therefore does not achieve the desired properties for a cutter.
  • cemented carbides with a composition gradient by natural phase solid sintering of a multilayer component, each of the layers having a different composition.
  • this method does not completely densify the material and must be followed by an expensive treatment of hot isostatic compaction.
  • the preparation of the cemented carbide gradient composition is complex since it requires the realization of a succession of elementary layers that fit into each other.
  • this method has the disadvantage of not generating a continuous composition gradient.
  • cemented carbide blocks having a binder phase composition gradient over millimeter distances by enriching these cemented carbides by imbibition from the outside to from a liquid phase capable of penetrating (or migrating) into the cemented carbide.
  • This imbibition phenomenon corresponds to the migration of external liquid composition close to that of the solid / liquid system considered perfectly dense under the sole driving force of the migration pressure generated by a local imbalance of the volume fraction of the binder phase and / or the size and morphology of the solid grains.
  • This phenomenon concerns any system consisting of condensed phases (solid and liquid) which has an ability to adapt the shape of its solid grains by the absorption of liquid thus making it energetically more stable, that is to say which has a maturing Ostwald with modification of the shape of the hard particles without necessarily causing a magnification of these particles by the phenomenon of dissolution and re-precipitation.
  • the inventors have found that it is possible to generate binding phase concentration gradients over millimeter distances inside dense cemented carbide blocks, on the sole condition of depositing a suitable coating on all or part of the surface of the dense cemented carbide block and subject to a suitable heat treatment whose temperature must be at least equal to the temperature allowing the transition to the liquid state of the binder phase (solidus of the cemented carbide considered).
  • the material constituting the coating destabilizes (or dissociates) and one or more chemical elements constituting it, diffuse and react or not with the block material, thus generating a binder phase gradient in the block and / or the formation of phases whose hardness is different from the initial hardness of the block over greater or lesser distances, depending on the duration of the heat treatment applied.
  • the parameters of the heat treatment can be determined by those skilled in the art in particular depending on the shape of the desired gradient.
  • the subject of the invention is a method for manufacturing a part comprising a block of dense material consisting of hard particles of the same or different nature dispersed in a binder phase, the material having a solidus temperature T s from of which the binder phase is liquid, characterized in that at least a portion of the surface of the dense material block is deposited with an active coating consisting of a material possibly capable of reacting chemically with the dense material but not providing any additional binder phase, when the assembly is carried beyond a minimum reaction temperature T r , and in that the block coated with the active coating is subjected to a heat treatment comprising heating and then holding for a time t m at a holding temperature T m greater than or equal to the minimum reaction temperature T r , followed by cooling to room temperature.
  • This method leads to variations of the binder phase inside the block over millimeter distances which are done without external binder phase input and thus without leading to the overall enrichment of the block in additional binder phase.
  • the holding temperature T m is greater than or equal to the solidus temperature T s of the dense material.
  • the holding temperature T m is less than or equal to T s + 200 ° C.
  • the holding time t m is between 1 min and 10 min.
  • the active coating can be deposited only on a part of the surface of the block.
  • the active coating can be deposited on the entire surface of the block.
  • the dense material is for example a cemented carbide consisting of metal carbide particles dispersed in a metal matrix.
  • the cemented carbide may further contain natural or synthetic diamond particles up to 1 mm in diameter.
  • the cemented carbide is for example of the WC-M type, M being one or more metals taken from Co, Ni and Fe, the sum of the contents by weight of these metals in the binder phase being greater than 50%.
  • the coating material capable of reacting with the dense material of the block is for example composed of at least one of nitride, boride, carbide, oxide, hydride, carbonitride, borocarbide and graphite compounds. This material may consist of any mixture of these different compounds.
  • the coating may be deposited by a PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) method, or by a spraying, brushing, dipping or screen printing process.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the block of dense material is for example a cutting or support block of a drill bit of a drilling tool or felling or machining of rocks or metals.
  • PDC Polycrystalline Diamond Compact
  • TSP Thermal Stable Polycrystalline diamond
  • the diamond plate can be attached to the block by soldering, after the treatment of the block.
  • This thermal process then has the advantage of very simply producing cemented carbide blocks having a property gradient suitable for use as a drill bit or cutting tool bit, or as a cutting bit support block. drilling tool or cutting tool.
  • the cutter for a rock size tool which comprises a block consisting of hard particles dispersed in a binder phase obtained by the process according to the invention may have a distance greater than 0.5 mm, better still greater than 1 mm, and better still higher at 3 mm, a continuous gradient of binder phase content, the difference in binder phase content between the richest zone and the less rich zone being greater than 1% by volume, better still greater than 2%, and better still, greater than 5%.
  • the cutting edge may comprise a PDC or TSP-type diamond insert having a thickness of between 0.4 mm and 5 mm.
  • the rock size tool may include at least one cutter or impregnated blade of a cemented carbide blend with natural or synthetic diamond particles (up to 1 mm in diameter).
  • blocks intended in particular to manufacture bits for drilling tools or more generally for cutting tools generally parallelepiped shape or cylindrical shape having dimensions of the order of a few millimeters or a few tens of millimeters .
  • These blocks obtained by powder metallurgy, consist of a dense material whose structure comprises on the one hand hard particles such as metal carbides, and in particular tungsten carbides, and on the other hand a binding phase consisting of mainly a metal or an alloy metallic.
  • this binder phase can form, at a suitable temperature, a eutectic whose melting temperature is lower both at the melting point of the carbides and at the melting point of the metal or of the metal alloy.
  • This metal or metal alloy which constitutes the binder phase is for example cobalt but may also be iron or nickel or a mixture of these metals, these elements represent at least 50% by weight of the binder phase.
  • This binder phase may also contain addition elements whose sum of the contents may reach at most 15% by weight but generally do not exceed 5%.
  • additive elements may be copper to improve electrical conductivity or silicon which has a surfactant effect with respect to the system consisting of carbides and the binder phase.
  • the alloying elements may also be of carbide-forming elements for forming carbides or mixed carbides of type M x C y other than tungsten carbide. These elements include manganese, chromium, molybdenum, vanadium, niobium, tantalum, titanium, zirconium and afnium.
  • the binder phase may comprise additive elements that change the shape and / or inhibit the magnification of hard particles and that those skilled in the art know.
  • the chemical composition of these materials includes unavoidable impurities that result from the processes of making.
  • the block 1 made of dense material is coated with a layer 2 of thickness generally between approximately 50 ⁇ m and 2 mm, made of a material capable of chemically reacting with the binder phase and / or the carbide phase of the dense material.
  • This coating is carried out by spraying, PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) deposit if this coating material is supplied in gaseous form, or by brush, dip or dipping. silkscreen if the coating material is brought in liquid form.
  • the holding temperature T m must be greater than or equal to the minimum reaction temperature T r which is the temperature above which the outer coating or one of its elements begins to react (in particular formation of solid phases) or diffuse without reacting (no formation of solid phases but can lead locally to a change in the composition of the binding phase of the dense block) significantly within the block.
  • This reaction temperature T r must be greater than or equal to the solidus temperature T s of the cemented carbide which constitutes the block.
  • This solidus temperature is the minimum temperature at which the binder phase of the cemented carbide is in the liquid state. This condition is desirable so that the coating or one of its constituent elements can rapidly diffuse and then react or not depending on the coating considered with the constituents (solid grains or liquid phase) of the block being treated.
  • the reaction temperature T r is greater than or equal to the destabilization or dissociation temperature T d of the compound which is not necessarily greater than the solidus temperature T s of the cemented carbide.
  • the reaction temperatures T r , of destabilization T d and the solidus temperature T s depend on the nature of the material of which the coating consists and of the material of which the block is made. Those skilled in the art know how to determine these temperatures.
  • reaction temperature Tr which has just been defined is greater than or equal to the solidus temperature Ts so that the diffusion takes place in the binder phase in the liquid state in order to obtain a sufficient diffusion rate.
  • the holding temperature T m must not be too high. Preferably, it should remain below T s + 200 ° C and better, below T s + 100 ° C, and better still, below T s + 50 ° C.
  • the holding time t m must be adapted to the shape and amplitude of the desired gradient and is deduced from the experiment. It is usually of the order of a few minutes.
  • the coating material capable of destabilizing or dissociating and / or reacting with the material constituting the dense block to be treated is, for example, a metalloid nitride or metal nitride such as boron nitride, aluminum nitride, titanium nitride, or a boride such as titanium boride, a metalloid carbide or metal such as boron carbide, titanium carbide, or a hydride such as titanium hydride or graphite or an oxide refractory such as alumina or a carbonitride or borocarbide metal or a mixture of such materials.
  • a metalloid nitride or metal nitride such as boron nitride, aluminum nitride, titanium nitride, or a boride such as titanium boride, a metalloid carbide or metal such as boron carbide, titanium carbide, or a hydride such as titanium hydride or graphite or an oxide
  • the materials used to make the coating of the block to be treated must be active or in some cases reactive above the solidus temperature T s , but it is preferable that they remain stable, that is to say, do not dissociate, below this temperature.
  • the property gradient obtained may result from a relative hardening of the surface of the block relative to the core, or on the contrary, a softening.
  • the heat treatment comprises, as shown in figure 4 , a rise in temperature up to the holding temperature T m , then a hold for a holding time t m at this temperature and cooling to room temperature.
  • the holding time t m and the holding temperature T m are adapted according to the dimensions of the block to be treated and the property gradient that is to be obtained.
  • the heat treatment can be carried out in a resistance furnace, or an induction furnace, or a microwave oven, under a protective atmosphere or under empty.
  • the protective atmosphere is for example argon or a mixture of argon and hydrogen but generally any neutral atmosphere such as argon, nitrogen, hydrogenated argon, hydrogenated nitrogen, hydrogen or possibly a primary or secondary vacuum.
  • the block thus treated has a composition, in particular a binder phase content, which varies from outside to inside.
  • the figure shows iso-concentration Ci curves in the binder phase, the outermost zone 10 being the poorest in the binder phase and therefore the hardest, and the intermediate zone 11 having an intermediate concentration and the the richest zone 12 binder phase being the least hard and therefore the most tenacious.
  • the variation in the binder phase content takes place over several millimeters.
  • the extent of the area affected by the variation of the binder phase content depends both on the maximum holding temperature T m , the holding time t m and the thickness of the coating material.
  • T m the maximum holding temperature
  • t m the holding time
  • the thickness of the coating material At equal thickness of the coating layer, the higher the temperature T m is and the longer the time t m is, the more the affected area is extended; that is, the deeper the block is affected.
  • the block as just described is covered on all sides with an active material. But, the active material can be deposited only on a part of the outer surface of the block and thus can lead to hardening or softening that areas of the block located under the coating and therefore have respectively a softened area or hardened core that can extend to the outer surface of the block that is not coated.
  • the variation in hardness that can reach several hundred Vickers can be over distances greater than 0.5mm, and can extend throughout the block.
  • the first block, spotted 10 at the figure 5 was spray-coated with a layer 11 of boron nitride BN, covering the upper face and the side faces of the block, and then treated under vacuum.
  • the direction of migration of the binder phase is indicated by the arrow and by the increasing direction of the iso-concentrations (C1 ⁇ C2 ⁇ C3 ⁇ C4).
  • the second block, spotted 20 at the figure 7 was also coated with a layer 21 of boron nitride BN, but this was deposited on only one half of the block.
  • the block was treated under a hydrogenated argon atmosphere.
  • the binder phase concentration gradient obtained leads to a hardness amplitude of 120 HV, only the zone 22 beneath the coating being cured, the remainder 23 not being hardened.
  • the direction of migration of the binder phase is indicated by the arrow and the increasing direction of the iso-concentrations (C1 ⁇ C2 ⁇ C3).
  • the third block, spotted 30 at the figure 9 was coated with a layer 31 of aluminum oxide Al 2 O 3 deposited in the form of liquid paste with a brush on the upper face and on the side faces of the block and treated under vacuum.
  • the binder phase concentration gradient obtained is dome-shaped, but, contrary to what was obtained with the first block, the zone 32 close to the surface has been softened so that their hardness is 150 HV less than that of the core zone 33.
  • the direction of migration of the binder phase is indicated by the arrow and by the increasing direction of the insulation. concentrations (C1 ⁇ C2 ⁇ C3 ⁇ C4) whose meaning is opposite to the two previous cases.
  • the boron nitride makes it possible to harden the zone of the block close to the coating layer, whereas the alumina makes it possible to soften it.
  • the furnace atmosphere (vacuum or argon-hydrogenated) used to carry out the treatments has no effect on the result.
  • the blocks thus treated may constitute bits of drilling tool or cutting tool and may have dimensions of a few millimeters or even more since it is conceivable to produce cutting blades having dimensions of several centimeters and which can be hardened by this process.
  • a cutter for a rock cutting tool or tool for cutting refractory or machining metals consisting of a cemented carbide support block 20 made using the method according to the invention, the lateral surface of which is hard and the tenacious core (C1 ⁇ C2 ⁇ C3 ⁇ C4) and whose underside has not been coated before heat treatment and whose upper face after treatment has been reported a plate 21 of natural or synthetic diamond of greater thickness at 0.4 mm according to the HPHT (High Pressure - High Temperature) process of the PDC (Polycrystalline Diamond Compact) or TSP (Thermally Stable Polycrystalline diamond) type.
  • HPHT High Pressure - High Temperature
  • PDC Polycrystalline Diamond Compact
  • TSP Thermally Stable Polycrystalline diamond
  • the support block 20 treated according to the invention can be assembled after the HPHT process by soldering for example according to the process known under the name of "LS Bond” and described in US Pat. US 4,225,322 and US 5,111,895 without this operation leading to a drastic change in the binder phase concentration gradient in the block.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

