EP2345615B1 - Appareil de commande d'ascenseur - Google Patents

Appareil de commande d'ascenseur Download PDF

Info

Publication number
EP2345615B1
EP2345615B1 EP08878101.8A EP08878101A EP2345615B1 EP 2345615 B1 EP2345615 B1 EP 2345615B1 EP 08878101 A EP08878101 A EP 08878101A EP 2345615 B1 EP2345615 B1 EP 2345615B1
Authority
EP
European Patent Office
Prior art keywords
velocity
arithmetic operation
inertia
model
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08878101.8A
Other languages
German (de)
English (en)
Other versions
EP2345615A4 (fr
EP2345615A1 (fr
Inventor
Toshiaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP2345615A1 publication Critical patent/EP2345615A1/fr
Publication of EP2345615A4 publication Critical patent/EP2345615A4/fr
Application granted granted Critical
Publication of EP2345615B1 publication Critical patent/EP2345615B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system

Definitions

  • the present invention relates to an elevator control apparatus and, more particularly, to an elevator control apparatus which calculates an inertia as a control target in velocity control having a model arithmetic operation unit.
  • Fig. 9 is a diagram showing the outline of a conventional generally-used elevator.
  • the elevator is provided with, e.g., a commercial power supply 310, a car 350 to vertically move a human or a load, a counterweight 360 having a weight that balances the weight of the car and load to be transported, an inverter 330 which supplies power to drive a power device, a converter 320 which supplies power from the commercial power supply to the inverter, an elevator control apparatus 340 which controls the inverter 330, the converter 320, a power device 301, and the like.
  • a commercial power supply 310 e.g., a commercial power supply 310
  • a car 350 to vertically move a human or a load
  • a counterweight 360 having a weight that balances the weight of the car and load to be transported
  • an inverter 330 which supplies power to drive a power device
  • a converter 320 which supplies power from the commercial power supply to the inverter
  • the conventional elevator control apparatus which calculates the inertia of a control target includes a velocity instruction input means, a model arithmetic operation unit, a velocity detector, a compensation arithmetic operation unit, a torque instruction calculation unit, a torque controller, and an inertia calculator, as described in patent literature 1.
  • Patent Literature 1 JP 2003-128352
  • JP 2006199444 Another control apparatus according to the state of the art is described in JP 2006199444 .
  • a correct inertia can be calculated in a steady state where the car acceleration is constant and the above equation (A) is established.
  • a correct inertia cannot be calculated in a transient state where the acceleration time is short, the feedback does not converge sufficiently, the acceleration is not constant, and accordingly the above force equilibrium equation (A) is not established. Therefore, when calculating the inertia of a low-velocity elevator, identification must be performed a number of times to decrease the error, or the acceleration time must be increased so the acceleration converges.
  • a correct inertia can be calculated in a steady state where the car acceleration is constant and the above equation (A) is established.
  • the inertia cannot be calculated in cases where a constant acceleration time does not substantially exist, e.g., when the inertia error is excessively large and the control system diverges to stop during acceleration build-up, or when the velocity is excessively low and a velocity pattern of constant acceleration build-up and constant deceleration build-up results, as in manual operation.
  • the inertia error prediction unit includes a first arithmetic operation part which calculates the intermediate value based on integral arithmetic operation of the velocity deviation of a period where an acceleration build-up state and a constant acceleration state of a car of the elevator are consecutive, and a second arithmetic operation part which predicts the post-convergent inertia error based on the intermediate value calculated by the first arithmetic operation part.
  • the second arithmetic operation part calculates a rate-corresponding value, corresponding to a rate of the intermediate value calculated by the first arithmetic operation part to the value of the inertia error that should converge, and predicts the post-convergent inertia error based on the intermediate value and the rate-corresponding value.
  • the inertia error prediction unit predicts the post-convergent inertia error by applying the final-value theorem to the velocity deviation of the period of the acceleration build-up state.