  • Procédé pour fabriquer une pièce comprenant un bloc en matériau dense constitué de particules dures dispersées dans une phase liante par un traitement thermo-chimique, la pièce présentant un gradient de propriétés.
  • De nombreuses pièces, notamment des taillants d'outils de forage ou d'outils d'usinage, sont constituées de blocs en matériau du type carbure cémenté constitués de particules de carbure dispersées dans une phase liante métallique. Ces matériaux qui sont extrêmement durs, et donc résistants à l'usure, peuvent également être fragiles. Aussi, afin de renforcer leur ténacité, on les soumet à des traitements destinés à introduire en leur sein un gradient de composition en phase ductile avec ou non la formation de nouvelles phases dont la dureté est différente de la dureté initiale du bloc qui aboutit soit à des blocs dont la surface extérieure, ou au moins une partie de cette surface, est extrêmement dure et la partie intérieure est plus tenace, soit à des blocs dont la surface extérieure ou au moins une partie est plus tenace et la partie intérieure est plus dure.
  • Pour cela, on peut fabriquer des blocs de carbure cémenté non dense ayant un gradient de porosité qu'on réalise par métallurgie des poudres et que l'on infiltre par une phase liante afin d'améliorer leur ductilité à coeur. Cette méthode est mal adaptée en particulier au système du type WC-Co, car elle conduit à la destruction partielle du squelette de carbure préexistant à l'infiltration, et de ce fait, ne permet pas d'obtenir les propriétés souhaitées pour un taillant.
  • Il a également été proposé de réaliser des carbures cémentés à gradient de composition par frittage naturel en phase solide d'une pièce multicouches, chacune des couches ayant une composition différente. Toutefois, cette méthode ne permet pas de densifier complètement le matériau et doit être suivie d'un traitement coûteux de compaction isostatique à chaud. En outre, la préparation du carbure cémenté à gradient de composition est complexe puisqu'elle nécessite la réalisation d'une succession de couches élémentaires qui s'emboîtent les unes dans les autres. Enfin, ce procédé présente l'inconvénient de ne pas engendrer un gradient continu de composition.
  • Il a également été proposé de réaliser de tels matériaux par frittage naturel en phase liquide, ce qui permet d'obtenir très rapidement, et en une seule étape, un matériau à gradient de composition complètement dense. Mais, ce procédé présente l'inconvénient d'atténuer assez fortement le gradient de composition en raison de la migration de liquide entre les couches de faible épaisseur sous l'effet combiné des phénomènes d'infiltration et d'imbibition. En outre, et contre toute attente, le gradient de composition reste discontinu lorsque la durée de maintien à l'état liquide reste inférieure à une durée critique au-delà de laquelle on constate une complète homogénéisation du carbure cémenté mais insuffisante pour densifier le matériau.
  • Par ailleurs, il a été proposé d'améliorer la tenue en service d'outils coupants en déposant à la surface du carbure cémenté des revêtements durs en nitrure, carbonitrure, oxyde ou borure. De telles méthodes ont été décrites par exemple dans les brevets US 4 548 786 ou US 4 610 931 . Mais ces méthodes présentent l'inconvénient d'améliorer uniquement la résistance à l'usure par abrasion du carbure cémenté, et ce, uniquement sur de faibles épaisseurs (quelques microns).
  • Il a été également proposé d'améliorer à la fois la résistance à l'usure de la surface ainsi que la résistance aux chocs des carbures cémentés de type WC-Co en mettant une phase gazeuse riche en carbone au contact d'un carbure cémenté dense sous-stoechiométrique en carbone. Sous l'effet de la température le carbone de la phase gazeuse diffuse dans le carbure cémenté sous-stoechiométrique et réagit avec la phase η-Co3W3C, ce qui conduit à une libération de cobalt qui migre vers la surface extérieure du carbure cémenté c'est-à-dire en arrière du front de diffusion du carbone. Cette méthode décrite dans le brevet US 4 743 515 présente l'inconvénient de conduire à un gradient de phase liante riche en cobalt sur 1 ou 2 mm tout en conservant une fragilité du coeur de la pièce traitée.
  • Afin de remédier aux différentes insuffisances des méthodes qui viennent d'être énoncées, il a été proposé de fabriquer des blocs de carbure cémenté ayant un gradient de composition en phase liante sur des distances millimétriques en enrichissant ces carbures cémentés par imbibition depuis l'extérieur à partir d'une phase liquide susceptible de pénétrer (ou migrer) dans le carbure cémenté. Ce phénomène d'imbibition correspond à la migration de liquide externe de composition proche de celui du système solide/liquide considéré parfaitement dense sous la seule force motrice de la pression de migration générée par un déséquilibre local de la fraction volumique de phase liante et/ou de la taille et morphologie des grains solides. Ce phénomène concerne tout système constitué de phases condensées (solides et liquide) qui possède une aptitude à adapter la forme de ses grains solides par l'absorption de liquide le rendant ainsi énergétiquement plus stable, c'est-à-dire qui présente un mûrissement d'Ostwald avec modification de la forme des particules dures sans nécessairement engendrer un grossissement de ces particules par le phénomène de dissolution et re-précipitation.
  • L'utilisation de ce procédé pour fabriquer des taillants pour outils de forage ou outils de coupe, nécessite de réaliser des assemblages préalables entre un bloc fritté dense destiné à être enrichi et une pastille de poudre compactée en matériau d'imbibition destinée à apporter la phase liante par le phénomène d'imbibition et de disposer l'ensemble dans un four pour effectuer le traitement thermique adéquat. Ce procédé présente l'inconvénient de faire appel à un matériau d'imbibition qu'il convient de dimensionner par rapport au gradient de composition désiré, ce qui complexifie le procédé et nécessite le plus souvent une rectification de la surface d'imbibition.
  • De façon très inattendue, les inventeurs ont constaté qu'il était possible d'engendrer des gradients de concentration en phase liante sur des distances millimétriques à l'intérieur de blocs en carbure cémenté dense à la seule condition de déposer un revêtement adapté sur toute ou partie de la surface du bloc dense en carbure cémenté et de le soumettre à un traitement thermique adéquat dont la température doit être au moins égale à la température permettant le passage à l'état liquide de la phase liante (solidus du carbure cémenté considéré).
  • Le matériau constituant le revêtement se déstabilise (ou se dissocie) et un ou plusieurs éléments chimiques qui le constituent, diffusent et réagissent ou non avec le matériau du bloc, générant ainsi un gradient de phase liante dans le bloc et/ou la formation de phases dont la dureté est différente de la dureté initiale du bloc sur des distances plus ou moins importantes, fonction de la durée du traitement thermique appliqué. La forme du gradient ainsi généré dans le bloc : durcissement de la surface sous laquelle a été déposée le revêtement et adoucissement du coeur ou inversement adoucissement de la surface sous laquelle a été appliquée le revêtement et durcissement du coeur, dépend notamment de la nature et de l'épaisseur du revêtement utilisé, de la proportion de la surface revêtue et du traitement thermique. Les paramètres du traitement thermique peuvent être déterminés par l'homme du métier notamment en fonction de la forme du gradient souhaité.
  • Compte tenu de ces observations, les matériaux susceptibles d'être déposés sur la surface d'un Cermet avant d'effectuer un traitement thermique peuvent être classés dans les catégories suivantes :
    • matériaux inactifs avec le bloc dense : il s'agit de matériaux n'engendrant pas de variation locale de phase liante à l'échelle macroscopique dans le bloc dense ;
    • matériaux actifs avec le bloc dense : il s'agit de matériaux engendrant une variation locale de phase liante à l'échelle macroscopique dans le bloc dense. Aussi, le terme « actif » est à considérer par rapport au procédé à savoir amenant à une variation locale de la phase liante dans le bloc dense.
  • Parmi les matériaux actifs, on distingue :
    • ceux qui sont susceptibles d'apporter de la phase liante supplémentaire, et
    • ceux qui ne peuvent pas apporter de phase liante supplémentaire.
  • On distingue également :
    • les matériaux actifs et non réactifs (ou inertes chimiquement) avec le bloc dense : les éléments chimiques du matériau diffusent mais ne réagissent pas avec l'une des deux phases (solide ou liquide) du Cermet dense ne formant pas de phases solides ; et
    • les matériaux actifs et réactifs chimiquement avec le bloc dense : certains éléments chimiques du matériau diffusent et réagissent aux dépens de la phase solide ou liquide du Cermet dense formant au moins une phase solide.
  • Aussi, l'invention a pour objet un procédé pour fabriquer une pièce comprenant un bloc en matériau dense constitué de particules dures, de même nature ou de nature différente, dispersées dans une phase liante, le matériau ayant une température de solidus Ts à partir de laquelle la phase liante est liquide, caractérisé en ce qu'on dépose sur au moins une partie de la surface du bloc en matériau dense, un revêtement actif constitué d'un matériau éventuellement susceptible de réagir chimiquement avec le matériau dense mais n'apportant pas de phase liante supplémentaire, lorsque l'ensemble est porté au-delà d'une température minimale de réaction Tr, et en ce qu'on soumet le bloc revêtu du revêtement actif à un traitement thermique comprenant un chauffage puis un maintien pendant un temps tm à une température de maintien Tm supérieure ou égale à la température minimale de réaction Tr, suivi d'un refroidissement jusqu'à la température ambiante. Ce procédé conduit à des variations de la phase liante à l'intérieur du bloc sur des distances millimétriques qui se font sans apport de phase liante externe et donc sans conduire à l'enrichissement global du bloc en phase liante supplémentaire.
  • De préférence, la température de maintien Tm est supérieure ou égale à la température de solidus Ts du matériau dense.
  • De préférence, la température de maintien Tm est inférieure ou égale à Ts + 200°C.
  • De préférence, le temps de maintien tm est compris entre 1 min et 10min.
  • Le revêtement actif peut n'être déposé que sur une partie de la surface du bloc.
  • Le revêtement actif peut être déposé sur toute la surface du bloc.
  • Le matériau dense est par exemple un carbure cémenté constitué de particules de carbure métallique dispersées dans une matrice métallique.
  • Le carbure cémenté peut, en outre, contenir des particules de diamant naturel ou synthétique de taille allant jusqu'à 1 mm de diamètre.
  • Le carbure cémenté est par exemple du type WC-M, M étant un ou plusieurs métaux pris parmi Co, Ni et Fe, la somme des teneurs en poids de ces métaux dans la phase liante étant supérieure à 50%.
  • Le matériau de revêtement susceptible de réagir avec le matériau dense du bloc est par exemple constitué d'au moins un composé pris parmi les composés du type nitrure, borure, carbure, oxyde, hydrure, carbonitrure, borocarbure, graphite. Ce matériau peut être constitué de tout mélange de ces différents composés.
  • Le revêtement peut être déposé par un procédé du type PVD (Physical Vapor Deposition) ou CVD (Chemical Vapor Deposition), ou un procédé de pulvérisation ou au pinceau ou au trempé ou par sérigraphie.
  • Le bloc de matériau dense est par exemple un taillant ou un bloc support d'un taillant d'un outil de forage ou abattage ou usinage de roches ou de métaux.
  • En outre, on peut déposer sur une face du bloc support une plaquette diamantée de type PDC (Polycrystalline Diamond Compact) ou TSP (Thermally Stable Polycrystalline diamond).
  • La plaquette diamantée peut être rapportée sur le bloc par brasage, après le traitement du bloc.
  • Ce procédé thermique présente alors l'avantage de réaliser de façon très simple des blocs en carbure cémenté présentant un gradient de propriétés adapté à une utilisation comme taillant d'outil de forage ou d'outil de coupe, ou comme bloc support de taillant d'outil de forage ou d'outil de coupe.
  • Le taillant pour outil de taille des roches qui comprend un bloc constitué de particules dures dispersées dans une phase liante obtenu par le procédé selon l'invention peut présenter sur une distance supérieure à 0,5mm, mieux supérieure à 1 mm, et mieux encore supérieure à 3mm, un gradient continu de teneur en phase liante, l'écart de teneur en phase liante entre la zone la plus riche et la zone la moins riche étant supérieure à 1% en volume, mieux supérieure à 2%, et mieux encore, supérieure à 5%.
  • Le taillant peut comprendre une plaquette diamantée rapportée de type PDC ou TSP d'épaisseur pouvant être comprise entre 0,4mm et 5mm.
  • L'outil de taille des roches peut comprendre au moins un taillant ou une lame d'imprégné constitué d'un mélange de carbure cémenté avec des particules de diamant naturel ou synthétique (de taille pouvant aller jusqu'à 1 mm de diamètre).
  • L'invention va maintenant être décrite de façon plus précise mais non limitative en regard des figures annexées, dans lesquelles :
    • La figure 1 représente une vue en coupe d'un bloc de carbure cémenté dense recouvert complètement d'un revêtement et le tout disposé dans un four de traitement thermique.
    • La figure 2 est une vue en coupe d'un bloc en carbure cémenté dense traité et qui montre la répartition de la concentration en phase liante à l'intérieur du bloc à partir de la surface extérieure vers l'intérieur du carbure cémenté et la formation ou non de phases solides de dureté différente de la dureté initiale du bloc.
    • La figure 3 est une vue schématique en coupe d'un taillant pour outils de forage constitué d'une plaquette diamantée d'épaisseur millimétrique déposée sur un bloc support en carbure cémenté dense traité selon l'invention et dont la surface inférieure n'avait pas été revêtue.
    • La figure 4 est un schéma représentant l'évolution de la température en fonction du temps pour un cycle thermique de traitement d'un bloc dense en carbure cémenté revêtu.
    • La figure 5 représente schématiquement en coupe un premier exemple de bloc en carbure cémenté revêtu de nitrure de bore sur sa face supérieure et sur ses faces latérales.
    • La figure 6 représente schématiquement la forme en dôme du gradient de concentration en phase liante obtenu à partir du bloc de la figure 5, dont la surface extérieure est plus pauvre en phase liante que le coeur après traitement.
    • La figure 7 et la figure 8 représentent un deuxième exemple de bloc et de gradient de concentration en phase liante obtenu, le bloc étant revêtu de nitrure de bore seulement sur une partie de sa face supérieure et de ses faces latérales.