  • the inertia error prediction unit predicts the post-convergent inertia error by applying inverse Laplace transform to the velocity deviation of the period of the acceleration build-up state.
  • a high-following-capability elevator control apparatus can be provided that calculates an accurate inertia even during a transient response before convergence of the car acceleration or even in a situation where the car cannot accelerate constantly, and that uses the calculated inertia.
  • Embodiment 1 relates to the elevator control apparatus 110 which, even during a transient response before convergence of car acceleration, calculates the convergence rate (E s (t) to be described later) of the acceleration so as to calculate an accurate inertia quickly, and operates an elevator car with high following capability.
  • the characteristic feature of the elevator control apparatus 110 of Embodiment 1 resides in an inertia error prediction unit 80A, and particularly a second arithmetic operation part 82a of the inertia error prediction unit 80A.
  • the second arithmetic operation part 82a has a function of receiving a pre-convergent intermediate inertia error from a first arithmetic operation part 81 a and predicts a post-convergent inertia error. Note that “during a transient response” or “a transient state” in Embodiment 1 refers to a state before the feedback converges not only during acceleration build-up but also during constant acceleration.
  • Fig. 1 is a block diagram showing the configuration of the elevator control apparatus 110 of Embodiment 1.
  • Fig. 2 is a diagram showing the detailed configuration of the elevator control apparatus 110 of Embodiment 1.
  • the elevator control apparatus 110 includes a velocity instruction input unit 10, a parameter setting unit 20, a model arithmetic operation unit 30, a velocity detector 40, a compensation arithmetic operation unit 50, a torque instruction calculation unit 60, a torque controller 70, the inertia error prediction unit 80A, and a parameter correction unit 90.
  • the inertia error prediction unit 80A includes the first arithmetic operation part 81a and the second arithmetic operation part 82a.
  • the torque controller 70 controls a power device 95, and the velocity detector 40 detects an actual velocity ⁇ M of the power device 95.
  • Fig. 2 will be described. Fig. 2 does not show the parameter setting unit 20 shown in Fig. 1 .
  • a control target 200 incorporates the power device 95, the torque controller 70 which controls the torque of the power device, the velocity detector 40 which detects the velocity of the power device, a mechanical system 201 as a load, and a disturbance torque ⁇ L 202 which acts on the control target.
  • the torque of the power device is controlled by the torque controller 70 so as to coincide with the input torque instruction q r .
  • the electric motor, and the mechanical system as the load are driven, and the actual velocity ⁇ M of the electric motor is detected by the velocity detector 40, and output to the outside.
  • the transfer characteristics from the torque instruction q r to the actual velocity ⁇ M may be described as G(s).
  • the operation of the first arithmetic operation part 81a will now be described.
  • the first arithmetic operation part 81 a inputs the actual velocity ⁇ M from the velocity detector 40 and the model velocity ⁇ A from the model arithmetic operation unit 30, and performs an arithmetic operation using the actual velocity ⁇ M and the model velocity ⁇ A .
  • the transfer function from the velocity instruction ⁇ ref , which the elevator should follow, to the estimated model velocity ⁇ A and the actual velocity ⁇ M , of the hoist (power device 95) can be expressed as the following equations (1) and (2).
  • the estimated model velocity ⁇ A is expressed by equation (1):
  • ⁇ M J A ⁇ s 2 + K sp ⁇ 2 ⁇ s + K si ⁇ 2 J M ⁇ s 2 + K sp ⁇ 2 ⁇ s + K si ⁇ 2 ⁇ K sp ⁇ 1 J A + K sp ⁇ 1 ⁇ ⁇ ref + s J M ⁇ s 2 + K sp ⁇ 2 ⁇ s + K si ⁇ 2 ⁇ ⁇ L
  • the disturbance torque value ⁇ L can be identified during a constant velocity input state, and other parameters (integral gain K si2 , instruction velocity ⁇ ) are known. From the foregoing, during acceleration of the elevator car, the first arithmetic operation part 81a can identify the inertia error ⁇ J M by observing the velocity deviation E between the model velocity ⁇ A of the model arithmetic operation unit 30 and the actual velocity ⁇ M detected by the velocity detector 40 and calculating the integral value of the velocity deviation E. The value of the constant disturbance ⁇ L can be fixed by observing the velocity deviation E of constant velocity.
  • equation (8) The right side of equation (8) will be substituted by f(t) so that it can be used in a following equation.
  • s 1 , s 2 , and s 3 are the roots of the transfer function from the velocity instruction input ⁇ ref to the velocity deviation E.