    • La figure 9 et la figure 10 représentent un troisième exemple de bloc et de gradient de concentration en phase liante obtenu, le bloc étant revêtu d'alumine sur sa face supérieure et sur ses faces latérales et dont la surface extérieure est plus riche en phase liante que le coeur après traitement.
  • Dans la suite, on considère des blocs destinés notamment à fabriquer des taillants pour outils de forage ou plus généralement pour des outils de coupe, de forme généralement parallélépipédique ou de forme cylindrique ayant des dimensions de l'ordre de quelques millimètres ou quelques dizaines de millimètres. Ces blocs, obtenus par métallurgie des poudres, sont constitués d'un matériau dense dont la structure comprend d'une part des particules dures telles que des carbures métalliques, et en particulier des carbures de tungstène, et d'autre part une phase liante constituée principalement d'un métal ou d'un alliage métallique. Au contact des carbures, cette phase liante peut former, à une température adaptée, un eutectique dont la température de fusion est inférieure à la fois à la température de fusion des carbures et à la température de fusion du métal ou de l'alliage métallique. Ce métal ou cet alliage métallique qui constitue la phase liante est par exemple du cobalt mais peut être également du fer ou du nickel ou un mélange de ces métaux, ces éléments représentent au moins 50% en poids de la phase liante.
  • Cette phase liante peut également contenir des éléments d'addition dont la somme des teneurs peut atteindre au plus 15 % en poids mais en générale ne dépasse pas 5 %. Ces éléments d'addition peuvent être du cuivre pour améliorer la conductivité électrique ou du silicium qui a un effet tensioactif par rapport au système constitué par les carbures et par la phase liante. Les éléments d'addition peuvent également être des éléments carburigènes permettant de former des carbures mixtes ou des carbures de type MxCy autres que le carbure de tungstène. Ces éléments sont notamment le manganèse, le chrome, le molybdène, le vanadium, le niobium, le tantale, le titane, le zirconium et l'afnium.
  • En outre, la phase liante peut comporter des éléments d'addition qui modifient la forme et/ou inhibent le grossissement des particules dures et que l'homme du métier connaît.
  • Enfin, la composition chimique de ces matériaux comprend des impuretés inévitables qui résultent des procédés d'élaboration.
  • Pour certaines applications, afin de renforcer la résistance à l'usure des taillants, on peut ajouter des particules de diamant naturel ou synthétique dont le diamètre peut atteindre 1 mm. Ces particules de diamant sont ajoutées au mélange de poudre qui sert à la fabrication du bloc par frittage connu sous le nom d'imprégné.
  • Conformément à l'invention, pour réaliser un bloc en carbure cémenté à gradient de propriétés, on revêt le bloc 1 en matériau dense d'une couche 2 d'épaisseur généralement comprise entre 50µm et 2mm environ, en un matériau susceptible de réagir chimiquement avec la phase liante et/ou la phase carbure du matériau dense. Ce revêtement est réalisé par pulvérisation, dépôt PVD (Physical Vapor Deposition) ou CVD (Chemical Vapor Deposition) si ce matériau de revêtement est apporté sous forme gazeuse, ou au pinceau, au trempé ou par sérigraphie si le matériau de revêtement est apporté sous forme liquide. On dispose alors l'ensemble sur la sole 3 d'un four 4 et on porte l'ensemble à une température de maintien Tm et on maintient l'ensemble à cette température pendant un temps tm de façon à assurer l'interaction du revêtement externe ou d'un de ses éléments constitutifs avec le matériau dense et engendrer la formation d'un gradient de propriétés à l'intérieur du bloc. Pour cela, la température de maintien Tm doit être supérieure ou égale à la température minimale de réaction Tr qui est la température au-dessus de laquelle le revêtement externe ou un de ses éléments commence à réagir (notamment formation de phases solides) ou diffuser sans réagir (pas de formation de phases solides mais pouvant conduire localement à un changement de la composition de la phase liante du bloc dense) de façon significative à l'intérieur du bloc. Cette température de réaction Tr doit être supérieure ou égale à la température de solidus Ts du carbure cémenté qui constitue le bloc. Cette température de solidus est la température minimale à laquelle la phase liante du carbure cémenté est à l'état liquide. Cette condition est souhaitable pour que le revêtement ou un de ses éléments constitutifs puisse rapidement diffuser puis réagir ou non selon le revêtement considéré avec les constituants (grains solides ou phase liquide) du bloc en cours de traitement. Si le revêtement est constitué d'un composé avec un métalloïde tel que le bore ou tout autre métalloïde ou un non-métal tel que le carbone, l'azote, l'oxygène ou tout autre non-métal, la température de réaction Tr est supérieure ou égale à la température de déstabilisation ou de dissociation Td du composé qui n'est pas nécessairement supérieure à la température de solidus Ts du carbure cémenté. Les températures de réaction Tr, de déstabilisation Td et la température de solidus Ts dépendent de la nature du matériau dont est constitué le revêtement et du matériau dont est constitué le bloc. L'homme du métier sait déterminer ces températures.
  • Comme il est indiqué ci-dessus, la température de réaction Tr qui vient d'être définie, est supérieure ou égale à la température de solidus Ts pour que la diffusion se fasse dans la phase liante à l'état liquide afin d'obtenir une vitesse de diffusion suffisante.
  • Mais, l'homme du métier comprendra aisément que, lorsque la température de déstabilisation ou de dissociation Td est inférieure à la température de solidus Ts du carbure cémenté, un ou plusieurs constituants du matériau de revêtement peuvent commencer à diffuser dans la phase liante du bloc à l'état solide et, éventuellement, réagir.
  • La température de maintien Tm ne doit pas être trop élevée. De préférence, elle doit rester en dessous de Ts +200°C et mieux, en dessous de Ts +100°C, et mieux encore, en dessous de Ts +50°C. Le temps de maintien tm doit être quant à lui, adapté à la forme et à l'amplitude du gradient souhaité et est déduit de l'expérience. Il est généralement de l'ordre de quelques minutes.
  • Le matériau de revêtement susceptible de se déstabiliser ou de se dissocier et/ou de réagir avec le matériau qui constitue le bloc dense à traiter est par exemple un nitrure de métalloïde ou de métal tel que le nitrure de bore, le nitrure d'aluminium, le nitrure de titane, ou un borure tel que le borure de titane, un carbure de métalloïde ou de métal tel que le carbure de bore, le carbure de titane, ou un hydrure tel que l'hydrure de titane ou du graphite ou un oxyde réfractaire tel que l'alumine ou un carbonitrure ou un borocarbure de métal ou un mélange de tels matériaux.
  • Comme on l'a indiqué ci-dessus, les matériaux utilisés pour réaliser le revêtement du bloc à traiter doivent être actifs voire dans certains cas réactifs au-dessus de la température de solidus Ts, mais il est préférable qu'ils restent stables, c'est-à-dire ne se dissocient pas, en dessous de cette température.
  • On notera que, selon la nature du matériau de revêtement et celle du matériau constitutif du bloc, le gradient de propriétés obtenu peut résulter d'un durcissement relatif de la surface du bloc par rapport au coeur, ou au contraire, d'un adoucissement.
  • Le traitement thermique comprend, comme cela est représenté à la figure 4, une montée en température jusqu'à la température de maintien Tm, puis un maintien pendant un temps de maintien tm à cette température et un refroidissement jusqu'à la température ambiante.