  • the inertia J M of the actual control target is necessary. If a preset inertia J A is used, the resultant convergence rate does not differ largely. Thus, calculation can be performed by using J A in place of J M .
  • Laplace transform of input of constant acceleration build-up to constant acceleration, which is employed in an elevator is given by the following equation (9):
  • the transient response of the inertia error of an elevator at an arbitrary time when an input of acceleration build-up to acceleration is applied, can be calculated.
  • the value of the post-convergent inertia error can be obtained by observing the integral value of the pre-convergent velocity deviation.
  • the second arithmetic operation part 82a calculates (predicts) the inertia J M of the elevator by the following equation (11).
  • J M E s t b 1 ⁇ 1 - e s 1 ⁇ t 1 ⁇ e - s 1 ⁇ t + b 2 ⁇ 1 - e s 2 ⁇ t 1 ⁇ e - s 2 ⁇ t + b 3 ⁇ 1 - e s 3 ⁇ t 1 ⁇ e - s 3 ⁇ t + b 4 ⁇ t 1 ⁇ b 4 ⁇ t 1 ⁇ K si ⁇ 2 - ⁇ L ⁇ 1 ⁇ + J A
  • FIG. 3 shows how the inertia error converges.
  • the axis of abscissa represents the time
  • the axis of ordinate represents the inertia error.
  • (b) of Fig. 3 is a velocity diagram.
  • the axis of abscissa represents the time
  • the axis of ordinate represents the elevator velocity.
  • the inertia error converges to a certain value over time.
  • the first arithmetic operation part 81a calculates a pre-convergent intermediate inertia error ⁇ J M (pre-convergent).
  • the pre-convergent intermediate inertia error ⁇ J M (pre-convergent) is the integral value E s (t) of the velocity deviation from acceleration build-up to constant acceleration.
  • the second arithmetic operation part 82a obtains f(s) (rate-corresponding value) which corresponds to the rate of the intermediate inertia error " ⁇ J M (pre-convergent)" to the to-be-converging inertia error " ⁇ J M (post-convergent)". Note that f(s) is the right side of equation (10).
  • the second arithmetic operation part 82a calculates (predicts) the inertia error ⁇ J M (post-convergent), being the convergence value, by dividing the "integral value E s (t) of the velocity deviation" corresponding to the intermediate value of the pre-convergent intermediate inertia error by the rate f(s) with respect to the inertia error ⁇ J M (post-convergent) to which the intermediate value (E s (t)) should converge, as indicated in equation (11).
  • the second arithmetic operation part 82a calculates (equation (10)) the rate-corresponding value f(s), corresponding to the rate of the intermediate value to the value of the inertia error ⁇ J M (post-convergent) that should converge as indicated in equation (10), in accordance with a predetermined calculation procedure, and calculates (predicts) the post-convergent inertia error ⁇ J M (post-convergent) by equation (11) based on the intermediate value ⁇ J M (pre-convergent) and the rate-corresponding value f(s).
  • Fig. 4 is a graph showing a velocity instruction value 4.
  • the axis of abscissa represents time t, and the axis of ordinate represents velocity V.
  • the velocity instruction value has a region 1 which is an acceleration build-up period, a region 2 which is a constant acceleration period, and a region 3 which is a constant velocity period.
  • the elevator control apparatus 110 As described above, the elevator control apparatus 110 according to Embodiment 1 is provided with the inertia error prediction unit 80A that predicts the post-convergent inertia error from the intermediate inertia error.
  • the inertia error prediction unit 80A that predicts the post-convergent inertia error from the intermediate inertia error.
  • the elevator control apparatus 110 is provided with the second arithmetic operation part 82a which receives the intermediate inertia error (E s (t) corresponding to the inertia error) from the first arithmetic operation part 81 a that calculates the pre-convergent intermediate inertia error based on the integral arithmetic operation of the velocity deviation, and which predicts the post-convergent inertia error.
  • E s (t) corresponding to the inertia error
  • the first arithmetic operation part 81 a that calculates the pre-convergent intermediate inertia error based on the integral arithmetic operation of the velocity deviation, and which predicts the post-convergent inertia error.
  • FIG. 5 is a block diagram showing the configuration of the elevator control apparatus 120, and corresponds to Fig. 1 .
  • Fig. 5 is different from Fig. 1 in that the inertia error prediction unit 80B has only the first arithmetic operation part 81b.
  • FIG. 6 shows the detailed configuration of the elevator control apparatus 120, and corresponds to Fig. 2 .
  • Fig. 6 is different from Fig. 2 in that the inertia error prediction unit 80B has only the first arithmetic operation part 81b.
  • the first arithmetic operation part 8 1 b calculates an error between an estimated inertia J A and an actual inertia J M based on a model velocity ⁇ A and an actual velocity ⁇ M , and ends inertia identification value calculation during the period of constant acceleration build-up.
  • the operation of the first arithmetic operation part 81b will be described.
  • the first arithmetic operation part 81b inputs the actual velocity ⁇ M from a velocity detector 40 and the model velocity ⁇ A from a model arithmetic operation unit 30, and calculates the inertia error.
  • the transfer function from a velocity instruction ⁇ ref , which the elevator should follow, to the estimated model velocity ⁇ A and the actual velocity ⁇ M , of a hoist (power device 95) is as follows. Namely, the estimated model velocity ⁇ A is identical to that of equation (1) of Embodiment 1. The actual velocity ⁇ M is identical to that of equation (2) of Embodiment 1.
  • the inertia error ⁇ J M can be identified by observing the velocity deviation during constant acceleration build-up.
  • the inertia error prediction unit 80B predicts an inertia error which has converged to the convergence value, by applying the final-value theorem to the velocity deviation E of the period of the acceleration build-up state.
  • the inertia value of the control target is obtained from a velocity deviation which an inertia error arithmetic operation unit receives during a constant acceleration build-up region 1 when the car is caused to travel with parameters preset by a parameter setting unit in advance during a time and at a velocity shown in Fig. 4 (velocity instruction graph).
  • the elevator control apparatus 120 of Embodiment 2 is provided with the first arithmetic operation part 81b that identifies the inertia value in the acceleration build-up state, an accurate inertia error can be calculated. Hence, the elevator control apparatus 120 with high following capability can be provided.
  • the elevator control apparatus 120 of Embodiment 2 can identify the inertia error in the acceleration build-up region 1 by using the final value of the velocity deviation E.
  • the inertia error may not converge sufficiently when, e.g., the elevator halts during traveling.
  • a second arithmetic operation part 82c which predicts the convergence value of the inertia error is provided separately, so that the inertia can be identified.
  • Fig. 7 is a block diagram showing the configuration of the elevator control apparatus 130.
  • the configuration shown in Fig. 7 is identical to that of Fig. 1 .
  • the processing contents of a first arithmetic operation part 81c and the second arithmetic operation part 82c of the elevator control apparatus 130 are different from the processing contents of the first arithmetic operation part 81a and second arithmetic operation part 82a of the elevator control apparatus 110.
  • Fig. 7 is provided independently of Fig. 1 .
  • Fig. 8 corresponds to Fig. 2 , it is provided independently of Fig. 2 for the same reason as that for Fig. 7 .
  • Figs. 7 and 8 show a configuration obtained by adding the second arithmetic operation part to the elevator control apparatus 120 of Figs. 5 and 6 , respectively.
  • the first arithmetic operation part 81c outputs a difference ⁇ J M between an estimated inertia J A and an actual inertia J M based on a velocity deviation E between a model velocity ⁇ A and an actual velocity ⁇ M of the control target.
  • the second arithmetic operation part 82c receives a pre-convergent output from the first arithmetic operation part 81c and calculates the convergence prediction value of the inertia error.
  • a parameter correction unit 90 corrects the estimated inertia J A for a model arithmetic operation unit 30 and the gain of a compensation arithmetic operation unit 50.
  • s 1 to s 3 are the poles of the control system.
  • the next equation (32) shows s 1 to s 3 .
  • equation (33) a 1 to a 4 and b 1 and b 2 are coefficients of equation (31), and u(t) is a unit step function.
  • an actual inertia value J M is required.
  • the convergence rate of equation (33) can be calculated by using J A in place of J M .
  • a 1 to a 4 are known, and the influence of a disturbance ⁇ L , as far as it is a constant value, converges to 0 with almost the same convergence rate.
  • a convergence rate ⁇ of the time response of the velocity deviation E can be calculated by using equation (33).
  • an inertia error prediction unit 80C predicts the post-convergent inertia error by applying inverse Laplace transform to the velocity deviation of the period of an acceleration build-up state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Electric Motors In General (AREA)
  • Elevator Control (AREA)