  • Le temps de maintien tm et la température de maintien Tm sont adaptés en fonction des dimensions du bloc à traiter et du gradient de propriétés qu'on veut obtenir.
  • Le traitement thermique peut être effectué dans un four à résistance, ou un four à induction, ou un four à micro-onde, sous atmosphère protectrice ou sous vide. L'atmosphère protectrice est par exemple de l'argon ou un mélange d'argon et d'hydrogène mais en règle générale toute atmosphère neutre telle que argon, azote, argon hydrogéné, azote hydrogéné, hydrogène ou éventuellement un vide primaire ou secondaire.
  • Comme représenté à la figure 2, le bloc ainsi traité a une composition, en particulier une teneur en phase liante, qui varie depuis l'extérieur vers l'intérieur. Sur la figure, on a représenté des courbes d'iso-concentration Ci en phase liante, la zone la plus externe 10 étant la plus pauvre en phase liante et par conséquent la plus dure, et la zone intermédiaire 11 ayant une concentration intermédiaire et la zone 12 la plus riche en phase liante étant la moins dure et par conséquent la plus tenace. Comme représenté sur cette figure 2, on voit que la variation de teneur en phase liante se fait sur plusieurs millimètres. De ce fait, il apparaît que l'action d'un ou plusieurs éléments constitutifs de la couche externe déposée avec l'un des constituants du carbure cémenté peut induire des phénomènes de transfert (ou de migration) de la phase liante liquide depuis la zone externe vers la zone interne en appauvrissant la zone externe pour enrichir la zone interne.
  • Bien évidemment, pour un carbure cémenté donné et un matériau de revêtement donné, l'étendue de la zone affectée par la variation de la teneur en phase liante dépend à la fois de la température maximale de maintien Tm, du temps de maintien tm et de l'épaisseur du matériau de revêtement. A épaisseur égale de la couche de revêtement, plus la température Tm est élevée et plus le temps tm est long, plus la zone affectée est étendue ; c'est-à-dire, plus le bloc est affecté en profondeur.
  • L'homme du métier sait adapter les conditions du traitement aux résultats qu'il souhaite obtenir. On notera également que le bloc tel qu'il vient d'être décrit est recouvert sur toutes ses faces d'un matériau actif. Mais, le matériau actif peut n'être déposé que sur une partie de la surface externe du bloc et de ce fait peut conduire au durcissement ou à l'adoucissement que des zones du bloc situées sous le revêtement et donc posséder respectivement une zone adoucie ou durcie à coeur qui peut s'étendre jusqu'à la surface externe du bloc qui n'est pas revêtue.
  • On notera que cette variation de la répartition de la phase liante à l'intérieur du bloc sur des distances millimétriques se fait sans apport de phase liante externe. Mais ce n'est pas pour autant que la teneur en phase liante globale du bloc qui a été traitée reste identique car de la phase liante a pu se combiner avec un ou plusieurs éléments du revêtement pour former une phase solide, appauvrissant ainsi la teneur en phase liante du bloc.
  • La variation de dureté qui peut atteindre plusieurs centaines de Vickers peut se faire sur des distances supérieures à 0,5mm, et peut s'étendre dans tout le bloc.
  • A titre d'exemple, on a réalisé trois traitements de blocs constitués du même matériau, WC-Co contenant environ 13% en poids de Cobalt (HV2kg/10s = 1220), selon le même cycle thermique (Tm = 1350 °C, tm, = 5 min) avec deux revêtements différents (nitrure de bore, alumine) sous vide et sous argon hydrogéné.
  • Le premier bloc, repéré 10 à la figure 5, a été revêtu par pulvérisation d'une couche 11 de nitrure de bore BN, recouvrant la face supérieure et les faces latérales du bloc, puis traité sous vide.
  • Comme cela est représenté de façon schématique à la figure 6, le gradient de concentration en phase liante obtenu a la forme d'un dôme tel que la zone 12 située sous les surfaces revêtues a une dureté supérieure de 130 HV environ à celle de la zone 13 située au coeur du bloc. Le sens de migration de la phase liante est indiqué par la flèche et par le sens croissant des iso-concentrations (C1<C2<C3<C4).
  • Le deuxième bloc, repéré 20 à la figure 7, a également été revêtu d'une couche 21 de nitrure de bore BN, mais celle-ci n'a été déposée que sur une moitié du bloc. En outre, le bloc a été traité sous une atmosphère d'argon hydrogéné.
  • Comme représenté à la figure 8, le gradient de concentration en phase liante obtenu conduit à une amplitude de dureté de 120 HV, seule la zone 22 située sous le revêtement étant durcie, le reste 23 ne l'étant pas. De nouveau, le sens de migration de la phase liante est indiqué par la flèche et par le sens croissant des iso-concentrations (C1 <C2<C3).
  • Le troisième bloc, repéré 30 à la figure 9, a été revêtu d'une couche 31 d'oxyde d'aluminium Al2O3 déposée sous la forme de pâte liquide au pinceau sur la face supérieure et sur les faces latérales du bloc et traité sous vide. Comme représenté à la figure 10, le gradient de concentration en phase liante obtenu est en forme de dôme, mais, contrairement à ce qui a été obtenu avec le premier bloc, la zone 32 proche de la surface a été adoucie de sorte que leur dureté est inférieure de 150 HV à celle de la zone à coeur 33. Le sens de migration de la phase liante est indiqué par la flèche et par le sens croissant des iso-concentrations (C1 <C2<C3<C4) dont le sens est inverse par rapport aux deux cas précédents.
  • Ainsi, dans le cas du matériau WC-Co considéré, le nitrure de bore permet de durcir la zone du bloc proche de la couche de revêtement, alors que l'alumine permet de l'adoucir.
  • En revanche, l'atmosphère du four (vide ou argon-hydrogéné) utilisée pour effectuer les traitements est sans incidence sur le résultat.
  • Comme on l'a indiqué précédemment, les blocs ainsi traités peuvent constituer des taillants d'outil de forage ou d'outil de coupe et peuvent avoir des dimensions de quelques millimètres ou même plus puisqu'on peut envisager de réaliser des lames de coupe ayant des dimensions de plusieurs centimètres et qui peuvent être durcies par ce procédé.
  • On peut également, comme cela est représenté à la figure 3, réaliser un taillant pour outil de taille des roches ou outil de coupe des métaux réfractaires ou d'usinage, constitué d'un bloc support 20 en carbure cémenté réalisé à l'aide du procédé selon l'invention dont la surface latérale est dure et le coeur plus tenace (C1 <C2<C3<C4) et dont la face inférieure n'a pas été revêtue avant traitement thermique et dont sur la face supérieure après traitement a été rapportée une plaquette 21 de diamant naturel ou synthétique d'épaisseur supérieure à 0,4mm selon le procédé HPHT (Haute Pression - Haute Température) du type PDC (Polycrystalline Diamond Compact) ou du type TSP (Thermally Stable Polycrystalline diamond).
  • En particulier, le bloc support 20 traité selon l'invention peut être assemblé après le procédé HPHT par brasage par exemple selon le procédé connu sous le nom de « LS Bond » et décrit dans les brevets US 4,225,322 et US 5,111,895 sans que cette opération n'entraîne dans le bloc une modification drastique du gradient de concentration en phase liante.
  • D'autres taillants que l'homme du métier peut imaginer peuvent être réalisés par ce procédé. Ces taillants peuvent être incorporés dans des outils divers connus de l'homme du métier tels que des outils pour le broyage des roches, pour des têtes de forage ou bien des outils d'usinage.