Claims (6)

  1. Appareil de commande d'ascenseur (110) qui commande un ascenseur en tant que cible de commande, comprenant :
    une unité d'opération arithmétique modèle (30) à laquelle une instruction de vitesse pour un moteur électrique (95) fournie à l'ascenseur est introduite et qui obtient une vitesse modèle et un couple modèle prévus pour la cible de commande par opération arithmétique en utilisant une inertie prédéfinie de sorte que la vitesse modèle suive l'instruction de vitesse ;
    un détecteur de vitesse (40) qui détecte une vitesse réelle étant une vitesse de rotation réelle du moteur électrique (95) ;
    une unité d'opération arithmétique de compensation (50) qui calcule un couple de compensation d'erreur en utilisant une pluralité de paramètres prédéterminés et un écart de vitesse entre la vitesse modèle calculée par l'unité d'opération arithmétique modèle (30) et la vitesse réelle détectée par le détecteur de vitesse (40) ;
    une unité de calcul d'instruction de couple (60) qui calcule une instruction de couple à partir du couple modèle calculé par l'unité d'opération arithmétique modèle (30) et du couple de compensation d'erreur calculé par l'unité d'opération arithmétique de compensation (50) ;
    un dispositif de commande de couple (70) qui commande et entraîne le moteur électrique (95) de sorte qu'un couple généré par le moteur électrique coïncide avec l'instruction de couple calculée par l'unité de calcul d'instruction de couple (60), caractérisé en ce qu'il comprend en outre :
    une unité de prédiction d'erreur d'inertie (80A), qui calcule une valeur intermédiaire représentant une erreur d'inertie pré-convergente, étant une erreur de la valeur d'inertie prédéfinie par rapport à une valeur d'inertie réelle, sur la base de l'écart de vitesse entre la vitesse modèle calculée par l'unité d'opération arithmétique modèle (30) et la vitesse réelle détectée par le détecteur de vitesse (40), et qui prédit une erreur d'inertie post-convergente, étant la valeur de convergence, sur la base de la valeur intermédiaire calculée ; et
    une unité de correction de paramètre (90) qui corrige la valeur d'inertie prédéfinie devant être utilisée par l'unité d'opération arithmétique modèle (30), en utilisant l'erreur d'inertie post-convergente prédite par l'unité de prédiction d'erreur d'inertie (80A).
  2. Appareil de commande d'ascenseur (110) selon la revendication 1,
    dans lequel l'unité de prédiction d'erreur d'inertie (80A) comprend
    une première partie d'opération arithmétique (81a) qui calcule la valeur intermédiaire sur la base de l'opération arithmétique d'intégrale de l'écart de vitesse d'une période où un état d'accroissement d'accélération et un état d'accélération constante d'une cabine de l'ascenseur sont consécutifs, et
    une deuxième partie d'opération arithmétique (82a) qui prédit l'erreur d'inertie post-convergente sur la base de la valeur intermédiaire calculée par la première partie d'opération arithmétique (81a).
  3. Appareil de commande d'ascenseur (110) selon la revendication 2,
    dans lequel la deuxième partie d'opération arithmétique (82a), en utilisant la transformée inverse de Laplace, calcule une valeur correspondant à un taux, qui correspond à un taux de la valeur intermédiaire calculée par la première partie d'opération arithmétique (81a) qui doit converger vers la valeur de l'erreur d'inertie, et prédit l'erreur d'inertie post-convergente sur la base de la valeur intermédiaire et la valeur correspondant à un taux.