Claims (17)

  1. Procédé pour fabriquer une pièce comprenant un bloc (1) en matériau dense constitué de particules dures, de même nature ou de nature différente, dispersées dans une phase liante, le matériau ayant une température de solidus Ts à partir de laquelle la phase liante est liquide, caractérisé en ce qu'on dépose sur au moins une partie de la surface du bloc en matériau dense (1), un revêtement actif (2) constitué d'un matériau éventuellement susceptible de réagir chimiquement avec le matériau dense lorsque l'ensemble est porté au-delà d'une température minimale de réaction Tr, et en ce qu'on soumet le bloc (1) revêtu du revêtement actif (2) à un traitement thermique comprenant un chauffage puis un maintien pendant un temps tm à une température de maintien Tm supérieure ou égale à la température minimale de réaction Tr, suivi d'un refroidissement jusqu'à la température ambiante, ce procédé conduit à des variations de la phase liante à l'intérieur du bloc sur des distances millimétriques qui se font sans apport de phase liante externe et donc sans conduire à l'enrichissement global du bloc en phase liante supplémentaire.
  2. Procédé selon la revendication 1, caractérisé en ce que la température de maintien Tm est supérieure ou égale à la température de solidus Ts du matériau dense.
  3. Procédé selon la revendication 2, caractérisé en ce que la température de maintien Tm est inférieure ou égale à Ts + 200°C.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le temps de maintien tm est compris entre 1 min et 10min.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le revêtement actif n'est déposé que sur une partie de la surface du bloc.
  6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le revêtement actif est déposé sur toute la surface du bloc.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le matériau dense est un carbure cémenté constitué de particules de carbure métallique dispersées dans une matrice métallique.
  8. Procédé selon la revendication 7, caractérisé en ce que le carbure cémenté contient, en outre, des particules de diamant naturel ou synthétique de taille allant jusqu'à 1mm de diamètre.
  9. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce que le carbure cémenté est du type WC-M, M étant un ou plusieurs métaux pris parmi Co, Ni et Fe, la somme des teneurs en poids de ces métaux dans la phase liante étant supérieure à 50%.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le matériau de revêtement susceptible de réagir avec le matériau dense du bloc est constitué d'au moins un composé pris parmi les composés du type nitrure, borure, carbure, oxyde, hydrure, carbonitrure, borocarbure, graphite ou de tout mélange de ces différents composés.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le revêtement est déposé par un procédé du type PVD (Physical Vapor Deposition) ou CVD (Chemical Vapor Deposition), ou un procédé de pulvérisation ou au pinceau ou au trempé ou par sérigraphie.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le bloc de matériau dense est un taillant ou un bloc support d'un taillant d'un outil de forage ou abattage ou usinage (roches / métaux).
  13. Procédé selon la revendication 12, caractérisé en ce qu'en outre, on dépose sur une face du bloc support une plaquette diamantée de type PDC (Polycrystalline Diamond Compact) ou TSP (Thermally Stable Polycrystalline diamond).
  14. Procédé selon la revendication 13, caractérisé en ce que la plaquette diamantée est rapportée sur une face du bloc après traitement du bloc, par brasage.
  15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la pièce est un taillant pour le broyage des roches comprenant un bloc constitué de particules dures dispersées dans une phase liante qui présente sur une distance supérieure à 0,5mm, un gradient continu de teneur en phase liante, l'écart de teneur en phase liante entre la zone la plus riche et la zone la moins riche étant supérieure à 1% en volume.
  16. Procédé selon la revendication 15, caractérisé en ce que le taillant comprend une plaquette diamantée rapportée de type PDC ou TSP d'épaisseur supérieure à 0,4mm.
  17. Procédé selon la revendication 15 ou la revendication 16, caractérisé en ce que la pièce est un outil de taille des roches comprenant au moins un taillant ou une lame.
EP09755981A 2008-10-07 2009-10-07 Procede de fabrication d'une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue Active EP2347025B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856771A FR2936817B1 (fr) 2008-10-07 2008-10-07 Procece pour fabriquer une piece comprenant un bloc en materiau dense du type carbure cemente, presentant un grandient de proprietes et piece obtenue
PCT/FR2009/051910 WO2010040953A1 (fr) 2008-10-07 2009-10-07 Procede de fabrication d'une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue

Publications (2)

Publication Number Publication Date
EP2347025A1 EP2347025A1 (fr) 2011-07-27
EP2347025B1 true EP2347025B1 (fr) 2013-01-16

Family

ID=40750782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09755981A Active EP2347025B1 (fr) 2008-10-07 2009-10-07 Procede de fabrication d'une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue

Country Status (6)

Country Link
US (1) US8602131B2 (fr)
EP (1) EP2347025B1 (fr)
JP (1) JP5622731B2 (fr)
CN (1) CN102282278A (fr)
FR (1) FR2936817B1 (fr)
WO (1) WO2010040953A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428822B2 (en) * 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
FR2914206B1 (fr) * 2007-03-27 2009-09-04 Sas Varel Europ Soc Par Action Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.
US8858871B2 (en) 2007-03-27 2014-10-14 Varel International Ind., L.P. Process for the production of a thermally stable polycrystalline diamond compact
FR2936817B1 (fr) * 2008-10-07 2013-07-19 Varel Europ Procece pour fabriquer une piece comprenant un bloc en materiau dense du type carbure cemente, presentant un grandient de proprietes et piece obtenue
WO2011146752A2 (fr) 2010-05-20 2011-11-24 Baker Hughes Incorporated Procédés de formation d'au moins une partie d'outils de forage terrestre, et articles formés par de tels procédés
EP2571648A4 (fr) 2010-05-20 2016-10-05 Baker Hughes Inc Procédés de formation d'au moins une partie d'outils de forage terrestre, et articles formés par de tels procédés
US8522900B2 (en) * 2010-09-17 2013-09-03 Varel Europe S.A.S. High toughness thermally stable polycrystalline diamond
JP6809918B2 (ja) * 2017-01-31 2021-01-06 三菱重工業株式会社 金属成形品の熱処理方法及び製造方法
TWI652352B (zh) * 2017-09-21 2019-03-01 國立清華大學 共晶瓷金材料
JP6762331B2 (ja) * 2018-03-09 2020-09-30 三菱重工業株式会社 金属成形品の製造方法
EP3653743A1 (fr) * 2018-11-14 2020-05-20 Sandvik Mining and Construction Tools AB Redistribution de liant à l'intérieur d'un insert d'exploration de carbure cimenté
WO2021061191A1 (fr) * 2019-09-26 2021-04-01 Worldwide Machinery, Ltd Matériau support destiné au soudage
TW202146168A (zh) * 2019-12-11 2021-12-16 美商戴蒙創新公司 多晶鑽石複合片中之鐵梯度;胚料、切刀與包括其之切割工具;及製造方法
CN116324006A (zh) 2020-11-05 2023-06-23 戴蒙得创新股份有限公司 碳化钨硬质合金体和形成碳化钨硬质合金体的方法
EP4275856A1 (fr) * 2022-05-10 2023-11-15 Hilti Aktiengesellschaft Burin à longue durée de vie et procédé de fabrication d'un tel burin
CN115786791B (zh) * 2022-12-22 2024-02-13 杨冠华 一种机械破碎锤片及其制备工艺
CN116408435B (zh) * 2023-04-12 2023-11-03 哈尔滨工业大学 一种高通量制备金刚石/金属复合材料的方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745623A (en) 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US4225322A (en) 1978-01-10 1980-09-30 General Electric Company Composite compact components fabricated with high temperature brazing filler metal and method for making same
US4402764A (en) * 1981-03-05 1983-09-06 Turbine Metal Technology, Inc. Method for producing abrasion and erosion resistant articles
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
DE3112460C2 (de) * 1981-03-28 1983-01-20 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Herstellung eines Verbundkörpers sowie Anwendung dieses Verfahrens
DD203750A1 (de) * 1982-02-10 1983-11-02 Immelborn Hartmetallwerk Hartmetallschneidplatte fuer schwerspanbare staehle
US4548786A (en) 1983-04-28 1985-10-22 General Electric Company Coated carbide cutting tool insert
US4726718A (en) 1984-03-26 1988-02-23 Eastman Christensen Co. Multi-component cutting element using triangular, rectangular and higher order polyhedral-shaped polycrystalline diamond disks
US5028177A (en) 1984-03-26 1991-07-02 Eastman Christensen Company Multi-component cutting element using triangular, rectangular and higher order polyhedral-shaped polycrystalline diamond disks
US4525178A (en) 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
DE3574738D1 (de) 1984-11-13 1990-01-18 Santrade Ltd Gesinterte hartmetallegierung zum gesteinsbohren und zum schneiden von mineralien.
JPS6274076A (ja) * 1985-09-27 1987-04-04 Sumitomo Electric Ind Ltd 多重層被覆硬質合金の製造法
SE456428B (sv) 1986-05-12 1988-10-03 Santrade Ltd Hardmetallkropp for bergborrning med bindefasgradient och sett att framstella densamma
US4943488A (en) 1986-10-20 1990-07-24 Norton Company Low pressure bonding of PCD bodies and method for drill bits and the like
US5111895A (en) 1988-03-11 1992-05-12 Griffin Nigel D Cutting elements for rotary drill bits
US5011514A (en) 1988-07-29 1991-04-30 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US6413589B1 (en) * 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
JPH0349834A (ja) 1989-07-14 1991-03-04 Sumitomo Electric Ind Ltd 金を接合材とする工具及びその製造方法
JP3191878B2 (ja) 1991-02-21 2001-07-23 三菱マテリアル株式会社 気相合成ダイヤモンド被覆切削工具の製造法
WO1993008952A1 (fr) * 1991-10-28 1993-05-13 Alcan International Limited Procede pour modifier la surface d'un substrat en aluminium
JP3366659B2 (ja) * 1991-12-16 2003-01-14 東芝タンガロイ株式会社 異層表面調質焼結合金及びその製造方法
US5441817A (en) 1992-10-21 1995-08-15 Smith International, Inc. Diamond and CBN cutting tools
US5839329A (en) 1994-03-16 1998-11-24 Baker Hughes Incorporated Method for infiltrating preformed components and component assemblies
US5560839A (en) 1994-06-27 1996-10-01 Valenite Inc. Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom
US7396501B2 (en) 1994-08-12 2008-07-08 Diamicron, Inc. Use of gradient layers and stress modifiers to fabricate composite constructs
US5726718A (en) * 1994-09-30 1998-03-10 Texas Instruments Incorporated Error diffusion filter for DMD display
JP3309897B2 (ja) 1995-11-15 2002-07-29 住友電気工業株式会社 超硬質複合部材およびその製造方法
US5880382A (en) 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
US6054693A (en) 1997-01-17 2000-04-25 California Institute Of Technology Microwave technique for brazing materials
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
AU3389699A (en) 1998-04-22 1999-11-08 De Beers Industrial Diamond Division (Proprietary) Limited Diamond compact
US6592985B2 (en) 2000-09-20 2003-07-15 Camco International (Uk) Limited Polycrystalline diamond partially depleted of catalyzing material
US7261753B2 (en) 2002-07-26 2007-08-28 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
JP2004060201A (ja) * 2002-07-26 2004-02-26 Mitsubishi Materials Corp 高速回転操業条件ですぐれた耐微少欠け性を発揮する掘削工具の切刃片
US7261752B2 (en) 2002-09-24 2007-08-28 Chien-Min Sung Molten braze-coated superabrasive particles and associated methods
US6869460B1 (en) 2003-09-22 2005-03-22 Valenite, Llc Cemented carbide article having binder gradient and process for producing the same
US7699904B2 (en) 2004-06-14 2010-04-20 University Of Utah Research Foundation Functionally graded cemented tungsten carbide
JP4911937B2 (ja) * 2004-12-09 2012-04-04 サンアロイ工業株式会社 高強度超硬合金、その製造方法およびそれを用いる工具
GB2438319B (en) 2005-02-08 2009-03-04 Smith International Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US7487849B2 (en) * 2005-05-16 2009-02-10 Radtke Robert P Thermally stable diamond brazing
US7377341B2 (en) 2005-05-26 2008-05-27 Smith International, Inc. Thermally stable ultra-hard material compact construction
US7887747B2 (en) 2005-09-12 2011-02-15 Sanalloy Industry Co., Ltd. High strength hard alloy and method of preparing the same
US7757793B2 (en) 2005-11-01 2010-07-20 Smith International, Inc. Thermally stable polycrystalline ultra-hard constructions
US8066087B2 (en) 2006-05-09 2011-11-29 Smith International, Inc. Thermally stable ultra-hard material compact constructions
US8028771B2 (en) 2007-02-06 2011-10-04 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US7942219B2 (en) 2007-03-21 2011-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
FR2914206B1 (fr) * 2007-03-27 2009-09-04 Sas Varel Europ Soc Par Action Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.
US8061454B2 (en) 2008-01-09 2011-11-22 Smith International, Inc. Ultra-hard and metallic constructions comprising improved braze joint
WO2009111749A1 (fr) 2008-03-07 2009-09-11 University Of Utah Carbure de tungstène cimenté fonctionnellement évalué résistant à la dégradation thermique et aux fissures et diamant polycristallin
FR2936817B1 (fr) * 2008-10-07 2013-07-19 Varel Europ Procece pour fabriquer une piece comprenant un bloc en materiau dense du type carbure cemente, presentant un grandient de proprietes et piece obtenue
EP2184122A1 (fr) 2008-11-11 2010-05-12 Sandvik Intellectual Property AB Corps de carbure cimenté et procédé
AU2010279358A1 (en) 2009-08-07 2012-03-01 Smith International, Inc. Functionally graded polycrystalline diamond insert

Also Published As

Publication number Publication date
US8602131B2 (en) 2013-12-10
WO2010040953A1 (fr) 2010-04-15
JP5622731B2 (ja) 2014-11-12
JP2012505306A (ja) 2012-03-01
EP2347025A1 (fr) 2011-07-27
FR2936817A1 (fr) 2010-04-09
FR2936817B1 (fr) 2013-07-19
US20110174550A1 (en) 2011-07-21
CN102282278A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
EP2347025B1 (fr) Procede de fabrication d&#39;une piece comprenant un bloc en materiau dense constitue de particules dures et de phase liante presentant un grandient de proprietes, et piece ainsi obtenue
EP1975264B1 (fr) Procédé pour fabriquer une pièce comprenant au moins un bloc en matériau dense constitué de particules dures dispersées dans une phase liante : application à des outils de coupe ou de forage.
US4548786A (en) Coated carbide cutting tool insert
EP2964590B1 (fr) Procede de preparation d&#39;un revetement multicouche de ceramiques carbures sur, et eventuellement dans, une piece en un materiau carbone, par une technique d&#39;infiltration reactive a l&#39;etat fondu rmi
EP0246118B1 (fr) Produit abrasif diamanté thermostable et procédé de fabrication d&#39;un tel produit
CN104044308B (zh) 表面包覆切削工具
US4497874A (en) Coated carbide cutting tool insert
EP2632877B1 (fr) Procédé pour revêtir une pièce d&#39;un revêtement de protection contre l&#39;oxydation.
US20020095875A1 (en) Abrasive diamond composite and method of making thereof
US20100300767A1 (en) Diamond Bonded Construction with Improved Braze Joint
CN101755066A (zh) 超硬金刚石复合物
EP0296055B1 (fr) Procédé de fabrication de produit abrasif thermostable composite
BE1012594A3 (fr) Elements de coupe pdc a tenacite elevee.
WO2015007966A1 (fr) Procede de fabrication par frittage d&#39;une piece multicouche
EP1440045A1 (fr) Procede de metallisation et/ou de brasage par un alliage de silicium de pieces en ceramique oxyde non mouillable par ledit alliage
US20200023442A1 (en) Method for coating solid diamond materials
US9242215B2 (en) Infiltration compositions for PCD by using coated carbide substrates
JP2000144298A (ja) ダイヤモンド含有硬質部材およびその製造方法
JPH0321601B2 (fr)
BE1008161A3 (fr) Carbone resistant a l&#39;oxydation et procede pour le fabriquer.
CA1256274A (fr) Mise de carbure enrobee pour outil de coupe
Azem et al. Effect of carbon content on the reactive sintering of mixed W-Co-C powders
JPS6094204A (ja) 複合ダイヤモンド焼結体及びその製造方法
JP2000054056A (ja) ダイヤモンド粒子含有硬質部材
BE654848A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SORLIER, ELODIE

Inventor name: DOURFAYE, ALFAZAZI

Inventor name: COLIN, CHRISTOPHE

RAX Requested extension states of the european patent have changed

Extension state: RS

Payment date: 20110406

Extension state: BA

Payment date: 20110406

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEFORT, ELODIE

Inventor name: DOURFAYE, ALFAZAZI

Inventor name: COLIN, CHRISTOPHE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 593969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009012849

Country of ref document: DE

Effective date: 20130314

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 593969

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130116

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

26N No opposition filed

Effective date: 20131017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009012849

Country of ref document: DE

Effective date: 20131017

BERE Be: lapsed

Owner name: VAREL EUROPE

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009012849

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091007

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20180924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20181009

Year of fee payment: 10

Ref country code: SE

Payment date: 20181011

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181003

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191008

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240418

Year of fee payment: 15