  4. Appareil de commande d'ascenseur (120, 130) qui commande un ascenseur en tant que cible de commande, comprenant :
    une unité d'opération arithmétique modèle (30) à laquelle une instruction de vitesse pour un moteur électrique (95) fournie à l'ascenseur est introduite et qui obtient une vitesse modèle et un couple modèle prévus pour la cible de commande par opération arithmétique en utilisant une inertie prédéfinie de sorte que la vitesse modèle suive l'instruction de vitesse ;
    un détecteur de vitesse (40) qui détecte une vitesse réelle étant une vitesse de rotation réelle du moteur électrique (95) ;
    une unité d'opération arithmétique de compensation (50) qui calcule un couple de compensation d'erreur en utilisant une pluralité de paramètres prédéterminés et un écart de vitesse entre la vitesse modèle calculée par l'unité d'opération arithmétique modèle (30) et la vitesse réelle détectée par le détecteur de vitesse (40) ;
    une unité de calcul d'instruction de couple (60) qui calcule une instruction de couple à partir du couple modèle calculé par l'unité d'opération arithmétique modèle (30) et du couple de compensation d'erreur calculé par l'unité d'opération arithmétique de compensation (50) ;
    un dispositif de commande de couple (70) qui commande et entraîne le moteur électrique (95) de sorte qu'un couple généré par le moteur électrique coïncide avec l'instruction de couple calculée par l'unité de calcul d'instruction de couple (60), caractérisé en ce qu'il comprend en outre :
    une unité de prédiction d'erreur d'inertie (80B, 80C) qui prédit une erreur d'inertie post-convergente, étant une erreur de la valeur d'inertie prédéfinie par rapport à une valeur d'inertie réelle, sur la base d'un écart de vitesse, étant un écart de vitesse entre la vitesse modèle calculée par l'unité d'opération arithmétique modèle (30) et la vitesse réelle détectée par le détecteur de vitesse (40), d'une période d'un état d'accroissement d'accélération d'une cabine de l'ascenseur ; et
    une unité de correction de paramètre (90) qui corrige la valeur d'inertie prédéfinie devant être utilisée par l'unité d'opération arithmétique modèle (30), en utilisant l'erreur d'inertie post-convergente prédite par l'unité de prédiction d'erreur d'inertie (80B, 80C),
  5. Appareil de commande d'ascenseur (120) selon la revendication 4,
    dans lequel l'unité de prédiction d'erreur d'inertie (80B) prédit l'erreur d'inertie post-convergente en appliquant le théorème de valeur finale à l'écart de vitesse de la période de l'état d'accroissement d'accélération.
  6. Appareil de commande d'ascenseur (130) selon la revendication 4,
    dans lequel l'unité de prédiction d'erreur d'inertie (80C) prédit l'erreur d'inertie post-convergente en appliquant la transformée inverse de Laplace à l'écart de vitesse de la période de l'état d'accroissement d'accélération.
EP08878101.8A 2008-11-12 2008-11-12 Appareil de commande d'ascenseur Not-in-force EP2345615B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070559 WO2010055555A1 (fr) 2008-11-12 2008-11-12 Appareil de commande d'ascenseur

Publications (3)

Publication Number Publication Date
EP2345615A1 EP2345615A1 (fr) 2011-07-20
EP2345615A4 EP2345615A4 (fr) 2014-01-01
EP2345615B1 true EP2345615B1 (fr) 2014-08-06

Family

ID=42169704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08878101.8A Not-in-force EP2345615B1 (fr) 2008-11-12 2008-11-12 Appareil de commande d'ascenseur

Country Status (5)

Country Link
EP (1) EP2345615B1 (fr)
JP (1) JP5334985B2 (fr)
KR (1) KR101263568B1 (fr)
CN (1) CN102209677B (fr)
WO (1) WO2010055555A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101860A1 (de) * 2011-05-12 2012-11-15 Thyssenkrupp Aufzugswerke Gmbh Verfahren und Vorrichtung zum Steuern einer Aufzugsanlage
DE102011105342A1 (de) * 2011-06-21 2012-12-27 Thyssenkrupp Aufzugswerke Gmbh Verfahren zum Ermitteln des Trägheitsmoment-Faktors einer Motoranordnung einer Aufzugsanlage
JP6011170B2 (ja) * 2012-09-05 2016-10-19 日産自動車株式会社 モータ制御装置およびモータ制御方法
JP6494897B1 (ja) * 2018-07-05 2019-04-03 三菱電機株式会社 数値制御装置
CN109095301B (zh) * 2018-09-25 2020-11-24 日立楼宇技术(广州)有限公司 一种电梯控制方法、装置、设备和介质
CN115432527B (zh) * 2022-09-30 2024-04-05 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 提升系统的控制方法、装置及提升系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880416A (en) * 1997-12-22 1999-03-09 Otis Elevator Company Automatic calibration of motor speed loop gain for an elevator motor control
JP4726346B2 (ja) * 2000-08-21 2011-07-20 株式会社ミツバ サーボモータ制御装置
JP4230139B2 (ja) * 2001-10-23 2009-02-25 三菱電機株式会社 エレベータの制御装置
JP2005247574A (ja) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp エレベータ制御装置
JP4731922B2 (ja) * 2005-01-20 2011-07-27 三菱電機株式会社 エレベータの制御装置

Also Published As

Publication number Publication date
EP2345615A4 (fr) 2014-01-01
WO2010055555A1 (fr) 2010-05-20
CN102209677A (zh) 2011-10-05
EP2345615A1 (fr) 2011-07-20
KR20110063522A (ko) 2011-06-10
KR101263568B1 (ko) 2013-05-13
JPWO2010055555A1 (ja) 2012-04-05
CN102209677B (zh) 2014-03-19
JP5334985B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2345615B1 (fr) Appareil de commande d'ascenseur
US4982816A (en) Speed control system for elevators
Knezevic et al. A synergistic method for vibration suppression of an elevator mechatronic system
JP2009227186A (ja) 車両速度制御装置
US10128776B2 (en) Inverter device
JP5659727B2 (ja) クレーン振れ角検出方法及び装置、並びにクレーン振れ止め制御方法及び装置
CN111886795B (zh) 电动机控制装置和电梯控制装置
US9233815B2 (en) Method of controlling elevator motor according to positional value and rotational speed
US20230024889A1 (en) Process and an apparatus for controlling an electric motor
US11809148B2 (en) Parameter adjustment method for adjusting control parameters for device that performs servo control
KR101246485B1 (ko) 엘리베이터의 도어 제어 장치
CN102234048B (zh) 电梯速度曲线修正方法
US20210269278A1 (en) Elevator control device
JP3908323B2 (ja) エレベーターの速度制御装置
JPH11292411A (ja) エレベーターの速度制御装置
JP7544199B1 (ja) エレベーターの制御装置
US11366432B2 (en) Dead time estimation device and test device including the same
KR100311962B1 (ko) 철강 냉연 라인에서의 스트립 장력 제어방법
US20230150793A1 (en) Method of estimating and compensating interference torque of lifting system
JP2011234456A (ja) モータの制御装置
JP2007244082A (ja) ロータ周波数推定装置及びロータ周波数推定方法
JPH04286586A (ja) 昇降機駆動制御系におけるロープ張力振動抑制制御方法
JPH0954601A (ja) パラメータ同定装置
JPH03265480A (ja) 加減速制御装置
JPH0725500B2 (ja) エレベータの速度制御方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131128

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 1/30 20060101AFI20131122BHEP

Ipc: B66B 1/28 20060101ALI20131122BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 1/30 20060101AFI20140220BHEP

Ipc: B66B 1/28 20060101ALI20140220BHEP

INTG Intention to grant announced

Effective date: 20140304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 680944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008033768

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 680944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140806

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008033768

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081112

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602008033768

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171108

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008033768

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601